Как узнать технические данные светодиода: Страница не найдена — Remoo.RU

Содержание

Характеристики светодиодов, применение и схема подключения

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Все эти элементы внутреннего монтажа уже уходят в прошлое

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.

Устройство светового диода с пояснениями

Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.

В наше время светодиодные лампы могут быть даже такими

1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.

Фонари на диодах со специальными линзами светят на расстояние до 3 км
Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

  • Экономичность без потери силы светового потока – здесь они вне конкуренции;
  • Прочный корпус – отсутствует опасность механического повреждения;
  • Долговечность – такие элементы работают в десятки раз дольше ламп накаливания;
  • Компактность – имеют малые габариты;
  • Наиболее безопасны – работают от сети 3-24 В;
  • Экологичны – не требуют специальной утилизации.

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования драйвера (электронного стабилизирующего блока).
Ультрафиолетовый и инфракрасный световые диоды – изготавливают даже такие

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке светодиодных ламп. На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.

RGB прожекторы с контроллером и пультом ДУ действительно хороши

Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиодаМатериалПрямое напряжение при 20 мА
Типовое значение (В)Диапазон (В)
ИКGaAs, GaAlAs1,21,1-1,6
КрасныйGaAsP, GaP, AlInGaP2,01,5-2,6
ОранжевыйGaAsP, GaP, AlGaInP2,01,7-2,8
ЖелтыйGaAsP, AlInGaP, GaP2,01,7-2,5
ЗеленыйGaP, InGaN2,21,7-4,0
ГолубойZnSe, InGaN3,63,2-4,5
БелыйСиний/УФ диод с люминофором3,62,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.

Точечный потолочный светильник на диодах очень экономичен

Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 1200. По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I ×U, где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой блок питания необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.

На такой платформе могут быть сотни кристаллов

Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.

Подделку довольно тяжело отличить от оригинала при покупке

Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.

Вот они, LED SMD2835. Маленькие, но света от них достаточно

Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

ПараметрКитайский 28352835 0,2W2835 0,5W2835 1W
Сила светового потока, Лм82050100
Потребляемая мощность, Вт0,090,20,51
Температура, в градусах С+60+80+80+110
Ток потребления, мА2560150300
Напряжение, В3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 1200.

На таких элементах делается лампа «кукуруза»

Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

ПараметрПоказатель
Сила светового потока, Лм45-50
Потребляемая мощность, Вт0,5
Диапазон рабочих температур, в градусах СОт -40 до +80
Номинальный ток, мА150
Рабочее напряжение, В3,1-3,2
Угол освещения120 градусов

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.

Элементы на ленте могут располагаться и в 2 ряда для яркости

Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

МодификацияXM-LXR-E, XP-G, XP-E, XP-C
Сила светового потока, Лм/втT5 (от 260 до 280)T6 (от 280 до 300)U2 (от 300 до 320)Q2 (от 87,4 до 93,9)Q3 (от 93,9 до 100)Q4 (от 100 до 107)Q5 (от 107 до 114)R2 (от 114 до 122)

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.

Нить накала постепенно уходит в историю

Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).

Мультиметром довольно просто прозвонить световой диод

Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.

Такие обозначения могут встретится на маркировке ленты

Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в кодеНазначениеОбозначенияРасшифровка обозначения
1Источник светаLEDСветодиод
2Цвет свеченияRКрасный
GЗеленый
BСиний
RGBЛюбой
CWБелый
3Способ монтажаSMDSurface Mounted Device (Устройство, монтируемое на поверхность)
4Размер чипа30283,0 х 2,8 мм
35283,5 х 2,8 мм
28352,8 х 3,5 мм
50505,0 х 5,0 мм
5Количество светодиодов на метр длины30
60
120
6Степень защиты:IPInternational Protection
7От проникновения твердых предметов0-6Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8От проникновения жидкости0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.

Ассортимент ламп для дома на световых диодах довольно широк

Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Игорь Мармазов

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”

Стабилизатор для диодных ламп – подобный можно спаять самостоятельно

Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.

Схема подключения дневных ходовых огней на автомобиле

Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.

Такую рекламу легко можно сделать самостоятельно

Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.

Простейшая цветомузыка – осталось подключить датчик звука

В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.

Этот диод можно с легкостью заменить при желании

Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).

Такова схема последовательного подключения световых диодов

Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Разберемся, как рассчитать сопротивление для светодиода.

Сделать это можно по формуле:

R = (VS – VL) / Iгде

  • VS – напряжение питания;
  • VL – номинальное напряжение для светодиода;
  • I  – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста –  используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

При желании возможно все. Схема довольно проста –  используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.

Параллельно подключенные последовательные тройки световых диодов

Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.

Идеальная подсветка потолка при помощи светодиодной ленты

В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

Как узнать ток и напряжение светодиода

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибора Напряжение, В
Красный 1,63–2,03
Желтый 2,1–2,18
Зеленый 1,9–4,0
Синий 2,48–3,7
Оранжевый 2,03–2,1
Инфракрасный до 1,9
Фиолетовый 2,76–4
Белый 3,5
Ультрафиолетовый 3,1–4,4
Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме. В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Как правильно понимать технические характеристики светодиодов – краткое разъяснение


Многие производители светодиодов пытаются сохранить свои позиции на рынке за счет того, что предоставляют минимальный объем технической информации о своих продуктах, и даже та информация, которую мы получаем, не рассказывает нам всю правду. Но это информация, которая нам действительно нужна, когда мы хотим указать в спецификации технические характеристики светодиодного продукта.


Фотометрические характеристики

 

Номинальный световой поток (люмены: лм)

Традиционно показатель светового потока зависел от интенсивности света, излучаемого источником освещения, независимо от влияния светильника и любого оптического устройства управления. Нет причин, по которым производители светодиодов должны были указывать какие-либо характеристики иначе, чем они есть на самом деле, но этот простой параметр намеренно вводил в заблуждение из-за того, что некоторые светодиоды не являются независимыми устройствами, а встроены непосредственно в светильник. Но этого следует коснуться при обсуждении параметра «Коэффициент полезного действия источника света» (см. ниже). В отношении светодиодных панелей указание этих параметров особенно вводило в заблуждение.

 

Эфективность светодиодного светильника (люмен на Ватт: лм / Вт)

Это тот показатель, за которым «гнался» каждый производитель последние десять лет и даже более длительный период. Сначала настоящей целью было превысить уровень эффективности, который требовался в соответствии с нормативными положениями, регламентирующими уровень энергоэффективности. Эта цель была достигнута несколько лет назад.

Есть предположение, что стремление к постоянному повышению показателей энергоэффективности приведет к ухудшению качества осветительных систем, поскольку более высокая светоотдача светильников будет способствовать меньшей равномерности освещенности в пространстве, и все это в попытке удержать показатели световой эффективности.

 

Световая отдача (коэффициент полезного действия источника света: LOR)

Существуют два показателя светового потока; световая отдача самого источника света и показатель световой отдачи светильника, который учитывает потери, получаемые внутри корпуса и оптической системы. Коэффициент полезного действия источника света (LOR) — это разница между этими двумя значениями.

В мире не существует на 100% эффективного светильника, несмотря на заявления некоторых производителей светодиодов об обратном. Как только источник света подключается к светильнику, выходные характеристики источника света меняются. Каждый светильник должен иметь коэффициент полезного действия, хотя многие производители и предпочитают не рассказывать вам, что это такое.

Распределение интенсивности (измеряется в канделах: кд)

Кривая в полярной системе координат — это краткая характеристика, которая говорит вам, с каким светильником вы имеете дело. Она моментально выявляет, например, имеет ли потолочный светильник узко направленный луч света или широко направленный.

Показатель максимальной интенсивности обычно находится в центре светового луча. Параметр интенсивности по краям луча обычно указывается в половину от максимальной интенсивности.

Несмотря на то, что ситуация в какой-то степени улучшилась, все еще есть ощущение, как будто производители светодиодов решили, что фактические эксплуатационные качества светильника не имеют значения, будь то узко направленный луч точечного светильника или широко направленный луч осветительного прожектора, это не важно.

 

Номинальный срок службы светодиодов


Инженер по устройствам освещения Джеймс Хукер проводит испытания на проверку срока службы устройств

 

 

Просто указывать параметр номинального срока службы как некое количество часов, пожалуй, не имеет смысла. Этот показатель нужно приводить вместе с уточняющей метрикой — снижением светового потока в течение определенного количества часов. Обычно это показывают как параметр «Lx», где x — процент, оставшийся от первоначального уровня световой отдачи.

Указанный параметр «50 000 часов при L70» означает, что светильник потеряет 30% света за 50 000 часов.

«50 000 часов при L90» говорит нам о том, что светильник теряет только 10% света за тот же период времени.

 

С данным параметром связана другая метрика – «процент отказов». Речь идет о процентной доле светодиодных модулей, которые могут выйти из строя к тому моменту, когда светильник достигнет номинального срока службы. Вы не увидите этот параметр в технических спецификациях.

 

Цветовые характеристики

 

Все источники света деградируют в процессе эксплуатации, и светодиод не является исключением. В процессе использования светодиодов, с ними происходят две вещи, световая отдача снижается и ухудшается качество цвета. Правильно описанные технические характеристики будут содержать данные об этих изменениях в процессе эксплуатации.

 

Индекс цветопередачи (CRI)


Индекс цветопередачи показывает, насколько эффективно работает источник белого света, точно отображая цвета, которые он освещает. Идеальный параметр CRI будет равен 1; приемлемый CRI для большинства систем освещения в сфере жилой и коммерческой недвижимости — выше 0,8. Следует избегать устройств с индексом цветопередачи ниже 0,8.

 

Коррелированная цветовая температура (CCT)

Цветовая температура источника белого света обозначает то, насколько «теплым» или «холодным» кажется свет. Данный параметр измеряется в кельвинах (К) — чем выше показатель, тем «холоднее» свет. В домашних условиях обычно предполагается использование освещения с цветовой температурой около 2700K, что похоже на цветовую температуру традиционных ламп накаливания; в помещениях в сфере коммерческой недвижимости обычно используют освещение в диапазоне 3000K — 4000K. Новые тенденции в освещении транслируют подход «освещение для здоровья», поддерживающий  суточные биоритмы. Это привело к более широкому использованию цветовой температуры естественного дневного света, превышающей 5000K.

Исторически сложилось так, что одной из основных проблем многих источников освещения была тенденция продолжать использовать лампу долгое время после того, как ее цветовые характеристики ухудшились до такой степени, что лампу уже нельзя использовать. Светодиод здесь не является исключением, и в течение расчетного срока службы можно ожидать, что цветовые характеристики могут ухудшиться. Параметр расчетного срока службы светодиода должен  учитывать эту деградацию, а также снижение показателя светового потока. Лишь некоторые компании учитывают этот аспект.

Есть два показателя, которые действительно полезно указывать: цветопередача и цветовая температура в конце расчетного срока службы (L70 и прочие)

 

Пороги цветоразличия (бины)



Упрощенная версия порогов цветоразличия. Предоставлено: Xicato

  

В отношении светодиодов также введена новая метрика; «пороги цветоразличия» (McAE). Это стало необходимо из-за несоответствия цветовых характеристик светодиодов после того, как они миллионами штук выходят с промышленных сборочных линий. Параметр «порогов цветоразличения» основан на принципе «едва заметной разницы» между светодиодными чипами. Когда партия чипов имеет одинаковую светоотдачу, их относят к одному порогу цветоразличения. Чем больше разброс показателей, тем большее количество порогов цветоразличения получается.

Хороший производитель, как правило, поставляет продукцию, имеющую два или три порога цветоразличения. Если заявленное количество порогов превышает шесть, ищите другой светодиод.

Опять же, по мере того, как светодиоды приобретают большой срок службы и их цветовые характеристики ухудшаются, количество порогов цветоразличения увеличивается, показывая деградацию изначально заданных показателей цветопередачи. Таким образом, еще одна метрика была бы ценной: отклонение показателя порогов цветоразличения в течение номинального срока службы.

 

Настраиваемые белые цвета

То, что не так давно стало важным — это цветовые характеристики «настраиваемых источников белого цвета». Это многоканальные источники светодиодного света, где настройки белого света можно смещать в диапазоне между «теплыми» и «холодными» температурами. Что редко указывают — это влияние на цветопередачу, когда идут по всему диапазону. В идеале, изменяющиеся цветовые температуры будут следовать за кривой «идеального излучателя» в соответствующем цветовом диапазоне температур. Появятся системы освещения, для которых эта информация будет чрезвычайно важна.

 

Электрические характеристики

Любой светодиодный светильник является, прежде всего, электрическим устройством, и есть параметры работы светодиодов, о которых необходимо сообщать в технической спецификации.

 

Номинальная входная мощность (в Вт)

Входная мощность имеет отношение к общей мощности, потребляемой светильником, включая любое управляющее устройство в цепи.

 

Управляющий ток (в мА)

Яркость светодиода зависит от управляющего тока драйвера. Чем выше управляющий ток, тем выше светоотдача, но срок службы светодиода снизится. Стандартное значение управляющего тока составляет 350 мА, но может быть и по-другому.

Хорошие или неожиданно высокие показатели световой отдачи могут быть результатом того, что драйвер имеет более высокое напряжение, и, как следствие, показатели расчетного срока службы могут колебаться.

 

Коэффициент мощности

По своей природе электрическая схема светодиода имеет низкий коэффициент мощности, менее 0,5.

Хотя от производителей не требуется улучшать коэффициент мощности любого светильника с номинальной мощностью менее 26 Вт, это должно быть само собой разумеющимся для любого производителя, который привержен хорошим технологиям и заявляет хорошие показатели.

Ни один светодиодный светильник не должен иметь коэффициент мощности ниже 0,85.

 

 



SMD 2835 светодиод: технические характеристики

Технические характеристики светодиодов SMD 2835: оптические, электрические параметры, типоразмер. Схема подключения SMD светодиодов 2835. Сравнение светодиодов SMD 2835, 3528, 5050.

По электрическим и оптическим параметрам у SMD 2835 много общего со светодиодом SMD 5730 мощностью 0,5 Вт. Учитывая, что площадь излучения SMD 2835 меньше в 1,7 раза, он обладает такой же светоотдачей что и SMD 5730, а значит, лучше подходит для конструирования высокоэффективных светодиодных светильников.

Форм-фактор во многом напоминает ещё один прогрессивный светодиод SMD 3014. Излучающая поверхность имеет форму прямоугольника и полностью покрыта люминофором. Корпус выполнен из термостойкого компаунда белого цвета с небольшим срезом в одном углу, указывающим на катод.

В отличие от SMD 5630 и SMD 5730 функцию теплоотводящей подложки выполняют анод и катод. Теперь их выводы размещаются не только с торцов, но и на нижней части корпуса. Эту конструктивную особенность нельзя игнорировать при сборке светодиодного светильника своими руками.

Чип светодиода пригоден для конструирования светильников широкого профиля: ленты, прожекторы, лампы, фонари уличного освещения.

SMD 2835 заслуженно пришёл на смену менее ярким моделям с индексом 3528 и 5050. Исключение составляют RGB SMD 5050, которым пока нет альтернативы в одном корпусе.

Стоит отметить, что светодиод SMD 2835 можно свободно купить как в стандартной цветовой гамме, так и в дополнительной (фиолетовый, бирюзовый, оранжевый). Наглядно ощутить всю глубину цвета и яркость можно с помощью цветной светодиодной ленты на этих чипах.

Технические характеристики SMD 2835.

Светодиоды SMD 2835 – мощные полупроводниковые источники света с прямым напряжением от 2,8В до 7,2В и силой прямого тока до 30мА.

Сила светового потока при этом в зависимости от номинала варьируется от 20лм до 63лм. В качестве материалов светоизлучающего кристалла используются Индий (In), Галлий (Ga) и Нитроген (N).

Применение легирующих добавок и разнообразных технологий производства позволяют получить различные оттенки белого свечения: чистый белый, дневной и теплый белый.

Корпус светодиодов SMD 2835 изготавливается из термоустойчивого пластика, линза – из прозрачной эпоксидной смолы.

Отличительной особенностью представленных светодиодов является большая контактная площадка (теплоотводящая подложка), обеспечивающая дополнительный отвод тепла, накапливаемого в процессе свечения.

