Как проверить мультиметром полевик: Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром — Интернет-журнал «Электрон» Выпуск №5

Содержание

Как проверить полевой МОП (Mosfet) - транзистор цифровым мультиметром - Интернет-журнал "Электрон" Выпуск №5

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

 

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

 

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Как проверить полевой транзистор мультиметром. Часть 1. Транзистор с управляющим p-n переходом. - Интернет-журнал "Электрон" Выпуск №4

Продолжаем рубрику проверки электрорадиоэлементов, и сегодня я представляю первую статью по проверке полевых транзисторов тестером или как сейчас принято говорить - мультиметром.

Перед началом проверки полевых транзисторов рассмотрим, какие бывают виды полевых транзисторов.

На рисунке 1 вы видите классификацию полевых транзисторов.

Из этого рисунку видно, что полевые транзисторы подразделяются на транзисторы с управляющим p-n переходом и полевые транзисторы с изолированным затвором.

В зарубежной литературе полевой транзистор с управляющим p-n переходом обозначается как JFET(junction gate field-effect transistor), а транзистор с изолированным затвором - MOSFET (Metall-Oxid-Semiconductor FET).

Сегодня я вам расскажу, как проверить полевой транзистор с управляющим p-n переходом, а в следующем выпуске журнал перейдем к проверке MOSFET транзистора, так что не забываем подписываться на журнал. Форма подписки после статьи.

Для начала кратко рассмотрим структуру транзистора и принцип его работы.

Полевые транзисторы бывают n-канальные и p-канальные. В виду того, что широкое распространение получили n-канальные полевые транзисторы, на их примере и рассмотрим принцип работы полевого транзисторы с управляющим p-n переходом.

Итак, транзистор состоит из n-полупроводника с внедренными в него высоколегированными n-областями с большой концентрацией носителей заряда – электронов. Сам полупроводник находится на подложке p-типа, которая соединена с еще одной p-областью. Вместе эти области называются затвором (gate). Таким образом, каждая высоколегированная n-область создает с p-подложкой свой p-n переход.

Та часть n-полупроводника, которая находится между p-областями (затворами) называется каналом (в частности каналом n-типа).

Если к высоколегированным n-областям подключить источник напряжение, то в канале создастся электрическое поле, под воздействием этого поля электроны из n-области, к которой подключен «минус» источника будут перемещаться в n-область, к которой подключен «плюс» источника напряжения. Таким образом, через канал потечет электрический ток. Величина этого тока будет напрямую зависеть от электропроводности канала, которая в свою очередь зависит от площади поперечного сечения канала. Нетрудно догадаться, что площадь поперечного сечения канала зависит от ширины p-n переходов.

Та область, от которой движутся носители заряда, а в случае n-канала это электроны, называется истоком (source), а к которой движутся – стоком (drain).

Если на затвор относительно истока подать отрицательное напряжение, то p-n переход, образованный между затвором и истоком будет смещаться в обратном направлении, при этом ширина запирающего слоя будет увеличиваться, тем самым сужая размеры канала и уменьшая электропроводность.

Таким образом, изменяя напряжение между затвором и истоком, мы можем управлять током через канал полевого транзистора.

На этом об устройстве полевого транзистора все, далее в подробности углубляться я не буду, так как этого будет достаточно, что бы понять, как проверить полевой транзистор с управляющим p-n переходом.

Исходя из вышеизложенного можно составить эквивалентную схему полевого транзистора с управляющим p-n переходом, как мы делали при проверке биполярного транзистора.

При составлении схемы будем руководствоваться следующими принципами:

1. В транзисторе имеются два p-n перехода, первый между затвором и истоком, второй между затвором и стоком.

2. Канал между истоком и стоком при отсутствии отрицательного запирающего напряжения на затворе не закрыт и электропроводен, то есть имеет определенное значение сопротивления.

3. Теперь p-n переходы обозначим диодами, а электропроводность канала резистором.

Составляем эквивалентную схему полевого транзистора с управляющим p-n переходом.

 

Теперь зная эквивалентную схему полевого транзистора с управляющим p-n переходом можно построить алгоритм или схему проверки полевого транзистора.

Проверка полевого транзистора с управляющим p-n переходом и каналом n-типа.

1. Проверка сопротивления канала (на рис. R)

Для проверки сопротивления канала с помощью мультиметра необходимо на приборе установить режим измерения сопротивления, предел измерения 2000 Ом.

Измерить сопротивление между истоком и стоком транзистора при разной полярности подключения щупов мультиметра.

Значения сопротивления канала при разной полярности подключения щупов должны быть примерно одинаковыми.

2. Проверка p-n перехода исток-затвор (на рис. VD1).

Включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на исток. Мультиметр должен показать падение напряжения на открытом p-n переходе, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на исток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

3. Проверка p-n перехода сток-затвор (на рис. VD2).

Так же проверяем исправность p-n перехода сток-затвор. То есть включаем мультиметр в режим проверки диодов. Красный (плюсовой ) щуп мультиметра подключаем на затвор (имеет p-проводимость), а черный на сток. Мультиметр должен показать падение напряжения на открытом p-n переходе затвор-сток, которое должно быть в пределах 600-700 мВ.

Меняем полярность подключения щупов (красный на сток, черный на затвор), мультиметр, в случае исправности транзистора показывает бесконечность (на дисплее «1»), то есть переход включен в обратном направлении и закрыт.

Если все три условия выполнились, то считается, что полевой транзистор исправен.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа.

Проверка полевого транзистора с управляющим p-n переходом и каналом p-типа осуществляется по вышеизложенному алгоритму, за исключением того, что при проверке p-n переходов полярность подключения щупов мультиметра меняется на противоположную.

Для наглядности и простоты понимания процесса я записал для вас видео как проверить полевой транзистор с управляющим p-n переходом, где я проверяю транзистор с каналом p-типа.

Как проверить полевой транзистор мультиметром

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Порядок проверки исправности n-канального транзистора мультиметром следующий:

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.
Это используется при проверке транзистора, когда вначале его открывают напряжением мультиметра (п.6), а затем в течение некоторого времени, пока не разрядилась входная емкость, проводят дополнительные измерения (п.п. 7,8).

Оценка исправности р-канального устройства

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Выводы:

  1. Полевые транзисторы типа MOSFET широко используются в технике и радиолюбительской практике.
  2. Проверку работоспособности таких транзисторов можно осуществить с помощью мультиметра, следуя определенной методике.
  3. Проверка p-канального полевого транзистора мультиметром осуществляется таким же образом, что и n-канального транзистора, за исключением того, что следует изменить полярность подключения проводов мультиметра на обратную.

Видео о том, как проверить полевой транзистор

Проверка полевого транзистора с помощью мультиметра

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 3 – Полупроводниковые приборы
  1. Книги / руководства / серии статей
  2. Основы электроники и схемотехники. Том 3. Полупроводниковые приборы

Добавлено 10 апреля 2018 в 13:11

Сохранить или поделиться

Тестирование полевого транзистора (JFET) с помощью мультиметра может показаться относительно простой задачей, поскольку может показаться, что в нем для проверки есть только один PN переход: измеряется либо между затвором и истоком, либо между затвором и стоком.

Оба мультиметра показывают непроводимость (высокое сопротивление) перехода затвор-каналОба мультиметра показывают проводимость (низкое сопротивление) перехода затвор-канал

Тем не менее, еще одна задача – это тестирование целостности канала сток-исток. Помните, как упоминалось в последнем разделе, как заряд, сохраненный емкостью PN перехода затвор-канал, может удерживать полевой транзистор в закрытом состоянии без прикладывания внешнего напряжения? Это может произойти, даже когда вы держите полевой транзистор в руке, чтобы проверить его! Следовательно, любые показания мультиметра при проверке целостности этого канала будут непредсказуемыми, так как вы точно не знаете, сохранен ли на переходе затвор-канал заряд. Конечно, если вы заранее знаете, какие выводы на устройстве являются затвором, истоком и стоком, вы можете подклюить перемычку между затвором и истоком, чтобы устранить любой сохраненный заряд, а затем без проблем приступить к проверке целостности канала исток-сток. Однако, если вы не знаете, где какой вывод, непредсказуемость соединения исток-сток может запутать вас при определении назначения выводов.

Хорошей стратегией, которой следует придерживаться при тестировании полевого транзистора, является вставка выводов транзистора непосредственно перед тестированием в антистатический пенопласт (материал, используемый для доставки и хранения чувствительных электронных компонентов). Проводимость пенопласта будет обеспечивать резистивное соединение между всеми выводами транзистора, когда они будут вставлены в него. Это соединение гарантирует, что всё остаточное напряжение на PN переходе затвор-канал будет нейтрализовано, таким образом, "открывая" канал для точной проверки мультиметром целостность соединения исток-сток.

Поскольку канал полевого транзистора представляет собой единый, непрерывный полупроводниковый материал, обычно нет разницы между выводами истока и стока. Проверка сопротивления от истока к стоку должна давать то же значение, что и проверка от стока к истоку. Это сопротивление должно быть относительно низким (максимум несколько сотен ом) при напряжении на PN переходе затвор-исток, равном нулю. При прикладывании напряжения обратного смещения между затвором и истоком закрытие канала должно быть видно по значению увеличившегося сопротивления на мультиметре.

Оригинал статьи:

Теги

PN переходМультиметрОбучениеПолевой транзисторЭлектроника

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.


Как проверить полевой транзистор - ООО «УК Энерготехсервис»

MOSFET: N-канальный полевой транзистор.

Обозначение выводов:

S — исток, D — сток, G — затвор

На мультиметре выставляем режим проверки диодов.

Транзистор закрыт: сопротивление — 502 ома

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.

4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.

Тестером можно подтвердить наличие этого диода.

0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».

А теперь можно проверить и затвор.

Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.

Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив

сток-исток.проверка MOSFET

Тестер покажет почти нулевое сопротивление.

Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!

Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.

Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.

P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.

В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники.

В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера.

У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора.

Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока.

Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора.

Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.

ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! ….обобщённая и дополненная.

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Мосфет Измерения Проверка Ремонт техники Видео Длиннопост

Прочитал пост про проверку спелости арбуза через отношение массы и длины окружности плода.

https://pikabu.ru/story/v_doegyevskuyu_yepokhu_6032324

«Талия» 63 см.

Согласно расчётам: Спелый арбуз массой 4 кг. должен иметь длину окружности 61,9 см и более.

Проверим: 

Показать полностью 1 [моё] Арбуз Спелый Проверка Измерения Окружность

Диод.

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого.

Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

Есть еще один интересный тип диода – стабилитрон. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара.

Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала.

Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный.

Используется для защиты по питанию.

Так работает диод.

Транзистор.

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.

В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.

Делятся эти девайсы на полевые и биполярные.

В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором.

Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером.

Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль «Писец Нам Писец

Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки.

Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора.

Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.

ЗЫ: Взял где взял, обобщил и добавил немного.

ЗЫ2: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Показать полностью 2 3 Диоды Транзистор Проверка Ремонт техники Видео Длиннопост

В наше время уже тяжело представить себе какое-либо устройство без пульта дистанционного управления.

История изобретения пульта ДУ весьма противоречива и, судя по-всему, так уже и останется тайной…

По одной из версий первые эксперименты были предприняты немцами еще в конце 30-х годов прошлого века.

Первая система дистанционного управления состояла из громозкого устройства со сложной электронной начинкой, соединенным с самим устройством проводами.

В дальнейшем (в середине 70-х годов) для передачи сигнала на расстояние стал использоваться ультразвук, а в конце все тех-же 70-х было предложено использовать и СВЧ-радиосигнал.

