Как подключить регулятор температуры: Как подключить терморегулятор к обогревателю?

Содержание

Как подключить терморегулятор к обогревателю?

Терморегуляторы для обогревателей торговой марки terneo бывают двух видов в зависимости от способа монтажа — с установкой их непосредственно в электрическую розетку (rz, srz, rzx, pro-z) либо в предварительно смонтированный подрозетник (rol, vt,  pro и sen).

Далее подробнее разберем — как нужно подключать терморегуляторы к обогревателям? Подключение терморегуляторов, предназначенных для розеток, делается следующим образом. Вилку регулятора вставляют в ответную часть стандартной розетки (расчетный ток которой не менее 16 А) с заземляющей клеммой (соединенной с соответствующим контуром здания). Важно обеспечить надежные контакты во всех парах клемм. К штатной розетке терморегулятора нужно подключить вилку, к примеру, от инфракрасного нагревателя (нагрузки). В свою очередь, его ток не может превышать те же 16 А.

Важно помнить, что все терморегуляторы terneo предназначены для эксплуатации исключительно внутри помещений. При этом риски от попадания влаги и водяных брызг в месте монтажа этих регулирующих устройств должны быть сведены к минимуму. Монтировать регуляторы в бассейнах, ванных и туалетных комнатах, кухнях следует так, чтобы полностью исключить случайные попадания брызг на них. Не рекомендуется устанавливать терморегуляторы рядом с нагревательным / охладительным оборудованием или на уровне пола. Также регулирующие устройства нельзя подвергать воздействию сквозняка и прямого солнечного света.

От короткого замыкания цепь питания нагревателя защищает автоматический выключатель (АВ). Его обязательно устанавливают перед терморегулятором. АВ должен быть рассчитан на номинальный ток до 16 А. Его подключают в разрыв фазного проводника в соответствии со схемой 2. Устанавливают АВ внутрь распределительного щитка. Аналогично, чтобы защитить пользователей от поражения током утечки, поставьте также в щит устройство защитного отключения (УЗО). Важно — ток, коммутируемый терморегулятором, должен быть не более 2/3 от максимальной величины, приведенной в паспорте устройства.    

  

Теперь рассмотрим, как подключить обогреватель через терморегулятор, который смонтирован в подрозетник.

Для устройств моделей rol, vt и pro важно отметить следующее. При первом включении нужно обязательно внести в настройки этих терморегуляторов мощность, которую нагреватель (нагрузка) потребляет от электросети. Это позволит термодатчику более правильно измерять температуру, а терморегуляторы моделей pro и pro-z за счет этого правильнее ведут статистику энергопотребления нагрузки.

Все терморегуляторы, устанавливаемые в подрозетник (rol, vt, pro и sen), надо монтировать на внутренних стенах помещений, не освещаемых напрямую солнцем и вдали от мощных потоков воздуха (сквозняков). Это делается для корректного измерения температуры встроенным датчиком. Допустимая высота установки терморегуляторов равна 0,4 – 1,7 м относительно уровня пола (рис.1). Перед установкой в стене делают круглое углубление под монтажную коробку (стандартный диаметр 60 мм) и канавки, в которые укладывают и фиксируют провода питания. Их с запасом заводят в подрозетник.

Затем для терморегуляторов выполняют электрические соединения. С регулятора демонтируют декоративную лицевую панель, помещают его внутрь подрозетника и закрепляют там винтами. Соединительные клеммы терморегуляторов рассчитаны на провода сечением до 2,5 мм² (рекомендуется не меньше, чем 2 × 1 мм²). Чтобы уменьшить механические усилия на клеммах, используют многожильный провод из мягкого металла (медь). Алюминий крайне не желателен. Жилы обжимают в клеммах с помощью отвертки с плоским лезвием (ширина не более 3 мм), момент затяжки не должен превышать величину 0,5 Н × м. Более широкое лезвие инструмента может повредить клеммы. Это ведет к отказу в гарантийном ремонте терморегулятора.

Важно контролировать, чтобы коммутируемый регулятором к обогревателю ток не превышал 2/3 паспортного. В противном случае нагреватели подключают посредством контактора (схема 3). В его качестве может выступить подобранное (на соответствующий ток) силовое реле либо магнитный пускатель. Это делается в нескольких случаях:

  • Если питающее напряжение может сильно превысить 230 В, что приведет к возрастанию мощности, потребляемой нагрузкой.
  • К регулятору надо подключить один или несколько нагревателей, суммарная мощность которых больше 3000 ВА. При этом мощность нагрузки в терморегуляторе надо устанавливать минимальной для правильных показаний датчика температуры воздуха.

 

Оцените новость:

Схема подключения механического терморегулятора – RozetkaOnline.COM

Современные домашние механические терморегуляторы, как правило, могут применяться не только в отоплении квартиры или дома, но и в системах охлаждения. Принцип работы тут простой – пока не достигнута выставленная регулятором температура срабатывания – включены обогреватели – котлы и иные компоненты системы обогрева, или же наоборот, когда достигается выставленная температура, включается кондиционер и работает до того момента, пока температура воздуха не понизиться ниже выставленного, порогового значения. Чаще всего к термостату подключают только отопление.

Для реализации таких различных схем подключения, в механическом термостате имеется две различные клеммы, первая из которых используется для подключения отопительных компонентов, а вторая для охладительных.

Вообще, производители предлагают различные модели терморегуляторов, которые могут отличаться между собой наличием или отсутствием некоторых дополнительных опций, но основной набор функций обычно единый.

Тут стоит напомнить, что для работы механическому терморегулятору не требуется подключение к сети или использование элементов питания. Внутри него производится лишь коммутация проводки, идущей до климатических систем, а работа всех алгоритмов управления заложенных в них, основана на изменении механических свойств материалов при изменении температуры. Подробнее о принципе работы, устройстве и применении стандартных комнатных механических терморегуляторов в отоплении читайте в нашей статье «Механический терморегулятор для отопления | Термостат»

Зачастую, производители не особо стараются сопроводить свои механические терморегуляторы удобными, подробными инструкциями по подключению, ограничиваясь лишь общей схемой, которую без знания основ электротехники бывает тяжело понять. Так, например, с комнатным механическим термостатом Zilon za-1 в комплекте поставляется вот такая схема подключения:

Согласитесь, схема совершенно не информативная, подключить согласно такой инструкции механический термостат сможет далеко не каждый. И этот пример, к сожалению, не единичный и подобное встречается довольно часто.

Ниже я привожу более наглядную, чем стандартная, схему подключения механического терморегулятора. 

Как видите, основные здесь клеммы для подключения «4», «5» и «6», а сам терморегулятор работает по принципу переключателя. Пока температура окружающего воздуха не достигла выставленной регулятором величины, электрический ток, подведенный на клемму «6», подаётся на контакт «4», но как только будет достигнута необходимая температура, режим меняется и ток начинает поступать на клемму «5». Таким образом, к клемме «4» подключаются отопительные приборы, которые обогревают помещение и, если ничего не подключено к клемме «5», просто отключаться при достижении нужной температуры. А к контакту «5» обычно подключается охладительные системы, которые начинают работать лишь когда температура воздуха превысит заданное значение.

Клеммы «1» и «2» это контакты для подачи питания на лампу – индикатор работы домашнего механического терморегулятора. К клемме «2», требуется подключать последовательно провод, идущий от клеммы «4» или «5», в зависимости от того к какой из них подключена нагрузка  – отопление или охлаждение. Таким образом, пока электрический ток поступает на климатический прибор, индикатор светится, указывая нам о том, что прибор в рабочем режиме.

 

Клемма «1» нужна для подключения нулевого провода, требуемого для того, чтобы лампа светилась или как общая клемма для нуля, если у вас реализована следующая схема подключения механического термостата:

Как видите, в этой схеме, в терморегуляторе осуществляется вся коммутация, минуя распределительные (распаячные) коробки. В терморегулятор заходит кабель с фазой и нулем домашней электросети, а также от него проброшен провод до управляемых им климатическим систем, например, до обогревателя. Внутри произведена вся необходимая коммутация, необходимая для работы такой системы. Иногда такая схема подключения бывает единственно возможной, особенно когда требуется подключить отопительные или охладительные приборы с наименьшими трудозатратами. Достаточно проложить до термостата фазу и ноль и так же прокинуть от него две жилы кабеля до приборов, которыми он будет управлять.

 

Очень важно! Все представленные выше варианты схем подключения комнатного механического термостата актуальны лишь для подключения к нему нагрузки с током не более 10-16 ампер ( в зависимости от модели). Довольно часто этого бывает достаточно, но если используете термостат с энергоёмкими устройствами, то чаще всего единственно возможным вариантном становится подключение механического терморегулятора через пускатель.

 

Электромагнитный пускатель – это по большому счету выключатель (реле), рассчитанный на управление большими токами.

Принцип действия пускателя достаточно прост, при подаче даже небольшого тока его на управляющую клемму, которая связана с магнитной катушкой, эта катушка втягивает сердечник, в результате чего некоторые контакты пускателя замыкаются, а другие наоборот размыкаются. Применяется магнитный пускатель как раз в таких случаях как наш, когда требуется управлять электрооборудованием с большими токовыми нагрузками.

При срабатывании механического термостата, ток поступает на уравляющую клемму пускателя, который в свою очередь подключает нагрузку – например электрообогреватель. Когда в помещении температура воздуха поднимется до нужного уровня, указанного регулятором термостата, цепь разомнется и соответственно пускатель отключит отопительный прибор.

Выбор той или иной схемы подключения зависит от вашей конкретной ситуации, но как вы уже могли заметить, вариантов использования у механического термостата масса. Если же вы не можете определиться, как лучше выполнить монтаж, какую схему или алгоритм лучше использовать, пишите в комментариях к статье, постараемся помочь.

Как самостоятельно подключить терморегулятор холодильника?

Начнем с того, что терморегулятор в холодильнике служит для отключения / включения холодильного компрессора. При первоначальном включении исправного холодильника контакты терморегулятора замкнуты и подается команда на включение компрессора. Задать температуру  в холодильнике можно поворотом ручки — степень охлаждения варируется, как правило, от +8 градусов до 0 градусов Цельсия , более низкая температура достигается поворотом ручки терморегулятора по часовой стрелке до упора. 

 

Чтобы понять, какие неисправности могут быть в терморегуляторе (термостате) холодильника, надо разобраться в его устройстве.

Устройство терморегулятора холодильника

Механизм термостата представляет рычажную систему,  управляющую электрическими контактами. Внешне терморегулятор представляет собой небольшую коробочку с ручкой, с одной стороны которой  находится трубка, заполненная фреоном, а с другой стороны — контакты для подключения к электрической цепи.

               

Количество контактов может меняться от 2-х до 6-и, а длина трубки, заполненной фреоном, может быть от 0,8 до 2,5 метров. Это зависит от дополнительных функций терморегулятора, температурного режима и количества подключаемых модулей холодильника (свет, оттайка, индикация). Разбирать рабочий терморегулятор для изучения внутреннего устройства не рекомендуется.

  

 

Принцип работы

Принцип работы терморегулятора довольно прост. Конец капиллярной трубки термостата находится в зоне охлаждения и крепится на испаритель холодильника. Рычажный механизм терморегулятора, который находится в коробочке, при охлаждении воздействует на контактную группу — термореле размыкается. При повышении темпрературы термостат возвращается в первоначальное положение — силовые контакты замыкаются.

Неисправности

Внешне поломка терморегулятора (температурного датчика) проявляется двояко. Это может быть банальное отключение компрессора холодильника от электросхемы (компрессор не включается, никаких звуков нет, свет в холодильнике есть), а может изменение температурного режима в холодильной камере (перемораживание или высокая температура).

В первом случае, высока вероятность повреждения оцинкованной капиллярной трубки термостата, которая подвержена коррозии в водной среде, в результате которого рычажный механизм терморегулятора просто перестает работать.  Во втором,  надо разбираться, что конкретно послужило причиной нарушения температурного режима — коррозия, залипание контактов термореле или нарушение внутренних заводских настроек датчика. Ответ может дать только специалист — мастер по ремонту холодильника.

Место установки

Неисправный терморегулятор требует замены. Самостоятельно заменить сломанный термостат довольно просто, если добраться до места его установки. Вот здесь и возникают трудности.

В современных холодильниках регулировка термостата выведена, как правило, на лицевую панель и находится вверху холодильника, но может находиться и внутри.  Охлаждающий модуль холодильника ( испаритель ) спрятан под пластмассовой обшивкой и находится в задней части.

Чтобы самостоятельно установить новый термостат, необходимо демонтировать сломанный терморегулятор.

  • Для этого надо обесточить холодильник, выдернув шнур из электросети.
  • В зависимости от модели холодильника, снять пластиковую накладку корпуса, в которой находится сломанный терморегулятор.
  • Обозначить маркером схему подключения проводов.
  • Убрать с места крепления (размещения) капиллярную трубку сломанного терморегулятора.

Установить новый термостат в обратной последовательности.

Особенности подключения

Не следует путать различные терморегуляторы, внешне похожие между собой. Одни могут работать только при плюсовых температурах, другие предназначены только для морозильников. Использование термостата, не предназначенного для работы холодильника (морозильника) может привести к некорректной работе оборудования и выходу из строя дорогостоящих элементов (компрессора).

Поэтому обязательно проверьте подключаемые провода к терморегулятору. Одно дело, если вы нашли на замену свой родной термостат, того же производителя или торговой марки, другое — если используете аналог.

Кстати, провода, подходящие к терморегулятору, имеют такое назначение:

  • оранжевый, красный или черный — соединяет термостат с компрессором;
  • коричневый — фазный провод, ведущий в розетку;
  • белый, желтый или зеленый — ведет к лампочке, показывающей, что холодильник включен;
  • полосатый желто-зеленый — заземление.

Начиная от размера контактов (ширина плоских токопроводящих контактов имеет 2 стандарта — 4,8 и 6,3 мм), месторасположения, терморегуляторы могут различаться настройками контактных групп (силовые или слаботочные) и предназначением (среднетемпературные или морозильные). Например, использование внешнепохожего температурного датчика К57-2,5 вместо К59-2,5, приведет обмерзанию в холодильной камере задней стенки и изменению температурного режима холодильника.

Настройки

     

У всех термостатов есть так называемый рабочий температурный диапазон (например, для термостата RANCO K-59 это -32/+6), для поддержания которого собственно и предназначен терморегулятор.

У термостатов на внешней стороне корпуса или внутри есть 2 регулировочных винта, отвечающие за регулируемый температурный диапазон  внутри рабочего диапазона (это примерно 4-18 градусов) и за перепад срабатывания (как правило, 2-8 градусов).

Будьте осторожны — простая регулировка одного винта смещает рабочий температурный диапазон включения / выключения. Например, нормальная заводская регулировка термостата в крайнем минимальном положении (в крайнем положении при вращении против часовой стрелки) настроена на пороги срабатывания — минус 10 / плюс 3,5 градуса Цельсия. Вращение регулировочного винта, отвечающего за температурный диапазон, сдвигает эти настройки —>  например, в положение минус 5 / плюс 8,5 градусов или минус 15 / минус 1,5. В результате, повышенная или пониженная температура в холодильнике и испорченные продукты и т.п. А если дополнительно произведена регулировка и второго винта, то восстановить заводские настройки после вмешательства очень затруднительно — зачастую, необходима замена термостата на новый.

Осторожно.  Крутить не рекомендуется. Ход резьбы регулировочно винта в термостате конструктивно может быть не ограничен (особенно у китайских аналогов), в результате винт может выпасть из резьбы при регулировке — обратно вставить винт без разборки всего термостата не получиться.

Подключение терморегулятора (термостата) к тену: схема подсоединения

Для создания комфорта внутри жилого помещения существует множество устройств, среди которых различные приборы, принимающие на себя функцию по регулировке температуры воды или окружающего воздуха. К данному типу устройств относится терморегулятор, это изделие призванное после настройки самостоятельно поддерживать температуру тена или другого нагревательного элемента путем включения и выключения электрического питания. В данной статье рассмотрен вопрос, как подключить терморегулятор, а также приведена схема подсоединения контролера к системе теплого пола.

Как подключить термостат

Виды терморегуляторов

Существует два основных типа терморегуляторов, которые различаются в зависимости от принципа работы:

  1. Механические приборы – это термостаты, которые регулируют температуру исполняющего устройства размыканием контакта между двумя пластинами разной плотности. При нагревании датчика сигнал поступает в корпус контактора и передает импульс на размыкание или замыкание пластин;

Электронный термостат

  1. Электронный термостат. В данном случае информация, поступающая от датчика температуры, анализируется в цифровом процессоре, только после этого выполняется команда на подачу питания на нагревательный элемент.

В обоих случаях управление осуществляется вручную, методом выставления необходимой температуры на корпусе контролера. Также можно выделить классификацию терморегуляторов на основании визуализации и клавиш управления. Термостаты бывают с проворачиваемыми дисками со шкалой, кнопками настройки или сенсорным экраном. Принцип работы всех перечисленных изделий существенно не отличается друг от друга.

Также существует классификация термостатов по типу размещения: наружные или внутренние. В зависимости от решаемой задачи, устройство может устанавливаться в стену в предварительно проделанную нишу. Строительный размер такого прибора совпадает с обыкновенной розеткой, поэтому его часто монтируют в прорубленное коронкой отверстие.

Терморегулятор с наружным расположением имеет более толстый корпус, который закрыт со всех сторон пластиковыми пластинами. Минус такого устройства – его габарит, в связи с невозможностью расположить прибор внутри стены он будет выступать на плоскости, к тому же при подключении к нему кабеля придется устраивать дополнительный канал из гофрированной трубы или пенала.

Сферы применения терморегуляторов

Термостаты получили широкое распространение в различных сферах, как в промышленности, так и в обычном быту. Чаще всего указанные приборы можно встретить в системах теплого пола с нагревательным элементом в виде греющего жгута, который располагается в стяжке. При подаче питания на электроды провода нагреваются и отдают тепло всем окружающим слоям, для правильной работы система оборудована датчиком температуры, встроенным в стяжку. Контроллер может использоваться для электрического или водяного теплого пола, принцип его работы от этого не меняется.