Типоразмер 2835 указывает на габаритные размеры светодиода – 2,8×3,5 мм.

Монтируются светодиоды на поверхность по SMD-технологии (Surface Mounted Device) с помощью групповой пайки или с использованием термо воздушной паяльной станции. Процесс оплавления рекомендуется проводить в атмосфере азота при соблюдении временно-температурных условий пайки.

Катодный вывод чип-светодиодов 2835 визуально определяется небольшим срезом угла корпуса и более коротким выводом. При подключении питания следует учитывать полярность светодиодов.

Также запрещено подключать светодиоды напрямую к источнику питания. В качестве ограничительного стабилизатора тока необходимо использовать драйверы питания или резисторы. При этом на каждую цепочку последовательно соединенных светодиодов подключается отдельный резистор.

Повышенная рабочая температура среды составляет не более +85°С, пониженная рабочая температура – не ниже -40°С. Потери мощности не превышают 200 мВт. Угол свечения широкий – 120°. Срок службы не менее 10 000 ч.

В качестве примера рассмотрим характеристики SMD 2835 белого цвета свечения с цветовой температурой 5500°K.

В зависимости от состава люминофора white SMD 2835 выпускается в тёплом, нейтральном и холодном белом свете с коэффициентом цветопередачи не менее 75%.

Максимально допустимый прямой ток равен 180 мА, импульсный – 400 мА с шириной импульса до 10% от периода. При этом разброс прямого напряжения может составить 2,9-3,3В.

Излучаемый световой поток достигает 50 лм с углом рассеивания 120°. Работая на номинальном токе, white SMD 2835 рассеивает порядка 0,5 Вт мощности и требует дополнительного охлаждения, при этом диапазон рабочих температур светодиода составляет от -40 до +65 °C.

Все приведенные характеристики подразумевают использование светодиодов с индексом 2835 при температуре окружающей среды Ta=25°C. Однако в реальности чип работает в гораздо менее комфортных условиях. Отводу тепла мешает защитный силиконовый слой или рассеиватель лампы, да и температура в комнате порою выше, чем 25°C.

На первом графике видно, что номинальный ток 180 мА можно подавать на светодиод только при Ta=0…30°C. С ростом температуры рабочий ток необходимо снижать, чтобы не перегреть кристалл. Уже на 80 градусах ток следует ограничить на уровне 50 мА, что и делают малоизвестные китайские производители светодиодной продукции. Не заботясь об эффективном охлаждении, они умышленно занижают рабочий ток.

В реальности можно рассчитывать на светоотдачу, равную 80–90% от паспортного значения. Ещё более сильно на световой поток влияет величина прямого тока, 100% светоотдача возможно лишь при 180 мА, а для этого нужен идеальный отвод тепла.

Если рассматривать, допустим, низкокачественные китайские светодиодные лампы, где реальный ток на одном чипе равен около 50 мА, то относительный световой поток будет составлять не больше 25% от номинала. Кроме этого светоотдача плавно снижается во время работы светодиодов и спустя 3000 часов составит около 95% от исходного состояния. Наглядно это показано на следующем графике. Заниженная светоотдача и рабочий ток вовсе не показатель подделки, эти параметры характеризуют реальные условия работы светодиода в чипе SMD 2835.

Схема подключения SMD светодиодов 2835.

Для обеспечения максимальной долговечности работы светодиодов SMD 2835 рекомендуется подключать их последовательно к номиналам сопротивлений. При этом стоит помнить, что максимально надёжной схема будет в том случае, если на каждую цепочку последовательно соединенных светодиодов выделено отдельное сопротивление (резистор).

При монтаже светодиодов нужно использовать токоограничивающий резистор для уменьшения тока, проходящего через светодиод, иначе он очень быстро выйдет из строя. Для подбора резистора можно использовать онлайн калькулятор.

Если нужно подключить несколько светодиодов сразу, то их монтаж осуществляется последовательно. При этом стоит иметь ввиду, что все светодиоды в цепи должны быть одного типа, а источник питания должен иметь достаточную мощность и обеспечивать напряжение, превышающее суммарное напряжение всех светодиодов.

Если нужно собрать схему с несколькими параллельными цепями последовательно соединенных диодов, рассчитанный номинал резистора нужно устанавливать для каждой из цепей. Нельзя подключать несколько светодиодов в параллели с помощью одного резистора, так как светодиоды имеют разброс параметров и требуют различные прямые напряжения, что делает такое подключение практически нерабочим.

Сравнение светодиодов SMD 2835, 3528, 5050.

SMD 2835 был выпущен позже, чем 3528 и 5050, поэтому обладает лучшими техническими характеристиками, и способен соответственно на большее.

Отличием светодиода 2835 от 3528 является размер кристалла, он больше, как и его световой поток, номинальная мощность и светоотдача Лм/ватт. У новых светодиодов были увеличены контактные площадки, что обеспечивает более качественный теплоотвод.

В качественной продукции применяются материалы корпуса с большей теплопроводностью. Высота корпуса 2835 уменьшена. Все это позволило улучшить отвод тепла от кристалла LED, и соответственно повысить срок службы.

Светоизлучающие диоды типа SMD отдают тепло в первую очередь через контактные площадки. У светодиода SMD 2835 почти вся излучающая поверхность покрыта слоем люминофора, а у SMD 3528 только круглая область по центру, это позволило существенно увеличить площадь излучения света.

Отличие LED 2835 от 5050. Светодиод типа SMD 5050 – это 3 кристалла SMD 3528 в одном корпусе, на нижней части которого располагаются 6 выводов. Поэтому он имеет больше размеры, и его кристаллы могут включаться в цепь по отдельности. Данный фактор даёт возможность получать RGB светодиоды или элементарную схему регулировки яркости путём выведения из работы одной ветки кристаллов, не теряя равномерности свечения изделия. При одинаковой мощности, у 2835 можно отметить большее значение светового потока. В остальном отличия такие же, как и от 3528.

На видео показан процесс пайки светодиодов SMD 2835.

Поделиться в соц. сетях

Проблемы, теория и реальность светодиодов для современных систем отображения информации высшего качества — Компоненты и технологии

Результатом интенсивного развития технологий в области производства оптоэлектронных приборов на основе полупроводниковых светоизлучающих кристаллов стало широкое использование светодиодов в системах отображения информации и световой сигнализации. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве источников света для этих устройств.

Реализация таких возможностей в этой области применения светодиодов достигается решением ряда технических задач, возникающих в процессе разработки конструкции светодиода. Анализу проблем конструкций светодиодов и кристаллов, оценке результатов собственных исследований характеристик и прогнозу тенденций повышения качества светодиодов посвящена данная статья.

Полупроводниковые источники света

Когда-то задача высечь огонь из чего бы то ни было была самой актуальной для человечества. На определенном этапе огню, полученному с помощью кремния, «было поручено» большое количество функций, одной из которых является его важная составляющая — свет. По-разному решалась эта задача в прежние века, но здесь речь пойдет о самом современном способе получения света из камня.

Основой для построения современных полупроводниковых источников света служит излучающий кванты света p-n-переход. Существует множество вариантов его создания в полупроводнике, но мы остановимся только на тех структурах, которые способны излучать кванты электромагнитного излучения при протекании через них электрического тока. Это гетероструктуры с широкозонными p-n-переходами, ширина запрещенной зоны которых более 1,9 эВ. В настоящее время созданы структуры, способные излучать во всем видимом диапазоне, в ближнем ИК и ультрафиолете. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве различных источников света.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий энергию электрического тока в световую, основой которого является излучающий кристалл. Излучение светодиода занимает достаточно узкою полосу (до 25–30 нм) шкалы спектрального распределения плотности энергетической яркости и поэтому носит характер квазимонохроматического излучения.

На основе вышеперечисленных полупроводниковых кристаллов с излучающими p-n-переходами создано огромное множество различных светоизлучающих светодиодов.

Конструкция светодиода определяет направление, пространственное распределение, интенсивность излучения, электрические, тепловые, энергетические и другие характеристики излучения от полупроводникового кристалла. И конечно, взаимное влияние всех этих параметров друг на друга. Детальное изучение информации о светодиодах различных конструкций и назначения и от различных производителей, сравнение ее с полученной в условиях лаборатории позволило сделать некоторые важные выводы о качестве и возможностях применения светодиодов.

В последнее время светодиоды все больше претендуют на использование их в освещении, художественной подсветке, сигнальной технике. Все это стало возможным благодаря достаточно быстрому росту энергетических показателей, надежности и долговечности квазимонохроматических источников излучения. Малое потребление электрической энергии, легкость формирования диаграммы направленности с помощью различной оптики, простота управления и, самое важное, специфическое восприятие излучения глазом делают светодиоды незаменимыми для создания полноцветных экранов, вывесок и других средств представления информации в виде динамического изображения. Однако это порождает особые требования к характеристикам светодиодов. Исследования, оценки и сравнения этих характеристик и стали предметом обсуждения в данной статье.

Теория светотехнических и электрических характеристик современных светодиодов и ее связь со спецификациями производителей

Самой распространенной и обобщающей единицей, характеризующей энергетические параметры светодиода, является осевая сила света [cd]. Однако эта величина абсолютно нечитаема, если не указать угол излучения Θ по некоторому уровню от Iνmax. Обычно говорится об угле излучения по уровню половины максимальной силы света — Θ0,5Iνmax, хотя иногда указывают и силу света по уровню 0,1IνmaxΘ0,1Iνmax. Совокупность двух параметров — угла излучения и осевой силы света — уже дает представление (хотя и очень грубое), в каком направлении распространяется и какой будет сила света при различных углах наблюдения. Для более точного определения величины силы света при любом угле наблюдения обычно приводится двухкоординатная плоская зависимость Iν(Θ), часто называемая индикатрисой излучения (рис. 1).

Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения (Рис. 1)

Рис. 1. Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения

Важной энергетической характеристикой излучения светодиода является световой поток F(lm), определяющийся как интеграл всей энергии, заключенной под пространственной индикатрисой излучения [1]. Именно этот параметр производители светодиодов часто указывают в спецификациях. Особенно это касается мощных приборов с большим углом излучения и равномерным пространственным распределением, стремящимся к ламбертовскому. Однако даже в этом случае невозможно достоверно оценить распределение светового потока внутри диаграммы и, соответственно, правильно оценить силу света светодиода. Подавляющее большинство простых математических пересчетов единиц, которыми пользуются потребители светодиодной продукции, оказываются абсолютно неверными и приводят к большой ошибке в проектировании энергетических характеристик устройств на светодиодах. Особенно это заметно при попытках пересчета несимметричных диаграмм направленности излучения (например, светодиодов с овальной оптикой) и индикатрис узконаправленных светодиодов. Поэтому стоит остановиться на некоторых методах определения светового потока и связи его с другими фотометрическими единицами, потому как только непосредственным измерением этой величины можно с большой точностью получить ее значение.

Методы определения светового потока на основе малых сферических интеграторов (радиус сферы составляет порядка 300–400 мм) широко используются в электронной промышленности. При этом светодиод располагается во входном окне сферы. При измерениях светодиодов с разным пространственным распределением силы излучения можно получить большие ошибки, так как геометрия распределения освещенности на внутренней поверхности интегратора будет различной.

Классический подход к измерениям полного светового потока с помощью сферического интегратора — это размещение источника излучения в центре сферы.

Но даже в этом случае связь с эталоном люмена, погрешности, связанные с неравномерностью спектральных и зонных характеристик внутренней поверхности сферы, требуют особого внимания. Поэтому наиболее перспективным с точки зрения точности и информативности является метод пространственного сканирования силы света — гониофотометрический метод. Используемые для этих целей приборы — гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Суть этого метода основана на пошаговой фиксации значений силы света при повороте светодиода на известный угол. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг 3–10 угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственное распределение. На основании этих данных рассчитывается световой поток.

Получение светового потока светодиода F с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nIν(Θ) при n ? ?) и последующим вычислением среднего значения F [2].

Распределение светового потока внутри диаграммы направленности позволяет судить о том, какая его часть попадет к наблюдателю в зависимости от угла его зрения. Следует напомнить, что МКО 1931 ггода регламентирует так называемого «стандартного колориметрического наблюдателя», угол зрения которого определен в 1 градус (рис. 2). Это обстоятельство учитывается при выборе данного параметра светоизлучающего светодиода в зависимости от его назначения. Однако часто пользуются лишь индикатрисой излучения, что не всегда верно при расчетах восприятия изображения, необходимой его интенсивности на разных расстояниях от источника и размеров самого источника излучения.

Элементарный световой поток, заключенный в телесном угле dΩ (Рис. 2)

Рис. 2. Элементарный световой поток, заключенный в телесном угле

Применительно к экрану, табло или бегущей строке как к источнику излучения совокупности светодиодов, площадью которого нельзя пренебречь по отношению к расстоянию l до наблюдателя, не выполняется закон «обратных квадратов» [3]; используется другая единица, с помощью которой характеризуется энергетика излучения такого протяженного источника — яркость Y [кд/м2].

Яркость определяется как сила света источника c произвольным распределением излучения по отношению к площади его излучающей поверхности [4].

Эффективность излучателя света характеризуется отношением светового потока (lm) к потребляемой электрической мощности (W). Эта величина, называемая светоотдачей, для светодиодов из материалов типа AIIIBV стала больше, чем у ламп накаливания во всех основных цветах видимого диапазона. Современные светодиоды имеют эффективность, достигающую 20–30 lm/W, а КПД колеблется от 9–16% в приборах на основе нитрида галлия и его твердых растворов (GaN, InxGa1–xN, AlxGa1–xN) и до 25–55% — у светодиодов на основе гетероструктур из твердых растворов (InyAlxGa1–x–yP).

Помимо энергетических, светодиоды характеризуются колориметрическими характеристиками. Знание этих параметров особенно важно при формировании правильной цветопередачи изображения в любом устройстве отображения информации, при использовании в светосигнальной технике, при проектировании оттенков подсветки в архитектуре и т. д.

МКО 1931 года установила трехкоординатную XYZ-систему обозначения цвета любого источника излучения (рис. 3). Как уже отмечалось, светодиоды являются достаточно узкополосными (квазимонохроматическими) излучателями, полуширина спектров которых составляет всего 15–30 нм, что соответствует средней тепловой энергии электронов, поэтому координаты цветности их излучения лежат практически на линии «чистых» цветов локуса МКО 1931 года. Однако имеется и более простая единица, характеризующая цвет, — доминирующая длина волны λdom, получаемая как результат пересечения прямой, проходящей через точку равноэнергетического источника типа «Е» и точку с координатами цветности данного светодиода и локуса МКО 1931 г. Именно ее указывают в технических характеристиках на светодиоды монохроматического излучения. Лишь отдельные фирмы, и NICHIA в их числе, указывают координаты цветности, что, по сути, правильнее. Но для устройств отображения информации, где важность цветопередачи изображения имеет очень высокий статус, этих характеристик зачастую оказывается недостаточно. Поэтому разработчики пользуются, как правило, спектральными характеристиками светодиодов, преобразования которых могут позволить получить ряд параметров спектрального распределения излучения, позволяющих детально оценить возможность использования конкретного светодиода в формировании необходимого оттенка или гаммы цветов. Спектр излучения характеризуется, помимо указанных, такими характеристиками, как центральная λc и максимальная λmax длины волн, полуширина спектра λ1/2, интегральный коэффициент K[Lm/Wopt] [5].

Цветовой график МКО 1931 года (Рис. 3)

Рис. 3. Цветовой график МКО 1931 года

Здесь E(λ) — относительное спектральное распределение светодиода, V(λ) — относительная спектральная световая эффективность.

Так, например, для получения высококачественного изображения на светодиодном экране, работающем по схеме формирования белого из трех основных цветов, — RGB необходимо, чтобы полуширина спектра источника каждого цвета была минимальна, что обеспечит высокую чистоту цвета поля изображения.

Не менее важными также являются электрические характеристики светодиодов. Это прямые и обратные вольт-амперные характеристики (рис. 4–6), зависимости прямого напряжения Uƒ и прямого тока Iƒ от температуры окружающей среды, люменамперные характеристики (зависимости интенсивности излучения от прямого тока через светодиод). По этим параметрам можно определить необходимые характеристики источников питания проектируемых устройств и рассчитать режимы оконечных устройств коммутации, нагрузкой которых будут используемые светодиоды.