В 1974 году фирмой GRUNDIG был выпущен первый телевизор, где впервые было использован принцип передачи сигнала при помощи ИК лучей, который с большим успехом применяется и по наше время…

Принцип работы пультов ДУ следующий:

В основу каждого пульта положен генератор импульсов, работающий в частотном диапозоне между 30 и 40 кГц, сигнал которого промодулирован кодом той или иной команды. Для наглядности рассмотрим график:

Показать полностью 13 4 Пду Пуль управления Проверка Измерения Видео Длиннопост

Словосочетание «катушка ниток» знакомо всем, но про катушку индуктивности слышали, думаю, не все. Вот что вы себе представляете под словом «катушка» ? Ну…

это, наверное, какая-нибудь фиговинка, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции. Изоляция может быть из бесцветного лака, из проводной изоляции, и даже из матерчатой.

Тут фишка такая, хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности сами, ни в коем случае не вздумайте брать обычный медный голый провод!

Любая катушка индуктивности, как ни странно, обладает индуктивностью 🙂 Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется LC — метром. Что такое индуктивность? Давайте разбираться. Если через проводок прогнать электрический ток, то он вокруг себя создаст магнитное поле:

Показать полностью 24 Катушка индуктивности Измерения Ремонт техники Длиннопост

Как проверить транзистор мультиметром?

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

Биполярный транзистор состоит из двух P-N переходов. Его выводы называются, как эммитер, база и коллектор. Слой, который посередине, называется базой. Эммитер и коллектор находятся по краям. В P-N-P транзисторе в классической схеме включения ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе.

Из измерительного оборудования для проверки транзистора нам потребуется только обычный мультиметр, который необходимо переключить в режим омметра или в режим проверки диодов.

Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор считается исправным, если исправны оба перехода.

Для проверки транзистора один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно дотрагиваются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение. Теперь чуть подробнее: Возьмем транзистор структуры N-P-N и проверим эмитерный переход для этого плюсовой щуп тестера подключаем к базе, а минусовой к эммитеру.

Показать полностью 2 Транзистор Проверка Ремонт техники Длиннопост Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам:

Как проверить полевой транзистор: мосфет или полевик, мультиметром не выпаивая, с изолированным затвором на неисправность

Использование полевых транзисторов очень распространено. Если происходит поломка необходимо найти неисправную деталь. Иногда требуется точно определить, работоспособен ли полевой транзистор. Это возможно выполнить с использованием мультиметра. Как проверить полевик — подробнее рассказывается далее.

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.

Проверка мультиметром

Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором.

Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток.

Чем более высокое напряжение было подано на затвор, тем он будет сильнее.

Отличие полевого от биполярного транзистора

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).

Разновидности полевиков

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Вам это будет интересно  Как работают датчики движения для включения светаТранзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Назначение выводов

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

Вам это будет интересно  Особенности резонанса токовПроверка диода в прямом направлении

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

Проверка диода в обратном направлении

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Открытие канала

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Работа полевого МДП транзистора

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в.

Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

Цифровой мультиметр

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.

Вам это будет интересно  Как измерять напряжениеС управляющим p-n-переходом

  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Подготовка к работе

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

Проверка полевого транзистора на работоспособность

Исключая теорию работы полевых транзисторов, все таки вспомним, что они бывают двух видов: с управляющим p-n-переходом; со структурой металл-диэлектрик-полупроводник (МДП) или MOSFET — Metal-Oxide-Semiconductor Field-Effect Transistor

Проверка полевых транзисторов MOSFET n канального типа

Для проверки полевых транзисторов N-канального типа структуры МДП необходимо переключить мультиметр в режим проверки диодов , черный минусовой щуп необходимо установить слева на подложку (D — сток), красный плюсовой на дальний от себя вывод справа (S — исток), мультиметр показывает падение напряжения на внутреннем диоде , полевой транзистор закрыт.

Затем, не отпуская черного щупа, касаемся красным щупом ближнего вывода (G — затвор) и опять соеденяем его с дальним (S — исток), мультиметр показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться 150…170 мВ), полевой транзистор открылся прикосновением

Если же в этот момент черным щупом коснуться нижней (G — затвор) ножки, не отпуская плюсового щупа, и вернуть его на подложку (D — сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (последний рисунок). Это метод проверен на большинстве N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на современных материнских платах и видеокартах.

Проверка полевых транзисторов MOSFET p канального типа

Для проверки P-канальных полевых транзисторов требуется поменять полярность напряжений открытия-закрытия. Для этого щупы мультиметра поменяем местами.

Советы радиолюбителю. Простой способ проверки транзисторов, конденсаторов, диодов и тиристоров

Как проверить полевой транзистор

    Транзистор IRFZ44N

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра.

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Расположение выводов полевых транзисторов (Gate — Drain — Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными.

    Транзистор RU6888R
    (для ремонта гироскутеров)

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать правила безопасности.

Дело в том, что полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление.

Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет. Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

При проверке ПТ чаще всего пользуются обычным омметром. У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов.

Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед “прозвонкой” канала “сток-исток” замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным.

В противном случае транзистор признается неисправным.

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал “сток-исток” при проверке ведет себя как обычный диод. Для того чтобы избежть досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Убедиться в наличии диода достаточно просто.

Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. В остальном проверка транзистора не отличается от приведенной выше. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Большой выбор полевых транзисторов в интернет магазине Dalincom, в разделе Полевые транзисторы.

Александр Столовых»Ремонт электронной техники» №7 2001

Краткий курс: как проверить полевой транзистор мультиметром на исправность

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Как мультиметром проверить MOSFET

  • Программатор Ch441A MinProgrammer описание, драйвера, инструкция
    Этот программатор почему-то все называют Mini Programmer, несмотря на то, что надпись на нем все таки иная. Этим грешат даже поисковики. Д…

  • Шаговый двигатель из CD/DVD привода
    Попались в мои руки несколько приводов оптических дисков, которые я разобрал. В итоге помимо плат и прочей механики стал обладателем несколь…

  • Реле SRD-05VDC-SL-C описание, характеристики
    Речь пойдет о низковольтном реле SRD-05VDC-SL-C китайского производства. Очень часто приходится коммутировать напряжение 220 v, в большинств…

  • Пришла мне в голову идея собрать на lm358 усилитель для наушников. Идея вызвана тем, что мне срочно понадобился прибор для проверки операцио…

  • Как выпаять микросхему в SOP или SOIC корпусе паяльником
    Выпайка SMD компонентов обычным паяльником возможна, я сейчас опишу демонтаж микросхемы в корпусе SOP8 при помощи обычного 30-ти ваттного па…

  • Не так давно мне нужно было подключить нагрузку к Arduino nano и я столкнулся проблемой силовых ключей. У меня было несколько IRF640N, по мо…

  • Прошивка Cisco AIR-lAP1131AG-E-K9
    Поговорим о том, как прошить точку доступа cisco AIR-lAP1131AG-E-K9 в режим Stand-alone. Итак, имеем WiFi точку с прошивкой для раб…

Как проверить полевой транзистор

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, малому сопротивлению в открытом состоянии, находят широкое применение в блоках  питания компьютеров, мониторов, телевизоров,  видеомагнитофонов и другой радиоэлектронной аппаратуры, постепенно, но неуклонно вытесняя транзисторы биполярные.

1. Меры предосторожности при работе с полевыми транзисторами

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно соблюдать правила безопасности. Полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет.

При отсутствии браслета достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.

При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

2. Определение цоколёвки полевых транзисторов

Полевые транзисторы, выполненные по технологии МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник) в англоязычной литературе носят наименование MOSFET(Metal-Oxide-SemiconductorField-EffectTransistor).

Расположение выводов (цоколёвка) полевых транзисторов Затвор (Gate) – Сток (Drain) – Исток (Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S).

Если такой маркировки нет, то желательно воспользоваться справочными данными (datasheet).

Основные типы корпусов полевых транзисторов импортного производства

Корпус типа D²PAK, так же известен как TO-263-3. Встречается в основном на пожилых платах, на современных используется редко.

Корпус типа DPAK, так же известен как TO-252-3. Наиболее часто используется, представляет собой уменьшенный D²PAK.

Корпус типа SO-8.Встречается на материнских платах и видеокартах, чаще на последних. Внутри может скрываться один или два полевых транзистора.

Корпус типа SuperSO-8, он же — TDSON-8отличается от SO-8 тем, что 4 вывода соединены с подложкой транзистора, что облегчает температурный режим. Характерен для продуктов фирмы Infineon. Легко заменяется на аналог в корпусе SO-8

Корпус типа IPAK так же известен как TO-251-3. По сути — полный аналог DPAK, но с полноценной второй ногой. Такой тип транзисторов очень любит использовать фирма Intel на ряде своих плат.

Для электронных компонентов иностранного производства справочные данные берутся из Даташит (Datasheet— в дословном переводе «бумажка с информацией) — официального документа от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д. Datasheet обычно представляет собой файл в формате PDF.

3. Основные характеристики N-канального полевого транзистора

Различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.

  • Vds — Drain to Source Voltage — максимальное напряжение сток-исток.
  • Vgs — Gate to Source Voltage — максимальное напряжение затвор-исток.
  • Id — Drain Current — максимальный ток стока.
  • Vgs(th) — Gate to Source Threshold Voltage — пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток.
  • Rds(on) — Drain to Source On Resistance — сопротивление перехода сток-исток в открытом состоянии.
  • Q(tot) — Total Gate Charge — полныйзарядзатвора.

Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.

4. Система маркировки полевых транзисторов

Рассмотрим на примере транзистора 20N03. Это означает, что он рассчитан на напряжение (Vds) ~30V и ток (Id) ~20A. Буква N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке Rds, а не максимальный ток.

 Примеры:

  • IPP15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO220
  • IPB15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO263(D²PAK)
  • SPI80N03S2L-05 — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=5.2mΩ Id=80A TO262
  • NTD40N03R — On Semi Power MOSFET 45 Amps, 25 Volts Rds=12.6mΩ
  • STD10PF06 — ST STripFET™ II Power P-channel, MOSFET 60V 0.18Ω  10A IPAK/DPAK

  Итак, в случае маркировки XXYZZ мы можем утверждать, что XX — или Rds, или Id Y — тип канала ZZ – Vds.

 5. Алгоритм проверки исправности полевого транзистора

 Проверку можно проводить стрелочным омметром (предел х100), но более удобно это делать цифровым мультиметром в режиме тестирования P-N пере­ходов . Показываемое мультиметром зна­чение сопротивления на этом пределе численно равно напряжению на P-N переходе в милливольтах.

6. Пример проверки транзистора мультиметром:

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от полярности прикладываемого напряжения (щупов).

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод.

Черным (отрицательным) щупом прикасаемся к подложке — СТОКУ (D), красным (положительным) — к выводу ИСТОКА (S). Мультиметр показывает прямое падение напряжения на внутреннем диоде (500 — 800 мВ). В обратном смещении мультиметр должен показывать бесконечно большое сопротивление, транзистор закрыт.

Далее, не снимая черного щупа, касаемся красным щупом вывода ЗАТВОРА (G) и опять возвращаем его на вывод ИСТОКА (S). Мультиметр показывает близкое к нулю значение, причём при любой полярности приложенного напряжения — полевой транзистор открылся прикосновением. На некоторых цифровых мультиметрах возможно значение будет не 0, а 150…170 мВ

Если теперь черным щупом коснуться вывода ЗАТВОРА (G), не отпуская красного щупа, и вернуть его на вывод подложки — СТОКА (D), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения на диоде. Это верно для большинства N-канальных полевых транзисторов в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз — исправен.

Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Методика проверки исправности полевых транзисторов с достаточной степенью правильности показана в видеоролике от магазина Чип и Дип

Источник: http://meandr.org/archives/9199

Как проверить полевой транзистор мультиметром

В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство полевых транзисторов

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором.

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.

Принцип действия

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.

Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток.

Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.

Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток – Drain, исток – Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью стрелочного омметра, но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.

Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки – стоку D, а положительным красным щупом – вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Как проверить полевой транзистор мультиметром

При проведении ремонтных работ электронной техники, возникает вопрос проверки функционального состояния тех или иных полупроводниковых элементов. Решение этой проблемы сильно облегчает наличие специализированных приборов, однако, во многих случаях вполне можно обойтись и без них.

Есть ряд способов, как проверить транзистор мультиметром без использования сложных приборов и каких-либо дополнительных электрических схем. Рассматриваются алгоритмы проверки различных типов транзисторов.

 

 

Проверка trz (транзистора), равно как и любого другого элемента схемы, начинается с определения его типа. Эту информацию несложно найти в интернете. У опытного мастера всегда есть под рукой ссылки на проверенные ресурсы. Если таковых нет, то, обычно достаточно вбить маркировку компонента в поисковой системе и нужная информация найдется уже на первой странице поисковой выдачи. Наиболее распространенные типы транзисторов: биполярные, полевые, составные, однопереходные. Определив тип элемента, можно начинать его функциональную проверку.

Биполярный транзистор

Наиболее распространенные транзисторы. Используются в основном в схемах усиления или генерации сигнала: в усилителях, генераторах, модуляторах, инверторах и т. д. Бывают двух типов: p-n-p и n-p-n. Не углубляясь в структуру полупроводникового прибора, достаточно будет сказать, что каждый p-n переход представляет собой диод. Строго говоря, это не совсем так, но для проверки работоспособности такое представление вполне допустимо. Таким образом, последовательность p-n-p представима в виде двух диодов, соединенных катодами, а n-p-n – двух диодов, соединенных анодами. Чтобы проверить, работоспособность такого элемента, нужно мультиметром замерить сопротивление переходов.

Определение работоспособности p-n-p полупроводника:

  • Берется мультиметр. Черный провод (обозначим его как Ч) помещается в гнездо COM (минус).
  • Красный (К) – в гнездо VΩmA (плюс).
  • Тестер выставляется на замер электрического сопротивления. Предельное значение выбирается 2 кОм. Это означает, что мультиметр может корректно измерять сопротивление от 0 до 2000 Ом. При превышении данного порога, на экране прибора загорится «1».
  • Для замера прямых сопротивлений Ч закрепляется на базе элемента.
  • Чтобы замерить величину сопротивления эмиттерного перехода, К помещается на эмиттер.
  • Измеренное значение должно быть от 500 до 1200 Ом. Аналогично и для коллектора.
  • Для измерения обратных сопротивлений на базе элемента закрепляется К. Ч поочередно помещается на коллектор и эмиттер. Полученные значения должны превышать установленный порог в 2кОм. Об этом, в обоих случаях, будет свидетельствовать цифра «1» на экране тестера.
  • Для n-p-n полупроводника применяется та же самая методика. За исключение того, что в п.1 Ч и К помещаются в противоположные гнезда. Тем самым меняется полярность щупов тестера.

Если изначально нет информации относительно расположения базы, коллектора, эмиттера, это нетрудно определить. Измерительный прибор устанавливается в состояние п. 1 и п. 2 вышеприведенной схемы. К (плюс) помещается на правый вывод полупроводника. Ч (минус) поочередно замыкается на средний и левый выводы. Если в обоих случаях тестер покажет «1», то данный контакт и есть база. В противном случае аналогичным образом тестируем оставшиеся контакты.

Остается найти эмиттер и коллектор. Для этого необходимо просто замерить сопротивление коллекторных и эмиттерных переходов. Ч помещается на базу. К поочередно замыкается на оставшиеся выводы. Полученные значения должны лежать в диапазоне от 500–1200 Ом. При этом большее значение будет относиться к коллекторному переходу, а меньшее, соответственно к эмиттерному.

Полевой транзистор

Обладает значительно меньшим энергопотреблением по сравнению с биполярным. Основная область применения – это приборы, работающие в ждущем или следящем режимах. Импортные элементы обычно имеют маркировку, упрощающую идентификацию выводов: G-затвор, S-исток, D-сток. Полевой транзистор или, как его еще называют, мосфет, бывает n-канальный и p-канальный. Алгоритмы проверки работоспособности полупроводников обоих типов похожи.

Определение функциональности n-канального полупроводника.

Поскольку у таких компонентов между стоком и истоком часто встраивается диод, то, для проверки функциональности, на измерительном устройстве устанавливается в режим проверки диодов. Ч идет на минус тестера, а К – на плюс.

  • К помещается на исток элемента, а Ч – на сток. Напряжение должно быть от 500 до 700 мВ.
  • К – на сток, а Ч – на исток. Значение в этом случае должны выходить за пределы измерений мультиметра. Об этом свидетельствует цифра «1» на экране прибора.
  • Ч – на истоке. Касание К затвора открывает транзистор. Ч остается на истоке, а К соединяется со стоком. Замеренное напряжение должно лежать в диапазоне от 0 до 800 мВ и не зависеть от смены полярности проводов тестера.
  • Замыкание К на исток, а Ч – на затвор проводит к закрытию прибора и переводу его в изначальное состояние.

Для определение работоспособности p-канального полупроводника Ч подключается к плюсу мультиметра, а К – к минусу. Дальнейшая последовательность действий аналогична методике проверки элемента n-канального типа.

Составной транзистор

Также известен как пара Дарлингтона. Является каскадом из двух и более биполярных транзисторов. Тестирование таких элементов одним лишь мультиметром, без сборки дополнительных схем, не представляется возможным. Вопрос монтажа подобных вспомогательных схем выходит за рамки данной статьи.

Однопереходный транзистор

В основном используются во всевозможных реле и пороговых устройствах. У элементов данного типа присутствует только один p-n переход. Для проверки его работоспособности мультиметром замеряется сопротивление между ножками «Б1» и «Б2». Если полученная величина незначительна, то компонент неисправен.

Проверка элемента без выпаивания его из схемы

Часто возникает вопрос, как проверить smd транзистор мультиметром. SMD – это аббревиатура от английского Surface Mounted Device (устройство, монтируемое на поверхность). Такие полупроводники не вставляются в отверстия плат. Их просто напаивают сверху на контактные дорожки. В современных платах плотность таких дорожек невероятно велика. Более того, часто они располагаются в несколько слоев. Поэтому если какая-то из дорожек располагается в середине такого «пирога», то ее может быть просто не видно.

Становится понятно, что поскольку демонтаж и обратный монтаж smd компонентов на контактные дорожки печатных плат зачастую сопряжен со значительными сложностями, то лучше всего было бы осуществить проверку функциональности элемента, не выпаивая его. К сожалению, такое подход возможен только для биполярных транзисторов. Однако даже при положительных итогах проверки нельзя быть полностью уверенным в результате. В большинстве же случаев только лишь демонтаж элемента с печатной планы позволяет гарантированно проверить его работоспособность.

Пошаговое руководство: поиск и устранение неисправностей с помощью мультиметра

Зима подходит к концу, и весна наступит в кратчайшие сроки. Пришло время подготовиться к поливному сезону! Как и в любое время года, могут быть некоторые задачи, которые вам нужно вычеркнуть из своего списка, прежде чем вы будете полностью готовы к работе. По мере того, как ваш бизнес возвращается к работе, вы можете столкнуться с несколькими системами, которые не работают или работают должным образом. Устранение неполадок может расстраивать и отнимать драгоценное время у ваших проектов в будущем.Если система используется производителем, с которым вы не знакомы, быстрый поиск необходимых ресурсов может показаться невозможным.

Вот почему мы связались с Дугом Армором, техническим менеджером по коммерческому ирригации Central, чтобы поделиться своим мнением о том, что делать, если ирригационная система не работает должным образом. Armor сертифицирован Ассоциацией ирригации в качестве менеджера по управлению водой для орошения ландшафтов, кроме того, он имеет сертификаты Hunter & Rain Bird и прошел заводское обучение в Tucor.Он является отличным помощником по любым техническим вопросам, касающимся ирригационных систем, и для поиска неисправностей систем, которые не работают должным образом.

От Дуга:

Отдел маркетинга

Central попросил меня написать статью об устранении неисправностей в ирригационных системах. Как только пришло время заняться бумагой, с мест начали поступать призывы к поиску и устранению неисправностей в системах в реальной жизни. Поскольку у нас начинается сезонный спринт, я хочу, чтобы этот фрагмент был максимально прямым и простым.

Когда зона полива не активируется, лучший инструмент, который вы можете использовать для поиска и устранения неисправностей, - это мультиметр. Это критически важная часть оборудования, которую должен иметь каждый грузовик подрядчика по орошению. Мультиметр - это недорогое оборудование, способное устранять различные проблемы с системой орошения, включая переменное и постоянное напряжение и сопротивление. Это может помочь выявить проблемы с соленоидами, клапанами, полевой проводкой и контроллерами.

Это оборудование действительно стоит вложенных средств и окупается снова и снова.Получить один. В Armada есть несколько мультиметров на выбор, вы сможете найти тот, который подходит для вашего бизнеса. Если вы также устанавливаете ландшафтное освещение, подумайте о приобретении настоящего мультиметра RMS, потому что вы сможете использовать его как для полива, так и для ландшафтного освещения.

5 терминов, которые следует знать при поиске и устранении неисправностей в системе:
  1. Вольт переменного тока (В переменного тока) - Переменный ток, это домашнее напряжение. Большинство соленоидов полива работают от переменного напряжения.
  2. DC Volts (VDC) - Постоянный ток, нормальный источник - аккумулятор. Напряжение постоянного тока поляризовано, что означает наличие положительного (+) и отрицательного (-), иногда называемого землей. Примечание. Глюкометр должен быть подключен правильно, чтобы предотвратить его повреждение, КРАСНЫЙ провод - (+), а ЧЕРНЫЙ провод - (-).
  3. Сопротивление (Ом Cl) - Измерение того, насколько трудно току течь через электрическую систему. Это очень похоже на потери на трение через кусок трубы из ПВХ.

Сопротивление - самая полезная функция для поиска и устранения неисправностей в оросительных системах. Для полива соленоид считается хорошим, если его сопротивление составляет 20-60 Ом. Два термина, которые следует понимать под сопротивлением:

  1. Короткое замыкание - когда измеренное сопротивление для одиночного соленоида ниже 20 Ом. Это позволяет избыточному току проходить через автоматический выключатель или предохранитель. Если сила тока превысит номинал устройства, оно откроется, тем самым остановив подачу 24 вольт на клапаны.
  2. Обрыв - при сопротивлении выше 60 Ом протекание тока на соленоид уменьшается. Думайте об этом как о камне, застрявшем в магистрали спринклерной системы. Сопротивление может увеличиваться до такой степени, что соленоид не получает достаточного напряжения для работы.
Использование мультиметра

Обязательно найдите время, чтобы прочитать инструкции на мультиметре. Знание того, как работать с измерителем, значительно сэкономит время при проверке проводки на стройплощадке.