Термостат с датчиком для теплого пола

Также термостат применяется в нагревательных или отопительных котлах для автоматической регулировки уровня нагрева внутренней среды. Данными приборами многие производители укомплектовывают нагревательные приборы уже на стадии изготовления, но даже если конструкцией котла это не предусмотрено, контролер на линию можно установить самостоятельно.

Подключение терморегулятора

Так как терморегуляторы можно использовать как для контроля нагревательных элементов, так и управления охладителем, в конструкции прибора имеется два типа контактов и клемм. Во время самостоятельного подключения устройства в систему необходимо строго соблюдать полярность контактов и не допускать противоречий в схеме.

Схема подключения термостата

Для подсоединения механического термостата не требуется подводки электричества, так как все управление и размыкание выключателя осуществляется путем физического изменения характеристик нагревающейся пластины. Для подключения данного прибора нужно следовать приведенному ниже алгоритму:

  1. В документациях к приборам имеется обозначение клемм по номерам, в соответствии с этими показателями необходимо осуществлять сборку системы. В первую очередь, нужно подсоединить нулевой кабель к электродам коробки и отвести его сразу на потребляемые нагревательные элементы, например, теплый пол;
  2. Фаза заводится в контроллер напрямую, без подключения к бытовым приборам. Коробка сама будет распределять электричество в момент включения контактов. В некоторых устройствах необходимо проложить перемычку внутри термостата от плюсового провода на индикатор работы, который показывает сигнал в момент включения нагревателя и на протяжении всего периода работы;
  3. В управляющем устройстве расположены клеммы для подключения охладительного нагревательного элемента, а также для внешнего датчика температуры. Все устройства должны подсоединяться последовательно, ток при этом должен быть отключен полностью. Это типичная схема подключения терморегулятора, которая наиболее распространена в системах теплого пола или инфракрасного отопления помещения;
  4. Датчик температуры присоединяется в последнюю очередь, после чего выполняется тестовый запуск системы и проверка напряжения на всех элементах.

Схема с использованием автомата

Существует также схема подключения термостата с использованием магнитного автоматического выключателя, чаще всего данную схему применяют при наличии нескольких управляемых устройств, требующих для работы ток с высоким напряжением. При этом автомат подключается в разомкнутую сеть плюсового кабеля параллельно с термостатом, дополнительно имеется связующий кабель с устройством управления. Ток на потребляющие приборы подается через автоматический выключатель, но управление им осуществляет термостат. Нагревательные элементы связаны с контролером только на параллельной линии и через автомат, это позволяет эксплуатировать систему с высоким напряжением без перебоев и в безопасном режиме. В случае возникновения аварийной ситуации сработает выключатель и полностью обесточит все устройства.

Таким образом, из схемы видно, что терморегулятор подключается к нагревательным или охладительным приборам непосредственно перед подачей на них напряжения, то есть контролер будет первым элементом в системе. Многие термостаты оборудованы электронной микросхемой и процессором, которые, кроме показателей температуры, дают дополнительные данные о различных показателях, таких как состояние влажности в помещении, давление и время, необходимое для достижения заданных параметров. Такие устройства имеют стоимость гораздо выше, чем механические терморегуляторы бытового назначения.

Подключение термостата к системе теплого пола

В зависимости от типа нагревательного кабеля в системе теплого пола, схема подключения будет разной. Существует два типа пола: с одножильным и двух жильным жгутом, принцип работы между ними схож, но у многожильного кабеля ресурс работы, а также технические показатели по скорости и высоте нагрева намного выше.

Подключить термостат к одножильной системе проще – достаточно присоединить два нулевых кабеля в одну клемму, а фазу – в соответствующее гнездо. При этом ток будет проходить через всю длину последовательно по кольцу закладки жгута.

В двухжильном кабеле все провода выходят с одной стороны, поэтому подключение осуществляется последовательно – один провод в одну клемму. Ток при данной схеме проходит по всей длине нагревательного элемента и возвращается по тому же пути в одном направлении.

Таким образом, при соблюдении всех правил и алгоритма подключения термостата к любой схеме останется только настроить прибор на нужные параметры путем вращения колеса по шкале температуры.

Видео

Оцените статью:

Установка терморегулятора теплого пола: схема подключения, видео

Для обогрева жилища люди используют различные способы, самым современным из которых является «тёплый пол». Эта система обеспечивает равномерный прогрев помещения по высоте и отсутствие сквозняков. Её можно устанавливать под любыми напольными покрытиями, в том числе под ламинатом и кафелем.

Однако для обогрева помещения недостаточно смонтировать нагреватели. Для поддержания постоянной температуры в помещении при изменениях погоды на улице необходима установка терморегулятора теплого пола. В этой статье рассказывается про особенности применения этого устройства, а так же как выполнить монтаж прибора своими руками.

Для чего нужен терморегулятор

Централизованная система обогрева дома отапливает помещение горячей водой, температура которой определяется оператором котельной и не зависит от температуры воздуха в комнате.

Этим же недостатком обладают электрические и газовые котлы индивидуального отопления, подключённые к системе тёплого пола, а так же электрический тёплый пол, который может нагреться до слишком высокой температуры. При этом в комнате может стать слишком жарко, а ходить босиком по полу будет невозможно.

Для того чтобы предотвратить такую ситуацию необходима установка терморегулятора на теплый пол. Такое устройство включает и отключает нагрев помещения при достижении заданной температуры поверхности, тем самым поддерживая комфорт в помещении.

В дополнение к этому прибору целесообразна установка датчика температуры воздуха, позволяющая производить более точную регулировку системы отопления. Это особенно важно, если пол является основным или единственным источником тепла в помещении.

Совет! Для системы водяного нагрева с электрическим или газовым котлом достаточно одного датчика, при монтаже электрических нагревателей необходима установка терморегуляторов в каждой комнате.

Где установить терморегулятор теплого пола

Регулятор температуры тёплого пола подключается к выносному датчику, поэтому установка терморегулятора теплого пола возможна в любом удобном месте. Чаще всего она производится в одном ряду с розетками и выключателями и закрывается общей рамкой. Такое размещение удобно для регулировки и не нарушает дизайн помещения.

Совет! При монтаже регулятора в общем блоке с розетками питание прибора допускается производить от этих устройств проводом, проложенным внутри монтажных коробок.

Существуют так же определённые правила размещения датчика:

  • Его нельзя размещать под мебелью или коврами. В этих местах пол прогревается быстрее всего.
  • Датчик размещается между нагревателями. При его расположении в местах, где они отсутствуют, регулятор не будет отключать нагрев.

В ванной комнате устанавливается только датчик. Сам регулятор располагается снаружи. Допускается его установка в 3 зоне, на расстоянии не менее 0,6 метра от края ванны.

Высота установки терморегулятора для теплого пола особого значения не имеет, главное, чтобы этим приспособлением было удобно пользоваться. Чаще всего прибор устанавливается в одном блоке с розетками, это упрощает монтаж, подключение и улучшает дизайн помещения.

Обычно терморегулятор настраивается один раз, поэтому он может располагаться вместе с розетками, смонтированными по европейскому стандарту на уровне 30 см от пола, но может устанавливаться вместе с выключателем на высоте 90 см.

Друзья также смотрите видео что делать если не работает теплый пол? И почему не следует выбрасывать регулятор температуры:

При установке комнатного термостата со встроенным датчиком для более точного поддержания температуры воздуха. Такое расположение упрощает монтаж и подключение системы тёплого пола. В этом случае регуляторы устанавливаются на одной из внутренних стен на высоте 1,5 метров от пола. При желании эти приборы можно собрать в одном блоке с выключателями освещения.

Как установить терморегулятор своими руками

При наличии минимальных знаний электротехники и опыта ремонта домашней электропроводки установка терморегулятора теплого пола возможна самостоятельно. Эти работы выполняются в определённой последовательности.

Подготовительные работы

Основной задачей при монтаже регулятора температуры является соединение устройства с датчиком, находящимся в полу и с нагревателями тёплого пола. Поэтому перед тем, как установить терморегулятор теплого пола, необходимо сделать штробу от монтажной коробки до термодатчика.

Она прокладывается вертикально до пола, далее провод укладывается в гофрированной трубе в стяжке. Поэтому перед началом работ измеряется расстояние до датчика по полу и стене для приобретения необходимого количества провода и участка, находящегося в полу, для определения длины гофры. Её размер может быть любым, но оптимальным является диаметр 16 мм.

Справка! Некоторые технологии монтажа электрического тёплого пола предусматривают наличие термоизолирующей подкладки. В этом случае провода укладываются в разрезах подложки.

Монтаж терморегулятора и прокладка кабеля

Большинство терморегуляторов для тёплого пола предназначены для установки в обычные монтажные коробки (подрозетники) аналогично розеткам и выключателям. После установки эти устройства закрываются общей рамкой.

Так как система тёплого пола монтируется только при постройке или капитальном ремонте дома, то выдалбывание дополнительных установочных отверстий и штроб не является серьёзной проблемой.

Приборы для наружной установки используются в основном в деревянных домах.

Согласно ПУЭ п.7.1.38 к внутренней электропроводке в таких сооружениях предъявляются очень высокие требования, поэтому трубы для проводов прокладывается при постройке здания.

Если появляется необходимость установки дополнительных приборов, то они монтируются открытым способом, а провода прокладываются в гофрированных трубах или кабель-каналах. Крепление приборов производится саморезами или пластиковыми дюбелями, которые идут в комплекте с регулятором.

Самым популярным способом монтажа терморегулятора в кирпичных и бетонных зданиях является установка в монтажную коробку и укладка проводов в штробах. Для этого нужно коронкой Ø60 мм выдолбить отверстие глубиной 40 мм.

При отсутствии коронки необходимо перфоратором или ударной дрелью сверлом Ø6-8 мм высверлить контур отверстия, после чего при помощи зубила и молотка выбить внутреннюю часть углубления.

После высверливания отверстия для регулятора необходимо проштробить канавки для кабелей.

При мощности нагревателей до 1 кВт возможно подключение питания от соседней розетки и необходима только штроба для нагревателя и подключения нагревателей, при большей мощности регулятор подключается отдельным проводом, который допускается уложить в общую штробу с остальными кабелями.

Если устройство устанавливается отдельно от других электроприборов, то необходима так же отдельная штроба для подключения питания.

Важно! Штробы прокладываются только по вертикали и, под потолком, по горизонтали.

Подача напряжения к терморегулятору и питание нагревателей осуществляется трёхжильным кабелем, сечение которого зависит от мощности нагревателей. Если система тёплого пола является основным или единственным способом отопления, то сечение кабеля может достигать 16-25 мм².

Если мощность нагревательных элеменотов не превышает 5 кВт для подключения теплого пола к сети используют медный кабель сечением 2.5 мм².

Подключение датчика производится проводом, идущим в комплекте с регулятором.

Подключение от соседней розетки

Одним из самых распространённых решений, где установить терморегулятор теплого пола, является монтаж прибора рядом с существующей розеткой.

Это особенно удобно, если тёплый пол монтируется в дополнение к электроконвекторам или радиаторам водяного отопления. Для этого необходимо:

  1. 1. отключить питание установленных приборов;
  2. 2. демонтировать розетки и выключатели;
  3. 3. вырубить отверстие для дополнительной монтажной коробки;
  4. 4. проштробить стену для подключения нагревателей и датчика;
  5. 5. установить и закрепить алебастром или финишной шпаклёвкой новую коробку и, при необходимости, заменить рядом расположенную;
  6. 6. внутри коробок проложить кабель для подачи питания от розетки к терморегулятору;
  7. 7. установить и подключить ранее снятые розетки и выключатели;
  8. 8. установить и подключить регулятор;
  9. 9. закрыть все приборы общей рамкой.

Важно! Подключение от соседней розетки допускается выполнять только при небольшой мощности нагревателей. В противном случае для системы тёплого пола необходимо прокладывать отдельные кабеля, в том числе при монтаже рядом с другими приборами.

Как подключить терморегулятор для теплого пола

Подключение терморегулятора к сети производится согласно имеющихся на клеммах обозначений и цветовой маркировки изоляции подходящего и отходящего кабелей:

  • L (Line) — фаза. Изоляция этого провода имеет чёрную или коричневую окраску.
  • N (Neutral) — нейтраль. Оболочка этого провода окрашивается в синий или голубой цвет.
  • РЕ (Protective Earthing) — заземление. Этот провод окрашен в продольные жёлтую и зелёную полосы.

Если в электропроводке отсутствует заземление, то допускается вместо трёхжильного использовать двухжильный кабель и не подключать клемму PE. В этом случае для защиты людей от поражения электрическим током необходимо установить УЗО или дифавтомат с током уставки 30 мА.

При сомнении в правильности маркировки в розетке фазный провод определяется при помощи индикаторной отвёртки или индикатора типа «Контакт», имеющего соответствующую функцию.

Информация! Если заземляющий провод РЕ необходимо подключать только к соответствующей клемме, то если подключение проводов L и N желательно производить согласно маркировки для удобства обслуживания.

Клеммы в устройстве делятся на входящие и выходящие, так же имеющие маркировку:

  • IN — вход или сеть;
  • OUT — выход или нагреватель.

Если поменять подходящий и отходящий кабеля местами, то устройство не будет работать и подавать питание на нагреватель.

Датчик температуры подключается к соответствующим клеммам, расположенным парой и имеющим маркировку «sensor».

Проверка работоспособности

Включение тёплого пола в работу допускается только после завершения укладки пола, но перед заливкой стяжки и укладкой полового покрытия необходимо проверить работу системы.

Для этого необходимо включить нагрев на минимально возможную температуру. Датчик при этом необходимо поместить рядом с нагревателями, а для более чёткой работы его можно накрыть теплоизолирующим материалом или просто старой курткой или одеялом.

Существует несколько способов определить включение и отключение нагрева:

  • наличие и отсутствие напряжения на клеммах;
  • нагрев и остывание нагревателей;
  • включение и отключение механического регулятора происходит с тихим щелчком;
  • при наличии во вводном щитке реле контроля напряжения с индикацией силы тока или амперметра при нагреве на табло появляется значение потребляемого тока.
Важно! Длительная работа системы без заливки и укладки чистового покрытия может привести к перегреву тёплого пола и выходу его из строя.

Видео как установить регулятор своими руками

После завершения отделочных работ производится окончательная настройка системы — определение желаемого нагрева пола и температуры воздуха в помещении.

Работы по монтажу и подключению терморегулятора тёплого пола может выполнить любой опытный домашний мастер, но если есть сомнения в правильности производства монтажа, то лучше пригласить профессионального электромонтажника.

Потери из-за неправильного подключения могут оказаться больше, чем экономия на оплате его труда.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Подключение терморегулятора для электрического котла

Автор newwebpower На чтение 10 мин. Просмотров 1.6k. Опубликовано Обновлено

Постоянный расход топлива или электроэнергии в нагревательных приборах невозможен при изменении температуры нагреваемой среды, как это происходит в отапливаемой квартире во время колебания климатических условий. Естественно, что при похолодании для поддержания комфортной температуры понадобится большая мощность системы отопления, которая достигается увеличением расхода энергии. Отслеживание допустимого диапазона температур обеспечивают специальные терморегуляторы для котлов отопления.

По-другому терморегуляторы называют термостатами, термодатчиками, термореле, но в независимости от названия, сложности, точности и функциональности приборов их основным предназначением является отслеживание изменения температуры теплоносителя или воздуха в отапливаемой комнате с выдачей сигнала на включение или выключения отопления в зависимости от измеряемых датчиками параметров и предустановленных температурных режимов работы.

Пример терморегулятора, предназначенного для регулировки температуры теплого пола

Основополагающий принцип терморегуляции систем отопления

Многие люди, жившие в эпоху социализма, помнят тарификацию газа по отапливаемой площади, без применения счетчика. При таком подходе котел отопления мог гореть на максимуме круглые сутки, а терморегулирование в доме осуществлялось путем сброса слишком жаркого воздуха через открытые окна. В наше время, когда на счету каждый кубометр газа или киловатт*час электричества, такое расточительное расходование энергоресурсов будет крайне невыгодным, поэтому существует необходимость в регулировке мощности систем отопления в зависимости от потребности.

Неэкономичная регулировка температуры в комнате при помощи открытого окна

Производители систем отопления издревле знали о зависимости температуры в отапливаемом помещении от расхода топлива, поэтому сразу начали устанавливать ручные регуляторы подачи энергоносителя и стали разрабатывать  термостат для котла, функционирующий в автоматическом режиме. Принцип работы подобного термостата с успехом используется до сих пор – это реакция на температуру теплоносителя, возвращающегося в котел после прохождения радиаторов отопления. Если вода после радиаторов возвращается горячей – значит, батареи отопления прогреты, а воздух в помещении достаточно теплый, и не оказывает существенного влияния на охлаждение теплоносителя, соответственно подачу топлива в котел можно уменьшить.

Пример термостата, регулирующего подачу газа в котел

Данные термостаты не используют электричества и работают благодаря неравномерному тепловому расширению в биметаллической пластине. При нагревании изгибающаяся пластина надавливает на заслонку газового клапана и подача газа в котел уменьшается, а при охлаждении происходит обратный процесс. При появлении интенсивного пламени или резкого роста температуры, биметаллическая пластина термостата сработает как термопредохранитель, полностью перекрывая подачу топлива или воздуха в твердотопливных котлах.

Термостат для твердотопливного котла. В комплект поставки входит рычаг и цепь для управления заслонкой

Контроль температуры в помещении

Современный терморегулятор для котла работает в системе управления нагревательного прибора, которая также отслеживает такие параметры, как наличие тяги в дымоходе, давление газа в газопроводе, обеспечивает циркуляцию теплоносителя, и т. п. Данный всеобъемлющий контроль параметров, и программирование работы котла возможно при использовании электронных систем управления. Но даже очень «умная» и «продвинутая» электроника, определяющая изменение температуры в котле не способна обеспечить комфортный нагрев помещения, если система отопления рассчитана неправильно, или изменились условия эксплуатации.