Типичные прямые вольт-амперные характеристики светодиодов (Рис. 4)

Рис. 4. Типичные прямые вольт-амперные характеристики светодиодов

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP (Рис. 5)

Рис. 5. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP

Типичные обратные вольт-амперные характеристики светодиодов (Рис. 6)

Рис. 6. Типичные обратные вольт-амперные характеристики светодиодов

Следует отметить, что все описанные выше характеристики светодиодов находятся в непосредственной зависимости друг от друга, поэтому, как правило, лишь их совокупность позволяет правильно судить о тех или иных параметрах светодиода. Однако наиболее точно определить соответствие заявленным производителем параметров светодиода, его качество и долговечность можно лишь проведя комплекс измерений и расчетов его характеристик.

Светоды. Основы полупроводниковой оптоэлектроники

Если в кристалле полупроводника создан p-n-переход, то есть граница между областями с дырочной (p-) и электронной (n-) проводимостью, то при положительной полярности внешнего источника тока на контакте к p-области (и отрицательной — на контакте к n-области) потенциальный барьер в p-n-переходе понижается и электроны из n-области инжектируются в р-область, а дырки из p-областив n-область. Инжектированные электроны и дырки рекомбинируют, передавая свою энергию либо квантам света (излучательная рекомбинация), либо, через дефекты и примеси, тепловым колебаниям решетки (безызлучательная рекомбинация). Вероятность излучательной рекомбинации пропорциональна концентрации электронно-дырочных пар, поэтому наряду с повышением концентраций основных носителей в p- и n-областях желательно уменьшать толщину активной области, в которой идет рекомбинация. Но в обычных p-n-переходах эта толщина не может быть меньше диффузионной длины — среднего расстояния, на которое диффундируют инжектированные носители заряда, пока не рекомбинируют.

Задача ограничения активной области рекомбинации решена в конце 60-х годов Алфёровым и его сотрудниками. Были предложены и практически изготовлены гетероструктуры, сначала на основе GaAs и его твердых растворов типа AlGaAs, а затем и на основе других полупроводниковых соединений (рис. 7).

Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов. (Рис. 7)

Рис. 7. Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов.

В гетероструктурах толщина активной области рекомбинации может быть много меньше диффузионной длины.

Рассмотрим энергетическую диаграмму гетероструктуры (рис. 8), в которой между внешними p- и n-областями полупроводника с большими величинами ширины запрещенной зоны Eg2, Eg3 расположен тонкий слой с меньшей шириной Eg*. Толщину этого слоя d можно сделать очень малой, порядка сотен или даже десятков атомных слоев. Помимо потенциального барьера обычного p-n-перехода на гетерограницах слоя образуются потенциальные барьеры для электронов ΔEc и дырок ΔEν. Если приложить к переходу прямое смещение, возникнет инжекция электронов и дырок с обеих сторон в узкозонный слой. Электроны будут стремиться занять положения с наименьшей энергией, спускаясь на дно потенциальной ямы в слое, дырки устремятся вверх — к краю валентной зоны в слое, где минимальны их энергии.

Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении Uƒ. (Рис. 8)

Рис. 8. Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении .

Широкозонные внешние части гетероперехода можно сильно легировать с обеих сторон, добиваясь больших концентраций в них равновесных носителей. И тогда, даже не легируя активную узкозонную область примесями, удается достичь при инжекции значительных концентраций неравновесных электронно-дырочных пар в слое. Отказ от легирования активной области принципиально важен, поскольку атомы примеси, как уже говорилось, могут служить центрами безызлучательной рекомбинации. Попав в яму, инжектированные электроны наталкиваются на потенциальный барьер ΔEc, дырки — на барьер ΔEν, поэтому и те и другие перестают диффундировать дальше и рекомбинируют в тонком активном слое с испусканием фотонов.

Применяемые материалы группы AIIIBV имеют диапазон ширины запрещенной зоны от 1,9 до 3,5 эВ (рис. 9). Твердые растворы AlGaInP на различных подложках излучают в диапазоне от 650 до 580 нм, структуры на основе GaN, InGaN имеют наибольший квантовый выход в пределах 540–400 нм.

Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые) (Рис. 9)

Рис. 9. Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые)

Рекомбинация электронно-дырочных пар в таких материалах происходит преимущественно с выделением кванта света. Энергия кванта пропорциональна ширине запрещенной зоны Eg — энергии, которую должен затратить заряд для прохода через эту зону. О вероятности излучательной рекомбинации в узкозонном слое говорит внутренний квантовый выход излучения ηi (число излучаемых фотонов на одну электронно-дырочную пару). В гетероструктурах величина i теоретически может быть близка к 100%.

Некоторые особенности конструкции и параметров светодиодов для систем отображения информации

Несмотря на большое количество модификаций конструкций излучающих кристаллов, нельзя однозначно отдать предпочтение какой-либо одной. Если не говорить о качестве самого производства кристалла и соблюдения технологических процессов при их производстве, то выбор определяется, как правило, исходя из идеи построения оптической системы светодиода, на которую работает излучающий кристалл, и задачи, которую впоследствии должен решать этот светодиод.

В устройствах отображения информации светодиоды собраны в группы (кластеры) и не работают поодиночке (рис. 10).

Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов (Рис. 10)

Рис. 10. Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов

Практически на всех режимах воспроизведения изображения в работе участвует подавляющее большинство светодиодов одновременно. И здесь самым важным условием выбора светодиодов для таких устройств является идентичность большого числа характеристик приборов всех используемых цветов (если речь идет о полноцветных системах) одновременно. Иначе будет нарушено условие правильной цветопередачи и линейности яркости устройства в зависимости от угла обзора.

В настоящее время одной из самых передовых является конструкция светодиода с применением овальных линз (рис. 11), формирующих пространственное распределение с существенной разницей в углах излучения в горизонтальной и вертикальной плоскостях.

Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град. (Рис. 11)

Рис. 11. Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град.

В некоторых случаях для достижения такого эффекта и для обеспечения максимальной равномерности диаграммы в материал линзы локально или по всему объему вводится диспергатор. В результате получается достаточно рациональная конструкция: с одной стороны, широкий (как правило, 110 градусов по уровню 0,5) угол в горизонтальной плоскости дает возможность построить экран, наблюдаемый под большими углами в этой плоскости без искажений, с другой стороны, небольшой вертикальный (30–50 градусов по уровню 0,5) ограничивает бесполезное распространение светового потока в пространство, где нет наблюдения. Таким образом, весь световой поток от кристалла равномерно направляется на наблюдателя. Сложность в том, что распределение светового потока внутри диаграммы направленности светодиодов разного цвета свечения редко бывают одинаковыме. Хотя угловые характеристики по уровню 0,5, указываемые в спецификациях, совпадают. Это связано с особенностью конструкций кристаллов, их геометрическими размерами, правильно подобранной оптикой, процентным содержанием диспергатора в материале линзы и т. д. Невыполнение этого условия и приводит к появлению описанных искажений изображения, сформированного кластером из таких светодиодов (рис. 12). Поэтому важно понимать, что построение качественного устройства воспроизведения полноцветного изображения, где имеет место смешение цветов и формирование оттенков, невозможно без учета характеристик распределения светового потока внутри диаграммы пространственного распределения излучения. Это условие касается также условия минимального разброса интенсивностей излучения (силы света) всех светодиодов одного цвета, невыполнение которого проявляется в виде неравномерной засветки поля светящегося полотна. Глаз способен различить разницу яркостей двух элементов, находящихся в пределах его разрешения и отличающихся друг от друга всего на несколько процентов (при условии нахождения в пределах насыщения). Как показывает практика, выполнение этого условия в начале эксплуатации светодиодного устройства вовсе не означает, что оно сохранится в процессе работы. Этот факт будет обсужден в следующем разделе статьи.

Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера. (Рис. 12)

Рис. 12. Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера.

Следующим важным параметром, идентичность которого должна быть соблюдена обязательно, является колориметрическая характеристика. Следствием невыполнения этого требования будет появление различных неоднородностей воспроизведения цвета. Система управления формированием цвета будет настроена на определенное соотношение интенсивностей основных цветов по формуле (7) исходя из спектральных параметров,

описанных в разделе 3 статьи, чтобы получить белый цвет с необходимыми координатами цветности. Однако достаточно отличающиеся по цветовым параметрам светодиоды будут выделяться и исказят цветопередачу. Этот дефект будет тем более заметен, чем меньше ширина спектрального распределения излучения светодиода. Стоит отметить, что глаз очень чувствителен к изменению цвета и способен различать квазимонохроматическое излучение с точностью до 1–2 нм.

Кроме идентичности параметров спектрального распределения необходимо остановиться на некоторых их значениях, требуемых для формирования правильной цветопередачи. МКО 1931 года рекомендует следующие координаты основных цветов (табл. 1).

Таблица 1

Следующим шагом в разработке конструкций светодиодов для систем отображения информации высокого качества стали многокристальные светодиоды с различным цветом излучения и полноцветный (RGB, Full сolor) прибор, содержащий три кристалла в одном корпусе (рис. 13), позволяющий формировать любой оттенок свечения (в том числе белый) как результат матрицирования трех цветов.

Полноцветные светодиоды для SMD-монтажа (Рис. 13)

Рис. 13. Полноцветные светодиоды для SMD-монтажа

Кристаллы расположены на одной общей подложке и находятся друг от друга на расстоянии, не превышающем 1–3 своих линейных размеров. Именно с использованием таких приборов стал возможен отказ от кластеров при изготовлении полноцветных экранов с высокой разрешающей способностью и яркостью до 2500 кд/м2. Размер пикселя при этом получается равным размеру одного светодиода, а смешение цветов вообще происходит в точке с размером примерно 0,8×0,3 мм. Более того, будучи расположенными на одном основании, все три кристалла имеют одинаковую температуру в любой момент времени, поэтому все тепловые уходы их параметров происходят одновременно, независимо от большой разницы прямых токов, и не влияют на результирующий цвет и интенсивность, сформированные в этот момент системой управления (в отличие от кластеров на дискретных светодиодах, где нет единой термостабилизации). Максимальный эффект этого свойства проявляется при формировании и воспроизведении белого цвета с большой частотой смены полей.

К достоинству описанной конструкции светодиода в части теплового режима стоит отнести и возможность использования его в импульсном режиме. Благодаря способности кристалла работать на больших (сотни МГц) частотах возможно получение импульсной оптической мощности, равной десяти номинальным долговременным, с сохранением фронтов до 10 нс (в зависимости от частоты повторения импульсов), при этом прямой ток через кристалл может достигать 100 мА.

Как правило, такие светодиоды исполняются в виде безвыводных элементов для SMD-монтажа и практически не имеют оптической системы, формирующей специфическую диаграмму направленности, поэтому она приближается по форме к cosΘ. Однако взаимное геометрическое расположение кристаллов все же вносит искажения в равномерность смешения световых потоков (рис. 14).

Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода (Рис. 14)

Рис. 14. Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода

Но по сравнению со светодиодами с овальной оптикой качество равномерности распределения намного выше на отдаленных от оптической оси углах, соответственно больше и угол наблюдения без искажений. Существуют и конструкции многокристальных светодиодов с различными оптическими системами, упорядочивающими смешение потоков кристаллов и формирующих подобие диаграммы направленности овальных светодиодов. Например, светодиоды фирмы «Корвет-Лайтс» (рис. 15), позволяющие использовать кристалл при повышенных плотностях тока — до 80 А/см2, и обладающих увеличенной по сравнению с другими конструкциями светоотдачей.

а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой (Рис. 15)

Рис. 15. а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой

Однако равномерного смешения световых потоков кристаллов при использовании оптической системы получить не удается, поэтому широкого распространения такие приборы не получили, несмотря на свои незаурядные энергетические характеристики, едва ли до сих пор кем-либо достигнутые.

Также в таких светодиодах существует проблема с упорядочением идентичности параметров кристаллов, о которой говорилось выше, — ведь необходимо, чтобы все три кристалла были по параметрам очень близки к соответствующим в других светодиодах. Добиться такого сочетания необходимо уже на уровне монтажа кристаллов в корпус, иначе выход приборов с близкими параметрами будет невысок относительно всей партии. Такое действие достаточно трудоемко с технологической точки зрения и приводит к удорожанию продукта. Как правило, за основу берут один параметр, который можно скорректировать уже в составе светодиода. Это сила света. Цветовые характеристики кристаллов тестируются и разделяются еще до монтажа. Впоследствии интенсивность свечения каждого кристалла каждого светодиода в составе табло, например, доводится до одинакового значения программными средствами либо коррекцией питания. Таким образом реализуется идентичность характеристик в трех кристальных светодиодах, используемых группами.

Подавляющее большинство систем управления интенсивностями свечения светодиодов реализовано на принципе широтно-импульсной модуляции (ШИМ) с большим количеством дискретов. Достоинства этого принципа управления, кроме удобства цифровой обработки данных сигнала, с точки зрения режимов работы светодиодов в том, что прямой ток через светодиод остается постоянным всегда, а изменяется лишь длительность импульса этого тока. Глаз интегрирует световой поток за период времени до следующего импульса, и получается, что время свечения светодиода, пропорциональное времени импульса, определяет интенсивность излучения. Это условие можно учесть программно и на самых малых уровнях интенсивности при самых коротких импульсах, когда интеграционная характеристика глаза приобретает функцию ех с большими значениями х, и на самых больших, когда наступает насыщение, сохраняя тем самым линейность яркостной характеристики. Постоянство прямого тока через светодиод определяет соответствующее постоянство большинства ключевых параметров светодиода, в основном зависящих прямо или косвенно только от тока (люмен-амперная характеристика, зависимость полуширины спектра излучения, вольт-амперная характеристика и т. д.). Таким образом, при использовании подобных систем управления устройством отображения информации проблемы уходов характеристик светодиодов сведены преимущественно только к температурным зависимостям. И хотя это также является довольно серьезной темой для обсуждения, стоит говорить об этом отдельно, чтобы рассмотреть все подробности.

Анализ параметров и прогноз качества светодиодов для систем отображения информации от различных производителей методом исследования деградационных характеристик

Ведущими в мире производителями полупроводниковых кристаллов считаются компании NICHIA, Toyoda Gosei, Hewlett-Packard, CREE, Osram, Lumileds, Epistar. Эти компании отличаются друг от друга не только количеством произведенной продукции, а, что самое важное, принципиально различными конструкциями кристаллов собственных разработок. Поэтому, исследуя конкретный светодиод, помимо его технических характеристик немаловажно знать, на основе кристалла какого производителя он изготовлен. Как правило, знание этого обстоятельства, сразу ответит на многие вопросы опытному пользователю светодиодами еще до рассмотрения им других данных. Однако любая наука базируется на исключительно объективных сведениях. Получить их — довольно непростое дело, но в этом разделе хотелось бы обсудить именно такие — объективные результаты исследований параметров кристаллов и светодиодов, полученные в результате многих тысяч измерений и расчетов их характеристик. Во внимание были взяты лишь физические величины, цифры, показания приборов и сравнительные характеристики на их основе.

Были досконально исследованы светодиоды более чем 20 фирм-производителей, в том числе использующих кристаллы указанных выше компаний-лидеров.

Самому детальному исследованию были подвергнуты светодиоды на основе кристаллов Lumileds, Epistar, CREE производства СОТСО, RETOP, ACOL, LASEMTECH, Inc., светодиоды на основе кристаллов Toyoda Gosei, NICHIA.

Параллельно исследовались светодиоды на основе кристаллов, произведенных в Юго-Восточной Азии. Это приборы фирм Brightek, ETR, GUANGYI, Lanbaoli elektroniks, Golden Valley Opto, Lite-Max optо, SINO, ULTRALIGHT electronic, Sitronics Co., LED YI LIU, КENA, Shuen, Ningbo Foryard Opt., SANDER, Ledman и др.

Все образцы исследовались по одинаковой методике. Исследования велись при одинаковых условиях и с максимально возможным количеством измеряемых параметров. Во время наработки каждый светодиод питался от отдельного индивидуального стабилизированного источника тока с точностью поддержания тока ±0,5 мА. Это исключает возможность появления деградации параметров из-за колебаний прямого тока через кристалл. Большинство выводов сделано на основе наблюдений за изменениями зависимостей параметров в течение не менее 10 тыс. часов непрерывной работы светодиодов.