4 Основные действия по использованию счетчика:

  1. Отсоедините общий провод (-а) от клеммной колодки на контроллере.
  2. Поверните шкалу на значение сопротивления или Ом (это выглядит по-разному на каждом метре)
  3. Подключите один из выводов измерителя к общему проводу, а не к общей клемме контроллера.
  4. Прикоснитесь вторым проводом измерителя к каждой из клемм станции и запишите показания сопротивления.

Сравните свои показания с допустимым диапазоном 20–60 Ом.Прочтение даст вам представление о проблеме. См. Возможные результаты и рекомендуемые действия ниже:

Допустимый диапазон:
Если измерения находятся в допустимом диапазоне (20-60 Ом), то электрическая цепь для этой станции в порядке. Просто обратите внимание, что этот тест проверяет только состояние проводки, станция может работать неправильно из-за проблем с контроллером и / или клапаном.

A, короткое замыкание:
Если диапазон сопротивления ниже 20 Ом (короткое замыкание), перейдите к клапану и отсоедините соленоид от полевых проводов.Проверить только сопротивление соленоида. Если результат измерения по-прежнему низкий, соленоид необходимо заменить. Если сопротивление соленоида приемлемое, значит, короткое замыкание находится в самой полевой проводке (два соленоида, подключенные к станции, также могут давать низкие показания). Для обнаружения проблемы следует использовать оборудование для отслеживания проводов.

Обрыв:
Если сопротивление выше 60 Ом (обрыв), проверьте соленоид без подключенных полевых проводов. Замените соленоид, если его сопротивление все еще выше 60 Ом.Скорее всего, соленоид будет тестироваться в пределах от 20 до 60 Ом.

Если соленоид в порядке:
Вырежьте разъемы проводов и соедините станцию ​​и общие провода вместе в месте расположения клапана. С контроллера повторно проверьте сопротивление без соленоида в цепи. Теперь сопротивление должно быть очень низким, возможно, 5 Ом или ниже, поскольку измеряется только сопротивление полевых проводов. Если сопротивление такое низкое, значит, проблема была в неисправном соединителе провода.Установите новые водонепроницаемые соединители проводов на существующий соленоид и снова проверьте сопротивление на контроллере.

Что делать, если сопротивление все еще высокое?

Если сопротивление все еще высокое, когда общий провод и провод станции соединены вместе, значит, где-то между клапаном и контроллером есть разрыв, возможно, вызванный неисправным проводом или соединителем проводов. К сожалению, эту неисправность можно найти только с использованием оборудования для отслеживания проводов.

Это последнее испытание полевой проводки определит короткое замыкание непосредственно на землю:

В дополнение к тому, что общий провод все еще отключен, отсоедините каждый из проводов станции от контроллера.Подключите один из выводов измерителя к куску оголенного провода, намотанного на металлический стержень отвертки. Вставьте отвертку в землю (может потребоваться намочить землю, чтобы обеспечить хорошее соединение). Прикоснитесь ко второму выводу к проводам станции и к общему по одному. Каждое из этих измерений должно быть выше 700 кОм (700 000) Ом.

Значение сопротивления ниже 700 000 указывает на то, что на участке провода имеется трещина в изоляции и он контактирует с землей. Для обнаружения проблемы следует использовать оборудование для отслеживания проводов.

Трансформаторы также можно проверить с помощью мультиметра.

Подключите выводы счетчика к первичной обмотке, то есть к входным проводам трансформатора или вставьте разъемы. Вы получите либо значение сопротивления, либо открытие. Показание сопротивления показывает, что внутренние обмотки не повреждены, обрыв указывает на неисправность внутреннего предохранителя трансформатора и трансформатор необходимо заменить.

Вторичная обмотка, выход трансформатора, проверяется таким же образом.Подключите выводы измерителя к выходным проводам. Обрыв указывает на необходимость замены трансформатора. Правило 20-60 Ом не распространяется на трансформаторы. Обычно сопротивление составляет всего 3 Ом.

Мультиметр также можно использовать для определения типа батареи, которую следует использовать в твердотельном контроллере.

На контроллер необходимо подать питание и вынуть аккумулятор из разъема. Поверните диск в положение DC V. Есть два разъема для батарей, большой (гнездовой) и меньшего размера (штекерный).Коснитесь красным щупом к большому разъему, черным щупом к маленькому разъему. Если контроллер рассчитан на использование щелочных батарей, показания будут близки к нулю вольт. Если он предназначен для работы с перезаряжаемой никель-кадмиевой батареей, показание будет между 7 и 13 вольт постоянного тока.

Напоминаем: никогда не используйте щелочную батарею в контроллере, рассчитанном на перезаряжаемую батарею. Также не используйте перезаряжаемые щелочные батареи в твердотельных контроллерах.

Как упоминалось ранее, устранение неполадок может быть очень неприятным и не всегда простым. В системе может быть несколько проблем. Положитесь на Central, чтобы помочь, будь то вопросы об устранении неполадок или установке, демонстрация того, как использовать конкретное оборудование, или обмен мнениями и рекомендациями по новейшим технологиям. Мы остаемся на передовых позициях в отрасли и готовы помочь вам расти!

О компании Doug Armor

Doug Armor сертифицирован Ассоциацией ирригации в качестве менеджера по управлению водой для орошения ландшафтов, кроме того, он имеет сертификаты Hunter и Rain Bird и прошел заводское обучение в Tucor.Он является отличным помощником по любым техническим вопросам, касающимся ирригационных систем, и для поиска и устранения неисправностей систем, которые не работают должным образом.

Как проверить контактор переменного тока с помощью мультиметра

Электричество - один из немногих источников энергии, которые можно использовать в качестве топлива для кондиционера или печи. Электрические части блока переменного тока обычно включают нагревательный насос, который регулирует температуру, и нагнетательный вентилятор, который помогает распределять горячий или холодный воздух. Часто, когда что-то вроде воздуходувки перестает работать, это является результатом отказа небольшого электрического компонента, например, контактора.

Что делает контактор переменного тока?

Контакторы переменного тока

регулируют поток электричества по всему устройству. Они работают вместе с компрессором и конденсатором в вашем кондиционере, образуя электрическую силовую установку. Когда вы включаете устройство, контактор получает сигнал низкого напряжения, который создает магнитное поле. Подобно мосту, это поле замыкает цепь в вашем устройстве, позволяя подключать более высокое напряжение. Это то, что приводит в действие электродвигатели вентилятора и компрессора кондиционера.

Есть два типа контакторов. Одиночный полюс, который содержит одну магнитную катушку, позволяющую подключать одну цепь, и двойной полюс, который имеет две катушки для соединения двух цепей.

Признаки неисправности контактора

Признаки неисправности контактора могут проявляться как в механических неисправностях, так и в физических признаках повреждения. Это самые распространенные.

Непрерывный ход

AC работает непрерывно, даже когда блок выключен.

Нажатие

Щелчок, скорее всего, вызван неисправностью электричества, хотя это может означать проблему с термостатом, компрессором или конденсатором.

Неожиданное физическое повреждение

Заметное для глаза и также известное как точечная коррозия, это может произойти в результате экстремальных температурных повреждений. Также может быть результатом воздействия вредителей, мусора или других факторов окружающей среды.

Ожидаемое ухудшение состояния

Также заметный для глаза, это может быть классифицировано как физические признаки износа провода в результате времени и использования.

Другие признаки неисправности

Конечно, не все проблемы с переменным током являются результатом неисправного контактора. Если вы заметили какие-либо из этих признаков, лучше не включать устройство до тех пор, пока не будет произведен необходимый ремонт.

Визг

Это может быть результатом обрыва или износа ремня вентилятора и может препятствовать циркуляции холодного воздуха в кондиционере.

Гремящий

Если звук отсутствует, когда устройство включено, причиной может быть незакрепленный вентилятор или препятствие для вентилятора.

Шлифовальный

Скрежет может быть результатом износа подшипников двигателя, которые необходимо заменить.

Использование мультиметра для проверки контактора переменного тока

Обычно к каждому переключателю подключаются два контактора, обозначенные как линия и клемма. Линия (L) содержит подачу напряжения, в то время как клемма (T) подключена к управляемому электрическому устройству. Чтобы проверить контактор с помощью мультиметра или вольтметра, используйте следующие шаги в качестве руководства.

Шаг 1. Снимите провода с линии.

Отключите электропитание от L-стороны контактора, затем с помощью отвертки вытяните провода из винтов со стороны сети. Пометьте провода для отслеживания (L1, L2, L3…).

Шаг 2. Отсоедините провода от клеммы.

Повторите тот же процесс со стороны клемм контактора. Не оставляйте никаких проводов, иначе вы можете получить ложное показание.

Шаг 3. Включите контрольный переключатель.

Установите переключатель управления контактором в положение «включено» и дождитесь слышимого щелчка, за которым следует жужжание контактора.

Шаг 4. Подключите мультиметр.

Подсоедините красный провод к соединителю сопротивления, а черный - к общему проводу. Включите мультиметр. Соедините два провода вместе; измеритель должен показывать 0 Ом.

Шаг 5. Протестируйте каждую строку.

Проверьте каждый набор контактов L1-to-T1, подключив красный провод к L1, а черный провод к T1.Если какой-либо набор не может считывать 0 Ом, вероятно, проблема с контактором.

Шаг 6. Проверьте исправность соединения катушки.

Попробуйте включить переключатель управления катушкой и проверьте, не слышен ли щелчок. Если вы его не слышите, пора проверить напряжение на катушке.

Шаг 7. Проверить напряжение.

Сначала проверьте характеристики цепи, чтобы найти соответствующую информацию о напряжении.Переключите измеритель на вольт и переместите красный провод к разъему для измерения напряжения на измерителе, затем подайте питание на катушку. Прикоснитесь каждым выводом измерителя к каждому разъему катушки, чтобы проверить подаваемое напряжение.

Шаг 8. Проверить ом.

С помощью отвертки снимите провода с катушки и переключите измеритель на ом. Коснитесь каждым выводом разъемов катушки и найдите значение от 10 до 100 Ом. Если вы не получите этого показания, у вас плохая катушка.

Если ваш контактор или катушка неисправны, вы можете приобрести новый отдельно для ремонта вашего блока переменного тока.Если ваши тесты показывают, что у вас нет проблем с контактором, обратите внимание на некоторые другие признаки неисправности, перечисленные выше.

Базовое испытание двигателя с помощью мультиметров и амперметров

Когда электродвигатель не запускается, работает с перебоями, перегревается или постоянно отключает устройство максимального тока, может быть множество причин. Иногда проблема заключается в источнике питания, в том числе в проводниках параллельной цепи или контроллере мотора. Другая возможность заключается в том, что ведомая нагрузка заклинивает, заедает или не соответствует требованиям.Если неисправен сам двигатель, неисправность может быть связана с обгоревшим проводом или соединением, неисправностью обмотки, включая повреждение изоляции, или неисправным подшипником.

Переносной мультиметр

Ряд диагностических инструментов - токоизмерительные клещи, датчик температуры, мегомметр или осциллограф - могут помочь прояснить проблему. Предварительные (часто окончательные) тесты обычно проводятся с использованием универсального мультиметра. Этот тестер может предоставить диагностическую информацию для всех типов двигателей.

Если двигатель полностью не отвечает, нет гудения переменного тока или ложных запусков, снимите показания на клеммах двигателя. Если нет напряжения или пониженное напряжение, вернитесь к восходящему потоку. Снимайте показания в доступных точках, включая разъединители, контроллер мотора, любые предохранители или распределительные коробки и т. Д., Обратно на выход устройства защиты от перегрузки по току на входной панели. То, что вы ищете, - это, по сути, тот же уровень напряжения, который измеряется на главном выключателе входной панели.