Электрический датчик тяги для газового котла

Например, при трескучем морозе за окном, в сопровождении порывистого ветра теплопотери через стены и щели помещения будут увеличены, что незамедлительно скажется на снижении температуры в доме, даже если батареи отопления и возвратная труба будет относительно горячей. При невозможности уменьшить теплопотери, единственным способом повысить температуру в помещении будет ручное увеличение мощности отопления.

Ручная регулировка температуры на встроенном в котел термостате

В данном случае в роли термодатчика для обогревателя выступают тепловые ощущения нервной системы человеческого организма, которые преобразуются в команду телу: встать и пойти перенастроить котел. Логично, что появились электрические устройства, контролирующие температуру в помещении, и связанные с системой управления котлом. Таким образом, вся система отопления будет работать для поддержания заданной температуры в зоне контроля независимо от изменения внешних условий.

Определение своими руками интенсивности обогрева батарей отопления

Применение удаленного терморегулятора

Принцип действия удаленного термодатчика практически не отличается от функционирования встроенного в котел термостата – при достижении пороговой температуры дается команда на увеличение или снижение мощности. Подключение терморегулятора к обогревателю может быть осуществлено при помощи кабеля или беспроводного соединения, при условии, что котел поддерживает данную возможность. Установка даже самого простого терморегулятора, отслеживающего лишь изменение температуры, позволит существенно снизить затраты на отопления, избегая излишнего перегрева в помещении, поддерживая заданный температурный режим.

Установка температурного режима на удаленном от котла терморегуляторе

Установка в детской комнате удаленного терморегулятора котла позволит поддерживать оптимальную температуру для детей, не опасаясь их переохлаждения вследствие изменяющихся погодных условий на улице. Также стабильность температуры очень важна для людей преклонного возраста, или страдающих различными заболеваниями, для лечения которых необходим постоянный комфорт в комнате пребывания.

Установка терморегулятора в детскую позволит избежать переохлаждения детей в холодное время суток

Более функциональные и дорогие терморегуляторы имеют возможность программирования различных температурных режимов отопления помещения в зависимости от времени суток или дней недели. Например, по будням в дневное время, когда дети в школе, а все взрослые на работе – незачем интенсивно топить детскую и весь дом, компенсируя теплопотери. Поэтому, на период отлучения членов семьи терморегулятор можно запрограммировать на понижение температуры, что снизит теплопотери и счета за энергоресурсы, а ко времени возвращения детей со школы автоматика снова повысит мощность отопления.

Программирование температурных режимов работы котла

Таким образом, при использовании программированного терморегулятора можно добиться существенной экономии энергоресурсов, комбинируя, в зависимости от потребности, различные режимы работы:

  • Отсутствие хозяев в доме – поддерживается минимальная температура, необходимая для жизнедеятельности растений и домашних животных;
  • Интенсивный разогрев системы отопления перед приходом жильцов в помещение, осуществляемый программно или с помощью дистанционной команды;
  • Установка и использование шаблонов управления отоплением в различное время суток в будничные и выходные дни.
Пример программируемого терморегулятора

Подключение и установка терморегуляторов

Производители современных котлов и систем отопления оснащают свои нагревательные приборы разъемами или беспроводными портами для подключения дополнительных термодатчиков, устанавливаемых в контрольных точках помещения. Также многие компании, выпускающие обогреватели, предлагают в качестве опции собственные дополнительные контрольные устройства различной функциональности. В этом случае узнать о том, как подключить терморегулятор к нагревательному прибору, можно из его инструкции по эксплуатации.

Подключение терморегулятора к котлу, поддерживающему данную возможность

На рисунке ниже показана обобщенная простая схема подключения термостата к нагревателю. Существует несколько общих правил и требований по установке и размещению терморегуляторов различной функциональности. Нужно помнить, что работа системы управления будет зависеть от нагрева и охлаждения небольшого термоэлемента, а быстрота реакции напрямую зависит от скорости изменения температуры.

Обобщенная схема подключения термостата

Очевидно, что заблокированный мебелью или шторами терморегулятор будет с опозданием реагировать на изменение параметров в помещении. Возможна и противоположная ситуация – при размещении термодатчика напротив дверей при их открывании будет каждый раз появляться сквозняк, интенсивно охлаждающий теплочувствительный элемент, что приведет к слишком частому увеличению мощности. Показания терморегулятора будут недостоверными, если он установлен слишком близко к излучающему тепло котлу.

Установка программируемого терморегулятора с проводным интерфейсом недалеко от теплого котла не позволит достоверно контролировать температуру в помещении

Поэтому, при выборе места установки терморегулятора рекомендуется опытным путем найти наиболее приемлемую точку, где влияние нагревающих и охлаждающих конвекционных потоков скомпенсировано, а тепловое излучение от различных бытовых электроприборов и Солнца сведено к минимуму. При установке терморегулятора на внешнюю стену, которая может промерзать, следует позаботиться о термоизоляционной прокладке, чтобы избежать ложных срабатываний системы отопления.

Рисунки, наглядно демонстрирующие подходящие и нежелательные места для установки терморегулятора

Реализация раздельной регулировки температуры в комнатах

Применение единичного терморегулятора позволит удерживать комфортную температуру в самой важной комнате в доме, а в остальных помещениях температурный режим будет отличаться от контрольного в зависимости от качества утепления и площади радиаторов. Для полноценной и независимой регулировки теплового климата во всех помещениях потребовалась бы установка индивидуального терморегулятора и котла (или отдельного контура) для каждой комнаты. Очевидно, что такой подход является слишком затратным, поэтому данную проблему решают при помощи терморегуляторов, устанавливаемых на радиаторы отопления.

Установка терморегулятора на радиатор отопления поможет сэкономить денежные средства

Более эффективным способом тепловой регулировки является смешивание горячего и холодного теплоносителя для достижения оптимальной температуры радиатора отопления. Данное смешивание теплоносителей осуществляется специальным трехходовым клапаном. Установка подобного клапана в систему отопления каждого помещения позволит контролировать в нем заданный температурный режим при контроле терморегулятора, установленного в данной комнате.

Установка и настройка индивидуального терморегулятора для каждого радиатора отопления

Таким образом, число комнат в доме с независимо регулируемой температурой будет зависеть от  количества терморегуляторов и смесительных трехходовых клапанов. Но, даже установка в систему отопления одного датчика и смесительного трехходового клапана поможет модернизировать устаревший котел, с все еще исправно работающим встроенным термостатом.

Принцип действия смесительного трехходового клапана

В данном случае схема подключения терморегулятора и трехходового клапана никак не затрагивает внутренние узлы котла, и сказывается на его работе лишь косвенно – при подаче со смесителя в возвратную трубу горячей воды встроенный термостат отреагирует и уменьшит подачу топлива. При охлаждении комнаты терморегулятор закроет клапан, и циркуляция горячего теплоносителя будет происходить во всей системе с интенсивной отдачей тепла.

Схема системы отопления с одним трехходовым клапаном
Советы по выбору терморегуляторов

Поскольку самовольное внедрение в работу газового оборудования опасно и преследуется по закону, применение терморегуляторов и смесительных клапанов позволит увеличить ресурс эксплуатации устаревшего котла, без изменений во внутренней системе, с возможностью автоматической регулировки температуры. В данном случае нужно подобрать совместимые терморегуляторы и электрические трехходовые клапаны.

При выборе любого терморегулятора нужно помнить – он будет малоэффективным при неправильном расчете системы отопления и плохом утеплении

Самые простые терморегуляторы имеют регулируемый диапазон температур, при преодолении которых устройство на выходе может иметь два состояния – включено, или выключено. На входе подключаются фаза, рабочий ноль и заземление (устройство должно иметь соответствующую маркировку клемм), а на выходе подключается нагрузка – смесительный клапан, инфракрасный излучатель или электрический ТЭН.

Модульный терморегулятор для электрокотла с цепями управления накалом и циркуляционным насосом

Терморегулятор для электрического котла работает по аналогичному описанному выше принципу, с той разницей, что должна быть обеспечена коммутация больших токов, ведь электрокотел потребляет значительно больше электроэнергии, чем системы клапанов. Поэтому при покупке терморегулятора для электрокотла в первую очередь следует проверить соответствие токов коммутации и потребления, а также убедиться в наличии выводов для подключения циркуляционного насоса.


Схема подключения механического терморегулятора

Главная > Подключение и установка > Как подключить терморегулятор

Для создания комфорта внутри жилого помещения существует множество устройств, среди которых различные приборы, принимающие на себя функцию по регулировке температуры воды или окружающего воздуха. К данному типу устройств относится терморегулятор, это изделие призванное после настройки самостоятельно поддерживать температуру тена или другого нагревательного элемента путем включения и выключения электрического питания. В данной статье рассмотрен вопрос, как подключить терморегулятор, а также приведена схема подсоединения контролера к системе теплого пола.

Как подключить термостат

Виды терморегуляторов

Существует два основных типа терморегуляторов, которые различаются в зависимости от принципа работы:

  1. Механические приборы – это термостаты, которые регулируют температуру исполняющего устройства размыканием контакта между двумя пластинами разной плотности. При нагревании датчика сигнал поступает в корпус контактора и передает импульс на размыкание или замыкание пластин;

Электронный термостат

  1. Электронный термостат. В данном случае информация, поступающая от датчика температуры, анализируется в цифровом процессоре, только после этого выполняется команда на подачу питания на нагревательный элемент.

В обоих случаях управление осуществляется вручную, методом выставления необходимой температуры на корпусе контролера. Также можно выделить классификацию терморегуляторов на основании визуализации и клавиш управления. Термостаты бывают с проворачиваемыми дисками со шкалой, кнопками настройки или сенсорным экраном. Принцип работы всех перечисленных изделий существенно не отличается друг от друга.

Также существует классификация термостатов по типу размещения: наружные или внутренние. В зависимости от решаемой задачи, устройство может устанавливаться в стену в предварительно проделанную нишу. Строительный размер такого прибора совпадает с обыкновенной розеткой, поэтому его часто монтируют в прорубленное коронкой отверстие.

Терморегулятор с наружным расположением имеет более толстый корпус, который закрыт со всех сторон пластиковыми пластинами. Минус такого устройства – его габарит, в связи с невозможностью расположить прибор внутри стены он будет выступать на плоскости, к тому же при подключении к нему кабеля придется устраивать дополнительный канал из гофрированной трубы или пенала.

Сферы применения терморегуляторов

Как подключить дверной звонок

Термостаты получили широкое распространение в различных сферах, как в промышленности, так и в обычном быту. Чаще всего указанные приборы можно встретить в системах теплого пола с нагревательным элементом в виде греющего жгута, который располагается в стяжке. При подаче питания на электроды провода нагреваются и отдают тепло всем окружающим слоям, для правильной работы система оборудована датчиком температуры, встроенным в стяжку. Контроллер может использоваться для электрического или водяного теплого пола, принцип его работы от этого не меняется.

Термостат с датчиком для теплого пола

Также термостат применяется в нагревательных или отопительных котлах для автоматической регулировки уровня нагрева внутренней среды. Данными приборами многие производители укомплектовывают нагревательные приборы уже на стадии изготовления, но даже если конструкцией котла это не предусмотрено, контролер на линию можно установить самостоятельно.

Подключение терморегулятора к водяным теплым полам

Терморегуляторы для систем водяного отопления пола представляют собой прибор для управления сервоприводом, регулирующим подачу теплоносителя в контур обогрева. Они могут быть как с электронным, так и ручным управлением, при этом в таких системах регулирования обычно используются датчики измерения температуры воздуха, а не пола, из-за большой инерционности нагрева.


Подключение терморегулятора к водяным теплым полам

  1. Датчик устанавливают на высоте примерно 100-120 см над уровнем пола на стену, можно рядом с терморегулятором. Стена не должна подвергаться дополнительному нагреву от радиаторов отопления.
  2. Монтируют цепи питания терморегулятора и цепи датчика.
  3. Если используется терморегулятор с электрической связью с сервоприводом – прокладывают кабель к цепям его управления.
  4. При использовании регулятора с радиоуправлением настраивают его.
  5. Проверку работы системы регулирования производят с помощью внешнего термометра: устанавливают на регуляторе нужный режим и измеряют температуру в месте установки датчика в течение нескольких часов. Температура не должна существенно колебаться.

Все работы по подключению электрических цепей необходимо выполнять при отключенном автоматическом выключателе – это залог вашей безопасности!

Также читайте подробнее про водяной теплый пол без стяжки.

Подключение терморегулятора

Так как терморегуляторы можно использовать как для контроля нагревательных элементов, так и управления охладителем, в конструкции прибора имеется два типа контактов и клемм. Во время самостоятельного подключения устройства в систему необходимо строго соблюдать полярность контактов и не допускать противоречий в схеме.

Схема подключения термостата

Для подсоединения механического термостата не требуется подводки электричества, так как все управление и размыкание выключателя осуществляется путем физического изменения характеристик нагревающейся пластины. Для подключения данного прибора нужно следовать приведенному ниже алгоритму:

  1. В документациях к приборам имеется обозначение клемм по номерам, в соответствии с этими показателями необходимо осуществлять сборку системы. В первую очередь, нужно подсоединить нулевой кабель к электродам коробки и отвести его сразу на потребляемые нагревательные элементы, например, теплый пол;
  2. Фаза заводится в контроллер напрямую, без подключения к бытовым приборам. Коробка сама будет распределять электричество в момент включения контактов. В некоторых устройствах необходимо проложить перемычку внутри термостата от плюсового провода на индикатор работы, который показывает сигнал в момент включения нагревателя и на протяжении всего периода работы;
  3. В управляющем устройстве расположены клеммы для подключения охладительного нагревательного элемента, а также для внешнего датчика температуры. Все устройства должны подсоединяться последовательно, ток при этом должен быть отключен полностью. Это типичная схема подключения терморегулятора, которая наиболее распространена в системах теплого пола или инфракрасного отопления помещения;
  4. Датчик температуры присоединяется в последнюю очередь, после чего выполняется тестовый запуск системы и проверка напряжения на всех элементах.

Схема с использованием автомата

Существует также схема подключения термостата с использованием магнитного автоматического выключателя, чаще всего данную схему применяют при наличии нескольких управляемых устройств, требующих для работы ток с высоким напряжением. При этом автомат подключается в разомкнутую сеть плюсового кабеля параллельно с термостатом, дополнительно имеется связующий кабель с устройством управления. Ток на потребляющие приборы подается через автоматический выключатель, но управление им осуществляет термостат. Нагревательные элементы связаны с контролером только на параллельной линии и через автомат, это позволяет эксплуатировать систему с высоким напряжением без перебоев и в безопасном режиме. В случае возникновения аварийной ситуации сработает выключатель и полностью обесточит все устройства.

Таким образом, из схемы видно, что терморегулятор подключается к нагревательным или охладительным приборам непосредственно перед подачей на них напряжения, то есть контролер будет первым элементом в системе. Многие термостаты оборудованы электронной микросхемой и процессором, которые, кроме показателей температуры, дают дополнительные данные о различных показателях, таких как состояние влажности в помещении, давление и время, необходимое для достижения заданных параметров. Такие устройства имеют стоимость гораздо выше, чем механические терморегуляторы бытового назначения.

Схема подключения механического терморегулятора

Вообще, производители предлагают различные модели терморегуляторов, которые могут отличаться между собой наличием или отсутствием некоторых дополнительных опций, но основной набор функций обычно единый.

Тут стоит напомнить, что для работы механическому терморегулятору не требуется подключение к сети или использование элементов питания. Внутри него производится лишь коммутация проводки, идущей до климатических систем, а работа всех алгоритмов управления заложенных в них, основана на изменении механических свойств материалов при изменении температуры. Подробнее о принципе работы, устройстве и применении стандартных комнатных механических терморегуляторов в отоплении читайте в нашей статье «Механический терморегулятор для отопления | Термостат»

Зачастую, производители не особо стараются сопроводить свои механические терморегуляторы удобными, подробными инструкциями по подключению, ограничиваясь лишь общей схемой, которую без знания основ электротехники бывает тяжело понять. Так, например, с комнатным механическим термостатом Zilon za-1 в комплекте поставляется вот такая схема подключения:

Согласитесь, схема совершенно не информативная, подключить согласно такой инструкции механический термостат сможет далеко не каждый. И этот пример, к сожалению, не единичный и подобное встречается довольно часто.

Ниже я привожу более наглядную, чем стандартная, схему подключения механического терморегулятора.

Как видите, основные здесь клеммы для подключения «4», «5» и «6», а сам терморегулятор работает по принципу переключателя. Пока температура окружающего воздуха не достигла выставленной регулятором величины, электрический ток, подведенный на клемму «6», подаётся на контакт «4», но как только будет достигнута необходимая температура, режим меняется и ток начинает поступать на клемму «5». Таким образом, к клемме «4» подключаются отопительные приборы, которые обогревают помещение и, если ничего не подключено к клемме «5», просто отключаться при достижении нужной температуры. А к контакту «5» обычно подключается охладительные системы, которые начинают работать лишь когда температура воздуха превысит заданное значение.

Клеммы «1» и «2» это контакты для подачи питания на лампу – индикатор работы домашнего механического терморегулятора. К клемме «2», требуется подключать последовательно провод, идущий от клеммы «4» или «5», в зависимости от того к какой из них подключена нагрузка — отопление или охлаждение. Таким образом, пока электрический ток поступает на климатический прибор, индикатор светится, указывая нам о том, что прибор в рабочем режиме.