Помимо величин, изменяющихся в зависимости от прямого тока через кристалл, поддающихся моделированию или измерению (световой поток или сила света — люмен-амперная характеристика, вольт-амперная характеристика, зависимость координат цветности от прямого тока и т. д.), есть и такие, как, например, срок службы, необратимая деградация и т. п., которые не могут быть достоверно установлены в зависимости от изменения вышеуказанного параметра. Значения этих характеристик можно косвенно предположить исходя из определения степени близости условий работы кристаллов при различных токах к условиям их работы на нормируемом производителем токе и нормируемого при этом токе срока службы. А также анализируя поведение спектральных и фотометрических характеристик излучения при больших токах, по которому можно достаточно точно судить о «здоровье» кристалла, светодиода в целом и его возможном потенциале.

Необходимость данных этого исследования возникает при моделировании новых конструкций светодиодных устройств, учитывающих возможность работы кристаллов при больших плотностях тока, прогнозов ухода параметров при колебаниях температуры окружающей среды, а также при конструировании устройств отображения информации и сигнализации высокой надежности.

К каждому типу исследуемых светодиодов обязательно применялся метод последовательных измерений большого количества параметров в зависимости от времени наработки (деградационные характеристики параметров — зависимости их значений от времени наработки), что в свою очередь подтвердило эффективность метода для определения качества светодиодов. Появилась возможность связать малые отклонения от типичных в характеристиках у светодиодов без времени наработки с характеристиками после некоторой наработки, приводящие впоследствии к выходу светодиода из строя. Это позволяет сделать достоверный прогноз качества, срока службы и поведения характеристик прибора в процессе всего времени эксплуатации, не прибегая к длительным испытаниям.

По поведению показателей наиболее важных параметров приборов различных конструкций и производителей в течение временной наработки все светодиоды были условно разделены на насколько групп по степени изменения характеристик и изначального (без наработки) соответствия значениям, обозначенным в спецификациях.

Группа 1.

Результаты исследований прежде всего выявили общее повышение энергетики выхода используемых кристаллов относительно прежних показателей. Наиболее продвинутой в плане освоения новых технологий в производстве светодиодов оказалась фирма СОТСО, которая применила в своих светодиодах новый тип кристалла на основе InGaN/GaN на подложке SiC. Это кристаллы серий CREE XBright™, CREE XThin™, устанавливаемые способом «flip-chip» на эвтектическую прослойку, нанесенную на рамку светодиода. Они стали удачным продолжением в усовершенствовании кристаллов MBright™ на подложке SiC, отличающейся лучшей, чем сапфир, совместимостью кристаллических решеток подложки и выращенной на ней структуры InGaN/GaN. Применение кристалла XBright™ позволило практически сравнять энергетические показатели светодиодов синего и зеленого цвета излучения со светодиодами фирмы NICHIA, не изменяя цены и, что самое важное, надежности светодиода. А светодиоды с кристаллом CREE XThin™ фирмы Ledman превзошли по энергетическим параметрам идентичные по характеристикам приборы лидера производства светодиодов. Например, высший ранг наиболее используемых в экранах светодиодов с овальной линзой и углом излучения 110×50 град. светодиодов фирмы NICHIA NSP_546 имеет осевую силу света до 2,4 кд (зеленый цвет), в то время как фирма СОТСО заявляет 2,3 кд у LO5SMQPG4-BOG-A1, что подтвердилось при исследованиях. Синий СОТСО LO5SMQBL4-BOG-A1 также с углом излучения 110×50 град. имеет осевую силу света до 0,75 кд (табл. 2). Световой поток кристаллов CREE представлен в таблице 3.

Таблица 2

Таблица 3

Световая отдача кристаллов CREE XThin™ достигает 35–40 lm/W за счет значительного уменьшения прямого падения напряжения Uƒ во всем диапазоне токов. На рис. 16, 17 показана эволюция вольт-амперных характеристик семейства кристаллов CREE, наглядно поясняющая это утверждение.

Прямые вольт-амперные характеристики кристаллов CREE (Рис. 16)

Рис. 16. Прямые вольт-амперные характеристики кристаллов CREE

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin кристаллов CREE (Рис. 17)

Рис. 17. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin кристаллов CREE

Использование таких светодиодов позволяет формировать экраны и табло с шагом пикселей 22 мм и яркостью до 8000 кд/см2. При шаге пикселей 19 мм можно достичь яркости 10 тыс. кд/см2. При этом полностью сохраняется надежность и долговечность работы экрана.

В чем секрет этих светодиодов? Особая конструкция кристаллов CREE XBright™, CREE XThin™ (рис. 18) одновременно решает несколько задач:

Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм (Рис. 18)

Рис. 18. Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм

  • Великолепный отвод тепла от p-n-перехода (тепловое сопротивление «p-n-переход — кристаллодержатель» — всего 2–5 град./Вт), активная область расположена всего в 2–3 мкм от эвтектического слоя.
  • Выгодное с точки зрения хода оптических лучей расположение граней и распределение излучения внутри кристалла по всему объему. Поэтому выход квантов наблюдается по всей поверхности граней кристалла, а их площадь примерно в четыре раза больше, чем у кристалла на подложке из Al2O3 (рис. 19).
  • Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт (Рис. 19)

    Рис. 19. Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт

  • Площадь верхнего омического контакта, несмотря на маленький размер, не влияет на равномерность растекания тока, так как p-n-переход расположен в противоположной стороне от него, а распределение тока формируется толщей подложки SiC и специальным слоем AuSn. Нижний контакт занимает всю площадь нижней грани. Поэтому вся площадь активной области работает при одинаковой плотности тока и нет локализации излучения, находящейся в зависимости от расположения омического контакта.
  • Высокая механическая прочность эвтектического соединения кристалла с металлической рамкой светодиода. Устраняются проблемы разности коэффициентов линейного расширения кристалла и материала рамки (подложки) при увеличении температуры работающего кристалла.
  • Кристалл имеет большой динамический диапазон и запас по импульсным токовым нагрузкам. Линейность люмен-амперной характеристики сохраняется вплоть до тока 120 мА, что соответствует его плотности почти в 200 А/см2. Кристаллы конструкций на рис. 19 теряют линейность, едва достигая плотности тока 100–120 А/см2.

Технология посадки кристалла способом «flip-chip» встречается не впервые. Toyoda Gosei применяет эту технологию для кристаллов на подложках из Al2O3. Светодиоды фирмы отличаются высокой надежностью, которую, помимо конструкции кристалла, обеспечивает еще и смонтированный рядом с излучающим кристаллом быстродействующий диод Шоттки, включенный обратно и шунтирующий светодиод при подаче большого обратного напряжения. Однако светотехнические параметры этих светодиодов ниже, чем у СОТСО.

Группа 2.

Другая часть производителей, которые используют в производстве своих светодиодов кристаллы преимущественно конструкций—прототипов NICHIA, разделилась на несколько категорий по различным качественным показателям приборов на однотипных кристаллах. Но все они не достигли таких значений силы света и других энергетических показателей светодиодов, как у ведущих фирм. Часто реальные параметры светодиодов разнились с заявленными в спецификациях, обладая и по этим данным не самыми лучшими характеристиками. Делается это недобросовестным производителем исключительно для того, чтобы обозначить свою продукцию среди других на должном уровне и сделать ее продаваемой, потому как проверить истинность параметров потребителю в подавляющем большинстве случаев бывает невозможно, а по виртуальным, написанным на бумаге характеристикам светодиоды обладают неплохими параметрами. Но выясняется, что все далеко не так.

Группа 3.

Следующая категория — светодиоды с большим фактором деградации квантового выхода от времени наработки, связанного как с некачественным кристаллом, так и с нарушением технологии при сборке светодиода. В эту группу попали светодиоды фирм Lite-Max optо, SINO, ULTRALIGHT electronic, GUANGYI, Ningbo Foryard Opt., SANDER, использующие кристаллы неизвестных производителей из Юго-Восточной Азии. Подавляющее большинство этих кристаллов имеет широко известную структуру, представленную на рис. 19. Однако их характеристики не имеют ничего общего с такими же кристаллами производства NICHIA, по всей вероятности, из-за несовершенства оборудования и несоблюдения технологического процесса их выращивания. Детальные результаты измерения, получения и моделирования деградационных характеристик требуют более тщательного, чем просто ознакомительное, обсуждения из-за большого объема вплотную связанных друг с другом параметров и непременно станут темой будущих статей. Стоит привести здесь одну из самых наглядных диаграмм, иллюстрирующих процесс деградации наиболее важного параметра светодиода во времени— пространственного распределения силы света в зависимости от времени наработки Iν(T) (рис. 20). Возможно построение зависимости изменения светового потока от времени наработки (как наиболее корректной с точки зрения физики процесса), но наглядность этого графика для пользователя будет недостаточна для объяснения картины происходящих изменений в светотехнических параметрах, к которым привязано большинство спецификаций на светодиоды. «Интегральность» этого параметра не позволит проследить за изменениями угловых характеристик и значений силы света на разных участках диаграммы. Как видно из диаграммы, помимо значительного уменьшения осевой силы света , происходит одновременное уменьшение и перераспределение светового потока по углу излучения, изменение угловых характеристик светодиода по разным уровням и, как следствие, пропорциональное этому явлению изменение светотехнических характеристик устройства отображения информации в целом. Это наиболее заметно, если подобная деградация происходит лишь у части светодиодов, образуя пятна и области с нарушенной цветопередачей и разной яркостью. Однако протекание подобной деградации у светодиодов никогда не происходит равномерно у всех образцов из-за различия причин ее появления. А самое главное, что применяемые в кластере светодиоды, как говорилось ранее, выполнены на основе кристаллов разных структур, изменения параметров которых изначально не могут быть одинаковыми. Поэтому сам факт появления деградации, отличающейся по характеру от нормальной для этих материалов кристаллов, уже говорит о недопустимости его возникновения у светодиодов, составляющих полотно изображения устройства. Как правило, поведение именно этого графика (рис. 20) в первые несколько сотен часов работы может многое сказать об отклонении и других характеристик светодиода от нормы.

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике (Рис. 20)

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике

Группа 4.

Еще одну категорию составляют светодиоды (Sitronics Co., LED YI LIU и др.) с большим разбросом параметров (более ±50% по ) в партии из нескольких сотен штук, усугубляющимся деградацией и не позволяющим использовать их в аппаратуре, требующей единства характеристик всех светодиодов группы. Поэтому их детальное рассмотрение не приводится.

Исследования статистических данных производства больших партий (до 1 млн штук) некоторых производителей (например, СОТСО) показали, что вне зависимости от категории (группы светодиодов, разбитых по принципу идентичности или малого, до ±10%, разброса параметров) количество образцов, определенных описанным методом как неизбежно выходящих из строя, практически одинаково и составляет примерно 12–15%.

Некоторые данные о результатах этих исследований сведены в таблицу 4.

Таблица 4

Причем изначально эти светодиоды признаются годными, потому как действительно соответствуют всем параметрам производителя, указанным в спецификации. Конечно, приведенные цифры колеблются в зависимости от качества партии применяемых пластин кристаллов, соблюдения технологической дисциплины и т. д. Однако селекция потенциально неисправных образцов на производстве является продолжением и развитием описанной методики (с помощью деградационных характеристик) определения критериев, по которым необходимо проводить этот отбор. Таким образом удастся использовать качественные светодиоды, отсортированные по необходимым критериям, и быть уверенным в том, что их параметры не изменятся непредсказуемо непосредственно в проектируемом изделии.

Некоторые итоги исследований

Подытоживая сказанное, стоит заметить, что проводимые исследования и постоянный мониторинг новаций и разработок позволяют не только судить о состоянии рынка светодиодной продукции, но и принимать правильные решения в стратегии использования тех или иных светодиодов в устройствах на их основе. Нельзя не уделять внимание некоторым, принципиально разнящимся с классическими, разработкам в области создания новых средств для полупроводниковой оптоэлектроники. Именно такой подход требуется при проектировании современных устройств отображения информации и оправдан качеством и высокими параметрами производимых экранов и табло на светодиодах при устойчивой тенденции к снижению их стоимости.

Литература

  1. Sze S. M. Physics of Semiconductor devices. 1984.
  2. Moss T. S. Semiconductor Opto — Electronics. 1973.
  3. Абрамов В. С., Никифоров С. Г., Соболь П. А., Сушков В. П. Свойства зеленых и синих InGaN-светодиодов // «Светодиоды и лазеры» № 1, 2. 2002. С. 30–33.
  4. Агафонов Д. Р., Аникин П. П., Никифоров С. Г. Вопросы конструирования и производства светоизлучающих диодов и систем на их основе // «Светотехника» № 6. 2002. С. 6–11.

Как проверить светодиод мультиметром легко и просто

Как проверить светодиод мультиметром, как проверить работоспособность светодиода мультиметром — фразы, набившие оскомину. Специально решил проверить, что за информация «вываливается» из поисковиков. В принципе, все достоверно и правильно. Но почему-то не собранная «в кучу» информация меня постоянно нервирует. Я всегда и постоянно пытаюсь все систематизировать. Львиная доля информации и статей на нашем сайте проходит жесткую «редактуру», если статьи написаны не мной. И если пробежаться по контенту, то можно понять, что информация. которая в-первые появляется на моем сайте сразу же расходится по другим. Не потому, что она «гениальна», а все потому, что гораздо важнее и интереснее иметь в закладках один сайт, а не множество. чтобы «выуживать» какую-либо необходимую информацию.

Ну да ладно, это лирика, а мы все-таки приступим и начнем рассматривать способы и методы проверки светодиодов при помощи мультиметра. В другой статье Вы можете прочитать как протестировать на работоспособность светодиоды мультиметром.

Проверить светодиоды можно и без мультиметра, благо таких приборов на просторах интернета продается великое множество — тут или тут. Первый тестер проверенный годами и не прихотлив. Остальные — на Ваш выбор.

Электрические параметры светодиодов


Изначально вернемся к физике и договоримся, что основными характеристиками светодиодов  являются:

1) падение напряжения, измеряемое в вольтах. Именно характеристика, которая определяется как, 2В или 3В — имеется ввиду именно параметр «падение напряжения»;

2) номинальный ток. Как правило, значение приводится в миллиамперах. 1 мА = 0,001 А;

Перейдя по ссылке выше, Вы увидите, что наиболее важными являются именно напряжение и ток. Их-то мы и будем определять при помощи мультиметра.

Сразу распределим нашу статью на теоретическую и практическую часть. Вернее, посмотрим, как можно тестировать светодиоды на практике и на теории.

Теоретический метод определения характеристики светодиодов без использования мультиметра


Один из простых способов определить характеристики светодиодов — это визуальный «осмотр». Понятно, что так смогут лишь либо профессионалы, либо те, кто не один раз уже сталкивался с таким методом определения данных.

Можно либо проводить «тестирование» основываясь на своем опыте, можно же при помощи Интернета. В любом поисковике Вы можете найти картинки на любой светодиод. На основе них можно зайти на любой мало-мальски серьезный интернет-магазин и уже там смотреть на характеристики.

Оговорюсь, что мультиметром можно определять характеристики светодиодов, которые не являются мощными.Т.е. реально и визуально и практически мультиметром можно определить светодиоды размером 3; 4,8; 5; 8 и 10 мм.

Такие светодиоды принято разделять на индикаторные и на общего свечения. Индикаторные имеют следующие электрические параметры: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения: значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

Более «правильным» способом определения характеристик светодиода является его излучающий цвет. Разный цвет диодов указывает на разные полупроводниковые материалы, из которых они изготавливаются.

Ниже я представляю Вам таблицу, используя которую, Вы сможете с большой точностью определять падение напряжения.

Таблица определения характеристик светодиодов


Сразу оговорюсь, что не смотря на то, что в таблице приведены данные, у одного и того же цвета падение напряжения может меняться, ввиду неоднородности производства светодиодов.

Как проверить светодиод мультиметром с регулируемым блоком питания


Как проверить работоспособность светодиода мультиметром — посмотрим на практике. Для этого нам необходимо подключить регулируемый блок питания с постоянным напряжением до 12В, мультиметр (вольтметр), резистор на 580 Ом (можно и больше — не принципиально).