При отсутствии электрической нагрузки на обоих концах проводников ответвленной цепи должно быть одинаковое напряжение.Когда электрическая нагрузка цепи близка к мощности цепи, падение напряжения не должно превышать 3% для оптимального КПД двигателя. При трехфазном подключении все ветви должны иметь практически одинаковые показания напряжения без выпадения фазы. Если эти показания различаются на несколько вольт, их можно выровнять, прокручивая соединения, стараясь не реверсировать вращение. Идея состоит в том, чтобы согласовать напряжения питания и импедансы нагрузки, чтобы сбалансировать три ноги.

Если электроснабжение удовлетворительное, проверьте сам двигатель.Если возможно, отключите груз. Это может восстановить работу двигателя. При отключенном и заблокированном питании попробуйте провернуть двигатель вручную. Во всех двигателях, кроме самых больших, вал должен вращаться свободно. В противном случае имеется препятствие внутри или заедание подшипника. Довольно новые подшипники подвержены заклиниванию из-за более жестких допусков. Это особенно актуально, если окружающая влажность или двигатель какое-то время не использовался. Часто хорошую работу можно восстановить, смазав передние и задние подшипники без разборки двигателя.

Если вал вращается свободно, установите мультиметр на функцию измерения сопротивления. Обмотки (все три в трехфазном двигателе) должны иметь низкое сопротивление, но не ноль. Чем меньше двигатель, тем выше будет это показание, но он не должен открываться. Обычно он будет достаточно низким (менее 30 Ом) для включения звукового индикатора целостности цепи.

Для правильной работы двигателя все обмотки должны иметь МОм относительно земли, то есть корпуса двигателя. Если обмотка заземлена, изоляция обмотки нарушена или якорь касается статора, за исключением случаев, когда внутри имеется возможность ослабить или натереть провод.

Малые универсальные двигатели, как и переносные электродрели, могут содержать обширную схему, включая переключатель и щетки. В режиме омметра подключите измеритель к вилке и следите за сопротивлением, пока вы поворачиваете шнур в том месте, где он входит в корпус. Перемещайте переключатель из стороны в сторону и, закрепив курковый переключатель, чтобы он оставался включенным, нажмите на щетки и поверните коммутатор рукой. Любые колебания цифровых показаний могут указывать на неисправность. Часто для восстановления работы требуется новый набор щеток.

Показания

силы тока полезны при всех видах электронных и электрических работ. По показаниям напряжения вы знаете электрическую энергию, доступную на клеммах, но не знаете, сколько тока течет. У мультиметров всегда есть текущая функция, но с этим есть две проблемы. Во-первых, исследуемая цепь должна быть отключена (а затем восстановлена), чтобы подключить прибор последовательно с нагрузкой. Другая трудность заключается в том, что мультиметр не способен обрабатывать ток, присутствующий даже в небольшом двигателе.Весь ток должен протекать через измеритель, мгновенно сжигая провода зонда, если не разрушая весь инструмент.

Цифровые и аналоговые клещи амперметры.

Отличным инструментом для измерения тока двигателя являются клещи-клещи (торговое название Amprobe). Он позволяет обойти такие трудности, измеряя магнитное поле, связанное с этим током, и отображая результат в цифровом или аналоговом отсчете, калиброванном в амперах.

Токоизмерительные клещи абсолютно удобны в использовании.Просто откройте подпружиненные зажимы, вставьте провод под напряжением или нейтраль, затем отпустите зажимы. Проволоку не нужно центрировать в отверстии, и это нормально, если она проходит под углом. Однако таким способом нельзя измерить весь кабель, содержащий горячий и нейтральный проводники. Это потому, что электрический ток, протекающий по двум проводам, движется в противоположных направлениях, поэтому два магнитных поля компенсируются. Следовательно, невозможно измерить ток в шнуре питания, как это часто требуется.Чтобы разобраться в этой ситуации, сделайте разветвитель. Это короткий удлинитель подходящего номинала с удаленным примерно шестидюймовым кожухом, чтобы можно было отсоединить один из проводов и измерить его.

Цифровые и аналоговые клещи

работают хорошо и способны измерять ток до 200 А, что достаточно для большинства моторных работ.

Основная процедура заключается в измерении пускового и рабочего тока для любого двигателя, когда он подключен к нагрузке. Сравните показания с задокументированными или паспортными данными.По мере старения двигателей потребляемый ток обычно возрастает из-за падения сопротивления изоляции обмотки. Избыточный ток вызывает тепло, которое должно рассеиваться. Деградация изоляции ускоряется до схода лавины, вызывающей перегорание двигателя.

Показания амперметра подскажут вам, где вы находитесь в этом континууме. На промышленном объекте в рамках планового технического обслуживания электродвигателя можно снимать периодические текущие показания и заносить их в журнал, размещенный поблизости, чтобы можно было заранее выявить опасные тенденции и избежать дорогостоящих простоев.

Мультиметр

Цифровой мультиметр

Мультиметр или мультитестер , также известный как вольт / омметр или VOM , представляет собой электронный измерительный прибор, который объединяет несколько функций измерения в одном устройстве. Типичный мультиметр может включать такие функции, как возможность измерения напряжения, тока и сопротивления. Мультиметры могут использовать аналоговые или цифровые схемы - аналоговые мультиметры и цифровые мультиметры (часто сокращенно DMM или DVOM .) Аналоговые приборы обычно основаны на микроамперметре, указатель которого перемещается по шкале калибровки для всех возможных измерений; цифровые приборы обычно отображают цифры, но могут отображать полосу, длина которой пропорциональна измеряемой величине.

Мультиметр может быть портативным устройством, используемым для базового поиска неисправностей и работы в полевых условиях, или настольным прибором, который может выполнять измерения с очень высокой степенью точности. Их можно использовать для поиска и устранения электрических проблем в широком спектре промышленных и бытовых устройств, таких как электронное оборудование, средства управления двигателем, бытовые приборы, источники питания и системы электропроводки.


Измеряемые величины

Современные мультиметры могут измерять множество величин. Наиболее распространенными являются:

Дополнительно, некоторые мультиметры измеряют:

Цифровые мультиметры могут также включать в себя схемы для:

  • непрерывности; пищит, когда цепь проводит.
  • Диоды (измерение прямого падения диодных переходов, т. Е. Диодов и переходов транзисторов) и транзисторов (измерение усиления по току и других параметров).
  • Проверка аккумуляторов для простых аккумуляторов на 1,5 и 9 В. Это шкала напряжения, нагруженного током. Проверка батареи (игнорирование внутреннего сопротивления, которое увеличивается по мере разряда батареи) менее точна при использовании шкалы напряжения постоянного тока.

Разрешение

Цифровое

Разрешение мультиметра часто указывается в «разрядах» разрешения. Например, термин 5½ цифр относится к количеству цифр, отображаемых на дисплее мультиметра.

По соглашению, половина цифры может отображать либо ноль, либо единицу, в то время как цифра в три четверти может отображать цифру больше единицы, но не девять. Обычно цифра в три четверти соответствует максимальному значению 3 или 5. Дробная цифра всегда является самой старшей цифрой в отображаемом значении. Мультиметр на 5½ разрядов будет иметь пять полных цифр, которые отображают значения от 0 до 9, и одну половину цифры, которая может отображать только 0 или 1. [3] Такой измеритель может показывать положительные или отрицательные значения от 0 до 199 999.Трехзначный счетчик может отображать количество от 0 до 3 999 или 5 999, в зависимости от производителя.

В то время как цифровой дисплей может быть легко увеличен в точности, дополнительные цифры не имеют никакого значения, если не сопровождаются тщательным проектированием и калибровкой аналоговых частей мультиметра. Значимые измерения с высоким разрешением требуют хорошего понимания технических характеристик прибора, хорошего контроля условий измерения и прослеживаемости калибровки прибора.

Указание «счетчиков дисплея» - еще один способ указать разрешение. Счетчики на дисплее дают наибольшее число или наибольшее число плюс один (чтобы число счёта выглядело лучше), которое может отображать дисплей мультиметра, игнорируя десятичный разделитель. Например, мультиметр с 5 ½ разрядами может быть указан как мультиметр с отображением 199999 или 200000 счетчиков. Часто счетчик на дисплее в спецификациях мультиметра называется просто счетчиком.

Аналоговый

Разрешение аналоговых мультиметров ограничено шириной указателя шкалы, вибрацией указателя, точностью печати шкал, калибровкой нуля, количеством диапазонов и ошибками из-за негоризонтального использования механического дисплея .Точность полученных показаний также часто снижается из-за неправильного подсчета разметки деления, ошибок в мысленной арифметике, ошибок наблюдения параллакса и неидеального зрения. Для улучшения разрешения используются зеркальные шкалы и более крупные измерительные приборы; Эквивалентное разрешение от двух с половиной до трех цифр является обычным (и обычно достаточно для ограниченной точности, необходимой для большинства измерений).

Измерения сопротивления, в частности, имеют низкую точность из-за типичной схемы измерения сопротивления, которая сильно сжимает шкалу при более высоких значениях сопротивления.Недорогие аналоговые измерители могут иметь только одну шкалу сопротивления, что серьезно ограничивает диапазон точных измерений. Обычно аналоговый измеритель имеет панель регулировки для установки калибровки измерителя при нулевом сопротивлении, чтобы компенсировать изменяющееся напряжение батареи измерителя.

Точность

Цифровые мультиметры обычно выполняют измерения с точностью, превосходящей их аналоговые аналоги. Стандартные аналоговые мультиметры обычно производят измерения с точностью до трех процентов, [4] , хотя бывают и более точные приборы.Стандартные портативные цифровые мультиметры обычно имеют точность 0,5% в диапазонах постоянного напряжения. Стандартные настольные мультиметры доступны с указанной точностью лучше ± 0,01%. Приборы лабораторного класса могут иметь точность до нескольких миллионных долей. [5]

Значения точности следует интерпретировать с осторожностью. Точность аналогового прибора обычно относится к полномасштабному отклонению; при измерении 10 В по шкале 100 В 3% счетчика возможна погрешность в 3 В, 30% от показания.Цифровые измерители обычно указывают точность в процентах от показаний плюс процент от полной шкалы, иногда выраженный в единицах, а не в процентах.

Заявленная точность определяется как нижняя граница диапазона милливольт (мВ) постоянного тока и известна как «базовая точность измерения постоянного напряжения». Более высокие диапазоны постоянного напряжения, тока, сопротивления, переменного тока и других диапазонов обычно имеют меньшую точность, чем базовое значение постоянного напряжения. Измерения переменного тока соответствуют указанной точности только в указанном диапазоне частот.

Производители могут предоставлять услуги по калибровке, так что новые счетчики могут быть приобретены с сертификатом калибровки, указывающим, что счетчик был настроен на стандарты, отслеживаемые, например, в Национальном институте стандартов и технологий США (NIST) или другой национальной лаборатории стандартов. .

Испытательное оборудование имеет тенденцию выходить из строя со временем, и на указанную точность нельзя полагаться бесконечно. Для более дорогого оборудования производители и третьи стороны предоставляют услуги по калибровке, чтобы старое оборудование могло быть откалибровано и повторно сертифицировано.Стоимость таких услуг непропорциональна недорогому оборудованию; однако предельная точность не требуется для большинства рутинных испытаний. Мультиметры, используемые для критических измерений, могут быть частью метрологической программы для обеспечения калибровки.