Клемма «1» нужна для подключения нулевого провода, требуемого для того, чтобы лампа светилась или как общая клемма для нуля, если у вас реализована следующая схема подключения механического термостата:

Как видите, в этой схеме, в терморегуляторе осуществляется вся коммутация, минуя распределительные (распаячные) коробки. В терморегулятор заходит кабель с фазой и нулем домашней электросети, а также от него проброшен провод до управляемых им климатическим систем, например, до обогревателя. Внутри произведена вся необходимая коммутация, необходимая для работы такой системы. Иногда такая схема подключения бывает единственно возможной, особенно когда требуется подключить отопительные или охладительные приборы с наименьшими трудозатратами. Достаточно проложить до термостата фазу и ноль и так же прокинуть от него две жилы кабеля до приборов, которыми он будет управлять.

Очень важно! Все представленные выше варианты схем подключения комнатного механического термостата актуальны лишь для подключения к нему нагрузки с током не более 10-16 ампер ( в зависимости от модели). Довольно часто этого бывает достаточно, но если используете термостат с энергоёмкими устройствами, то чаще всего единственно возможным вариантном становится подключение механического терморегулятора через пускатель.

Электромагнитный пускатель – это по большому счету выключатель (реле), рассчитанный на управление большими токами.

Принцип действия пускателя достаточно прост, при подаче даже небольшого тока его на управляющую клемму, которая связана с магнитной катушкой, эта катушка втягивает сердечник, в результате чего некоторые контакты пускателя замыкаются, а другие наоборот размыкаются. Применяется магнитный пускатель как раз в таких случаях как наш, когда требуется управлять электрооборудованием с большими токовыми нагрузками.

При срабатывании механического термостата, ток поступает на уравляющую клемму пускателя, который в свою очередь подключает нагрузку – например электрообогреватель. Когда в помещении температура воздуха поднимется до нужного уровня, указанного регулятором термостата, цепь разомнется и соответственно пускатель отключит отопительный прибор.

Выбор той или иной схемы подключения зависит от вашей конкретной ситуации, но как вы уже могли заметить, вариантов использования у механического термостата масса. Если же вы не можете определиться, как лучше выполнить монтаж, какую схему или алгоритм лучше использовать, пишите в комментариях к статье, постараемся помочь.

Подключение термостата к системе теплого пола

Как подключить вольтметр

В зависимости от типа нагревательного кабеля в системе теплого пола, схема подключения будет разной. Существует два типа пола: с одножильным и двух жильным жгутом, принцип работы между ними схож, но у многожильного кабеля ресурс работы, а также технические показатели по скорости и высоте нагрева намного выше.

Подключить термостат к одножильной системе проще – достаточно присоединить два нулевых кабеля в одну клемму, а фазу – в соответствующее гнездо. При этом ток будет проходить через всю длину последовательно по кольцу закладки жгута.

В двухжильном кабеле все провода выходят с одной стороны, поэтому подключение осуществляется последовательно – один провод в одну клемму. Ток при данной схеме проходит по всей длине нагревательного элемента и возвращается по тому же пути в одном направлении.

Таким образом, при соблюдении всех правил и алгоритма подключения термостата к любой схеме останется только настроить прибор на нужные параметры путем вращения колеса по шкале температуры.

Подключение терморегулятора к электрическим теплым полам

Электрические теплые полы выполняют с помощью греющего кабеля с высоким сопротивлением или инфракрасной пленки. Их укладывают на специально подготовленное основание, после чего делают стяжку пола и укладывают финишное покрытие.

Технология подключения терморегулятора:

  1. До монтажа пола необходимо определить место, где будет располагаться терморегулятор, и спланировать его подключение к электрической сети. Для подключения терморегулятора необходимо напряжение 220 В переменного тока, то есть можно подключить его к обычной розетке или к отдельному кабелю через автоматический выключатель.
  2. При укладке пола выбирают место для термодатчика. Он должен располагаться неподалеку от термостата, на свободном от мебели участке пола.


Схема установки терморегулятора

  1. Для инфракрасных полов датчик укладывают с изнаночной стороны пленки и подключают к проводам, идущим к терморегулятору.
  2. Для кабельных теплых полов, заливаемых бетонной стяжкой, датчик необходимо уложить в металлическую гофротрубу, изолировав ее от попадания бетона. Эта мера необходима для легкого извлечения и замены датчика в случае его выхода из строя. Замурованный в бетон датчик просто так извлечь не получится. Трубу выводят к стене, на которой устанавливают термостат.
  3. После укладки пола приступают к установке регулятора. В выбранном месте готовят углубление в стене по размерам корпуса встраиваемого термостата или делают разметку для крепления накладного. Снимают переднюю панель и крепят регулятор на место.
  4. Сопоставляют допускаемую коммутируемую мощность контактов терморегулятора с мощностью греющего кабеля или инфракрасного пола. Если она меньше – дополнительно устанавливают магнитный пускатель с номиналом катушки ~220В. При этом цепь греющего кабеля подключают к питанию 220 В через контакты магнитного пускателя, а цепь катушки пускателя подключают к выходу с термостата.
  5. Если коммутационной мощности контактов терморегулятора достаточно, то греющий кабель подключают прямо на выход с термостата.
  6. Подключают цепь датчика к клеммам, указанным в паспорте или инструкции.
  7. Подключают питание 220 В к соответствующим клеммам: они обычно обозначены как L или F – фаза и N – ноль. Фазировку необходимо соблюдать. Определить ее можно по цвету провода: если кабель новый и уложен по правилам, то фазный провод имеет черную, коричневую или белую изоляцию, а нулевой – синюю. Если вы подключаете терморегулятор к общей розетке, фазу находят с помощью указателя напряжения или индикаторной отвертки.


Подключение терморегулятора

  • Проверяют работоспособность терморегулятора:
  • Подают питание 220 В;
  • Устанавливают минимальное температурное значение на терморегуляторе;
  • Включают нагрев пола тумблером;
  • Меняют температурный режим на максимальный поворотом ручки или с помощью кнопок – при этом должен послышаться щелчок, оповещающий о замыкании цепи обогрева.
Руководство по основам работы с контроллером температуры

| Instrumart

Предоставлено Danaher Industrial Controls Group — автоматизация процессов, измерения и зондирование
Просмотреть все контроллеры Danaher’s Partlow и West

Зачем нужны терморегуляторы?

Регуляторы температуры необходимы в любой ситуации, когда необходимо поддерживать стабильную заданную температуру. Это может быть в ситуации, когда объект необходимо нагреть, охладить или и то, и другое, и поддерживать заданную температуру (заданное значение), независимо от изменения окружающая среда вокруг него.Есть два основных типа контроля температуры; разомкнутый и замкнутый контур управления. Открытый цикл — это наиболее простая форма и применяет непрерывный нагрев / охлаждение безотносительно к фактической выходной температуре. Это аналог система внутреннего отопления в автомобиле. В холодный день вам может потребоваться включить огонь на полную, чтобы прогреть машину до 75 °. Тем не мение, в теплую погоду при той же настройке температура в салоне автомобиля будет намного выше желаемых 75 °.

Блок-схема управления без обратной связи

Управление по замкнутому циклу намного сложнее, чем по разомкнутому.В приложении с замкнутым контуром выходная температура постоянно измеряется и регулируется для поддержания постоянной выходной мощности при желаемой температуре. При управлении с обратной связью всегда учитывается выходной сигнал и будет возвращать его в процесс управления. Управление с обратной связью аналогично автомобилю с внутренним климатом. контроль. Если выставить температуру в машине 75 °, климат-контроль автоматически отрегулирует обогрев (в холодные дни). или охлаждение (в теплые дни) по мере необходимости для поддержания целевой температуры 75 °.

Блок-схема управления с обратной связью

Введение в регуляторы температуры

Контроллер температуры — это устройство, используемое для поддержания заданной температуры на заданном уровне.

Самый простой пример терморегулятора — обычный термостат, который можно найти в домах. Например, водонагреватель. использует термостат для контроля температуры воды и поддержания ее на определенном заданном уровне.Температура контроллеры также используются в духовках. Когда для духовки установлена ​​температура, контроллер контролирует фактическую температуру внутри. духовки. Если она упадет ниже установленной температуры, он отправит сигнал, чтобы активировать нагреватель, чтобы поднять температуру обратно до уставка. Термостаты также используются в холодильниках. Поэтому, если температура становится слишком высокой, контроллер инициирует действие, чтобы понижение температуры.

Приложения общего контроллера

Промышленные регуляторы температуры работают примерно так же, как и в обычных бытовых применениях.Базовая температура Контроллер обеспечивает управление процессами нагрева и охлаждения в промышленных или лабораторных условиях. В типичном приложении датчики измеряют фактическая температура. Эта измеренная температура постоянно сравнивается с пользовательской уставкой. Когда фактическая температура отклоняется от заданного значения контроллер генерирует выходной сигнал для активации других устройств регулирования температуры, таких как нагрев элементы или компоненты холодильного оборудования, чтобы вернуть температуру к заданному значению.

Общие области применения в промышленности

Контроллеры температуры используются в самых разных отраслях промышленности для управления производственными процессами или операциями. Немного Регуляторы температуры обычно используются в промышленности, включая машины для экструзии и литья пластмасс под давлением, а также термоформование. машины, упаковочные машины, пищевая промышленность, хранение продуктов питания и банки крови. Ниже приводится краткий обзор некоторых распространенных приложения для контроля температуры в промышленности:

  • Термообработка / Духовка
    Контроллеры температуры используются в печах и при термообработке в печах, печах для обжига керамики, котлах и теплообменники.
  • Упаковка
    В мире упаковки оборудование, оснащенное сварочными планками, аппликаторами клея, функциями клея-расплава, туннелями для термоусадочной пленки или этикетками. аппликаторы должны работать при заданных температурах и длительности процесса. Контроллеры температуры точно регулируют эти операции для обеспечения выпуска продукции высокого качества.
  • Пластмассы
    Контроль температуры в пластмассовой промышленности является обычным делом для портативных охладителей, бункеров и сушилок, а также для формования и экструзии. оборудование.В экструзионном оборудовании контроллеры температуры используются для точного мониторинга и контроля температуры при разные критические точки при производстве пластика.
  • Здравоохранение
    Контроллеры температуры используются в отрасли здравоохранения для повышения точности контроля температуры. Обычное оборудование, использующее контроллеры температуры включают лабораторное и испытательное оборудование, автоклавы, инкубаторы, холодильное оборудование и камеры для выращивания кристаллизации и испытательные камеры, в которых должны храниться образцы или испытания должны проводиться в определенных условиях. температурные параметры.
  • Еда и напитки
    Общие области применения в пищевой промышленности, включающие регуляторы температуры, включают пивоварение, смешивание, стерилизацию и варочные и пекарские печи. Контроллеры регулируют температуру и / или время процесса для обеспечения оптимальной производительности.
Детали регулятора температуры

Все контроллеры имеют несколько общих частей. Во-первых, у контроллеров есть входы. Входные данные используются для измерения переменной в контролируемый процесс.В случае терморегулятора измеряемой переменной является температура.

Входы

Регуляторы температуры могут иметь несколько типов входов. Тип входного датчика и необходимый сигнал могут различаться в зависимости от от типа управляемого процесса. Типичные входные датчики включают термопары и резистивные тепловые устройства (RTD), а также линейные входы, такие как мВ и мА. Типичные стандартизованные типы термопар включают, среди прочего, типы J, K, T, R, S, B и L.

Контроллеры

также могут быть настроены на прием RTD в качестве входа для измерения температуры. Типичный RTD — это платиновый датчик на 100 Ом.

В качестве альтернативы, контроллеры могут быть настроены на прием сигналов напряжения или тока в диапазоне милливольт, вольт или миллиампер от других типов датчики, такие как датчики давления, уровня или потока. Типичные сигналы входного напряжения включают от 0 до 5 В постоянного тока, от 1 до 5 В постоянного тока, от 0 до 10 В постоянного тока и от 2 до 5 В постоянного тока. 10 В постоянного тока. Контроллеры также могут быть настроены для приема сигналов милливольт от датчиков, которые включают от 0 до 50 мВ постоянного тока и от 10 до 50 мВ постоянного тока.Контроллеры также могут принимать миллиамперные сигналы, например, от 0 до 20 мА или от 4 до 20 мА.

Контроллер обычно включает функцию обнаружения неисправности или отсутствия входного датчика. Это называется датчиком. обнаружение перерыва. Необнаруженная эта неисправность может привести к значительному повреждению управляемого оборудования. Эта особенность позволяет контроллеру немедленно остановить процесс при обнаружении неисправности датчика.

Выходы

Помимо входов, у каждого контроллера есть выход.Каждый выход можно использовать для нескольких вещей, включая управление процесса (например, включение источника нагрева или охлаждения), инициировать аварийный сигнал или повторно передать значение процесса в программируемый логический контроллер (ПЛК) или регистратор.

Типичные выходы, снабженные контроллерами температуры, включают релейные выходы, драйверы твердотельных реле (SSR), симистор и линейные выходы. аналоговые выходы. Релейный выход обычно представляет собой однополюсное двухпозиционное реле (SPDT) с катушкой постоянного напряжения.Контроллер возбуждает катушку реле, обеспечивая изоляцию контактов. Это позволяет контактам управлять внешним источником напряжения. запитать катушку гораздо большего нагревательного контактора. Важно отметить, что номинальный ток контактов реле составляет обычно меньше 2А. Контакты могут управлять нагревательным контактором с номиналом 10–20 А, используемым нагревательными лентами или нагревательными элементами.

Другой тип вывода — это драйвер SSR. Выходы драйвера SSR — это логические выходы, которые включают или выключают твердотельное реле.Большинство твердотельным реле требуется от 3 до 32 В постоянного тока для включения. Типичный сигнал включения драйвера SSR 10 В может управлять тремя твердотельными реле.

Симистор обеспечивает функцию реле без каких-либо движущихся частей. Это твердотельное устройство, контролирующее токи до 1 А. Симистор Выходы могут допускать небольшое количество утечки тока, обычно менее 50 мА. Этот ток утечки не влияет на нагрев цепи контактора, но это может быть проблемой, если выход используется для подключения к другой твердотельной цепи, такой как вход ПЛК.Если это вызывает беспокойство, лучше выбрать стандартный релейный контакт. Он обеспечивает абсолютный нулевой ток, когда на выходе обесточен и контакты разомкнуты.

На некоторых контроллерах имеются аналоговые выходы, которые выдают сигнал 0–10 В или сигнал 4–20 мА. Эти сигналы откалиброван так, что сигнал изменяется в процентах от выходного сигнала. Например, если контроллер отправляет сигнал 0%, аналоговый выход будет 0 В или 4 мА. Когда контроллер отправляет сигнал 50%, на выходе будет 5 В или 12 мА.Когда контроллер отправляет 100% сигнал, на выходе будет 10 В или 20 мА.

Другие параметры

Сравнение аварийных сигналов контроллера

У регуляторов температуры есть несколько других параметров, один из которых является уставкой. По сути, уставка — это набор целевых значений. оператором, которого контроллер стремится поддерживать в устойчивом состоянии. Например, заданная температура 30 ° C означает, что Контроллер будет стремиться поддерживать температуру на этом значении.

Другой параметр — это значение срабатывания сигнализации. Это используется, чтобы указать, когда процесс достиг некоторого заданного состояния. Есть несколько вариаций по типам будильников. Например, аварийный сигнал высокого уровня может указывать на то, что температура стала выше, чем некоторые установить значение. Точно так же низкий сигнал тревоги указывает на то, что температура упала ниже некоторого установленного значения.

Например, в системе контроля температуры фиксированный высокий аварийный сигнал предотвращает повреждение оборудования источником тепла путем обесточивание источника, если температура превышает некоторое заданное значение.С другой стороны, низкий фиксированный сигнал тревоги может быть установите, если низкая температура может повредить оборудование в результате замерзания.

Контроллер также может проверить наличие неисправного выходного устройства, такого как открытый нагревательный элемент, путем проверки количества выходного сигнала. сигнал и сравнивая его с величиной обнаруженного изменения входного сигнала. Например, если выходной сигнал равен 100% и входной датчик не обнаруживает никаких изменений температуры по прошествии определенного периода времени, контроллер определит, что контур исправен. сломанный.Эта функция известна как Loop Alarm.

Другой тип сигнала тревоги — сигнал отклонения. Устанавливается на некоторое положительное или отрицательное значение от уставки. Сигнал отклонения контролирует заданное значение процесса. Оператор получает уведомление, когда процесс начинает изменять некоторую заранее запрограммированную величину от уставка. Разновидностью сигнала отклонения является сигнализация диапазона. Этот сигнал тревоги сработает либо в пределах назначенного, либо за его пределами. температурный диапазон. Обычно точки срабатывания сигнализации наполовину выше и наполовину ниже уставки контроллера.

Например, если заданное значение составляет 150 °, а аварийные сигналы отклонения установлены на ± 10 °, аварийные сигналы будут активированы. когда температура достигла 160 ° на верхнем конце или 140 ° на нижнем. Если уставка изменена на 170 °, сигнализация высокого уровня активируется при 180 °, а сигнализация низкого уровня — при 160 °. Другой распространенный набор параметров регулятора — это ПИД-регулятор. параметры. PID, что означает пропорциональный, интегральный, производный, представляет собой расширенную функцию управления, которая использует обратную связь от контролируемый процесс, чтобы определить, как лучше всего контролировать этот процесс.

Как это работает

Все контроллеры, от базовых до самых сложных, работают примерно одинаково. Контроллеры контролируют или удерживают некоторую переменную или параметр на заданное значение. Контроллеру требуются две переменные; фактический входной сигнал и желаемое заданное значение. Входной сигнал также известен как значение процесса. Вход в контроллер дискретизируется много раз в секунду, в зависимости от на контроллере.

Затем это входное или технологическое значение сравнивается со значением уставки.Если фактическое значение не соответствует уставке, Контроллер генерирует изменение выходного сигнала в зависимости от разницы между заданным значением и значением процесса, а также от того, или значение процесса не приближается к заданному значению или отклоняется дальше от заданного значения. Этот выходной сигнал затем инициирует некоторую тип реакции для корректировки фактического значения таким образом, чтобы оно соответствовало уставке. Обычно алгоритм управления обновляет вывод значение мощности, которое затем применяется к выходу.