Принципиально схема работает следующим образом: резистор ограничивает ток, вольтметр будет непосредственно отслеживать прямое падение напряжения. При плавном увеличении напряжения от источника питания необходимо наблюдать за показанием напряжения на вольтметре (мультиметре). Как только порог будет достигнут, то непосредственно светодиод начнет светиться. При достижении максимальных значений показания на мультиметре перестанут резко возрастать, что будет означать, что p-n-p переход открыт и напряжение будет теперь прикладываться только к резистору. Текущие показания будут номинальным прямым напряжением светодиода. Если не прекратить питание, то будет расти ток, протекающий через полупроводник. Превышение тока приведет к перегреву светодиода (кристалла) и произойдет его пробой.

Как проверить светодиод мультиметром при отсутствии регулируемого блока питания


Не у всех есть регулируемый блок питания. Но это не значит, что нет возможности определять характеристики светодиода. Для этого нам понадобится:

  1. Крона (батарейка на 9 В).
  2. Резистор 200 Ом.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Будущего «пациента» соединяем последовательно с постоянным резистором, потом с переменным, кроной и мультиметром. Мультиметр переключаем в режим измерения постоянного тока.

Как будете соединять компоненты — не важно, ввиду того, что цепь последовательная, а это значит, что ток протекающий по цепи будет одинаковый.

Первоначально переменным резистором устанавливаем минимальное напряжение, и «передвигаем» до 20 мА и только после этого измеряем напряжение.

Данный метод будет бесполезен при измерении данных по мощным светодиодам.

Характеристики светодиодов

Для того чтобы произвести оценку всего многообразия существующих типов твердотельных источников света попробуем сравнить характеристики светодиодов различного назначения.

Общие характеристики, которые можно применить при оценке параметров любых светоизлучающих диодов – это спектр излучения, показатели световой мощности (сила света либо световой поток), вольтамперная характеристика, электрическая мощность светодиода.

Вольтамперная характеристика всех диодов в той или иной мере идентична по своей форме, отличия состоят только в конкретных величинах токов и напряжений, поэтому на ней заострять внимание не будем.

Начнем с самых простых представителей

Стандартные индикаторные светодиоды в круглых и овальных корпусах имеют мощности порядка 20-50 мВт и различный спектр излучения, определяющийся типом используемого полупроводника для его изготовления. Типовым представителем таких светодиодов может служить круглый 5 мм  АЛ307 отечественного производства.

Его технические параметры приведены в таблице ниже.

ТипСпектр излученияДлина волны, нмСила света, мкдНоминальный ток, мАПрямое падение напряжения, В
АЛ307 Взеленый567

0.4

1.5

6

20

2.8

АЛ307 Г
АЛ307 Н
АЛ307 Бкрасный655

0.9

2.0

6

10

2.0

АЛ307 К
АЛ307 Л
АЛ307 Джелтый590

0.4

1.5

6

10

2.5

АЛ307 Е
АЛ307 Ж
АЛ307 Ооранжевый610

0.4

1.5

6

10

2.5

АЛ307 Р
АЛ307 М

Поскольку светодиоды индикаторного типа имеют узкий угол свечения, то для оценки используется такой параметр излучения как сила света, измеряющийся в милликанделах [мкд]. АЛ307 имеет по три градации яркости для каждого цвета. Спектр представлен четырьмя цветами.

Светодиоды в корпусах типа «пиранья» позволяют получать большие мощности за счет сниженного теплового сопротивления и отвода тепла на плату сразу через четыре вывода. Корпус «пиранья» также обрел популярность благодаря повышенной механической устойчивости – светодиоды «пиранья» с успехом применяются для изготовления автомобильного света. Практически все крупные производители имеют в своей номенклатуре семейство светодиодов в корпусе «пиранья».

Такие светодиоды обычно называются ультраяркими или сверхяркими. Основные технические параметры светодиодов «пиранья» производства американской компании CREE  приведены в таблице.

ТипСпектр излученияДлина волны, нмСветовой поток, лмНоминальный ток, мАПрямое падение напряжения, В
CP41B-Rкрасный628

7-8

70

2,5

CP41B-Аоранжевый591

6,5-8

70

2,5

CP41B-Bсиний470

2,5

30

3,6

CP41B-Gзеленый527

6,5

30

3,6

Угол свечения может быть 40˚, 70˚ или 100˚ в зависимости от модификации, определить которую поможет data sheet производителя.

Корпус «пиранья» позволяет отводить до 200 мВт мощности.

Длина волны, которая приведена в таблице для каждого цвета свечения является доминантной для данного типа светодиода. В действительности же спектр излучения, например, красного светодиода может находиться в диапазоне от 620 до 637 нм.

«Пиранья» может быть и белого свечения. Белые светодиоды изготавливаются путем нанесения желтого люминофора на синий кристалл.

Следующую группу – SMD 5050 – можно отнести уже к категории мощных светодиодов. Как видно из названия это светодиоды поверхностного монтажа с размерами 5×5 мм.

Наименование SMD 5050 – условное, поскольку различные производители дают свое обозначение данному классу светодиодов в соответствии со сложившейся системой. Максимальная мощность достигает одного ватта. На дне корпуса такого светодиода обычно располагается специальная площадка для отведения тепла, хотя в менее мощных модификациях она может и отсутствовать.

Светодиоды SMD 5050 обычно белого цвета свечения, т.к. предназначены для изготовления светильников. Они могут монтироваться как на стеклотекстолитовую, так и на алюминиевую печатную плату. Последняя используется для лучшего отвода тепла при больших мощностях.

Белый спектр излучения подобных светодиодов имеет различные цветовые оттенки. Для них вводится такая характеристика как «коррелированная цветовая температура», которая измеряется в Кельвинах [K].

Угол свечения у них составляет 115˚.

Ниже приведены основные характеристики светоизлучающих диодов CLN6A, как одного из лучших видов в этом классе (полный список возможных исполнений достаточно велик, поэтому приведены два типовых представителя).

ТипСпектр излученияСвет-й поток, лмНоминальный ток, мАПрямое падение напряжения, В
Мин.Макс.

CLN6A-WKW-CJ0L0153

Холодный белый

5500 К

60

101,8

300

3,8

CLN6A-MKW-CH0K0133

Теплый белый

3200 К

51

85,6

Как видно из таблицы спектр излучения влияет на величину светового потока – это правило для всех светодиодов белого свечения.

Для того чтобы точно определить характеристики белого светодиода необходимо знать его полное обозначение, поскольку в нем с помощью так называемых бинов зашифрованы все отличающиеся параметры. Например, светодиод XPEWHT может иметь бин по световому потоку Q5 (107 лм при токе 350 мА), а может R2 (114 лм) и R3 (122 лм). Ошибка или неполная маркировка при заказе может привести к «недостаче» люменов на 14% (если вместо R3 получим Q5). То же можно сказать про спектр излучения. Внимательно изучайте документацию производителя!

Как интерпретировать данные светодиодных ламп

Светодиодные лампы в настоящее время быстро заменяют обычные лампы накаливания и компактные люминесцентные лампы (КЛЛ) в домашнем и коммерческом освещении. Понимание представленных данных о характеристиках лампы и сроке службы является ключом к осознанному выбору продукта.

Данные о светодиодных лампах можно найти на их упаковке или в технических паспортах. Некоторая информация основана на проверяемых фактах, но некоторые маркетинговые заявления могут не основываться на надежных инженерных принципах.Ряд крупных мировых брендов сейчас конкурируют за долю на общем рынке светодиодного освещения. Цены падают по мере того, как технологии становятся все более зрелыми, производственный процесс становится более совершенным, и в игру вступают экономические аспекты крупносерийного производства и управления цепочками поставок. Для данного продукта цены от этих уважаемых поставщиков будут находиться в диапазоне, возможно, ± 20%. Продукция менее известных брендов или даже светодиодные лампы других производителей на первый взгляд может показаться значительно дешевле.Однако для того, чтобы иметь возможность продавать по этим более низким ценам, необходимо будет пойти на компромисс в отношении качества используемых материалов и компонентов — маловероятно, что можно будет получить значительные преимущества в затратах при производстве. Качество компонентов электронных схем внутри светодиодных ламп имеет решающее значение для определения срока службы продукта, поэтому вы можете ожидать раннего выхода из строя дешевых ламп и низкой окупаемости капитальных затрат. Репутация всей индустрии светодиодных ламп зависит от понимания потребителями этого аргумента.

Типичная спецификация светодиодной лампы будет включать в себя обязательную информацию, как того требует законодательство ЕС или Федеральной торговой комиссии, включая ее номинальную мощность, эквивалентную мощность лампы накаливания, рабочее напряжение и частоту, излучаемый цвет света, индекс цветопередачи (CRI), световой поток, срок службы, тип светильника и возможность регулировки яркости лампы. В случае направленных ламп также могут указываться сила света и угол луча, хотя это не является требованием закона.

Classic A E27, теплый белый 10 Вт : Типичная таблица данных для светодиодной лампы

Характеристики продукта • Модернизированная светодиодная лампа для замены стандартных ламп накаливания 40 Вт
• диммируемая
• экономия энергии до 75%
Мощность 10 Вт
Напряжение 220-240 В
Рабочая частота 50-60 Гц
Цвет света Теплый белый — 3000K
CRI > 80
Световой поток 480 люмен
Световая отдача 48 люмен / Вт
Срок службы 35000 часов = 16 лет *

* при 6 часах в день

С Что касается экономии энергии, лучшие на сегодняшний день светодиодные лампы обеспечивают экономию энергии до 75% по сравнению с лампами накаливания. лампы Ent.Точная цифра зависит от условий эксплуатации, включая температуру окружающей среды и от того, используется ли диммер. Если лампы не используются на полную номинальную мощность, эффективность схемы драйвера снижается.

Цвет света определяет цветовую температуру света, излучаемого лампой, и выражается в градусах Кельвина. Для технически подкованных людей цветовая температура видимого света определяется как «температура излучателя черного тела, который излучает свет, сопоставимый по оттенку с источником света.Светодиодные лампы обычно подразделяются на «теплый белый» или «холодный белый» свет. Что ищут потребители, так это имитация света, производимого лампой накаливания, потому что они к этому привыкли. Яркий солнечный свет, возможно, в полдень, соответствует цветовой температуре около 5500К.

Очень важной характеристикой, которую следует учитывать при выборе светодиодной лампы, является ее индекс цветопередачи (CRI). Он описывает, насколько точно свет от лампы воспроизводит цвета различных объектов по сравнению с идеальным или естественным источником света.На практике считается, что вольфрамовая галогенная лампа имеет индекс цветопередачи 100. Светодиодные лампы на основе голубых фишек и люминофоров в настоящее время достигают CRI примерно 80. Более высокий индекс цветопередачи возможен, но только за счет более низкой эффективности. Все, что ниже, чем индекс цветопередачи 80, вероятно, даст искаженное представление о мире в отношении цвета, и в ближайшие год или два будут доступны светодиодные лампы с индексом цветопередачи до 98. Цветопередача этих ламп будет практически неотличима от естественного света и будет достигнута за счет использования технологий фиолетовых чипов, разработанных такими компаниями, как Mitsubishi Chemical Corporation (см.рис.1). Компания продает светодиодные лампы под торговой маркой Verbatim.

Световой поток, измеряемый в люменах, — это уровень света, излучаемого лампой. Разделив это значение на потребляемую мощность, вы получите представление об эффективности лампы, а результат выражается в люменах на ватт. Немногие в цепочке поставок освещения, включая конечных потребителей, будут иметь возможность измерять световой поток. Опять же, более известные и уважаемые бренды будут приводить консервативные цифры. Если вы видите рекламируемые лампы, которые кажутся значительно превышающими норму, вам следует усомниться в обоснованности таких утверждений.

Аналогичная ситуация и со сроком службы. В отличие от обычных ламп, которые выходят из строя внезапно и полностью, потенциальные режимы отказа светодиодных ламп могут включать снижение выходной мощности, а не полный отказ лампы. По этой причине срок службы светодиодных ламп иногда указывается относительно времени, пока светоотдача не упадет ниже определенного уровня, возможно, 70% или 50% от ее первоначальной мощности. В техническом описании это обозначено L70 или L50.

Срок службы самого светодиодного чипа зависит от температуры, которая напрямую связана с током, проходящим через диод.Конечно, вы можете получить более высокий световой поток, пропустив через диод больший ток, но в результате повышение температуры происходит за счет срока службы. Срок службы обычно указывается исходя из предположения, что температура на переходе внутри светодиода составляет 25 ° C, но такая ситуация может не поддерживаться в реальных условиях. Светодиодный чип может прослужить 100000 часов при этой температуре, но в плохо спроектированной лампе температура может достигать 150 ° C, что приводит к тому, что лампа выходит из строя намного раньше.Таким образом, окончательное расположение лампы, особенно с учетом имеющейся вентиляции, повлияет на срок ее службы. Срок службы приводных цепей также зависит от температуры. Таким образом, термический КПД является жизненно важным фактором при проектировании корпусов светодиодов, чтобы гарантировать эффективное рассеивание тепла от схемы возбуждения и от самого светодиода. Это одна из причин, почему лампы разных типов, но использующие одни и те же светодиоды и драйверы, могут иметь очень разный срок службы.Например, охладить лампу GU10 может быть не так просто, как охладить замену E27 обычной лампы накаливания просто потому, что последняя имеет большую площадь поверхности, с которой может рассеиваться тепло.

Заявления о сроке службы можно преувеличить. Как и в случае с световой эффективностью, компании, чья репутация бренда требует защиты, обычно приводят консервативные цифры. Те компании, которые пытаются на раннем этапе захватить долю рынка, но с меньшими потерями с точки зрения репутации бренда, уже проявили несколько оптимистичный прогноз в отношении срока службы и, скорее, менее, чем готовы с соответствующими данными по компонентам или ускоренным сроком службы. тестовые данные, подтверждающие такие утверждения.

Спецификации для направленных фонарей могут содержать две дополнительные части данных. Первый — это угол луча, который обычно составляет примерно от 25 ° до 50 °. Второй — сила света (или свечения). Это мера взвешенной по длине волны мощности, излучаемой источником света в определенном направлении на единицу угла. Указывается в канделах. Существует математическое определение канделы, но оно приблизительно соответствует световому потоку обычной свечи. Проще говоря, показатель силы света учитывает как световой поток лампы, так и угол ее луча.Создание решения направленного освещения всегда является сложной задачей, особенно в отношении предотвращения утечки света. Цель состоит в том, чтобы обеспечить максимальное излучение света в желаемом конусе.

Резюме

Несколько крупных игроков доминировали на рынке традиционного освещения в последние годы. Переход на твердотельное освещение в виде светодиодных ламп создает возможности для бизнеса для других компаний, производящих материалы и электронику, для входа в этот сектор, особенно для некоторых крупных японских корпораций.Это также вызывает ажиотаж среди более мелких производителей с низкими издержками, некоторые из которых склонны преувеличенно заявлять об эффективности и надежности своей продукции. Покупатели светодиодных ламп должны понимать основные факторы, влияющие на эффективность и надежность этих продуктов, чтобы выбрать продукты, наиболее подходящие для их областей применения. Авторитетные поставщики предоставят данные, подтверждающие спецификации их продуктов. Кроме того, компании, на кону которых поставлены авторитетные бренды, гораздо менее склонны делать заявления о производительности, которые не являются устойчивыми.С таким количеством небольших анонимных компаний, выходящих на этот быстрорастущий рынок, совет «осторожный покупатель» редко был более уместным. Тем не менее, высококачественное светодиодное освещение может повысить ценность жизни людей, одновременно способствуя безотлагательной потребности мира в сокращении потребления энергии.

Консультации — Инженер по подбору | Технические характеристики светодиодов

Владельцы зданий требуют светодиодные источники света из-за их энергоэффективности и длительного срока службы. Инженеры должны знать ключевые аспекты при выборе светодиодных источников света.Многие спецификации, обсуждаемые в этой статье, малоизвестны конкретным инженерам и дизайнерам по свету.

Еще не так давно у многих светодиодных светильников была заявка на 100 000 часов и более. Также возникла путаница в отношении заявленного срока службы самих светодиодных ламп, драйвера или всей светодиодной системы / светильника. Важно, чтобы инженеры понимали, как правильно определять светодиодные источники света, когда речь идет о критических факторах, таких как номинальный срок службы.