Чувствительность и входное сопротивление

При использовании для измерения напряжения входное сопротивление мультиметра должно быть очень высоким по сравнению с импедансом измеряемой цепи; в противном случае работа схемы может измениться, и показания также будут неточными.

Измерители с электронными усилителями (все цифровые мультиметры и некоторые аналоговые измерители) имеют фиксированный входной импеданс, достаточно высокий, чтобы не мешать работе большинства цепей. Часто это один или десять МОм; Стандартизация входного сопротивления позволяет использовать внешние высокоомные пробники, которые образуют делитель напряжения с входным сопротивлением, чтобы расширить диапазон напряжений до десятков тысяч вольт.

Большинство аналоговых мультиметров типа с подвижной стрелкой не имеют буферизации и потребляют ток от тестируемой цепи, чтобы отклонить указатель измерителя.Импеданс измерителя варьируется в зависимости от базовой чувствительности движения измерителя и выбранного диапазона. Например, измеритель с типичной чувствительностью 20 000 Ом / В будет иметь входное сопротивление 2 миллиона Ом в диапазоне 100 В (100 В * 20 000 Ом / В = 2 000 000 Ом). В каждом диапазоне при полном напряжении диапазона полный ток, необходимый для отклонения движения измерителя, берется из тестируемой цепи. Движение измерителя с более низкой чувствительностью приемлемо для тестирования в цепях, где полное сопротивление источника низкое по сравнению с импедансом измерителя, например, в силовых цепях; эти счетчики механически более прочны.Некоторые измерения в сигнальных цепях требуют движений с более высокой чувствительностью, чтобы не нагружать тестируемую цепь импедансом измерителя. [6]

Иногда чувствительность путают с разрешением измерителя, которое определяется как наименьшее изменение напряжения, тока или сопротивления, которое может изменить наблюдаемые показания.

Для цифровых мультиметров общего назначения самый низкий диапазон напряжения обычно составляет несколько сотен милливольт переменного или постоянного тока, но самый низкий диапазон тока может составлять несколько сотен миллиампер, хотя доступны инструменты с более высокой чувствительностью по току.Для измерения низкого сопротивления необходимо вычесть сопротивление выводов (измеренное путем соприкосновения измерительных щупов) для достижения максимальной точности.

Верхний предел диапазонов измерения мультиметра значительно варьируется; для измерения напряжений более 600 вольт, 10 ампер или 100 МОм может потребоваться специальный измерительный прибор.

Напряжение нагрузки

Любой амперметр, в том числе и мультиметр в диапазоне токов, имеет определенное сопротивление. Большинство мультиметров по своей сути измеряют напряжение и пропускают измеряемый ток через шунтирующее сопротивление, измеряя напряжение, возникающее на нем.Падение напряжения называется нагрузочным напряжением и выражается в вольтах на ампер. Значение может меняться в зависимости от диапазона, который выбирает измеритель, поскольку в разных диапазонах обычно используются разные шунтирующие резисторы. [7] [8]

Напряжение нагрузки может быть значительным в цепях низкого напряжения. Чтобы проверить его влияние на точность и работу внешней цепи, счетчик может быть переключен на различные диапазоны; текущее показание должно быть таким же, и работа схемы не должна нарушаться, если напряжение нагрузки не является проблемой.Если это напряжение является значительным, его можно уменьшить (также снижая присущую точность и точность измерения), используя более высокий диапазон тока.

Измерение переменного тока

Поскольку основная индикаторная система в аналоговом или цифровом измерителе реагирует только на постоянный ток, мультиметр включает в себя схему преобразования переменного тока в постоянный для выполнения измерений переменного тока. В базовых измерителях используется схема выпрямителя для измерения среднего или пикового абсолютного значения напряжения, но они откалиброваны для отображения вычисленного среднеквадратичного значения (RMS) для синусоидальной формы волны; это даст правильные показания для переменного тока, используемого при распределении энергии.Руководства пользователя для некоторых таких измерителей содержат поправочные коэффициенты для некоторых простых несинусоидальных сигналов, чтобы можно было рассчитать правильное эквивалентное среднеквадратичное значение (RMS). Более дорогие мультиметры включают преобразователь переменного тока в постоянный, который измеряет истинное среднеквадратичное значение сигнала в определенных пределах; в руководстве пользователя измерителя могут быть указаны пределы пик-фактора и частоты, для которых действительна калибровка измерителя. Измерение среднеквадратичного значения необходимо для измерений несинусоидальных периодических сигналов, таких как аудиосигналы и частотно-регулируемые приводы.

См. Также

Ссылки

Как безопасно вернуться домой в конце дня

Стандарты безопасности всех типов написаны по одной причине: чтобы все мы благополучно отправились домой в конце дня. Когда дело доходит до электробезопасности, опасности смертельны и проявляются быстро, практически не оставляя времени на реакцию для персонала.

При выполнении рутинных задач по техническому обслуживанию и поиску и устранению неисправностей технический специалист может поместить тестовый зонд на находящуюся под напряжением клемму, оставляя кончики пальцев, возможно, всего в дюйме или около того от этой клеммы.Если этот измерительный провод или испытательный инструмент, к которому он подключен, выйдет из строя, или если произойдет сбой, когда техник наблюдает за показаниями, или даже если техник допустит человеческую ошибку, результаты могут быть смертельными.

Инженеры, электрики и техники должны соблюдать правила электробезопасности при использовании мультиметров, включая осмотр перед использованием. Самый эффективный метод обеспечения безопасности, а также метод, требуемый OSHA, - это демонстрация сотрудниками своей способности выбирать, проверять, использовать и обслуживать свое испытательное оборудование.

Руководство по процедурам

Нормативы OSHA и стандарт NFPA 70E® по электробезопасности на рабочем месте® обеспечивают руководство по процедурам, когда дело доходит до проверки испытательного оборудования. Например, NFPA 70E утверждает, что только «квалифицированный персонал» может выполнять задачи, которые включают использование испытательного оборудования в системах с напряжением 50 В и выше. Цифровой мультиметр (DMM) - наиболее часто используемый инструмент. С 2007 года правила OSHA требуют, чтобы технические специалисты «демонстрировали» свои навыки работодателю, чтобы считаться квалифицированным специалистом.Таким образом, работодатели должны проверить способность человека безопасно использовать цифровые мультиметры.

Соответствует требованиям схемы

Соблюдайте требования безопасности при работе с цифровыми мультиметрами, такими как промышленный мультиметр Fluke 87V.

Цифровой мультиметр должен быть правильно рассчитан для схемы, в которой он будет применяться, и технические специалисты должны быть в состоянии объяснить эти характеристики. Сюда входят характеристики любых используемых испытательных щупов, гибких зажимов или других принадлежностей.

Первым шагом является определение номинального системного напряжения проверяемой цепи.Это класс напряжения, присвоенный системам и оборудованию, его можно найти на паспортных табличках и чертежах. Типичные номинальные напряжения в установках составляют 120/240, 208Y / 120 и 480Y / 277.

Технические специалисты должны осознавать крайнюю опасность использования цифрового мультиметра с недостаточным номиналом. К сожалению, использование цифрового мультиметра на 1000 В в цепях среднего напряжения, к сожалению, неоднократно приводило к трагическим результатам.

Национально признанная испытательная лаборатория (NRTL)

В дополнение к надлежащим номинальным значениям напряжения и тока, испытательные инструменты должны быть перечислены Национально признанной испытательной лабораторией (NRTL) и должным образом маркированы знаком NRTL.OSHA перечисляет, какие NRTL были одобрены для тестирования и подтверждения соответствия DMM основанным на консенсусе стандартам.

Это испытание дает достаточную уверенность в том, что продукты безопасны в использовании. Как только оборудование соответствует критериям испытательной лаборатории, на инструмент может быть нанесен признанный знак NRTL. Запрещается использовать любое испытательное оборудование без такой этикетки.

Среди наиболее распространенных знаков испытательных лабораторий, обнаруживаемых на цифровых мультиметрах, являются Underwriters Laboratories Inc. (UL), Canadian Standards Association (CSA) и TUV.Технические специалисты должны продемонстрировать свою способность распознавать и идентифицировать эти ярлыки и объяснять их важность.

Категории CAT

Электротехники также должны быть знакомы с рейтингом категории, указанным на цифровых мультиметрах. Рейтинг «CAT» указывает на способность мультиметра выдерживать переходные условия перенапряжения, которые могут вывести измеритель из строя и травмировать персонал.

Цифровые мультиметры, используемые в распределительных системах, должны быть не ниже категории CAT III. CAT IV предлагает большую степень защиты.Большинство промышленных цифровых мультиметров имеют категорию CAT III для использования в системах с напряжением 1000 В и ниже и CAT IV для использования в системах с напряжением 600 В и ниже. Электротехники должны иметь возможность определить категорию CAT, необходимую для их работы.

Разработано для окружающей среды и предназначено для использования

Технические специалисты должны убедиться, что испытательные приборы и их аксессуары предназначены как для окружающей среды, так и для того, как они будут использоваться. Например, при проверке правильности конструкции цифрового мультиметра спросите: «Будет ли этот цифровой мультиметр использоваться в опасной зоне?» При снятии показаний напряжения возможно возникновение очень небольшой электрической дуги при размещении или снятии измерительного щупа с точки, находящейся под напряжением.Национальный электротехнический кодекс® определяет среды как опасные (классифицированные) при наличии взрывоопасной атмосферы. Искробезопасные цифровые мультиметры предназначены для использования в таких местах, и технические специалисты должны искать такую ​​идентификацию, если применимо.

Это также хороший повод размещать и снимать измерительные щупы под углом девяносто градусов к выводу и не позволять щупу «скользить» от одного вывода к другому.

Визуальный осмотр

Визуальный осмотр должен включать не только сам испытательный инструмент, но и все связанные с ним измерительные провода, кабели, шнуры питания, датчики и разъемы.Ищите очевидные внешние дефекты. Нередко можно найти поврежденные измерительные провода или щупы, которые необходимо заменить перед использованием.

Один хороший метод - медленно протянуть измерительные провода между пальцами при визуальном осмотре провода. Пальцы часто могут чувствовать поврежденную изоляцию, даже если вы их не видите. Все измерительные провода должны иметь кожух вокруг конца, который вставляется в цифровой мультиметр. Это предотвращает случайное поражение электрическим током в случае отсоединения измерительного провода от измерительного прибора, когда датчик все еще находится на компоненте, находящемся под напряжением.

Измерительные щупы (пробники напряжения и тока) будут иметь номинальное напряжение и категорию. Символ IEC для «двойной изоляции» (одна квадратная рамка внутри другой) указывает на то, что одно единичное нарушение изоляции не приведет к опасному поражению персонала.

Не сбрасывайте со счетов использование зажимов, гибких зажимов и испытательных щупов для измерения тока, когда дело касается визуального осмотра. Такие устройства должны быть отмечены максимальным номинальным током. У них также должна быть этикетка NRTL.Многие испытательные щупы имеют двойную изоляцию и помечены символом с двойной изоляцией.

Проверьте состояние

Не сомневайтесь, выводите инструмент из эксплуатации, если есть какие-либо вопросы относительно его состояния. Убедитесь, что какой-либо метод, например, тегирование, используется, чтобы гарантировать, что кто-то случайно не воспользуется неисправным испытательным оборудованием до завершения ремонта. Простой предмет - потрепанная медная нить, торчащая из испытательного провода - однажды поместил этого автора в больницу!

Учитывайте необходимость в защитном футляре для защиты оборудования от механических ударов и грубого обращения в течение дня.Кейс для хранения также может потребоваться для более полной защиты при транспортировке или хранении испытательного инструмента.