Принимаемое управляющее воздействие зависит от типа контроллера. Например, если контроллер является управлением ВКЛ / ВЫКЛ, контроллер решает, нужно ли включить выход, выключить или оставить в его текущем состоянии.

Управление ВКЛ / ВЫКЛ — один из самых простых в реализации типов управления. Он работает путем установки диапазона гистерезиса. Например, регулятор температуры может быть установлен для контроля температуры внутри помещения. Если заданное значение составляет 68 °, а фактическое значение температура упадет до 67 °, сигнал ошибки покажет разницу в –1 °.Затем контроллер отправит сигнал на увеличьте прикладываемое тепло, чтобы снова поднять температуру до заданного значения 68 °. Как только температура достигнет 68 °, обогреватель отключается. При температуре от 68 ° до 67 ° контроллер не выполняет никаких действий, и нагреватель остается выключенным. Однако, как только температура достигнет 67 °, нагреватель снова включится.

В отличие от двухпозиционного управления, ПИД-регулирование определяет точное выходное значение, необходимое для поддержания заданной температуры.Выход мощность может варьироваться от 0 до 100%. Когда используется тип аналогового выхода, выходной сигнал пропорционален значению выходной мощности. Однако, если выход представляет собой тип двоичного выхода, такой как реле, драйвер SSR или симистор, то выходной сигнал должен быть пропорциональным по времени. получить аналоговое представление.

Система с пропорциональным временным распределением использует время цикла для пропорционального распределения выходного значения. Если время цикла установлено на 8 секунд, система вызывает при 50% мощности выход будет включен на 4 секунды и выключен на 4 секунды.Пока значение мощности не меняется, время ценности не изменились бы. Со временем мощность усредняется до заданного значения 50%, при половинном включении и половинном выключении. Если выходная мощность должно быть 25%, тогда в течение того же времени цикла 8 секунд выход будет включен на 2 секунды и выключен на 6 секунд.

Пример дозирования выходного времени

При прочих равных, желательно более короткое время цикла, потому что контроллер может быстрее реагировать и изменять состояние вывод для заданных изменений в процессе.Из-за механики реле более короткое время цикла может сократить срок службы реле и не рекомендуется быть меньше 8 секунд. Для твердотельных переключающих устройств, таких как драйвер SSR или симистор, время переключения сокращается. лучше. Более длительное время переключения, независимо от типа выхода, допускает более сильные колебания технологического значения. Общее правило таково: ТОЛЬКО, если процесс позволяет это, когда используется релейный выход, желательно более длительное время цикла.

Дополнительные функции

Контроллеры также могут иметь ряд дополнительных дополнительных функций.Одно из них — коммуникационные возможности. Общение link позволяет контроллеру связываться с ПЛК или компьютером. Это позволяет обмениваться данными между контроллером и хостом. Примером типичного обмена данными может быть хост-компьютер или ПЛК, считывающий значение процесса.

Второй вариант — удаленная уставка. Эта функция позволяет удаленному устройству, например ПЛК или компьютеру, изменять контроллер. уставка. Однако, в отличие от возможностей связи, упомянутых выше, вход удаленного задания уставки использует линейный аналоговый вход. сигнал, который пропорционален заданному значению.Это дает оператору дополнительную гибкость, поскольку он может изменять заданное значение с удаленное место. Типичный сигнал может быть 4–20 мА или 0–10 В постоянного тока.

Еще одна распространенная функция, поставляемая с контроллерами, — это возможность настраивать их с помощью специального программного обеспечения на ПК, подключенном через канал связи. Это позволяет быстро и легко настраивать контроллер, а также дает возможность сохранять конфигурации для использования в будущем.

Еще одна общая черта — цифровой вход.Цифровой вход может работать вместе с удаленной уставкой для выбора локального или удаленного уставка для контроллера. Его также можно использовать для выбора между уставкой 1 и уставкой 2, как запрограммировано в контроллере. Цифровой входы также могут удаленно сбросить предельное устройство, если оно перешло в предельное состояние.

Другие дополнительные функции включают источник питания преобразователя, используемый для питания датчика 4–20 мА. Этот блок питания используется для питания Питание 24 В постоянного тока при максимальном токе 40 мА.

В некоторых приложениях двухцветный дисплей также может быть желательной функцией, позволяющей легко идентифицировать различные состояния контроллера. Некоторые продукты также имеют дисплеи, которые могут менять цвет с красного на зеленый или наоборот в зависимости от предварительно запрограммированных условий, например как указание на состояние тревоги. В этом случае зеленый дисплей может не отображать тревогу, но если тревога присутствует, дисплей станет красным.

Типы контроллеров

Контроллеры температуры бывают разных стилей с широким спектром функций и возможностей.Также есть много способы категоризации контроллеров в соответствии с их функциональными возможностями. Как правило, регуляторы температуры бывают одноконтурными. или многопетлевой. Контроллеры с одним контуром имеют один вход и один или несколько выходов для управления тепловой системой. С другой стороны, Многоконтурные контроллеры имеют несколько входов и выходов и могут управлять несколькими контурами в процессе. Больше контроля петли позволяют управлять большим количеством функций технологической системы.

Диапазон надежных одноконтурных контроллеров — от базовых устройств, требующих однократного изменения уставки вручную, до сложных профилировщиков. который может автоматически выполнять до восьми изменений уставок в течение заданного периода времени.

Аналог

Самый простой и базовый тип контроллера — аналоговый. Аналоговые контроллеры — это недорогие простые контроллеры, которые Достаточно универсален для жесткого и надежного управления технологическим процессом в суровых промышленных условиях, в том числе со значительными электрическими шум. Дисплей контроллера обычно представляет собой ручку управления.

Базовые аналоговые контроллеры используются в основном в некритичных или простых тепловых системах для обеспечения простой температуры включения-выключения. управление для приложений прямого или обратного действия.Базовые контроллеры принимают входы термопар или RTD и предлагают дополнительный процент режим управления мощностью для систем без датчиков температуры. Их основной недостаток — отсутствие удобочитаемого дисплея и отсутствие сложность для более сложных задач управления. Кроме того, отсутствие каких-либо коммуникационных возможностей ограничивает их использование простыми приложениями. например, включение / выключение нагревательных элементов или охлаждающих устройств.

Лимит

Эти контроллеры обеспечивают безопасный контроль температуры процесса.У них нет возможности самостоятельно контролировать температуру. Проще говоря, контроллеры предельных значений — это независимые устройства безопасности, которые можно использовать вместе с существующим контуром управления. Они способны прием термопар, RTD или технологических входов с ограничениями, установленными для высокой или низкой температуры, как обычный контроллер. Ограничение контроля является блокирующим и является частью резервной схемы управления для принудительного отключения тепловой системы в случае превышения предела. В выход предела фиксации должен быть сброшен оператором; он не будет сброшен сам по себе, если условие ограничения не существует.Типичный пример будет отключением безопасности для печи. Если температура в печи превысит некоторую заданную температуру, ограничительное устройство отключит систему. Это сделано для предотвращения повреждения печи и, возможно, любого продукта, который может быть поврежден чрезмерными температурами.

Регуляторы температуры общего назначения

Регуляторы температуры общего назначения используются для управления большинством типичных промышленных процессов. Обычно они бывают разных Размеры DIN, имеют несколько выходов и программируемые функции вывода.Эти контроллеры также могут выполнять ПИД-регулирование для отличного общие контрольные ситуации. Они традиционно размещаются на передней панели с дисплеем для облегчения доступа оператора.

Большинство современных цифровых контроллеров температуры могут автоматически рассчитывать параметры ПИД для оптимальной работы тепловой системы. используя свои встроенные алгоритмы автонастройки. Эти контроллеры имеют функцию предварительной настройки для первоначального расчета параметров PID для процесс и функция непрерывной настройки для постоянного уточнения параметров ПИД-регулятора.Это позволяет быстро настроить, сэкономить время и сократить количество отходов.

Привод электродвигателя клапана

Особым типом универсального контроллера является контроллер привода клапана (VMD). Эти контроллеры специально разработаны для двигатели регулирующих клапанов, используемые в производственных приложениях, таких как управление газовыми горелками на производственной линии. Специальные алгоритмы настройки обеспечивают точное управление и быструю реакцию на выходе без необходимости обратной связи по скользящей схеме или чрезмерного знания трехчленного ПИД-регулятора алгоритмы настройки.Контроллеры VMD управляют положением клапана в диапазоне от 0% до 100% открытия, в зависимости от энергии. потребности процесса в любой момент времени.

Профиль

Контроллеры профилирования, также называемые контроллерами линейного замачивания, позволяют операторам программировать количество заданных значений и время сидения на каждом из них. уставка. Программирование изменения уставки называется линейным нарастанием, а время нахождения на каждой уставке называется выдержкой или выдержкой. Один пандус или одна выдержка считается одним сегментом.Профайлер предлагает возможность ввести несколько сегментов, чтобы разрешить сложную температуру. профили. Оператор может называть профили рецептами. Большинство профилировщиков позволяют хранить несколько рецептов для последующего использования. Меньше Профилировщики могут допускать четыре рецепта с шестнадцатью сегментами каждый с более продвинутыми профилировщиками, позволяющими создавать больше рецептов и сегментов.

Контроллеры профиля могут выполнять профили нарастания и выдержки, такие как изменения температуры во времени, а также выдержку и выдержку / цикл продолжительности без присмотра оператора.

Типичные области применения контроллеров профиля включают термообработку, отжиг, климатические камеры и печи для сложных технологических процессов.

Многоконтурный

Помимо одноконтурных контроллеров, которые могут управлять только одним контуром процесса, многоконтурные контроллеры могут управлять более чем одним контуром, это означает, что они могут принимать более одной входной переменной.

Вообще говоря, многоконтурный контроллер можно рассматривать как устройство с множеством отдельных контроллеров температуры внутри одиночное шасси.Обычно они устанавливаются за панелью, а не перед панелью, как в универсальных одиночных шлейфовые контроллеры. Программирование любого из контуров аналогично программированию терморегулятора, установленного на панели. Тем не мение, Многоконтурные системы, как правило, не имеют традиционного физического пользовательского интерфейса (без дисплея или переключателей), а вместо этого используют специальный канал связи.

Многоконтурные контроллеры необходимо настраивать с помощью специальной программы на ПК, которая может загружать конфигурацию в контроллер с использованием выделенного интерфейса связи.

Информацию можно получить через интерфейс связи. Общие поддерживаемые интерфейсы связи включают: DeviceNet, Profibus, MODBUS / RTU, CanOPEN, Ethernet / IP и MODBUS / TCP.

Многоконтурные контроллеры представляют собой компактную модульную систему, которая может работать как в автономной системе, так и в ПЛК. окружающая обстановка. В качестве замены регуляторов температуры в ПЛК они обеспечивают быстрое ПИД-регулирование и разгружают большую часть математических вычислений. интенсивная работа процессора ПЛК, позволяющая увеличить скорость сканирования ПЛК.В качестве замены нескольких контроллеров DIN они обеспечить единую точку программного доступа ко всем контурам управления. Стоимость установки снижается за счет устранения большого количества проводов, вырезы в панелях и экономия места на панелях.

Многоконтурные контроллеры предоставляют некоторые дополнительные функции, недоступные в традиционных контроллерах, устанавливаемых на панели. Например, Многоконтурные контроллеры имеют более высокую плотность контуров для данного пространства. Некоторые многоконтурные системы контроля температуры могут иметь до 32 контуров управления в корпусе, устанавливаемом на DIN-рейку длиной не более 8 дюймов.Они также сокращают количество проводов за счет наличия общего точка подключения для питания и интерфейсов связи.

Многоконтурные регуляторы температуры также имеют улучшенные функции безопасности, одной из которых является отсутствие кнопок, на которых любой может изменить важные настройки. Имея полный контроль над информацией, считываемой или записываемой в контроллер, производитель машин может ограничить информацию, которую любой оператор может прочитать или изменить, предотвращая появление нежелательных условий. от возникновения, например, установка слишком высокой уставки до диапазона, который может привести к повреждению продукта или машины.Кроме того, контроллер модули могут быть заменены в горячем режиме. Это позволяет заменять модуль контроллера без отключения питания системы. Модули также может автоматически настраиваться после горячей замены.

Другие характеристики регулятора температуры
Напряжение питания

Обычно существует два варианта напряжения питания, когда речь идет о контроллерах температуры: низкое напряжение (24 В переменного / постоянного тока) и высокое напряжение (110–230 В переменного тока).

Размер

Контроллеры бывают нескольких стандартных размеров, которые обозначаются номерами DIN, такими как 1/4 DIN, 1/8 DIN, 1/16 DIN и 1/32 DIN.DIN — это сокращение от примерно переведенного Deutsche Institut fur Normung, немецкой организации по стандартам и измерениям. Для наших целей DIN просто означает, что устройство соответствует общепринятому стандарту размеров панелей.

Сравнение размеров DIN

Размер DIN 1/4 1/8 1/16 1/32
Размер в мм 92 х 92 92 х 45 45 х 45 49 х 25
Размер в дюймах 3.62 х 3,62 3,62 x 1,77 1,77 x 1,77 1,93 х 0,98

Наименьший размер — это 1/32 DIN, который составляет 24 мм × 48 мм, с соответствующим вырезом в панели 22,5 мм × 45 мм. Следующий размер вверху находится 1/16 DIN, размер которого составляет 48 мм × 48 мм с размером выреза в панели 45 мм × 45 мм. 1/8 DIN составляет 48 мм × 96 мм с вырез в панели 45 мм × 92 мм. Наконец, самый большой размер — это 1/4 DIN размером 96 мм × 96 мм с вырезом в панели 92 мм × 92 мм.

Важно отметить, что стандарты DIN не определяют, насколько глубоко контроллер может находиться за панелью. Стандарты учитывайте только размеры передней панели и размеры выреза в панели.

Одобрения агентств

Желательно, чтобы терморегулятор имел какое-либо одобрение агентства, чтобы гарантировать, что контроллер соответствует требованиям. минимальный набор норм безопасности. Тип разрешения зависит от страны, в которой будет использоваться контроллер.В Наиболее распространенное одобрение, регистрация UL и cUL, применяется ко всем контроллерам, используемым в США и Канаде. Обычно бывает один сертификация требуется для каждой страны.

Для контроллеров, которые используются в странах Европейского Союза, требуется одобрение CE.

Третий тип сертификата — FM. Это относится только к ограничивающим устройствам и контроллерам в США и Канаде.

Класс защиты корпуса на передней панели

Важной характеристикой контроллера является степень защиты передней панели.Эти рейтинги могут быть в форме рейтинга IP или Рейтинг NEMA. Классы IP (защиты от проникновения) применяются ко всем контроллерам и обычно составляют IP65 или выше. Это означает, что из только на передней панели, контроллер полностью защищен от пыли и струй воды под низким давлением со всех сторон. разрешено только ограниченное проникновение. Рейтинги IP используются в США, Канаде и Европе.

Рейтинг контроллера NEMA (Национальная ассоциация производителей электрооборудования) параллелен рейтингу IP.Большинство контроллеров имеют Рейтинг NEMA 4 или 4X, что означает, что они могут использоваться в приложениях, требующих только промывки водой (не маслами или растворителями). В «X» в рейтинге NEMA 4X означает, что передняя панель не подвержена коррозии. Рейтинги NEMA используются в основном в США и Канаде.

Подключение и программирование контроллера температуры

— DC Thermal

РЕГУЛЯТОР И КОНТАКТОР ТЕМПЕРАТУРЫ

ИНСТРУКЦИЯ ПО МОНТАЖУ

Чтобы узнать правильный размер провода для вашего нагревателя, см. Схему проводов здесь или позвоните по телефону 936 687 2267 и поговорите с техническим специалистом.Чтобы приобрести провод GXL, нажмите здесь.

  1. Пробег ок. 4 ”проволочной петли 16ga (+) от контакта № 1 к контакту № 11 на КОНТРОЛЛЕРЕ ТЕМПЕРАТУРЫ.
  2. Подключите провод 16ga (+) со стороны + КОНТАКТОРА к контакту # 2 КОНТРОЛЛЕРА ТЕМПЕРАТУРЫ. (Включая катушку 6 ‘)
  3. Подведите провод 16ga к + источнику зажигания / замку зажигания или панели предохранителей к контакту # 11 КОНТРОЛЛЕРА ТЕМПЕРАТУРЫ У вас будет (2) провод на контакте # 11 .(Используется для включения / выключения контроллера при включении автомобиля.)
  4. В ШАГАХ (4 и 5) вы будете использовать провод соответствующего калибра для вашего приложения. Чтобы узнать правильный размер провода для вашего нагревателя, см. Таблицу проводов на сайте www.dcthermal.com в разделе «Помощь по установке» или позвоните по телефону 936-687-2267. Подсоедините провод соответствующего калибра от аккумулятора к плюсовой клемме КОНТАКТОРА.
  5. Подсоедините красный провод соответствующего калибра от нагревателя к противоположной стойке КОНТАКТОРА.
  6. Подключите провод 16ga (-) от обогревателя к массе автомобиля (СМ. ТАБЛИЦУ)
  7. Подключите черный провод 16га (-) от КОНТАКТОРА к массе аккумулятора.(Включая катушку 6 ‘)
  8. Проложите провод 16ga со стороны — батареи или заземления шасси до контакта # 12 на КОНТРОЛЛЕРЕ ТЕМПЕРАТУРЫ ( Этот провод является заземлением для регулятора температуры).
  9. Подключите провода датчика температуры белого к контактам № 9 и № 10 РЕГУЛЯТОРА ТЕМПЕРАТУРЫ. ПРОВОДА НЕ РЕЗАТЬ!
  10. Установите переключатель вентилятора на обогревателе в положение ВЫСОКИЙ или НИЗКИЙ.