Дополнительным преимуществом светодиодов является то, что они не содержат опасных материалов.Люминесцентные лампы содержат ртуть и должны быть переработаны или утилизированы на квалифицированном предприятии. Поскольку светодиоды являются твердотельными устройствами, они не содержат ртути, стекла, нитей или газов. Это все причины, по которым владельцы зданий просят светодиоды.

Большинство инженеров включают спецификации в контрактную документацию по проекту. В тех случаях, когда они включены в объем проекта, эти спецификации должны включать светодиодные источники света.

Спецификации для светодиодных источников света должны учитывать определенные ключевые параметры и компоненты, в том числе:

Многие требования NFPA 70: National Electrical Code (NEC) относятся к «перечисленным» или «помеченным» устройствам и приборам.В спецификациях для светодиодных источников света должно быть указано, что они должны иметь этикетку Национально признанной испытательной лаборатории (NRTL), приемлемую для компетентного органа (AHJ). Этикетка UL — это общее требование, содержащееся в спецификациях.

Световой поток светодиодных источников света должен быть включен в спецификации, поскольку световые схемы и фотометрические схемы основаны на световом потоке. Большинство других источников света, помимо светодиодов, «перегорают», и их «срок службы» указывается как время, когда 50% ламп вышли из строя.Люмены от светодиодных источников света со временем уменьшаются. Точка, в которой световой поток составляет 70% от первоначального, известна как L70.

Световой дизайн и фотометрические расчеты должны учитывать LLF. LLF основан на амортизации грязи светильника (LDD) и амортизации светового потока лампы (LLD), а также на нескольких других факторах оборудования, таких как температура окружающей среды, факторы драйвера и другие подобные факторы. При расчете LLD следует использовать значение L70.

LDD — это число от 0.От 0 до 1,0, что зависит от типа среды, в которой будет находиться светодиодный источник света. Это важно для светодиодных источников света, расположенных на открытом воздухе или в суровых условиях.

Инженеры должны указать, что тестирование светодиодного источника света IES LM-79 должно проводиться одной из лабораторий, утвержденных Министерством энергетики США по вопросам светодиодного освещения.

Спецификация, включающая IES LM-79, может быть найдена в Руководстве по техническим характеристикам (UFGS): Отправьте отчет об испытаниях стандартной модели светильника изготовителя.Подача должна включать все фотометрические и электрические измерения, а также все другие относящиеся к делу данные, указанные в разделе «Отчет об испытаниях 14.0» в IES LM-79.

UFGS также имеет спецификацию, которая охватывает испытательные лаборатории: Испытательные лаборатории для отчетов об испытаниях IES LM-79 и IES LM-80 должны быть одним из следующих:

Для светодиодных источников света LM-80 определяет срок службы просвета. как «истекшее время работы, при котором достигается указанный процент уменьшения просвета или поддержания просвета, выраженный в часах.«В отличие от номинального срока службы, номинальный срок службы светового потока дополнительно определяется как« прошедшее время работы, в течение которого светодиодный источник света будет поддерживать процент (p) от своей первоначальной светоотдачи ». Номинальный световой поток для светодиодных источников света обычно составляет L70.

Публикация IES LM-80 — это одобренный метод измерения потери светового потока светодиодных источников света. IES LM-80 требует минимум 6000 часов тестирования, предпочтительно 10 000 часов. Отчет об испытаниях светодиодного источника света для IES LM-80 показывает начальную светоотдачу и световой поток по мере того, как количество часов приближается к минимальной отметке 6000 часов и предпочтительной отметке 10000 часов.

UFGS имеет спецификацию для IES LM-80: Отправьте отчет о стандартном производственном корпусе светодиодов, матрице или модуле производителя. В заявке должны быть:

  • Испытательное агентство, номер отчета, дата, тип оборудования и тестируемый светодиодный источник света
  • Все данные требуются IES LM-80.

IES LM-80 не охватывает оценку срока службы светодиодов. Технический меморандум IES TM-21: «Проектирование долговременного технического обслуживания светодиодных источников света» охватывает это.

Публикация TM-21 — это одобренный метод оценки пониженной яркости светодиодного источника света по мере использования светодиода с течением времени.Это позволит производителю оценить количество часов L70 для светодиодного источника света.

В спецификациях для светодиодных источников света должно быть указано, что светодиоды должны испытываться в соответствии с параметрами IES LM-79, LM-80 и TM-21. Спецификации должны требовать, чтобы отчеты об испытаниях были представлены инженеру для рассмотрения и утверждения, если инженер обеспокоен тем, что неуказанные продукты будут представлены с предложением.

Технические характеристики должны включать минимальный номинальный срок службы системы светодиодных источников света.Как указывалось ранее, номинальный срок службы отличается от номинального технического обслуживания просвета. IES LM-79 требует полного тестирования светильника. Это означает, что светодиодные лампы невозможно отделить от драйвера, что может исказить данные.

На Рисунке 2 показан теоретический пример номинального срока службы светодиодной системы. Эта светодиодная система является функцией как светодиодов, так и драйвера. Расчетный срок службы комбинированной системы составляет примерно 52 000 часов, что меньше, чем у каждого отдельного компонента.

Минимальный индекс цветопередачи, требуемый инженером, должен быть указан в спецификациях.IES LM-79 требует проверки CRI светодиодного источника света.

Текущий индекс цветопередачи является мерой восьми (от R1 до R8) эталонных образцов цвета, которые имеют более пастельный оттенок. Некоторым светодиодным источникам света трудно воспроизводить насыщенные цвета, например, ярко-красный. Цветовые эталоны R9-R12 (насыщенные твердые вещества) не измеряются в CRI, но значение R9 важно при выборе светодиодных источников света. Инженеры должны рассмотреть возможность определения эталонных образцов R9 в дополнение к CRI.

Значения CRI и R9 зависят от типа окружающей среды светодиодный индикатор

Будет размещено

исходников.Для розничной торговли обычно требуются более высокие значения CRI (85+) и R9 (80+). Сильные красные тона со значением R9 преобладают в оттенках кожи, в одежде, мясе и в магазинах.

Цветовая температура важна при выборе светодиодных источников света. Инженеры должны проконсультироваться с заинтересованными сторонами (владельцами зданий, группами пользователей, архитекторами и т. Д.) При определении цветовой температуры для внутреннего и внешнего освещения здания. «Теплые» цветовые температуры находятся в нижней части диапазона цветовых температур (от 2700 до 3500 Кельвинов).«Холодные» цветовые температуры обычно превышают 3600 Кельвинов.

В настоящее время чем круче светодиодный источник света, тем выше его эффективность. В недавнем отчете Министерства энергетики говорится, что холодные белые светодиоды примерно на 20% эффективнее, чем теплые белые светодиоды. Однако в отчете говорится, что в конечном итоге разница в эффективности между холодными и теплыми светодиодами будет незначительной.

Все источники света в комнате / зоне обычно должны иметь одинаковую цветовую температуру. Смешение цветовых температур не считается хорошим дизайном и может привести к нежелательным результатам.

Различия в цветовой температуре также могут возникать при размещении светодиодных источников света, произведенных не в одной партии. Инженеры должны учитывать в своих спецификациях, что светодиоды одного и того же типа светильников поставляются из одной партии во время производства, чтобы облегчить потенциальную проблему с цветовой температурой.

Инженеры должны знать о пусковых токах источника света светодиодов при выборе и интеграции светодиодов. Некоторые светодиодные источники света имеют пусковые токи, во много раз превышающие нормальный установившийся рабочий ток.

Эти высокие пусковые токи могут отключать автоматический выключатель в зависимости от типа автоматического выключателя. В технических характеристиках светодиодных продуктов одного производителя указано: «… для защиты от пускового тока следует использовать плавкий предохранитель с задержкой срабатывания или автоматический выключатель типа C / D».

Высокие пусковые токи также могут возникать из-за затемнения светодиодных источников света; известны случаи, когда пусковые токи в 40 раз превышают нормальный установившийся рабочий ток. Инженеры должны указать устройства ограничения пускового тока и «спарить» светодиод / драйвер и диммер, чтобы избежать высоких пусковых токов.

Светодиодные источники света, особенно для наружного применения, должны иметь защиту от перенапряжения. Светодиодные светильники имеют чувствительные электронные компоненты, которые необходимо защищать от электромагнитных помех (EMI), включая электрические разряды большой энергии (скачки, удары молнии поблизости и т. Д.).

В спецификациях для светодиодных систем должно быть указано, что устройства защиты от перенапряжения (SPD) должны быть предусмотрены для каждого светильника. УЗИП должны соответствовать стандарту UL1449 для всех фаз (линия / нейтраль, линия / земля и нейтраль / земля).Кроме того, следует ссылаться на IEEE C62.41.2: Рекомендуемая практика определения характеристик скачков напряжения в цепях питания переменного тока низкого напряжения (1000 В и менее).

UFGS имеет спецификацию для SPD: Защита светодиодных светильников от перенапряжения: Обеспечивает защиту от перенапряжения, встроенную в светильник, для соответствия форме волны C low, как определено IEEE C62.41.2, сценарий 1, категория размещения C.

Категория местоположения C включает более высокий уровень воздействия, характерный для наружного применения.

Важно, чтобы светодиодные источники света ограничивали помехи для FM-радио и систем цифрового аудиовещания.Спецификации должны учитывать это, а также THD и коэффициент мощности.

Пример спецификации касается этого: драйверы светодиодов должны быть электронными, иметь маркировку, соответствующую требованиям к радиочастотным помехам (RFI) FCC Title 47 Part 15, соответствовать NEMA SSL 1, иметь рейтинг звука «A» и быть рассчитаны на THD менее 20% при всех входных напряжениях с минимальным коэффициентом мощности 0,90.

Контроль и ввод в эксплуатацию

Инженеры

должны указать элементы управления затемнением, совместимые с указанными светодиодными источниками света и их драйверами.Некоторым диммерам для работы требуется минимальная мощность (например, от 25 Вт до 40 Вт). Инженеры также должны учитывать максимальное количество светодиодных источников света (общую мощность) для каждого элемента управления. Кроме того, начиная с выпуска NEC 2011 г. требуется включать нейтральный провод, который должен быть установлен со всеми элементами управления затемнением.

Спецификации для драйверов светодиодов с регулируемой яркостью должны включать требование, чтобы драйверы могли регулировать яркость без стробирования или мерцания светодиодов во всем диапазоне регулировки яркости.

Ввод в эксплуатацию систем освещения, включая светодиодные источники света, должен быть включен в спецификации.Ввод в эксплуатацию систем освещения помогает снизить потребление энергии и эксплуатационные расходы. Другие преимущества включают удовлетворенность клиентов / пользователей и принятие систем управления освещением. Требование ввода в эксплуатацию любой системы увеличивает стоимость проекта и, как правило, выходит далеко за рамки только систем освещения.

В идеале орган, ответственный за ввод в эксплуатацию, подчиняется непосредственно владельцу здания / объекта и должен заключать договор напрямую с владельцем. Заказчик также должен быть заключен на предпроектной стадии.

Включая пуско-наладочные работы, освещение должно охватывать не только осветительные приборы, но также включать средства управления освещением, подлежащие тестированию, а также роли и обязанности органа, ответственного за ввод в эксплуатацию, и подрядчика (-ов). Эти элементы помогают уменьшить или даже устранить конфликты и проблемы при вводе в эксплуатацию, таких как функциональное тестирование. Например, в спецификации ввода в эксплуатацию может быть указано: «Подрядчик должен уведомить агента по вводу в эксплуатацию в письменной форме по крайней мере за 14 дней до всех предфункциональных испытаний.”

Кодекс энергопотребления

и сертификация LEED сделали ввод в эксплуатацию средств управления освещением обязательным требованием. Стандарт ASHRAE 90.1-2010 требует функционального тестирования средств управления и систем освещения.

U.S. Green Building Council LEED v4 (последняя версия) использует ASHRAE 90.1-2010 в качестве базового энергетического кода. Стандарт 90.1-2010 требует не только функциональных испытаний средств управления и систем освещения, но и сертификации LEED версии 4 также требует ввода систем освещения в эксплуатацию.Функциональное тестирование — ключевой компонент ввода в эксплуатацию.

Отличные ресурсы для ввода в эксплуатацию включают IES DG-29-11: Процесс ввода в эксплуатацию, применяемый к системам освещения и управления и Руководство по вводу в эксплуатацию ACG (AABC Commissioning Group).

Технические характеристики

Многие общественные проекты требуют рассмотрения альтернативных производителей, кроме тех, которые указаны в спецификациях и чертежах.

Например, недавний государственный проект требовал, чтобы подрядная инженерная фирма провела проверку светодиодных источников света, которые не были указаны в спецификации осветительных приборов (также известной как спецификация светильников).Штат потребовал, чтобы все осветительные приборы или светильники, которые соответствовали письменным спецификациям или превосходили их, рассматривались и рассматривались для утверждения техническим специалистом.

Подрядчик по этому государственному проекту подал заявку на использование светодиодных источников света от компании, которой исполнился всего год и которая базировалась за границей. Спецификации не были очень конкретными по ключевым вопросам, таким как гарантии, независимые лабораторные испытания и проверка срока службы компонентов, световой поток и другие связанные ключевые элементы.

Светодиодный продукт подрядчика не соответствовал многим параметрам, которые должны были быть в спецификациях, например, независимым лабораторным испытаниям светоотдачи. Инженер и руководитель проекта с государством решили перепроверить проект с более подробными спецификациями. Эти пересмотренные спецификации включали отсутствующие параметры, и подрядчик не смог предоставить светодиодные продукты, которые были представлены с первоначальным предложением, из-за этих новых спецификаций.

Есть множество производителей светодиодных источников света.Как отличить хорошее от плохого? Инженеры могут попытаться ограничить использование светодиодных источников света брендом производителей. Однако, как мы видели из ранее обсужденного примера, иногда от инженеров может потребоваться рассмотреть продукцию других производителей.

Инженеры могут указать в разделе обеспечения качества своих технических требований на освещение, что производитель светодиодных систем должен иметь минимальный многолетний опыт производства светодиодных систем. Инженеры могут рассмотреть возможность использования светодиодного продукта от нового производителя, если производитель может предоставить доказательства финансовой стабильности.

Спецификации для светодиодных источников света должны требовать гарантии продолжительностью не менее 5 лет. Гарантия должна охватывать всю механическую сборку, электрические и светодиодные компоненты, а также драйвер. Также важно указать, что запасные части будут доступны не менее 10 лет.

Рекомендации по жизненному циклу

При проведении анализа стоимости жизненного цикла светодиодных источников света необходимо учитывать несколько факторов.

Инженеры

должны подумать о сроке службы, надежности, гарантии, удобстве обслуживания, устойчивости и стоимости своего проекта освещения.Например, проект по обновлению освещения здания рассчитан на 10-15 лет. Имеет ли смысл использовать продукты, срок службы которых составляет не менее 20 лет, по более высокой начальной цене для этого примера? Вместо этого может быть лучше использовать менее дорогой продукт с меньшим сроком службы, но с большей надежностью. Экологичность также следует принимать во внимание при выборе продуктов, основанных на более длительном сроке полезного использования.

Светодиодные системы

, которые легко обслуживаются, обычно имеют модульную конструкцию, которая позволяет легко заменять или модернизировать компоненты.При анализе стоимости жизненного цикла следует учитывать время и скорость замены деталей техническим специалистом.

Владельцам зданий требуются светодиодные источники света из-за их энергоэффективности и длительного срока службы. Инженеры, которые могут включить эффективные спецификации для своих светодиодных источников света, помогут этим владельцам достичь своих целей.


Майкл Чоу — основатель и владелец Metro CD Engineering. Он имеет степень бакалавра естественных наук в Северном университете штата Огайо, является членом редакционного совета инженеров-консультантов и победителем конкурса «40 до 40» в 2009 году.Чоу получил шесть наград IES Illumination Awards of Merit, включая четыре награды в 2015 году.

В статье «Ввод в эксплуатацию систем освещения», декабрь 2014 г., инженер-консультант по номенклатуре содержится более подробная информация о вводе в эксплуатацию.