Было бы глупо использовать цифровой мультиметр, который работает некорректно. Ежедневно, перед первым использованием, цифровые мультиметры следует проверять на правильность работы под напряжением, проверяя на известном источнике напряжения, например, розетке или электронном испытательном блоке, если розетка недоступна. Перед измерением замкните соединительные провода для проверки сопротивления, чтобы убедиться в правильности работы функции сопротивления. Этот быстрый тест также проверяет целостность измерительных проводов.Убедитесь, что во время этой проверки на дисплее не отображается предупреждение о низком заряде батареи.

Центр блокировки / маркировки

Метод трехточечного тестирования

Одной из наиболее важных задач безопасности, выполняемых техническим специалистом, является проверка отсутствия напряжения во время процесса блокировки / маркировки при напряжении 50 вольт или более. Как только процесс будет завершен, можно ожидать, что техники будут касаться голыми пальцами и руками компонентов, находящихся под напряжением. Цифровой мультиметр, который не работает должным образом во время этого теста, может привести к катастрофической аварии.Следовательно, жизненно важно, чтобы технические специалисты правильно выполняли "трехточечный" метод тестирования при проверке отсутствия напряжения во время их квалификационных мероприятий.

Далее следует трехэтапный процесс.

  1. Убедитесь, что цифровой мультиметр работает правильно, когда функциональный переключатель установлен в положение «напряжение», проверив напряжение на известном источнике питания или с помощью электронного контрольного прибора и наблюдая за правильными показаниями на лицевой стороне измерителя.
  2. Протестируйте цепь, подлежащую проверке, путем измерения междуфазного тока и между фазой и землей на всех фазах.Должна быть указана нулевая энергия.
  3. Убедитесь, что цифровой мультиметр по-прежнему правильно показывает напряжение, снова поместив измерительные щупы на известный источник питания или используя электронный контрольный блок. Блоки поверки проверяют правильность работы счетчика без необходимости использования громоздких СИЗ.

Когда дело доходит до безопасности, никогда не предполагайте, что какой-либо испытательный инструмент работает правильно. Всегда проверяйте правильность работы!

Это зависит от человека

Безопасность цифрового мультиметра - это личная ответственность.Несмотря на то, что сотрудники должны быть обучены использованию испытательного оборудования, каждый сотрудник, выполняющий работу, всегда должен убедиться, что его испытательное оборудование находится в безопасном состоянии. Надлежащая проверка требует времени, а опытный персонал может не одобрить проверку на местах. Однако нельзя допускать ошибок, и демонстрация безопасных методов работы с испытательным оборудованием является обязательным компонентом процесса квалификации.

Резюме

Использование процедурного контрольного списка для демонстрации правильного выбора, проверки и использования цифрового мультиметра - лучший метод, гарантирующий, что только квалифицированный персонал выполняет электрические измерения.Аудит методов безопасной работы DMM помогает удовлетворить требования NFPA 70E к испытательному оборудованию и соответствует определению квалифицированного персонала OSHA. Технический специалист, который может успешно продемонстрировать свою способность выбирать, проверять и правильно использовать цифровой мультиметр, сделал значительный шаг в обеспечении безопасного возвращения домой в конце рабочего дня.

Каковы применения мультиметра?

Обновлено 9 сентября 2019 г.

Крис Дезил

Сначала был гальванометр, затем появился авометр, и сегодня ученые, электрики и все, кто работает с электричеством, используют мультиметр, также известный как цифровой мультиметр (для d igital m ulti m eter).

Мультиметр в основном представляет собой цифровую версию AVOmeter , который был разработан в начале 1920-х годов инженером британского почтового отделения Дональдом Макади для измерения ампер, вольт и омов (отсюда «избегать»). По-прежнему существует множество аналоговых вольт-ом-миллиамперметров (VOM), но цифровые мультиметры более распространены и обладают большей функциональностью.

Применение мультиметров разнообразно и не ограничивается измерением напряжения, тока и сопротивления. Вы можете использовать мультиметр для проверки целостности цепи и, в зависимости от модели, для измерения емкости.С большинством моделей вы также можете тестировать батареи, диоды и транзисторы и различать постоянный и переменный ток.

Знакомство с мультиметром

С точки зрения удобства использования, точности и функциональности, существует большая разница между аналоговым и цифровым мультиметром. Аналоговый VOM использует электромагнитную индукцию для перемещения стрелки, но цифровой мультиметр имеет внутреннюю схему, которая более чувствительна к минутным импульсам, и считывание показаний светодиодного дисплея с десятичными дробями более надежно, чем измерение положения стрелки между градациями счетчика.

Каждый мультиметр может измерять напряжение, ток и сопротивление, и у большинства из них есть шкала, позволяющая регулировать чувствительность. На измерителе по разумной цене вы найдете настройки напряжения постоянного тока от 200 милливольт до 1000 вольт и настройки напряжения переменного тока от 200 милливольт до 750 вольт.

Измеритель также определяет как переменный, так и постоянный ток от 2 мА до 20 А и измеряет сопротивление от 200 Ом до 200 МОм. Если измеритель измеряет емкость, он делает это по шкале от 2 нанофарад (10 -9 фарад) до 200 микрофарад (10 -6 фарад).Некоторые измерители регулируют чувствительность внутренне. Все, что вам нужно сделать, это установить циферблат на количество, которое вы измеряете, а счетчик сделает все остальное.

Большинство цифровых мультиметров имеют настройки для проверки диодов, обозначенные символом диода. В некоторых также есть настройки для тестирования транзисторов, обозначенные как hFE. В вашем глюкометре также могут быть настройки для проверки батарей, но на самом деле они вам не нужны. Вы можете проверить любую батарею, установив напряжение постоянного тока в диапазоне заряда батареи.

Как использовать мультиметр

Каждый мультиметр поставляется с парой щупов, одним черным и одним красным, и тремя или четырьмя портами.Один из портов помечен как COM (общий), и это то место, куда идет черный щуп. Два других порта имеют маркировку A для ампер и мА / мкА для миллиампер / микроампер. Четвертый порт, если он есть, помечен как VΩ для вольт и омов. Четвертый порт иногда включается в третий, который обозначается как mAVΩ.

Если измеритель имеет четыре порта, подключите красный щуп к порту VΩ для измерения напряжения и сопротивления, подключите его к порту мА для измерения тока в миллиамперах и к порту A для измерения тока в амперах.Для проверки диода используйте порт VΩ. Вы также можете использовать этот порт для проверки транзистора, или, если измеритель имеет многополюсный входной порт, вы можете подключить к нему транзистор.

Чтобы произвести измерение, установите шкалу на измеряемую величину и выберите соответствующую шкалу. Если шкала слишком велика, вы получите приблизительное показание, а если шкала слишком мала, показание будет за пределами шкалы. В любом случае, счетчик не пострадает. Прикоснитесь щупами к клеммам устройства или цепи, которые вы тестируете, и прочитайте результат измерения со светодиодного дисплея или аналоговой шкалы.

Основные области применения мультиметра

Мультиметр нужен любому ученому, работающему с электрооборудованием, как и профессионалам, например электрикам и специалистам по ремонту бытовой техники. Мультиметр также должен быть в каждом домашнем ящике с инструментами, потому что это бесценный инструмент для диагностики проблем с бытовой схемой и бытовой техникой.

Каждый мультиметр может измерять напряжение, ток и сопротивление. Эти функции необходимы для диагностики проблем в цепях и обнаружения изношенных компонентов.

  • Испытательное напряжение: Используйте настройку напряжения для измерения падения напряжения на компонентах схемы и для измерения общего напряжения в цепи. Вам понадобится настройка напряжения постоянного тока для большинства небольших компонентов схем и для тестирования батарей, а настройка напряжения переменного тока - для проверки компонентов жилых цепей, таких как выключатели, осветительные приборы и розетки. Обратите внимание, что вы можете измерить напряжение, не отключая цепь. Просто прикоснитесь одним щупом к отрицательной клемме или, если проверяется напряжение переменного тока, к горячей клемме.Коснитесь другим датчиком другой клеммы и запишите показания.
  • Испытательный ток: Обычно вы используете шкалу мА для проверки тока через электронные цепи, а шкалу A - для проверки тока в жилых помещениях. Чтобы проверить ток, измеритель должен быть частью цепи. В большинстве случаев вам нужно сделать разрыв цепи, а затем подключить один провод к одному из щупов измерителя, а другой провод к другому щупу.
  • Проверка сопротивления: Измеритель имеет встроенный источник питания, который активируется при выборе шкалы сопротивления.Он посылает небольшой ток от одного датчика, и чем меньше ток, зарегистрированный другим датчиком, тем выше сопротивление. Если второй датчик не регистрирует ток, измеритель отображает бесконечное сопротивление или буквы OL, что означает разомкнутую линию. Эта функция полезна для проверки непрерывности. Вы также можете использовать его для проверки диода, проверив сопротивление в одном направлении через устройство, затем поменяв местами щупы и проверив сопротивление в другом направлении. Если диод исправен, вы должны получить низкое сопротивление в одном направлении и почти бесконечное сопротивление в другом.

Использование мультиметров

Мультиметры используются во многих случаях, даже если вы не являетесь профессиональным торговцем или лабораторным работником. Он пригодится, если вы хотите выполнить одно из следующих действий:

  • Тестовые батареи: Просто используйте настройку напряжения постоянного тока и прикоснитесь щупами к клеммам батареи, чтобы определить, какое напряжение от исходного напряжения обеспечивает батарея.
  • Определите, не поврежден ли кабель питания: Измерьте сопротивление между горячим и нейтральным проводами любого жилого электрического кабеля.Если сопротивление бесконечно или счетчик показывает OL, кабель поврежден.
  • Проверить выключатель: Если осветительный прибор не работает или мигает, проверка выключателя часто является первым и самым простым шагом к диагностике проблемы. Чтобы проверить переключатель, выберите диапазон 200 вольт, поместите датчик на клемму, подключенную к нагрузке, а другой датчик на винт заземления. Вы должны получить значение напряжения около 120 вольт, когда переключатель замкнут, и ноль вольт, когда он разомкнут.
  • Проверить розетку: Чтобы проверить бытовую розетку, выберите диапазон 200 В и вставьте зонды в розетки. Если вы не получаете значение около 120 вольт, проблема с розеткой или схемой.
  • Проверить старые лампы накаливания: Отрегулируйте шкалу измерителя, чтобы проверить сопротивление или целостность цепи. Прикоснитесь одним щупом к резьбе винта, а другим - к ножке на дне лампы. Лампа неисправна, если на дисплее отображается OL или счетчик показывает бесконечное сопротивление.

Использование прецизионных цифровых мультиметров для быстрой проверки датчиков температуры


Если в ваших процессах используются датчики температуры, то есть возможность быстро проверить их работоспособность или плохо важно. В этой статье описывается, как использовать цифровой мультиметр (DMM) для выполнения некоторых быстрых и простых тестов для наиболее распространенных - термопар, резистивных датчиков температуры (RTD) и термисторов.

Калибровка и устранение неисправностей - два совершенно разных требования. Калибровка поддерживает качество продукции; устранение неполадок влияет на количество продукта. Калибровка происходит по расписанию; устранение неисправностей происходит в аварийных ситуациях. Калибровка должна быть точной; устранение неполадок должно быть быстрым. Когда производственная линия не работает, скорость имеет решающее значение. Неисправный компонент необходимо изолировать и заменить как можно скорее. С помощью прецизионного мультиметра вы можете выполнять быструю проверку большинства датчиков температуры, и хотя эти тесты ничего не говорят о точности датчика, они сообщают вам, вышел ли датчик из строя.Иногда это именно то, что вам нужно.