Программирование регулятора температуры

Мы рекомендуем вам прочитать оба набора инструкций, чтобы ознакомиться с регулятором температуры.

Когда контроллер 1 st включен, вы увидите значок ОХЛАЖДЕНИЕ, и текущая температура будет установлена ​​в градусах Фаренгейта.

Для того, чтобы контроллер работал с вашим обогревателем, вам необходимо изменить минимум (3) настроек: E3, E4 и C2 . Чтобы изменить эти настройки, вы должны войти в программный режим. Для этого нужно удерживать кнопку SET в течение 6 секунд. Через 6 секунд E1 начнет мигать, отпустите кнопку настройки. При повторном нажатии кнопки SET вы будете прокручивать различные параметры от E1 до C2.Нажимайте кнопку SET , пока не дойдете до желаемого параметра. Если в течение 10 секунд не нажимать ни одной кнопки, вы вернетесь на главный экран, где отображается текущая температура.

Set E3-OFFSET или HYSTERESIS , как указано в заводских инструкциях. HYSTERESIS — это разница в показаниях датчика температуры и времени включения нагревателя. Мы рекомендуем значение не менее 2.0 . Пример: если на дисплее отображается 70, а гистерезис равен 2, нагреватель не включится, пока датчик не достигнет 68, и отключится при 70. Заводские настройки по умолчанию установлены на 7,2 F и 4,0 C. В то время как E3 мигает, нажмите o , чтобы настроить желаемое смещение. Это предохраняет обогреватель от многократного включения и выключения. Это может быть установлено оператором по желанию.

Далее вам нужно будет установить E4 или DELAY .Заводское значение по умолчанию — 2 минуты. Это время, когда дисплей достигает заданной температуры; контроллер задерживает включение нагревателя. Мы рекомендуем установку 0 или NO DELAY . Если требуется задержка, установите здесь желаемое время, используя стрелки o , пока мигает E4 . Если желаемая температура ниже, чем на главном экране, появится значок HEAT , и обогреватель включится по истечении времени задержки.Если значок HEAT мигает, контроллер находится в режиме задержки. В этот момент запустится таймер, и по истечении желаемого времени включится обогреватель.

Далее вам нужно будет установить C2 на HEAT . Удерживая нажатой кнопку SET и вы находитесь в режиме программирования, нажимайте SET , пока не дойдете до C2 . Заводское значение по умолчанию — 0 для холода; вам нужно изменить его на 1 для нагрева, нажав ARROW

Это все, что нужно для программирования, чтобы ваш нагреватель и регулятор температуры были совместимы.Когда вы вернетесь на главный экран, вы можете установить желаемую температуру в салоне, нажав и отпустив кнопку SET и используя кнопку o, чтобы установить желаемую температуру.

Если вы хотите, чтобы дисплей отображал градусы Цельсия, удерживайте кнопку SET в течение 6 секунд, и вы находитесь в режиме программирования, нажимайте SET , пока не дойдете до C1 Заводское значение по умолчанию — 1 для F ; вам нужно изменить его на 0 для C , нажав СТРЕЛКА

ПРИМЕЧАНИЯ:

Этот регулятор температуры представляет собой контроллер на 12-24 В.

НЕ ПОДКЛЮЧАЙТЕ КОНТРОЛЛЕР К НАПРЯЖЕНИЮ ВЫСОКОЕ 24 В

Контактор издает небольшой шум при включении. Мы рекомендуем размещать контактор подальше от оператора транспортного средства, чтобы ограничить нежелательный шум.

Контроллер температуры

STC1000 (руководство для начинающих)

По соотношению цены и качества вы не сможете превзойти STC1000 .

Возможно, существуют контроллеры температуры получше, но я бы порекомендовал их среди всех остальных.
Вы можете купить их довольно дешево на ebay примерно за десять долларов, но вам нужно подключить их самостоятельно (это несложно).

Не беспокойтесь о производителе, STC1000 — это STC1000, независимо от того, кто это сделал.

Только не забудьте проверить, есть ли у вас блок 220В или 12В. В этом руководстве предполагается, что у вас есть блок на 220 В.
Если у вас есть 12 В, помните, что вам также понадобится блок питания на 12 В, 12 В умрет во вспышке синего света, если вы пропустите 220 В через питание.

Я не несу ответственности за чье-либо оборудование.Это информационное руководство, и вы должны убедиться, что все в безопасности, прежде чем подключать STC.

(Работа с электричеством может быть опасной или смертельной. Перед использованием убедитесь, что у вас есть квалифицированный, компетентный человек, который подтвердит правильность всей проводки.)

Что он делает?
Имеется зонд, который отправляет температурных данных обратно в устройство. Затем блок питает либо источник тепла , (например, заварной ленты), либо источник холода (например, холодильник), в зависимости от того, какую температуру вы установили для его поддержания.В результате вы можете поддерживать стабильное состояние сбраживаемого сусла при той температуре, при которой вы хотите сбраживать.

Как это сделать?
Вся магия спрятана в устройстве, и вам не о чем беспокоиться. Но в основном внутри коробки находятся два герметичных реле 10 А 12 В постоянного тока SPST-NO (спецификация), которые действуют как автоматические выключатели света.
Когда датчик температуры показывает, что ваше сусло горячее, чем вы установили, он включает переключатель охлаждения, а когда становится слишком холодным, он включает переключатель нагрева.

Для ботаников: ЗДЕСЬ внутренности (очень простые вещи).
Некоторые платы могут быть подключены к Arduino для создания программируемых профилей ферментации и т. Д., Но получение такой платы является случайным.
Если хотите узнать, является ли ваша одна из этих версий, разложите ее и проверьте эту ветку.

Зачем мне беспокоиться?
Если вы не будете бродить при стабильной температуре в пределах диапазона дрожжей, у вас не будет вкуса или, может быть, вы вообще не будете бродить!

Лето теплое — слишком теплое для лагерных дрожжей и даже слишком теплое для большинства элевых дрожжей, поэтому, если вы не хотите варить сумасшедшие бельгийские и пшеничное пиво все лето, вам нужно охладить сусло.

Зима холодная — слишком холодная для большинства дрожжей, поэтому, если вы не хотите варить лагеры всю зиму, вам нужно нагреть сусло.

Неустойчивые температуры — это плохо. Вы хотите, чтобы сусло бродило при стабильной температуре, без цикла тепло / холод день / ночь.

Верно, вы меня продали. Что входит в коробку?

  • Устройство — оно имеет ЖК-дисплей для отображения текущей температуры и помощи в навигации по настройкам. Он также имеет 8 разъемов для проводки на задней панели.По бокам соединены две оранжевые защелки для фиксации устройства в корпусе.
  • Датчик температуры — Просто длинный провод ( 2 метра ) с электронным термометром на конце.
  • Инструкции — я расскажу об использовании позже. Инструкции по подключению практически отсутствуют, а меню запутанно.

Что еще мне нужно?
Это действительно зависит от того, как далеко вы хотите зайти. Вы можете потратить много времени на то, чтобы соединить детали для получения разного внешнего вида и небольших настроек, но в этом вступлении я остановлюсь на основах.

Вам понадобится провод длиной (1,5 мм), 2 розетки (отключение питания), 1 вилка вилка (вход питания), 1 соединительная полоса (мин. 10 А), коробка .

На эту сборку я потратил около десяти долларов (розетки 2,49 евро x 2, вилка 2 евро, провод 3 евро, полоса 1,79 евро), коробки для проектов варьируются от 5 до 15 евро, если вы хотите поэкспериментировать.

Для инструментов вам потребуются небольшая отвертка с плоской головкой и нож .(Вы также можете использовать дрель , если хотите)

Ок. Я готов. Давай сделаем это! Но как?
Я не буду вдаваться в подробности о том, как установить блок в холодильнике, байпасные термостаты и т. Д.
Вместо этого я сосредоточусь на том, как сделать автономный блок .
Первое, что вам нужно сделать, это выбрать случай, в котором он будет размещен. Вы можете получить коробок с проектами в Maplin, использовать tupperware, китайский контейнер на вынос, что угодно!
Я выбрал этот футляр, в который входили некоторые аксессуары для дрели, потому что я хотел заглянуть внутрь.

Затем создайте быстрый макет того, как вы этого хотите.
Это гарантирует, что у вас есть все необходимые биты, позволит вам регулировать расстояния и даст вам представление о том, каким будет конечный результат.
Вот фотография моего макета для этого проекта. Это помогло мне понять, что такой короткий шнур питания может стать проблемой, и исправить это как можно раньше.
На этом этапе я также выполнил простую разводку вилок / розеток.

После того, как у вас будет схема и все необходимые детали, внесите любые изменения в корпусную коробку, чтобы разместить устройство и любую проводку.
Я поставил 1 отверстие для сети , 1 отверстие для датчика , 2 отверстия для выхода .

Далее идет бит, от которого люди отходят, проводка. Но не волнуйтесь, если вам удалось подключить вилки, у вас более чем достаточно навыков, чтобы подключить остальные.
Вот схема подключения, показывающая, что необходимо сделать. Это можно сделать немного по-другому, если вам это подходит, например, ЭТОТ способ, предложенный Tube.
Предупреждение: разъемы на STC1000 довольно хрупкие , поэтому относитесь к ним как к даме.
Будьте терпеливы, держите их мягко и осторожно ввинчивайте.


Из этого мы видим, что нам нужны 3 коротких отрезка красного / коричневого провода и 1 короткий отрезок синего.
Вот как они выглядят в реальной жизни.
Провода под напряжением идут к 1, 5 и 7.
Нейтральный провод идет к 2.
Опять же, этот быстрый макет помогает получить правильную длину проводов.

Теперь, когда мы разобрали нечетные кусочки провода, давайте посмотрим на них вместе с выходной разводкой
. Вы увидите, что оба выхода зеленый (земля) идут к одному блоку, оба синий (нейтраль) идут к еще один блок и оба коричневые (под напряжением) идут на выходы блока STC.


Этот последний бит может быть немного неудобным, если вы выберете плотный корпус, но не торопитесь, и это легко.
Вам просто нужно вставить всю проводку в маленькие разъемы на задней панели устройства.
Затем подсоедините подходящие разъемы входящего питания и присоедините датчик температуры (разъемы 2 и 3).
Наконец, закрепите провода от вытягивания с помощью нескольких тугих стяжек.

После небольшой уборки у вас должен быть рабочий STC1000. Закройте все и включите ее, чтобы увидеть температуру.
На этом последнем снимке вы заметите, что я отметил горячую и холодную розетки. Позже это избавит вас от горя, поверьте мне…

Что еще мне нужно?
Вам также понадобится источник тепла и источник холода.
Для большинства людей источником cold является старый холодильник .
Я использую заварочную ленту в качестве источника тепла , но другие люди также используют трубчатые нагреватели , или просто лампочку 100 Вт старого образца под терракотовым горшком для растений и т. Д.
Зонд лучше всего прикрепить к свой БС и накройте его изоляцией.Упаковочная пена отлично работает. Причина этого в том, что вы получаете температуру сбраживаемого сусла, а не температуру окружающего воздуха. Это сохранит стабильные показания, когда, например, вы открываете дверцу и выпускаете весь холодный воздух.
По возможности выводите провода из холодильника через верхнюю часть двери рядом со стороной петель. Это держит лучшую печать.

Что означает все, что на экране?
При подключении он оживает и показывает температуру.

Если розетка обогрева находится под напряжением, вы увидите небольшой свет слева внизу.
: если разъем для охлаждения находится под напряжением, вы увидите небольшой свет в верхнем левом углу.
Если индикатор охлаждения мигает, это означает, что температура недавно стала слишком высокой и охлаждение начнется после «задержки компрессора».
Если ни один из них не горит, значит, вы достигли установленной температуры.
Если горит индикатор «set» (справа от холодного света), вы находитесь в настройках функций.
На некоторых моделях вверху справа отображается символ ° C , на других — нет.

На экране напечатано только «ERR», и он дает высокий тон! Что происходит?
Это просто означает, что датчик температуры теперь подключен правильно.
Отключите зонд и снова подключите его.
Если это продолжается, поищите у кого-нибудь зонд, чтобы посмотреть, работает ли он.

Что делают кнопки?
Справа от экрана 4 кнопки:

  • Вкл / Выкл — удерживайте 3 секунды, чтобы включить или выключить устройство.Она также действует как кнопка «завершить» для подтверждения настроек.
  • S — Кнопка «настройки». Удерживайте 3 секунды, чтобы попасть в меню «Функции».
  • вверх / down — используется для изменения настроек.

Какие функции?
STC1000 имеет 4 функции.

Как их установить?
Удерживайте кнопку « S » в течение 3 секунд, чтобы перейти к функциям, как только вы увидите на экране « F1 », отпустите кнопку и используйте клавиши вверх / вниз для прокрутки F1 / F2 / F3 / F4
Когда вы выберете нужную функцию, нажмите и удерживайте кнопку «S» и используйте кнопки вверх / вниз для изменения значения.
Когда значение установлено, отпустите кнопку «S» и нажмите кнопку включения / выключения , чтобы завершить настройку.

Я потерял листовку с инструкциями
Не бойтесь, я нашел вам новую: http://www.tradeger.co.za/pdf/stc1000_operating_manual.pdf

Я хочу добавить что-то важное в это руководство или изменить что-то некорректное.
Ответьте и дайте мне знать, что это такое.

Я горжусь своим STC1000 и хочу им похвастаться!
Я показал тебе свой, а теперь ты покажи мне свой.

Следите за веткой форума

Автор: LordEoin

ОСНОВЫ РЕГУЛЯТОРА ТЕМПЕРАТУРЫ — Электроника длины волны

Источник тока регулятора температуры: Одним из ключевых звеньев регулятора температуры является регулируемый двунаправленный источник тока. Его также можно назвать выходным каскадом. Эта секция реагирует на секцию системы управления, направляя ток на исполнительный механизм температуры (термоэлектрический или резистивный нагреватель).Направление тока имеет решающее значение для термоэлектриков. На блок-схеме термоэлектрический элемент подключен между двумя выводами на контроллере. Для резистивного нагревателя может потребоваться специальная проводка, чтобы ограничить ток через резистивный нагреватель только в одном направлении.

Система управления : Пользовательские входы включают в себя предельную уставку (в терминах максимального тока, разрешенного для термоэлектрического или резистивного нагревателя) и рабочую уставку. Кроме того, если требуется удаленная уставка, обычно доступен вход удаленной уставки.

  • Уставка : это аналоговое напряжение в системе. Его можно создать путем сочетания регулировки бортового триммера и ввода удаленной уставки. В некоторых случаях эти входы суммируются. Некоторые действуют самостоятельно.
  • Прецизионный источник тока смещения датчика: Этот источник тока управляет датчиком температуры на известном уровне, делая фактическое напряжение датчика стабильным и точным. Напряжение на датчике определяется законом Ома: V = I * R, где V — напряжение, I — ток, а R — сопротивление датчика.Напряжение ограничено максимумом и минимумом (указанным в таблице данных контроллера температуры). Следует использовать минимально возможный ток, чтобы свести к минимуму эффекты самонагрева. Термистор нагревается при более высоких уровнях тока и ложно сообщает о более высокой температуре.
  • Генерация ошибки : Чтобы узнать, как работает система, фактическая температура сравнивается с заданной температурой. Эти два напряжения вычитаются, и результат называется «Ошибка». Выходной сигнал регулируемого источника тока будет изменяться, чтобы сигнал обратной связи по температуре оставался неизменным.
  • Система ПИД-регулирования : Преобразует сигнал ошибки в сигнал управления для регулируемого источника тока. Более подробное обсуждение ПИД-регулирования можно найти в Техническом примечании TN-TC01
  • .
  • Ограничительная цепь: Один из способов повредить термоэлектрик — пропустить через него слишком большой ток. В каждом техническом описании привода указывается максимальный рабочий ток. Превышение этого тока приведет к повреждению устройства. Чтобы этого избежать, в терморегулятор включен ограничительный контур.Пользователь определяет максимальную настройку, и выходной ток не должен превышать этот уровень. Большинство цепей ограничения ограничивают ток на максимальном уровне и продолжают работать.
  • Функции безопасности : Термоэлектрики и резистивные нагреватели чувствительны к избыточной мощности, но они устойчивы к быстрым изменениям тока или напряжения. Функции безопасности могут включать индикатор состояния «теплового разгона». Температурные пределы — как высокие, так и низкие — также могут быть доступны для включения индикаторов или отключения выходного тока.

Питание : Питание должно подаваться на управляющую электронику и источник тока. Это может быть источник питания постоянного тока (некоторые драйверы используют входы с одним источником питания, другие используют два источника питания) или входной разъем переменного тока и кабель. В некоторых случаях, когда для термоэлектрического или резистивного нагревателя требуется более высокое напряжение, могут быть доступны отдельные входы источника питания постоянного тока для питания управляющей электроники от источника низкого напряжения +5 В и термоэлектрического элемента от источника более высокого напряжения.

В чем разница между прибором, модулем и компонентом?

Обычно цена, набор функций и размер. Прибор обычно имеет переднюю панель с ручками и кнопками для регулировки, а также какой-либо дисплей для отслеживания датчика. Все это можно автоматизировать с помощью компьютерного управления через USB, RS-232, RS-485 или GPIB. Инструмент обычно питается от источника переменного тока, а не от источника постоянного тока. По нашему определению, модуль не включает в себя дисплей или блок питания и имеет минимально необходимые настройки.Для контроля состояния вольтметр измеряет напряжение, а в таблице данных модуля предусмотрена передаточная функция для преобразования напряжения в фактическое сопротивление датчика. В паспорте датчика сопротивление датчика преобразуется в температуру. Некоторые устройства выделяют память для калибровки отклика датчика. Компонент дополнительно урезан, без движущихся частей. Внешние резисторы или конденсаторы задают рабочие параметры. Функции безопасности являются общими для всех трех форм. Обычно модули можно разместить на столе или интегрировать в систему с помощью кабелей.Компоненты монтируются непосредственно на печатную плату (PCB) с помощью выводов для сквозного монтажа или поверхностного монтажа (SMT). Два ряда контактов называются DIP-упаковкой (двухрядный), а один ряд контактов называется SIP-упаковкой (одинарный ряд).