Посмотрите веб-трансляцию «Освещение: коды и стандарты светодиодов» для получения дополнительной информации.

Каталог продукции | Philips lighting

Каталог продукции | Philips освещение

Теперь вы посещаете веб-сайт Philips, посвященный освещению.Вам доступна локализованная версия.

Продолжать

  • Щупы Evo

    С StyliD Evo розничные продавцы могут наслаждаться превосходным качеством света и лучшей на рынке энергоэффективностью оптики PerfectAccent в серии универсальных проекторов, ориентированных на будущее….

  • Luma gen2

    Luma gen2 — это новое поколение светодиодных светильников Luma, полностью оптимизированное для того, чтобы стать вашим долгосрочным партнером в области освещения и инноваций.Сохраняя характерный дизайн ch …

  • Лединер Хай-Бэй

    Линейка Ledinaire включает ряд популярных стандартных светодиодных светильников, каждый из которых отличается высоким уровнем качества Philips и конкурентоспособной ценой.Надежный, энергоэффективный …

  • FlexBlend Встраиваемый

    Владельцы офисов и сотрудники, ответственные за операции по освещению, ищут высококачественное, но энергоэффективное освещение, соответствующее нормам и правилам.Предназначен для поддержки …

Диналит

Выбирая Philips Dynalite, вы выбираете лучшую в мире систему управления освещением.Опробованные и протестированные в более чем 30 000 проектов, мы реализовали одни из самых крупных и разветвленных сетей управления по всему миру. Одна и та же надежная технология может использоваться в любом приложении в любом масштабе.

© 2018-2021 Сигнифай Холдинг.Все права защищены.

Keystone Technologies — легкий доступ к свету


Это юридическое соглашение («соглашение») между вами (или организацией, от имени которой вы лицензируете изображения («вы» или «ваш») и Keystone Technologies.Загружая изображения («изображения») с keystonetech.com или любой другой из наших платформ, обслуживающих наши изображения («Сервис»), вы соглашаетесь соблюдать настоящее соглашение, а также нашу Политику конфиденциальности и Условия обслуживания. Если вы не согласны, не загружайте и не используйте эти изображения.

Нам может потребоваться время от времени изменять это соглашение, и вы соглашаетесь соблюдать обязательства в отношении будущих версий.

Не разглашайте пароль. Они предназначены только для вашего использования.

1.Право собственности: Все изображения защищены законом об авторских правах США и международными соглашениями об авторских правах. Мы оставляем за собой все права, не предоставленные в этом соглашении.

2. Лицензия: В соответствии с условиями этого соглашения Keystone Technologies предоставляет вам неисключительное, непередаваемое, постоянное всемирное право на использование и воспроизведение этих изображений в любых коммерческих, художественных или редакционных целях, не запрещенных в это соглашение.

3. Ограничения:
НЕЛЬЗЯ:
1.Распространять или использовать любое изображение в целях конкуренции с Keystone Technologies. В частности, вы не можете сублицензировать, перепродавать, назначать, передавать, передавать, делиться или предоставлять доступ к изображениям или каким-либо правам на изображения, кроме тех, которые разрешены в этом соглашении.
2. Используйте изображение для представления любых продуктов или услуг, не принадлежащих Keystone Technologies.
3. Добавьте изображение в любой логотип, товарный знак, фирменный стиль или знак обслуживания.
4. Используйте изображение любым незаконным способом или любым способом, который разумный человек может счесть оскорбительным или который может нанести ущерб репутации любого лица или собственности, отраженного на изображении.
5. Ложно представить, что вы являетесь первоначальным создателем изображения.
6. Используйте изображение в любой службе, претендующей на получение прав на изображение.
7. Нарушать права на товарный знак или интеллектуальную собственность какой-либо стороны или использовать изображение для вводящей в заблуждение рекламы.
8. Удалите или измените любую информацию об управлении авторскими правами Keystone Technologies (например, логотип Keystone) из любого места, где она есть или встроена в изображение.

4. Возможность передачи; Производные работы: Конечным пользователем работы, которую вы создаете с изображением, должен быть вы сами или ваш работодатель, клиент или заказчик.Только вам разрешено использовать автономные изображения (вы не можете продавать, сдавать в аренду, одалживать и т. Д. Третьим лицам). Вы можете передавать файлы, содержащие изображения, клиентам, поставщикам или интернет-провайдерам для целей, предусмотренных настоящим соглашением. Вы соглашаетесь принять разумные меры для защиты изображений от извлечения или кражи. Вы незамедлительно уведомите нас о любом неправильном использовании изображений. Если вы передаете изображения, как указано выше, принимающие стороны должны согласиться защищать изображения в соответствии с требованиями настоящего соглашения. Даже при использовании в производной работе наши изображения по-прежнему принадлежат Keystone Technologies.

5. Обзор и записи: С разумным уведомлением вы предоставите Keystone Technologies образцы использованных изображений. Вы должны вести учет всего использования изображений, включая подробную информацию об использовании клиентом. Keystone Technologies может периодически запрашивать и проверять такие записи. Если будет обнаружено, что изображения использовались вне рамок данного соглашения, вы удалите изображения по желанию Keystone Technologies.

6. Заявления и гарантии: Мы заявляем и гарантируем, что изображения, предоставленные для загрузки, без изменений и используемые в полном соответствии с настоящим соглашением, не будут нарушать авторские права, права на товарные знаки или другие права интеллектуальной собственности, а также права третьих лиц на конфиденциальность. или гласность.

ИЗОБРАЖЕНИЯ

ПРЕДОСТАВЛЯЮТСЯ «КАК ЕСТЬ», БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАясь, ПОДРАЗУМЕВАЕМЫЕ ГАРАНТИИ ОТСУТСТВИЯ ПРАВО НАРУШЕНИЯ, КОММЕРЧЕСКОЙ ЦЕННОСТИ ИЛИ ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ.

7. Ваше возмещение ущерба: Вы соглашаетесь возмещать, защищать и удерживать Keystone Technologies, ее аффилированных лиц, участников, аффилированных лиц, лицензиаров и их соответствующих директоров, должностных лиц, сотрудников, акционеров, партнеров и агентов (совместно именуемые «Keystone Technologies» Стороны ») безвредны по любым претензиям, ответственности, убыткам, убыткам, затратам и расходам (включая разумные судебные издержки на адвокатской и клиентской основе), понесенных любой Стороной Keystone Technologies в результате или в связи с (i) любое нарушение или предполагаемое нарушение вами или кем-либо, действующим от вашего имени, любого из условий настоящего соглашения, включая, помимо прочего, любое использование нашего веб-сайта или любого изображения, кроме случаев, прямо разрешенных в этом соглашении; (ii) любое сочетание изображения с любым другим контентом или текстом, а также любые модификации или производные работы на основе изображения.

8. Ограничение ответственности: Keystone Technologies не несет ответственности по настоящему соглашению в той мере, в какой это связано с изменением изображений, использованием в любых производных работах, контекстом, в котором используется изображение, или вашим (или третьим сторона действует от вашего имени), нарушение данного соглашения, халатность или умышленное нарушение.

В САМОЙ ПОЛНОЙ СТЕПЕНИ, РАЗРЕШЕННОЙ ЗАКОНОДАТЕЛЬСТВОМ, НИ KEYSTONE TECHNOLOGIES, НИ КАКИЕ-ЛИБО ИЗ ЕГО СОТРУДНИКОВ ИЛИ ПОСТАВЩИКОВ НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ОБЩИЕ, КАЧЕСТВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ИЛИ КОСВЕННЫЕ ИЛИ КОСВЕННЫЕ УСЛУГИ ЛЮБЫЕ ДРУГИЕ УБЫТКИ, ЗАТРАТЫ ИЛИ УБЫТКИ, ВОЗНИКАЮЩИЕ В РЕЗУЛЬТАТЕ ИСПОЛЬЗОВАНИЯ ИЗОБРАЖЕНИЙ, ВЕБ-САЙТА, ​​НАРУШЕНИЯ ДАННОГО СОГЛАШЕНИЯ КОМПАНИИ KEYSTONE TECHNOLOGIES ИЛИ ИНАЧЕ, ЕСЛИ ЯВНО НЕ ПРЕДУСМОТРЕНО, ДАЖЕ ЕСЛИ KEYSTONE TECHNOLOGIES ПРЕДНАЗНАЧЕНА УБЫТКИ, ИЗДЕРЖКИ ИЛИ УБЫТКИ.

9. Прекращение действия: Настоящее соглашение действует до тех пор, пока у вас есть учетная запись, если оно не будет прекращено, как указано ниже. Вы можете прекратить действие любой лицензии, предоставленной в соответствии с настоящим соглашением, уничтожив изображения и любые производные от них работы, а также любые копии или архивы вышеупомянутых или сопроводительных материалов (если применимо) и прекратив использовать изображения для любых целей. Лицензии, предоставленные в соответствии с этим соглашением, также прекращают действие без уведомления Keystone Technologies, если в какой-либо момент вы не соблюдаете какое-либо из условий этого соглашения.Keystone Technologies может расторгнуть настоящее соглашение, а также вашу учетную запись и все ваши лицензии с уведомлением вас или без него, если вы не соблюдаете условия этого соглашения. После прекращения действия вашей лицензии вы должны немедленно прекратить использование изображений для любых целей; уничтожать или удалять все производные работы с изображениями, а также копии и архивы изображений или сопутствующих материалов; и, если потребуется, подтвердите Keystone Technologies в письменной форме, что вы выполнили эти требования.ПРЕДУСМОТРЕННОЕ ПРЕКРАЩЕНИЕ ДОПОЛНИТЕЛЬНО ДОПОЛНИТЕЛЬНО ДРУГИЕ ЗАКОННЫЕ И / ИЛИ КАПИТАЛЬНЫЕ ПРАВА Keystone Technologies. Keystone Technologies НЕ НЕСЕТ ОБЯЗАТЕЛЬСТВ ПО ВОЗВРАТУ КАКИХ-ЛИБО ПЛАТЕЖНЫХ КОМИССИЙ В СЛУЧАЕ ПРЕКРАЩЕНИЯ ДЕЙСТВИЯ ВАШЕЙ ЛИЦЕНЗИИ ИЛИ УЧЕТНОЙ ЗАПИСИ ПО ПРИЧИНЕ ВАШЕГО НАРУШЕНИЯ.

10. Сохранение прав после прекращения действия: Следующие положения и условия остаются в силе после прекращения или истечения срока действия настоящего соглашения: условия, применимые к лицензиям на изображения, предоставленным в соответствии с настоящим соглашением, остаются в силе в отношении оставшихся лицензий при условии, что это соглашение не будет прекращено как результат вашего нарушения, и что вы всегда будете соблюдать его условия.

11. Удаление изображений с keystonetech.com: Keystone Technologies оставляет за собой право удалять изображения с keystonetech.com, отозвать любую лицензию на любые изображения по уважительной причине и выбрать замену такого изображения альтернативным изображением. После уведомления об отзыве лицензии на любое изображение вы должны немедленно прекратить использование таких изображений, предпринять все разумные меры для прекращения использования замененных изображений и проинформировать об этом всех конечных пользователей и клиентов.

12. Разное: Настоящее соглашение представляет собой полное соглашение сторон в отношении предмета настоящего Соглашения. Стороны соглашаются, что любое существенное нарушение Раздела 3 («Ограничения») нанесет непоправимый ущерб Keystone Technologies, и что судебный запрет в суде компетентной юрисдикции будет уместен для предотвращения первоначального или продолжающегося нарушения такого Раздела в дополнение к любому Компания Keystone Technologies может иметь право на другие льготы. Если мы не сможем обеспечить соблюдение каких-либо частей этого соглашения, это не означает, что от таких частей отказываются.Это соглашение не может быть передано вами без нашего письменного разрешения, и любая такая предполагаемая передача без разрешения является недействительной. Если какая-либо часть этого соглашения будет признана незаконной или не имеющей исковой силы, эта часть должна быть изменена для отражения наиболее полного юридически обеспеченного намерения сторон (или, если это невозможно, удалена), не влияя на действительность или исковую силу остальной части. Любые судебные иски или судебные разбирательства, касающиеся наших отношений с вами или настоящего соглашения, должны подаваться в суды штата Пенсильвания в графстве Монтгомери или Соединенных Штатов Америки в Восточном округе Пенсильвании, и все стороны соглашаются с исключительная юрисдикция этих судов, отказавшись от каких-либо возражений против уместности или удобства таких мест.Конвенция Организации Объединенных Наций о договорах международной купли-продажи товаров не применяется к настоящему соглашению и не влияет на него иным образом. Действительность, толкование и приведение в исполнение настоящего соглашения, вопросы, возникающие из настоящего соглашения или связанные с ним или их заключением, исполнением или нарушением, а также связанные с этим вопросы, регулируются внутренним законодательством штата Пенсильвания (без ссылки на доктрину выбора права. ). Вы соглашаетесь с тем, что обслуживание процесса при любых действиях, разногласиях и спорах, возникающих из настоящего соглашения или относящихся к нему, может осуществляться путем отправки его копии заказным или заказным письмом (или любой другой по существу аналогичной формой почты) с предоплатой почтовых расходов другой стороне. тем не менее, ничто в данном документе не влияет на право осуществлять судебное разбирательство любым другим способом, разрешенным законом.

Прежде чем продолжить, вам необходимо прочитать эти положения и условия до конца.

Спецификации и технические данные светодиодов

  • Стр. 2 и 3: Спецификации и технические данные светодиодов Li
  • Стр. 4 и 5: Продажа светодиодных фонарей! А также светодиодные кластеры
  • Стр. 6 и 7: Продажа светодиодных фонарей! А также светодиодные кластеры
  • Стр. 8 и 9: Продажа светодиодных фонарей! А также светодиодные кластеры
  • Страница 10 и 11: Продажа светодиодных фонарей! Кроме того, светодиодные кластеры
  • Страница 12 и 13: Страница заказа белого светодиодного освещения Если вы
  • Страница 14 и 15: Реформа энергетической политики одобрена Сенатом
  • Страница 16 и 17: Учебное пособие по схемам светодиодов: как подключить
  • Страница 18 и 19 : Учебное пособие по схемам светодиодов: как закрепить
  • Стр. 20 и 21: Учебное пособие по схемам светодиодов: как зацепить
  • Стр. 22 и 23: L.E.D Basics; Получение понимания. Схемы Bowden’s Hobby ● ● ●
  • Стр. 32 и 33: Технические характеристики светодиодов и Ap
  • Стр. 34 и 35: Технические характеристики светодиодов и Ap
  • Стр. 36 и 37: Технические характеристики светодиодов и Ap
  • Стр. 38 и 39: Светодиоды Технические характеристики и Ap
  • Стр. 40 и 41: Листы технических данных по маркетингу Prod
  • Стр. 42 и 43: Работа со светодиодами — Светоизлучающие
  • Стр. 44 и 45: Работа со светодиодами — Светоизлучающие
  • Стр. 46 и 47: Работа с Светодиоды — светоизлучающие
  • Стр. 48 и 49: Руководства по WebEE ● ● ● ❍ ❍
  • Стр. 50 и 51: Руководства по WebEE ● ● ● ● Pow
  • Стр. 52 и 53:

    Руководства по WebEE ❍ ❍ ❍ ❍ ❍

  • Стр. 54 и 55:

    Agilent | Центр проектирования светодиодов LED Des

  • Страница 56 и 57:

    Справочник Страница регистрации NIST Tra

  • Страница 58 и 59:

    Как рассчитать сопротивление в омах

  • Страница 60 и 61:

    Глава 10 Заявление об ограничении ответственности http: // people .бу.