Работает ли эта термопара?
Термопары - это преобразователи без питания, которые генерируют очень низкое напряжение. Когда два разнородных металла контактируют друг с другом, на стыке создается потенциал - эффект Зеебека. Это напряжение на стыке двух металлов пропорционально температуре перехода.

«Тип» термопары описывает металлы, используемые для создания спая, например, в термопаре J-типа в одном проводе используется железо, а в другом - медно-никелевый сплав.Соединение металлов может иметь различную конфигурацию оболочки или может быть обнажено.

Чем выше температура, тем выше напряжение, создаваемое термопарой. (Использование терминов «высокое» и «напряжение» в этом контексте несколько вводит в заблуждение, поскольку напряжение на общей термопаре типа J составляет около 1,0 мВ при комнатной температуре 68 ° F и около 1,9 мВ при температуре тела, 99 ° F).

Есть два шага для проверки термопар. Первый - проверить клеммы на короткое замыкание, а второй - убедиться, что напряжение соответствует температуре.

Первый тест можно провести с помощью любого качественного мультиметра. Переведите измеритель в режим измерения сопротивления или непрерывности; на хорошей термопаре вы должны увидеть низкое сопротивление. Если вы видите более нескольких Ом, вероятно, у вас неисправная термопара. Если показание при комнатной температуре близко к 110 Ом, значит, у вас есть RTD - читайте дальше.

Для второго теста требуется измеритель, который может измерять до десятых долей милливольт (0,0001 В). Измеритель, который может измерять сотые доли милливольт (0.00001 В) делает эту проверку еще проще, потому что добавленное разрешение показывает очень небольшие изменения температуры.

Подключите измеритель к клеммам термопары. Если схватить термопару за конец, напряжение должно немного повыситься, так как вы ее нагреваете. Когда вы отпустите переход, температура (и напряжение) должны упасть.

Мультиметры с мин. / Макс. запись и возможность графического отображения электрических сигналов (аналогично осциллографу) также удобны для этого приложения.Мин Макс. Запись позволяет вам подключить измеритель, подойти к кончику термопары, нагреть его в течение нескольких секунд и вернуться к измерителю, чтобы проверить результаты. Типичные значения для хорошей термопары показаны на рисунке 1.


Рисунок 1. Использование мин. / Макс. Функция записи позволяет отслеживать изменения напряжения термопары с течением времени и следить за тем, чтобы напряжение возрастало с увеличением температуры.

На рисунке показано, что нагрев наконечника занял 37 с.Конечно, если бы вам пришлось дойти до конца датчика, это время было бы больше.

Работает ли этот RTD? Термометры сопротивления
работают по принципу изменения сопротивления любого проводника в зависимости от температуры. Когда температура проводника повышается, повышенная молекулярная вибрация препятствует потоку электронов. Таким образом, чем выше температура, тем выше сопротивление материала.

Большинство RTD относятся к типу PT-100. Они состоят из катушки из платиновой проволоки с номинальным сопротивлением 100 Ом в точке замерзания (или, для пуристов, тройной точке) воды.Сопротивления, отличные от 100 Ом при 32 ° F, встречаются реже, но встречаются. Это помогает узнать, каким должно быть сопротивление вашего RTD.

Иногда платину заменяют медью или другим металлом. Например, в некоторых электродвигателях и трансформаторах дополнительный набор медных обмоток функционирует как RTD, указывая на условия перегрева двигателя. В этих специальных приложениях и с металлами, отличными от платины, вы, вероятно, найдете сопротивление точки замерзания, отличное от 100 Ом.

Для измерения RTD или любого сопротивления измерительная система пропускает ток через устройство и измеряет падение напряжения.

Хотя большинство недорогих цифровых мультиметров с функцией милливольт и сопротивления можно использовать для проверки термопар или термисторов, они могут не иметь достаточного разрешения и точности для тестирования RTD. Для проверки RTD вам понадобится измеритель, способный показывать изменения в десятых долях Ом, и вам понадобится измеритель, измеряющий до сотых - абсолютное значение сопротивления не важно, но возможность отслеживать небольшие изменения есть.Ищите мультиметры с разрешением до 0,01 мВ или 0,01 Ом и дополнительными функциями, такими как мин. / Макс. запись или графический дисплей. Поскольку небольшие изменения сопротивления отражают большие изменения температуры, их дополнительное разрешение и повышенная точность дают вам более четкое представление о том, насколько хорошо тестируемый RTD работает, давая вам больше уверенности в своих результатах.

RTD могут иметь два, три или четыре вывода. В двухпроводной конфигурации просто подключите измеритель к проводам и измерьте сопротивление.Для RTD PT-100 при комнатной температуре это должно быть около 110 Ом (± 20%). Если вы возьмете кончик резистивного датчика температуры, вы должны увидеть увеличение сопротивления. Отпустите, и вы увидите, как сопротивление постепенно снижается после того, как вы отпустите наконечник.

Трехпроводные термометры сопротивления обычно используются, когда измерительная система состоит из мостов сопротивления. Провода, соединяющие наконечник с измерительным устройством, имеют собственное сопротивление, зависящее от температуры (как и все металлы). Дополнительный провод помогает мосту уравновесить влияние сопротивления проводов.При проверке трехпроводного RTD омметром все, что вам нужно знать, это то, что два из трех проводов должны быть закорочены. Обычно закороченные провода одного цвета. Между любым из закороченных проводов и третьим проводом датчик должен действовать так же, как его двухпроводный аналог. То есть при комнатной температуре измеритель должен показывать около 110 Ом для RTD PT-100, а сопротивление должно немного увеличиваться при повышении температуры на наконечнике.

Четырехпроводные RTD встречаются реже, чем другие типы.Если вы встретите один, у него должны быть две закороченные пары проводов. Опять же, закороченные провода обычно одного цвета. Сопротивление между проводами разного цвета должно иметь разумное значение при комнатной температуре и увеличиваться при нагревании наконечника.

Работает ли этот термистор? Термисторы
изготовлены из полупроводникового материала и работают по принципу, противоположному RTD. В то время как сопротивление резистивных датчиков температуры увеличивается с повышением температуры, термисторы, как правило, демонстрируют более низкое сопротивление при более высоких температурах.Это связано с тем, что полупроводниковые материалы имеют тенденцию проводить больше электронов при повышении температуры.

Хотя доступно много типов термисторов, двухпроводные термисторы являются наиболее распространенными для измерения температуры общего назначения. Проверка термистора включает в себя измерение сопротивления. Используя функцию измерения сопротивления цифрового мультиметра, вы сможете наблюдать, как сопротивление преобразователя стабилизируется при комнатной температуре и падает по мере нагрева кончика преобразователя.

Термисторы обычно имеют большое изменение сопротивления на градус температуры, поэтому практически любой измеритель можно использовать для быстрой проверки реакции термистора.Графические мультиметры могут воспользоваться этим свойством, графически отображая изменяющееся сопротивление. На рис. 2 показан график зависимости сопротивления от времени для термистора, который был кратковременно нагрет.


Рис. 2. Использование мультиметра с функцией построения графиков позволяет увидеть, как термистор ведет себя при изменении температуры - этот термистор на короткое время нагревается, в результате чего его сопротивление падает.

Words to Wise
Датчики температуры обычно сильно выходят из строя.Вместо того, чтобы дрейфовать, они обычно просто перестают работать. Хотя ничто не может заменить регулярную калибровку и сертификацию, в крайнем случае прецизионный цифровой мультиметр может работать на вас как надежный инструмент для поиска и устранения неисправностей.



Сегодня я получил свой выпуск журнала Sensors за ноябрь 2003 г. и был потрясен, прочитав дезинформацию о том, как работают термопары, в статье на стр. 33 «Использование прецизионных цифровых мультиметров для быстрой проверки Датчики температуры ».Неверно утверждать, что напряжение возникает на стыке двух разнородных металлов в проводе термопары. Скорее схема термопары содержит два спая, измерительный спай и опорный спай. Напряжение не возникает ни на измерительном переходе, ни на измерительном переходе. Напротив, напряжение создается на участках проводов термопары, которые испытывают разницу температур. А создаваемое напряжение связано с разницей температур между измерительным спаем и опорным спаем.

Затем автор приводит пример того, что термопара типа J будет производить около 1 мВ при комнатной температуре 68F и 1,9 мВ при комнатной температуре 99F. Это было бы верно только тогда, когда опорный спай находится на 32F. Если мы подключим термопару к мультиметру, чтобы проверить, работает ли он, нам нужно будет охладить входные клеммы напряжения мультиметра (опорный спай в данном случае) до 32 F, чтобы напряжения, используемые в этом примере, были действительными.

На странице 34 автор предполагает, что хорошая термопара будет измерять всего несколько Ом, а если она показывает больше, вероятно, неисправна.И он заявляет, что если он показывает 110 Ом, то это RTD. Сопротивление термопары - это просто последовательное сопротивление двух проводов из разнородных металлов в цепи. Это сопротивление провода просто зависит от материала провода, его поперечного сечения и общей длины проводов. Небольшие провода для термопар могут быть совершенно точными и функциональными, но при этом иметь сопротивление более нескольких Ом. Уверяю вас, что у меня есть прекрасно работающая термопара типа Т на 36 манометров, длина которой составляет около 100 дюймов, а ее сопротивление составляет 110 Ом.И уверяю вас, что это не RTD.

Вероятно, многие из ваших читателей заглянут в журнал Sensors для получения правильной информации по различным техническим вопросам. Те, кто прочитает эту неверную информацию о термопарах, могут ввести себя в заблуждение и запутаться. Я согласен с тем, что автор был прав со своими концепциями в очень общих чертах, но его конкретика далеко не идеальна.

Jerry Gaffney
Gaffney Engineering
Gainesville, FL


Автор Дэвид Перелес отвечает:

Mr.Гаффни, я согласен с тем, что ты решишь проблемы, связанные со статьей. Я согласен с тем, что мне следовало указать длину при определении, является ли датчик резистивным устройством. Я работал с датчиками на несколько метров, подключенными к патч-панелям. Конечно, любой длинный проводник, особенно с небольшим сечением, будет иметь значительное сопротивление.

Я не согласен с двумя другими вашими проблемами в контексте этой статьи. В статье не утверждается, что напряжения, указанные в статье, действительно будут соблюдаться.Я использовал напряжения из таблиц, а не измеренные напряжения, так как я не мог предсказать точные значения. Они даны просто для иллюстрации того, что мы говорим о тысячных вольтах.

Ваши комментарии действительно раскрывают предположение в статье - поскольку сам счетчик действует как эталонный спай, я предполагаю, что измерительный спай термопары нагревается относительно измерителя. Если окружающая температура высока, этот метод не работает. Таким образом, хотя это нормально работает в лаборатории, на горячем заводском цехе или в полевых условиях, вам может потребоваться более агрессивный источник тепла, чтобы увидеть значительное повышение напряжения.Я добавлю кое-что по этому поводу в статью на случай, если мы снова воспользуемся этой информацией.

Ссылка на напряжение «на переходе» кажется разумным упрощением, особенно в контексте статьи и выполняемого измерения напряжения.

Хотя я считаю, что статью можно улучшить, я думаю, что у нас разные идеи по поводу конкретных проблем. Думаю, было бы лучше, если бы вы затронули свои проблемы своими словами. Я ценю ваше внимательное чтение и техническую целостность.Я буду поддерживать вас, чем смогу.

С уважением,
Дэйв Перелес

.