Разнообразные стандартные контроллеры доступны как в приборной, так и в OEM-упаковке. Некоторые производители стирают границы, например, предлагая USB-управление компонентами в качестве мини-инструментов.

Упаковка компонентов и модулей включает надлежащий теплоотвод элементов схемы (или инструкции о том, как устройство должно быть теплоотводом) и обычно включает соответствующие кабели для термоэлектрического элемента, датчика и источника питания.Инструменты включают шнур питания, и доступ пользователя внутрь корпуса не требуется.

Типовая терминология:

Термоэлектрик: Это устройство, состоящее из двух керамических пластин, которые скрепляют металлические соединения двух разнородных металлов. Если ток протекает через соединение разнородных металлов, тепло генерируется с одной стороны, а поглощается с другой. Пропуская ток через термоэлектрик, тепло передается от одной керамической пластины к другой.Направление тока определяет, какая пластина станет «горячей», а какая — «холодной» относительно друг друга. Изменение направления тока немедленно меняет эффект. Контроллер температуры работает путем оптимального управления величиной и направлением тока через переход, чтобы поддерживать фиксированную температуру устройства, подключенного к «холодной» стороне. Термоэлектрики можно накладывать друг на друга, чтобы создать более широкий температурный перепад. Их называют многоступенчатыми или каскадными термоэлектриками. Термоэлектрик также может преобразовывать перепад температур в электричество.Это называется эффектом Зеебека. Термоэлектрик также известен как термоэлектрический охладитель, устройство Пельтье или твердотельный тепловой насос.

Q MAX: Спецификация термоэлектрика. Это максимальная мощность, которую он может поглотить холодной пластиной.

Delta T MAX: Спецификация термоэлектрика. Это максимальный перепад температур, который может создать термоэлектрик между своими пластинами. Он указан в IMAX и VMAX и для определенной температуры «горячей» пластины.

I MAX и V MAX: Максимальный ток и напряжение термоэлектрика, соответственно. Не превышайте эти условия эксплуатации.

Резистивный нагреватель: Обычно эти нагреватели гибкие, с резистивным элементом, зажатым между двумя изоляторами. Материалы резистивного элемента и изоляторов сильно различаются в зависимости от области применения. Некоторым требуется питание переменного тока, а не постоянного тока, который вырабатывается обычным контроллером температуры. В резистивном нагревателе при протекании тока в любом направлении выделяется тепло; следовательно, активная функция охлаждения отсутствует.Охлаждение достигается за счет снижения тока до нуля и рассеивания тепла в окружающую среду. Стабильность обычно не так хороша, как у термоэлектриков, если только рабочая температура не превышает температуру окружающей среды.

Температура окружающей среды: Обычно это температура воздуха / условий окружающей среды вокруг нагрузки.

Отключить: Когда выходной ток отключен, все механизмы безопасности обычно устанавливаются на начальное состояние включения, и на термоэлектрический элемент подается только остаточный ток утечки.

DVM: Цифровой вольтметр , измеритель напряжения.

Амперметр: Измеритель, контролирующий ток.

ESD: Электростатический разряд. «Взрыв», который возникает при переходе по ковру и прикосновении к металлической ручке двери, является наиболее распространенным примером электростатического разряда. Лазерные диоды чувствительны к электростатическому разряду. «Взрыва», которого не чувствует человек, по-прежнему достаточно, чтобы повредить лазерный диод. При обращении с лазерным диодом или другим электронным оборудованием, чувствительным к электростатическому разряду, следует соблюдать соответствующие меры предосторожности.

Внутреннее рассеивание мощности: При использовании линейного источника тока часть мощности, передаваемой источником питания, поступает на термоэлектрический или резистивный нагреватель, а часть используется в контроллере температуры. Максимальное внутреннее рассеивание мощности контроллера — это предел, при превышении которого возможно тепловое повреждение внутренних электронных компонентов. Проектирование системы контроля температуры включает выбор напряжения питания. Если для управления термоэлектриком с напряжением 6 В выбрано питание 28 В, на выходном каскаде регулятора температуры (или источнике тока) будет падать 22 В.Если драйвер работает на 1 А, внутренне рассеиваемая мощность будет V * I или 22 * ​​1 = 22 Вт. Если внутренняя мощность рассеивания составляет 9 Вт, компоненты источника тока будут перегреваться и необратимо повреждены. Wavelength предоставляет онлайн-калькуляторы безопасной рабочей зоны для всех компонентов и модулей, чтобы упростить выбор конструкции.

Соответствие напряжению: Источник тока имеет соответствующее падение напряжения на нем. Соответствующее напряжение — это напряжение источника питания за вычетом этого внутреннего падения напряжения.Это максимальное напряжение, которое может подаваться на термоэлектрический или резистивный нагреватель. Обычно указывается при полном токе.

Предел тока: В технических характеристиках термоэлектрического или резистивного нагревателя максимальный ток будет указан при температуре окружающей среды. Выше этого тока устройство может выйти из строя. При более высоких температурах это максимальное значение будет уменьшаться. Current Limit — это максимальный ток, который подает источник тока. Предел тока можно установить ниже максимального термоэлектрического тока и использовать в качестве инструмента для минимизации внутреннего рассеивания мощности терморегулятора.При более высоком пределе тока термоэлектрик будет быстрее передавать больше тепла, поэтому время достижения температуры может быть уменьшено (если система управления оптимизирована, чтобы избежать перерегулирования и звона).

Нагрузка: Для регулятора температуры нагрузка состоит из регулятора температуры (термоэлектрического или резистивного нагревателя) и датчика температуры.

ACTUAL TEMP MON: Это аналоговое напряжение, пропорциональное сопротивлению датчика температуры. Функции перехода к сопротивлению представлены в отдельных таблицах данных на контроллеры.Для преобразования сопротивления в температуру используются передаточные функции из таблицы данных датчика. Его также можно назвать монитором ACT T или монитором температуры.

VSET: Это общий термин, используемый для обозначения входного сигнала удаленной уставки. V указывает на сигнал напряжения, в то время как SET указывает его цель: заданное значение системы управления. Его также можно назвать MOD, MOD IN или ANALOG IN.

Каковы типичные спецификации и как их интерпретировать для моего приложения?

В настоящее время каждый производитель проводит собственное тестирование, и стандарта для измерения не существует.После того, как вы определите решение для своего приложения, критически важно протестировать продукт в своем приложении, чтобы проверить его работу. Вот некоторые из определений, которые использует длина волны, и способы интерпретации спецификаций в вашем дизайне.

Входное сопротивление: Указывается для аналоговых входов напряжения, таких как VSET или MOD IN. Он используется для расчета силы тока, который должен выдавать внешний генератор сигналов. Например, если VSET управляется цифро-аналоговым преобразователем с максимальным напряжением 5 В и входным сопротивлением 20 кОм, цифро-аналоговый преобразователь должен выдавать не менее 5 В / 20000 Ом или 0 Ом.25 мА.

Стабильность: Для регулятора температуры, насколько стабильной может быть система, обычно является критическим параметром. Испытания на длину волны с использованием термисторов, поскольку они обеспечивают наибольшее изменение сопротивления на градус C. Испытательная нагрузка также хорошо спроектирована: датчик находится рядом с управляемым устройством, а термоэлектрический датчик, радиатор надлежащего размера и компоненты, соединенные с помощью высококачественной термопасти, чтобы минимизировать тепловое сопротивление между ними. Стабильность указывается в градусах Кельвина или Цельсия.Типичная стабильность может достигать 0,001 ° C. Более подробное техническое примечание TN-TC02 с описанием тестирования доступно в Интернете.

Диапазон рабочих температур: Электроника разработана для правильной работы в указанном диапазоне температур. За пределами минимальной и максимальной температуры может произойти повреждение или измениться поведение. Рабочий диапазон, который указывает длина волны, связан со спецификацией максимальной внутренней рассеиваемой мощности. Выше определенной температуры окружающей среды (обычно 35 ° C или 50 ° C) максимальное внутреннее рассеивание мощности снижается до нуля при максимальной рабочей температуре.

Диапазон рабочего напряжения: В некоторых регуляторах температуры можно использовать два напряжения питания — одно для питания управляющей электроники (VDD), а второе для обеспечения более высокого напряжения согласования для термоэлектрического или резистивного нагревателя (VS). Обычно управляющая электроника работает при более низких напряжениях: от 3,3 до 5,5 В. Превышение этого напряжения может повредить элементы в секциях управления или питания. Источник тока (или выходной каскад) разработан для более высоких напряжений (например, 30 В для контроллеров температуры семейства PTC).Эту спецификацию необходимо рассматривать вместе с приводным током и мощностью, подаваемой на нагрузку, чтобы гарантировать, что конструкция не превышает спецификацию максимального внутреннего рассеивания мощности. Например, PTC5K-CH рассчитан на работу до 5 А и может принимать входное напряжение 30 В. Максимальная внутренняя рассеиваемая мощность составляет 60 Вт. Если 28 В используется для питания термоэлектрика, который падает на 4 В, 24 В будет падать на PTC5K-CH. При 24 В максимальный ток в пределах безопасного рабочего диапазона составляет менее 60/24 или 2.5 ампер. Подача большего тока приведет к перегреву компонентов выходного каскада и необратимому повреждению контроллера. Максимальные характеристики тока и напряжения связаны, а не достижимы независимо.

Монитор в сравнении с фактической погрешностью: Сигнал ACT T MON представляет собой аналоговое напряжение, пропорциональное сопротивлению датчика. Точность фактического сопротивления по отношению к измеренным значениям указывается в отдельных технических паспортах драйвера. Длина волны использует откалиброванное оборудование, отслеживаемое NIST, чтобы гарантировать эту точность.

Отдельное заземление монитора и питания: Одно заземление высокой мощности предназначено для подключения к источнику питания на любом контроллере температуры. Несколько слаботочных заземлений расположены среди сигналов монитора, чтобы минимизировать смещения и неточности. В то время как заземление с высоким и низким током связано внутри, для достижения наилучших результатов используйте заземление с низким током с любым монитором.

Линейные или импульсные блоки питания для компонентов и модулей: Линейные блоки питания относительно неэффективны и имеют большие размеры по сравнению с импульсными блоками питания.Однако они малошумные. Если шум критичен для вашей системы, вы можете попробовать импульсный источник питания, чтобы увидеть, влияет ли частота переключения на производительность в любом месте системы.

Thermal Runaway: Если термоэлектрик отводит тепло от устройства (охлаждает его до температуры ниже окружающей), это тепло должно отводиться из системы. Дополнительное тепло от неэффективности термоэлектрика также должно рассеиваться. Если конструкция радиатора подходящая, удаляется достаточно тепла, чтобы устройство могло работать при температуре ниже окружающей среды.Однако, если конструкция является минимальной, тепло остается в нагрузке, а температура датчика повышается вместо того, чтобы оставаться на желаемой температуре. Система управления реагирует, пропуская больше охлаждающего тока через термоэлектрик. Это приводит к увеличению количества тепла, выделяемого нагрузкой, и продолжающемуся повышению температуры датчика. Это называется «тепловым разгоном». Температура системы не контролируется, но определяется недостаточным отводом тепла в окружающую среду.

Wavelength разрабатывает регуляторы температуры и производит их на предприятии в Бозмане, Монтана, США.Чтобы просмотреть список текущих вариантов регуляторов температуры, щелкните здесь.

Полезных сайтов:

Что такое термоэлектрик?

Что такое термистор?

Внешние ссылки предназначены для справочных целей. Wavelength Electronics не несет ответственности за содержание внешних сайтов.

Как подключить датчик температуры к системе управления?

Сегодня существует масса способов подключить контрольно-измерительные приборы к системе управления, но, как всегда, у всех вариантов есть свои плюсы и минусы.В статье объясняются варианты, которые могут лучше всего подойти вам с приложением, в котором вам нужно подключить датчики температуры к системе управления.

Конечно, ваш выбор будет зависеть от многих факторов, некоторые из которых уникальны для вашей системы. Однако, узнав плюсы и минусы доступных опций, вы можете сузить список и упростить свой выбор.

Выбор датчика температуры для вашей системы управления

Технологии постоянно развиваются. Вы можете подключить датчик температуры разными способами — с помощью прямого кабеля, полевых преобразователей, HART, беспроводной связи и т. Д.Если вам не хватает глубоких знаний об этих возможностях, вы, естественно, выберете известные вам типы, например, прямой провод или аналоговый.

Давайте поговорим о реальном примере с металлургической компанией. В этом случае проблема управления технологическим процессом повредила все кабели, соединяющие датчики поля с системой. Однако эта проблема возникала более одного раза, и каждый раз они слишком долго работали без важных измерений.

N1030 Регулятор температуры с 1 релейным выходом

Надеясь навсегда починить этот вагон, инженер попросил поставщиков предложить решения.И каждый продавец предлагал беспроводную связь. Они даже объяснили и продемонстрировали свои устройства, как они это делают, когда чувствуют запах горячей распродажи в воздухе. В конце концов, победил один из поставщиков, и заказчик выдернул ненужные кабели и настроил беспроводные устройства для передачи всех данных процесса.

Сегодня вы можете купить передатчики с несколькими входами, которые сообщают вам обновления за секунды и поставляются с прочными батареями для загрузки. Новая технология решает множество старых проблем, но заказчик должен знать об этом в первую очередь. Итак, давайте обсудим некоторые способы подключения измерения температуры к системе управления!

Прямое соединение между датчиком температуры и системой управления

Ваша система управления может использовать карту для считывания показаний датчика без полевого передатчика.Такая установка может сэкономить деньги, пропустив передатчик, но это требует небольшой работы. Например, для некоторых резистивных датчиков температуры (RTD) требуются кабели с определенными изоляционными материалами, такими как стекло или поливинил. Для термопар также необходимы специальные кабели, соответствующие типу датчика.

Чтобы узнать, в чем разница между RTD и термопарой, вы можете прочитать нашу статью о RTD, термопаре и термисторе

Если вам нужно преодолеть небольшое расстояние, прямое подключение упрощает настройку, чем полевой передатчик.Но для больших расстояний установка будет стоить дороже, чем передатчики. Кроме того, иногда возникают проблемы с внешним шумом, например с электромагнитными помехами (EMI), частотными помехами (RFI) или электростатическим разрядом (ESD). Большие провода датчика могут действовать как антенны, вызывая ошибки измерения из-за шума.

Минусы
  • Высокое обслуживание
  • Нет диагностики и анализа производительности
  • Склонность к вмешательству
  • Высокая стоимость установки

Полевой преобразователь

Многие процессы используют полевые преобразователи для подключения датчиков температуры к своим системам управления.Передатчик транслирует сигнал датчика и отправляет его в систему разными способами.

В зависимости от связи с вашей системой управления вы можете иметь только измерение температуры или больше. Аналоговые установки показывают только температуру. Многие компании в разных сегментах по-прежнему предпочитают этот вариант, но вы теряете много данных из-за диагностических функций передатчиков. Тем не менее, эта установка надежна и страдает не только от прямых проводов.

Visaya

Или вы можете подключить полевой преобразователь с помощью цифрового протокола, такого как FOUNDATION Fieldbus, PROFIBUS или HART.Эти протоколы будут передавать вам диагностическую информацию и другие интеллектуальные функции передатчика, и вы получите точные и надежные измерения в своей системе.

Плюсы

В зависимости от структуры вашей системы вы можете установить удаленное управление вводом / выводом. Датчики, подключенные таким образом, требуют меньше проводов, все преобразования происходят в полевых условиях, и это обеспечивает цифровую связь.

Visaya

Подобно передатчику, эта установка снижает помехи. Многие системы могут его поддерживать, и вы можете подключать не только датчики температуры, но и другие преобразователи и датчики локально.

Минусы
  • Собственная архитектура
  • Без диагностики и дополнительных функций

Беспроводная связь

Wireless сегодня стал стандартной опцией. В последнее время технология сильно изменилась, поэтому теперь вы можете получать данные за секунды, а время автономной работы составляет более года, в зависимости от настройки и устройства.

Visaya

Кроме того, его установка намного проще по сравнению с кабелями, но для обеспечения надежности вам необходимо выбрать размер вашей сети.Время от времени вам придется менять батарею, но, передав все данные по беспроводной сети, вы можете спланировать этот обмен. Ура, планирование! С другой стороны, беспроводная связь не обеспечивает максимальной скорости.

Плюсы
  • Низкая стоимость установки
  • Продолжительное время автономной работы в некоторых приложениях
  • Умная диагностика и функции

Мультиплексоры

Вы также можете использовать локальные мультиплексоры для подключения ваших датчиков температуры.Они выполняют все преобразования локально и могут связываться с системой управления, используя собственный протокол или открытые протоколы, такие как MODBUS или PROFIBUS.

Вам понадобится конструкция для установки мультиплексора и кабели для подключения датчика к конструкции, но такая настройка также снизит вероятность EMI / EDS / RFI.

Минусы
  • Медленное обновление
  • Ограниченная точность
  • Устаревшая техника

Заключение

Мы просто скользим по поверхности.Чтобы найти лучший способ подключить датчик температуры к вашей системе управления, вы должны проверить свой процесс и посмотреть, какой метод даст вам необходимые данные. Вы также должны решить, хотите ли вы, чтобы интеллектуальные функции избегали незапланированных простоев.

Если вам нужна помощь в выборе подходящего датчика температуры для вашего приложения, обратите внимание на наш новый интеллектуальный помощник по температуре.

Чтобы узнать больше о системах управления и датчиках температуры, можете связаться с нашими инженерами!

W1209 Модуль регулятора температуры — ProtoSupplies

Описание

W1209 — недорогой, но высокофункциональный автономный модуль регулятора температуры для систем отопления и охлаждения.

В ПАКЕТЕ:
  • W1209 Модуль регулятора температуры
  • Длинный датчик температуры 45 см (18 ″)

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОДУЛЯ КОНТРОЛЛЕРА ТЕМПЕРАТУРЫ W1209:
  • 3-х значный дисплей температуры
  • Модуль может работать в режиме нагрева или охлаждения
  • Можно установить несколько параметров, например, точку срабатывания по температуре, гистерезис и задержку.
  • Водонепроницаемый датчик температуры NTC имеет диапазон измерения от -30 до + 110 ° C с 0.Точность 1 ° C
  • Релейные переключатели до 120 В переменного тока при 10 А или 14 В постоянного тока при 10 А
  • Работа модуля 12 В

Этот модуль измеряет и отображает температуру и позволяет управлять питанием большинства типов электрического оборудования в зависимости от этой температуры. Одно выходное реле может быть включено или выключено при повышении или понижении температуры выше установленного вами теплового порога. Вы также можете установить температурный гистерезис, задержку срабатывания реле и тепловые ограничения для работы модулей.

Встроенный в STM8S uC позволяет настраивать модуль с помощью дисплея и 3 кнопок. Все настройки сохраняются в энергонезависимой памяти и сохраняются во время цикла включения питания.

Температура измеряется высокоточным водонепроницаемым термистором NTC 10K, который работает в диапазоне от -30 ° C до 110 ° C (от -22 ° F до 230 ° F). Длина кабеля датчика составляет около 18 дюймов, но при необходимости можно соединить провод, чтобы удлинить кабель.

Реле рассчитано на напряжение до 120 В переменного тока при 10 А и 14 В постоянного тока при 10 А.Когда реле находится под напряжением, горит красный светодиод. Также можно использовать реле на этом модуле для переключения реле более высокой мощности, если вы хотите контролировать большую мощность.

Модуль питания

Модуль питается от 12 В постоянного тока, подключенного к клеммной колодке с винтовыми зажимами. Это может быть сетевой адаптер переменного тока или аналогичный источник питания.

Дисплей

Модуль имеет 3-разрядный дисплей, состоящий из 7-сегментных красных дисплеев высотой 0,28 дюйма.

По умолчанию модуль всегда отображает текущее измерение температуры.После того, как вы перестанете нажимать кнопки, примерно через 5 секунд дисплей вернется к отображению температуры по умолчанию.

Если подать питание на модуль без присоединенного датчика, отобразится « LLL ». Если вы подключите датчик, будет отображаться текущая температура, которая обычно находится в диапазоне 20-25 ° C.

Кнопки

На модуле есть 3 кнопки, с которыми можно поиграть.

  • SET = Кратковременное нажатие устанавливает температуру срабатывания.Длительное нажатие входит в режим настройки параметров
  • «+» = Настройка приращения
  • ‘-‘ = Настройка уменьшения

Настройка температуры срабатывания

Чтобы установить температуру срабатывания, которая является температурой, при которой что-то должно произойти, нажмите кнопку SET , и дисплей начнет мигать. Отображаемое значение — это температура срабатывания. При поставке будет установлено значение 28C .

Используя кнопки +/- , значение можно увеличивать или уменьшать на 0.1С ступеней. Удерживая нажатой одну из этих кнопок, вы быстро увеличите / уменьшите значение.

Нажатие кнопки SET сохраняет установленное вами значение и возвращает к отображению температуры. В качестве альтернативы, если вы прекратите нажимать кнопки, а не нажимаете SET, через 5-8 секунд значение будет сохранено, и дисплей вернется к отображению температуры самостоятельно.

Настройка параметров

Поскольку пользовательский интерфейс ограничен 3-значным дисплеем и 3-мя кнопками, установка параметров сначала может показаться немного сложной, но на самом деле она довольно проста в использовании, как описано в этом разделе.

Чтобы войти в режим настройки параметров, нажмите и удерживайте кнопку SET около 3 секунд. Когда кнопка будет отпущена, на дисплее отобразится « P0 », что является первой настройкой параметра. Вы можете обнаружить, что вам нужно дважды нажать и удерживать кнопку, прежде чем отобразится P0 . Находясь в режиме настройки параметров, нажатие клавиш +/- позволяет перемещаться между каждым из параметров, которые могут быть установлены.

В модуле можно запрограммировать 7 параметров:

  • P0 = (Нагрев / Охлаждение) устанавливает, будет ли реле включаться или отключаться при достижении температуры срабатывания триггера.
  • P1 = (Гистерезис) устанавливает разницу в градусах между температурой срабатывания и моментом изменения состояния реле
  • P2 = (Max Temp) устанавливает максимальную температуру запуска, которую можно установить
  • P3 = (Min Temp) устанавливает минимальную температуру запуска, которую можно установить
  • P4 = (Temp Correction) устанавливает смещение, которое будет использоваться для отображаемого значения
  • P5 = (Задержка) устанавливает время задержки между достижением температуры срабатывания триггера и переключением реле.
  • P6 = (Аварийный сигнал) устанавливает точку срабатывания «аварийного сигнала» высокой температуры

P0 (обогрев / охлаждение)

Устанавливает, будет ли реле включаться или отключаться при достижении температуры срабатывания триггера.

Длительное нажатие SET для входа в режим настройки параметров P0

При нажатии кнопки SET выполняется переключение между C и H .

C (по умолчанию) = Режим охлаждения. Реле активируется при достижении температуры. Обычно это используется для включения охлаждающего устройства, например вентилятора.

H = тепловой режим. Реле обесточится при достижении температуры. Обычно это используется для выключения нагревательного устройства, например, нагревателя.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P1 (гистерезис)

Гистерезис означает, какое изменение температуры должно произойти, прежде чем реле снова изменит свое состояние. Например, если нагреватель выключен при 30 ° C, а гистерезис установлен на 2 ° C, температура должна упасть до 28 ° C, прежде чем реле будет снова запитано и нагреватель снова включен.

Это может быть полезно, чтобы избежать постоянного включения и выключения устройства (колебания) прямо при температуре срабатывания триггера.Именно так обычно работают домашние термостаты, поскольку системам отопления и охлаждения дома сложно постоянно включать и выключать. С другой стороны, можно использовать что-то вроде нагревателя для аквариума без гистерезиса, чтобы поддерживать как можно более постоянную температуру.

Нажмите и удерживайте SET для входа в режим настройки параметров, затем +/- для достижения P1 .

При нажатии SET теперь отображается гистерезис в ° C. Значение по умолчанию — 2.0 ° С

Нажмите кнопки +/- для установки желаемого гистерезиса или 0,0, если гистерезис не требуется.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P2 (максимальная температура)

Этот параметр ограничивает максимальную температуру срабатывания, которую можно установить. Его можно использовать как остановку безопасности, чтобы пользователь модуля не установил слишком высокую температуру. Если вы, например, управляете обогревателем террариума-лягушки для своего ребенка, установка этого значения примерно на 30 ° C может просто спасти жизнь Кермиту, если кнопки будут нажиматься случайным образом.

Нажмите и удерживайте SET , чтобы войти в режим настройки параметров, затем +/- , чтобы перейти к P2 .

При нажатии кнопки SET теперь отображается максимальная температура, которую можно установить в ° C. Значение по умолчанию: 110 ° C .

Нажмите кнопки +/- , чтобы установить желаемую максимальную температуру, или оставьте 110 ° C для максимального диапазона.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P3 (МИН. Температура)

Этот параметр ограничивает минимальную температуру срабатывания, которую можно установить. Его можно использовать как остановку безопасности, чтобы пользователь модуля не установил слишком низкую температуру.

Нажмите и удерживайте SET для входа в режим настройки параметров, затем +/- для достижения P3 .

При нажатии кнопки SET теперь отображается минимальная температура, которую можно установить в ° C. Значение по умолчанию: -30 ° C .

Нажмите кнопки +/- , чтобы установить желаемую максимальную температуру, или оставьте -30 ° C для максимального диапазона.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P4 (коррекция температуры)

Этот параметр обеспечивает смещение (положительное или отрицательное) отображаемого значения температуры. Эту функцию можно использовать для сопоставления показаний с другим устройством или если вам нужно внести исправление из-за ошибки, вызванной удлинением кабеля датчика.

Нажмите и удерживайте SET для входа в режим настройки параметров, затем +/- для достижения P4 .

При нажатии SET теперь отображается текущее смещение в ° C. Смещение по умолчанию: 0,0 ° C .

Нажмите кнопки +/- , чтобы установить желаемое смещение температуры, которое будет использоваться.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P5 (Задержка)

Этот параметр обеспечивает задержку между достижением температуры срабатывания триггера и включением или отключением реле.Этот параметр может варьироваться от 0 до 10 минут с шагом в 1 минуту.

Нажмите и удерживайте SET для входа в режим настройки параметров, затем +/- для достижения P5 .

При нажатии SET теперь отображается текущая задержка. По умолчанию 0 .

Нажмите кнопки +/- , чтобы установить желаемую задержку, которая будет использоваться.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

P6 (Тревога)

Этот параметр обеспечивает аварийный сигнал высокой температуры. Когда достигается заданная температура, реле деактивируется, и на дисплее отображается « HHH », пока температура не опустится ниже уставки аварийного сигнала.

Нажмите и удерживайте SET для входа в режим настройки параметров, затем +/- для достижения P6 .

При нажатии SET теперь отображается текущая настройка будильника. По умолчанию ВЫКЛ .

Нажмите кнопки +/- , чтобы включить будильник ON или OFF .

При повторном нажатии кнопки SET переходит в режим настройки температуры срабатывания сигнализации. По умолчанию « 00 ». Диапазон 0-110.

Нажмите кнопки +/- , чтобы ввести желаемую температуру срабатывания сигнализации.

Если в течение 5-8 секунд не нажимается ни одна кнопка, настройка сохраняется, и дисплей возвращается к отображению текущей температуры.

Соединения модулей

1 × 2 Xh3,54 Белый разъем

Датчик температуры подключается к белому разъему.Он запрограммирован и работает только в одном направлении, хотя ориентация не имеет значения.

Винтовая клеммная колодка 1 x 4

  • GND = Земля для модуля. Подключить к заземлению источника постоянного тока 12 В
  • + 12V = Питание модуля. Подключите к 12 В постоянного тока.
  • K1 = Контакт реле переключателя 1
  • K0 = Релейный переключающий контакт 2

Контакты переключателя реле взаимозаменяемы.Одна сторона должна подключаться к источнику питания нагрузки, которая может быть как переменного, так и постоянного тока, а другая сторона должна подключаться к самой нагрузке.

Доступен акриловый корпус для модуля W1209, обеспечивающий некоторую электрическую и механическую защиту.

РЕЗУЛЬТАТЫ ОЦЕНКИ:

Это очень часто используемый модуль для контроля температуры, и не зря. Он объединяет множество функций в небольшой недорогой пакет и является одним из наших любимых модулей.

Хотя мы любим использовать UC для мониторинга и управления виджетами с помощью специального программного обеспечения, как и любой другой человек, иногда вам просто нужно, чтобы что-то выполняло работу и выполняло ее хорошо, и эти модули хорошо соответствуют этим требованиям. В качестве примера я использую один из этих модулей в сочетании с охлаждающим модулем Пельтье, чтобы контролировать температуру в моем винном шкафу.

Мы протестировали эти модули при полном номинальном напряжении 120 В переменного тока при 10 А, а также 12 В постоянного тока при 10 А, и никаких проблем не было обнаружено. При максимальном значении 10 А реле довольно сильно нагревается, поэтому поддержание тока ниже 8 А поможет обеспечить хороший срок службы.

Заявленная точность составляет ± 0,1 ° C, что кажется несколько оптимистичным. Из коробки точность приближается к ± 0,5 ° C, что все еще довольно хорошо. Одной из приятных особенностей является параметр коррекции температуры, который можно использовать для калибровки устройства по эталонному термометру, если требуется более высокая точность.

Если вы используете этот модуль для переключения питания переменного тока, вы можете выбрать один из корпусов ниже, чтобы обеспечить некоторую электрическую изоляцию.

ДО ОТГРУЗКИ ЭТИ МОДУЛИ ЯВЛЯЮТСЯ:

  • Проверено
  • Измерение основной температуры и работа реле подтверждена
  • Упакован в закрывающийся высококачественный антистатический пакет для защиты и удобства хранения.

Примечания:

  1. Некоторые реле показывают опечатку в номинальном значении 14 В переменного тока, тогда как оно должно быть 14 В постоянного тока. Это только опечатка и не влияет на работу детали.

Технические характеристики

Контроль температуры
Диапазон температур -30 ~ 110 ° С
Разрешение -9.От 9 до 99,9 ° C 0,1 ° С
Другие температуры 1 ° С
Точность 0,1 ° С
Датчик температуры NTC 10K Термистор
Максимальные характеристики реле
В перем. Тока 120VAC 10A
240 В переменного тока 5A
В постоянного тока 0-14 В постоянного тока 10A
Эксплуатационные характеристики
Вход питания постоянного тока 12 В постоянного тока
Рабочий ток Реле неактивно <30 мА
Реле активировано <80 мА
Размеры Д x Ш x В 48 x 41 x 16 мм (1.9 x 1,6 x 0,6 дюйма)
Длина датчика температуры 45 см (18 ″)

ДОПОЛНИТЕЛЬНОЕ ЧТЕНИЕ

В этих модулях используется микроконтроллер STM8S с неплохой программной поддержкой. Учитывая, что этот вход датчика модуля основан на датчике резистивного типа, модуль потенциально может быть подключен к другим аналогичным датчикам, таким как датчики света, деформации или угла LDR.

Если вы являетесь хакером, дополнительную информацию о модуле вместе с подробностями о перепрограммировании платы можно найти на сайте GitHub здесь :

Зачем вам нужен регулятор температуры в аквариуме?

Представьте, что вы просыпаетесь однажды утром и обнаруживаете, что все рыбки плавают вверх ногами в аквариуме.

Вы чувствуете воду, просто замечая, что она кипит. Я приготовил рыбу!

Это встречается чаще, чем вы думаете. Если включить обогреватель дольше необходимого, рыба может перегреться.

Здесь вступает в игру регулятор температуры для аквариума .

Это жизненно важное устройство могло спасти жизни рыб. Сегодня я познакомлю вас.

Что такое регулятор температуры в аквариуме?

Как следует из названия, вы можете установить точную температуру в аквариуме с помощью управления нагревом аквариума.Намного точнее аквариумного обогревателя.

Думайте о контроллере температуры как о внешнем термостате аквариума.

Существует два типа регуляторов температуры в аквариуме.

1. Регулятор температуры с подключением — поставляется в комплекте. Просто включите обогреватель, и все готово. Больше никаких усилий!

2. Контроллер температуры своими руками — как следует из названия, покупайте детали по отдельности и создавайте свой собственный терморегулятор. Если вы хотите создать свои собственные знания, мы рекомендуем вам узнать об электричестве.

Тип регулятора температуры в аквариуме варьируется от производителя к бренду, но обычно состоит из трех разных частей.

1. Контроллер

Контроллер состоит из цифрового ЖК-экрана и кнопок, которые устанавливают желаемую температуру.

Это мозг устройства. Контроллер контролирует воду в аквариуме, чтобы убедиться, что она всегда имеет нужную температуру.

2. Носок

Очевидно, здесь проходит пробка водонагревателя.

Некоторые регуляторы температуры имеют два отдельных выхода, один для нагрева и один для охладителей.

Два термостата нагревают воду, когда она становится слишком холодной, и охлаждают, когда она становится слишком горячей.

3. Зонд датчика температуры

Водонепроницаемый зонд устанавливается в аквариум для измерения температуры воды.

Если у вас есть солевой бак, вам понадобится устойчивый к коррозии зонд.

Как работает терморегулятор?

Не вдаваясь в подробности технических подробностей, можно сказать, что функция регулятора температуры довольно проста.

Шаг 1. Установите температуру

Установите необходимую температуру с помощью контроллера. В данном случае я установил 79 градусов по Фаренгейту. Это потому, что рыбы-ангелы предпочитают это.

Шаг 2: контроллер считывает температуру

С помощью датчиков в резервуаре контроллер температуры считывает температуру и сравнивает ее с заданной температурой.

Шаг 3: контроллер выполняет действие

Если температура ниже установленной, контроллер запитает розетку и включит нагреватель.

По достижении температуры выключите нагреватель до тех пор, пока температура снова не упадет.

Зачем вам нужен регулятор температуры в аквариуме?

Используемые аквариумные обогреватели, вероятно, уже имеют термостаты. Когда он достигнет определенной температуры, он автоматически отключится.

Так зачем вам терморегулятор в аквариуме?

Что ж, на то есть две веские причины …

1. Сбой нагрева

Вообще-то нагреватель вышел из строя.

Обогреватель может выйти из строя из-за неправильного изготовления, неправильной установки, ошибки пользователя, сбоя питания или по ряду других причин.

Да, нагреватель аквариума вряд ли сломается.

Но если это не удастся, аквариум может перегреться и попрощаться с тропическими рыбами, растениями и кораллами.

На самом деле, частые посещения аквариумного форума публикуют бесчисленное количество историй о влюбленных, возвращающихся к ухи.

Контроллеры температуры для аквариумов позволяют избежать таких дорогостоящих происшествий.

Когда вода достигнет заданной температуры, контроллер выключит нагрев и нагрев.

Если в вашем аквариумном обогревателе есть термостат, регулятор температуры — дополнительный уровень безопасности.

2. Термостат и датчик высокого качества

Нужно отдать в современный аквариумный обогреватель. Вы можете втиснуть термостаты, датчики температуры и нагревательные элементы в изделия меньшего размера, которые занимают меньше места в резервуаре.

Обратной стороной, однако, является то, что эти компоненты не очень точны.Если для воспроизводства требуется узкий температурный диапазон или если рыбы очень чувствительны, необходим более точный метод измерения температуры воды.

Затем появляется терморегулятор, который точно измеряет температуру воды.

.