  • Страница 62 и 63:

    Люмен, Фут-свечи, Мощность свечи, M

  • Стр. 64 и 65:

    Люмен, Фут-свечи, Свеча, M

  • Страница 66 и 67:

    Высокоэффективные системы — Часто задаваемые вопросы по освещению для

  • Стр. 68 и 69:

    Высококачественные системы — Часто задаваемые вопросы по освещению В

  • Стр. 70 и 71:

    Высококачественные системы — Освещение Часто задаваемые вопросы Cop

  • Стр. 72 и 73:

    Энергосберегающее освещение http: // en

  • Стр. 74 и 75:

    Список продуктов белых светодиодов, Luxeon

  • Стр. 76 и 77:

    Список продуктов белых светодиодов, Luxeon

  • Стр. 78 и 79:

    Интернет-печать для светодиодных фонарей Ca

  • Стр. 80 и 81:

    Светодиодные светильники, светодиодные настенные светильники, светодиоды

  • Стр. 82 и 83:

    Светодиодные светильники, светодиодные настенные светильники, светодиоды

  • Стр. 84 и 85:

    Светодиодные кластеры — Светодиодные матрицы — Светодиодная панель

  • Стр. 86 и 87:

    светодиодный блок ers — Светодиодные матрицы — Светодиодная панель

  • Страница 88 и 89:

    Светодиодные кластеры — Светодиодные матрицы — Светодиодная панель

  • Страница 90 и 91:

    Белые светодиодные фонари в виде кирпичей и полос для

  • Страница 92 и 93:

    Белый Светодиодные светильники Brick and Strip для

  • Страница 94 и 95:

    Белые Светодиодные лампы Brick and Strip для

  • Page 96 и 97:

    120/240 VAC Белый светодиодный винт Эдисона

  • Страница 98 и 99:

    120 / 240 В переменного тока Винт Эдисона с белыми светодиодами

  • Стр.100 и 101:

    120/240 В переменного тока Винт Эдисона с белыми светодиодами

  • Стр.102 и 103:

    120/240 В перем.тока Винт Эдисона с белыми светодиодами

  • Стр. Светодиодная лампа PR, лампы EverLED,

  • Страница 106 и 107:

    Светодиодная лампа Luxeon PR, лампы EverLED,

  • Страница 108 и 109:

    Светодиодная лампа Luxeon PR, лампы EverLED,

  • Страница 110 и 111:

    MetkuMods — Потому что вы любите свой h

  • Страница 112 и 113:

    MetkuMods — Потому что вы любите свой h

  • Страница 114 и 115:

    рисунок ниже, проходной транзистор w

  • Страница 116 и 117:

    Меню индикатора использования телефона Тел.

  • Страница 118 и 119:

    Национальный номер по каталогу LM317 — 3-контактный номер

  • Страница 120 и 121:

    Национальный номер по каталогу LM317 — 3-контактный номер

  • Страница 122 и 123:

    Национальный номер по каталогу LM317 — 3 -Terminal Adj

  • Стр. 124 и 125:

    Sci.Вопросы и ответы по электронике: Телефон ASCI

  • Страница 126 и 127:

    Часто задаваемые вопросы по науке и электронике: Телефон ASCI

  • Страница 128 и 129:

    Часто задаваемые вопросы по науке и электронике: Телефон ASCI

  • Страница 130 и 131:

    Часто задаваемые вопросы по науке и электронике : Телефон ASCI

  • Страница 132 и 133:

    Часто задаваемые вопросы по науке и электронике: Телефон ASCI

  • Страница 134 и 135:

    Часто задаваемые вопросы по науке и электронике: Телефон ASCI

  • Страница 136 и 137:

    Часто задаваемые вопросы по науке и электронике: Телефон ASCI

  • Страница 138 и 139:

    Двоичные счетчики 1 вторая временная база

  • Страница 140 и 141:

    Меню двоичных счетчиков Телефонный звонок

  • Страница 142 и 143:

    Светодиод двоичных счетчиков 12-вольтный вывод переменного тока

  • Страница 144 и 145:

    Меню двоичных счетчиков http: // ourworl

  • Стр. 146 и 147:

    Меню Светодиодный фотодатчик.Вот Cir

  • Страница 148 и 149:

    Сенсор меню Активируется Свет Цирк

  • Страница 150 и 151:

    Измеритель децибел меню Схема belo

  • Страница 152 и 153:

    Страница регистрации справочника NIST Tra

  • Страница 154 и 155:

    Таймер 555 Калькулятор Таймер 555 — Fr

  • Стр. 156 и 157:

    Калькулятор таймера 555 Схема 555

  • Стр. 158 и 159:

    Релейный интерфейс параллельного порта ниже

  • Стр. 160 и 161:

    кристалла для работы VFO.A

  • Page 162 и 163:

    Автоматический 12-вольтный фейдер лампы Этот индуктор c

  • Page 164 и 165:

    наматывался с отводами каждые

  • Page 166 и 167:

    Разное входное напряжение (на c

  • Страница 168 и 169:

    Схема разного преобразователя постоянного тока в постоянный

  • Страница 170 и 171:

    Разное меню http: //ourworld.compuserv

  • Страница 172 и 173:

    Цепь высокого напряжения катушки зажигания

  • Стр. 174 и 175:

    Цепь высокого напряжения катушки зажигания

  • Стр. 176 и 177:

    Стр. 13 Меню Транзистор Шмитта Три

  • Стр. 178 и 179:

    Стр. 13 Меню Батарея с морской водой Abo

  • Стр. 180 и 181 :

    555 Таймер 555 Тональный генератор (8 Ом

  • Стр. 182 и 183:

    Таймер 555 Дискретный 3-х транзистор

  • Стр. 184:

    555 Таймер Фото Electric Street Lig

  • Off-Road LED & Лазерные фонари | Автомобиль, Джип, Грузовик, UTV, ADV, Dirtbike

    Осветительные решения

    Performance от Baja Designs уже более 25 лет находятся в авангарде внедорожного освещения.Мы специализируемся на светодиодных светильниках, вспомогательных светодиодных светильниках, а также на первых в мире лазерных светильниках и дополнительных светильниках. У нас есть решение для каждого гонщика, водителя и авантюриста, в том числе: освещение для квадроциклов, освещение для мотоциклов, освещение UTV, освещение для грузовиков и фары для приключенческих велосипедов.

    В Baja Designs мы предлагаем лучшие решения в области освещения для бездорожья, от наших современных светодиодных фонарей для мотоциклов и внедорожников до Dual Sport Kit, нашего оригинального продукта, который помог сделать внедорожные мотоциклы минимально легальными для улиц.Наши знания об электрических возможностях мотоциклов, а также наша врожденная страсть к гонкам и всему, что связано с колесами, побудили наших инженеров разработать первый в мире мотоциклетный гоночный фонарь HID.

    Наши светодиодные фонари для дорожных и внедорожных транспортных средств — это самые эффективные светодиодные фонари на рынке сегодня. Baja Designs была первой компанией, разработавшей выступающую светодиодную планку, которая была представлена ​​и использована в 2005 году в Baja 1000.

    Революция передовых светодиодных и лазерных внедорожных фонарей — наша страсть.Наши продукты на все 100% предназначены для того, чтобы быть более ярким, смелым и лучшим решением для автомобильного освещения.

    Благодаря этому опыту и любви к автомобилям всех типов, внедорожные светодиодные фонари и другие системы освещения Baja Design завоевали все профессиональные и любительские мотоциклы и награды класса TV Baja 1000 на протяжении более 15 лет.

    Мы также предлагаем продукцию промышленного освещения, включая военное освещение, инфракрасное освещение, морское освещение, освещение для сельского хозяйства и промышленное освещение.

    Мы называем наших инженеров «Учеными освещения» из-за их способности постоянно создавать новые вспомогательные и заменяемые системы освещения по мере развития транспортных средств. Наши победившие в гонках лазерные, светодиодные и скрытые фонари были приняты сообществом гонщиков и установлены на большинстве автомобилей-победителей Baja 1000. Наши «ученые» по-прежнему востребованы профессиональными гоночными командами, которые хотят разработать светотехнику для своих автомобилей.

    Подробнее

    Уведомление о соответствии

    ADA: если вы страдаете нарушением зрения или имеете какое-либо другое нарушение, подпадающее под действие Закона об американцах с ограниченными возможностями или аналогичного закона, и вы хотите обсудить возможные варианты адаптации, связанные с использованием этого веб-сайта, свяжитесь с нами по телефону 888-725-6613 и / или электронная почта [адрес электронной почты защищен]

    Как работают светодиодные лампы для выращивания растений?

    Что следует знать о светодиодных светильниках для выращивания растений

    Энергоэффективные светодиодные лампы для выращивания растений — это освещение сельского хозяйства будущего.Они не только экономичны в использовании, но и дают более качественные растения по сравнению со всеми традиционными вариантами освещения. В текстах ниже вы можете прочитать, как работают светодиодные фонари для выращивания растений, как они влияют на рост растений и какие преимущества имеют светодиодные фонари по сравнению с наиболее широко используемым искусственным освещением в сельском хозяйстве — лампами HPS.

    Что такое светодиоды и как они работают?
    Светодиоды

    (светоизлучающие диоды) представляют собой небольшие электронные компоненты, изготовленные из двух различных типов полупроводникового материала, один из которых имеет отрицательный заряд, называемый электронами, а другой — положительным, называемый дырками.Когда на светодиод должным образом подается напряжение, через него начинает течь электрический ток, заставляя электроны и дырки сталкиваться, высвобождая энергию в виде фотонов, световых квантов, в процессе, называемом рекомбинацией. Первые светодиоды имели относительно низкую светоотдачу и ограниченный выбор цветов, в то время как современные светодиоды имеют высокую яркость и бывают разных цветов в видимом, инфракрасном и ультрафиолетовом спектральных диапазонах.

    Что такое светодиодные лампы для выращивания растений?

    Судя по названию, светодиодные лампы для выращивания растений — это светильники, в которых используются светодиодные чипы современным и эффективным способом для получения света для выращивания растений.Светодиодные светильники для выращивания растений бывают разных форм и размеров, но как наиболее важные элементы светодиодных светильников для выращивания растений, светодиодные чипы оказывают наибольшее влияние на качество света, то есть на спектр (цвета) и поток фотонов («яркость»). Поскольку производители светодиодных светильников для выращивания растений могут выбирать светодиоды, которые они используют в своих лампах, важно понимать, какой тип светодиодных светильников для выращивания растений лучше всего подходит для конкретного применения. Одно из преимуществ светодиодных светильников для выращивания растений по сравнению с традиционными решениями освещения — это способность подбирать свет в соответствии с потребностями растений.

    Какое влияние на растения оказывают светодиодные фонари для выращивания растений?

    Цветовые вариации светодиодных ламп для выращивания растений напрямую связаны с предполагаемым назначением — различные исследования показали, что определенные цвета влияют на рост растений, влияя на формирование корней и цветов (синий и красный световые спектры), что практически означает, что большинство сортов растений будут завершены. нормальный цикл роста при воздействии как синего, так и красного света. Добавление к спектру других цветов, таких как зеленый, дальний красный и темно-синий, способствует этому процессу, давая растениям больше информации об окружающей среде и в целом, что приводит к более высокому качеству растений (более быстрый рост, большее накопление вторичных метаболитов и т. Д.).Спектр, содержащий все цвета, называется полный спектр и больше всего напоминает солнечный свет. Если он имеет высокие пропорции зеленого, свет будет казаться человеческим глазам белым, и, хотя это не является решающим фактором для роста растений, он действительно облегчает работу с этими источниками света и делает возможным визуальный осмотр растений. (Подробнее: Почему LED Grow Light Purple? )


    Белые и розовые светодиодные лампы для выращивания растений (оба являются светодиодными лампами для выращивания растений полного спектра).Слева — Валоя NS1, справа — Валоя AP673L.

    Как растения реагируют на разные цвета света?

    UV: МЕРЫ ЗАЩИТЫ от условий высокой освещенности и стимуляции химическими средствами, отпугивающими насекомых. Усиливает накопление пигментов в листьях, влияет на морфологию листьев и растений.

    Синий: Сигнал о недостатке соседей, за свет бороться не надо. Стимулирует открытие устьиц, замедление удлинения стебля, утолщение листьев, ориентацию на свет и фотопериодическое цветение.

    Зеленый, желтый, оранжевый: Сигнал соседей, борьба за свет. Ответы напротив синего света; закрытие устьиц, некоторые симптомы избегания тени, усиление фотосинтеза в более глубоких слоях клеток.

    Красный: Отсутствие сигнала соседей. Основной компонент, необходимый для фотосинтеза, подавление удлинения стебля, сигнальная лампа

    Дальний красный: сигнальный свет; Сигнал соседей, конкуренция за свет. удлинение, цветение.

    Благодаря исследованиям мы можем определить оптимальный свет для роста растений. Важно учитывать, что разные растения по-разному реагируют на различные световые воздействия (даже на разные штаммы одного и того же растения). Кроме того, растение в фазе цветения может нуждаться в другой световой обработке по сравнению с тем, когда оно находится на вегетативной стадии. Что касается самого света, можно изменить несколько параметров:

    • Спектр света (сочетание цветов, используемых для создания света)
    • Интенсивность света (обычно измеряется в микромолях , количество фотонов, проецируемых на растения)
    • Фотопериод (количество часов, в течение которых растение подвергается воздействию света в течение 24 часов)
    • Равномерность освещения (степень равномерного распределения света по куполу)

    Другими словами, пользователи светодиодных светильников для выращивания растений должны применять индивидуальный подход при выращивании сельскохозяйственных культур, поскольку у каждого вида растений разные потребности.На практике это означает проведение испытаний перед запуском в крупносерийное производство. ( Подробнее: 8 советов по организации успешных заводских испытаний со светодиодами)

    Альтернативой этому является покупка светодиодных светильников для выращивания растений у компаний, которые занимаются исследованиями и предоставляют эти данные своим клиентам.

    Откройте для себя революционные преимущества светодиодных светильников для выращивания растений

    На ранних стадиях светодиодная технология воспринималась как непрактичная и неэффективная с точки зрения затрат.С развитием новейших технологий производство светодиодных светильников для выращивания растений стало рентабельным. Кроме того, ряд доступных типов светодиодных чипов способствовал развитию более эффективной отрасли растениеводства. При установке бок о бок с традиционными системами HPS ( с высоким давлением натрия ) светодиоды выигрывают с точки зрения энергоэффективности, качества выращиваемых растений, а также экологичности.

    Светодиоды

    — это простые, но мощные, энергоэффективные лампы для выращивания растений по сравнению с преимущественно используемыми лампами HPS, которые постепенно воспринимаются как громоздкие, но менее надежные.Лампы HPS имеют более короткий срок службы, что в конечном итоге делает их более дорогими. Тепло, излучаемое лампами HPS, иногда хорошо и эффективно в теплицах, но делает их практически бесполезными для вертикальных ферм или камер выращивания. Светодиоды переключаются быстрее, более компактны (меньше по размеру) и считаются более полезными для окружающей среды. Кроме того, светодиодные светильники для выращивания растений излучают меньше тепла, чем лампы накаливания, что влияет на потребности растений во влаге и питательных веществах. Небольшое количество выделяемого тепла излучается вверх и от растений, в отличие от HPS, где тепло направляется непосредственно на них, повышая температуру поверхности листьев и иногда сжигая растения.

    По сути, революционные преимущества светодиодов по сравнению с обычными лампами HPS:

    · E экономичное потребление электроэнергии — Светодиодные лампы для выращивания растений используют до 50% энергии, которую используют системы HPS, и некоторые эксперты ожидают даже более высокой эффективности светодиодов в ближайшем будущем

    · L Увеличенный срок службы / долговечность лампы — Светодиоды имеют более длительный срок службы по сравнению с лампами HPS; для сравнения: лампы HPS могут прослужить 1 год, а светодиоды — до 8 лет (что соответствует 50 000 часов использования)

    · S удобство пространств маллер — поскольку светодиодные лампы для выращивания растений можно установить ближе к растениям, пространство для выращивания не обязательно должно быть очень высоким или широким

    · E энергоэффективность — с помощью светодиодных светильников для выращивания растений можно оптимизировать спектр, концентрируя энергию на длинах волн (цветах), которые наиболее полезны для каждого приложения и растения.Кроме того, сниженное тепловыделение позволяет размещать светодиодные светильники ближе к растениям, что снижает потери света в других местах.

    · F Пожаробезопасность — поскольку светодиоды не сильно нагреваются по сравнению с обычными лампами HPS, их безопаснее использовать

    · D imming — в то время как большинство ламп HPS используют полную интенсивность света, светодиодные лампы для выращивания растений могут приглушаться даже с помощью пульта дистанционного управления или через приложение, и, следовательно, с ними проще обращаться, кроме того, что они потребляют меньше энергии

    · B etter сельскохозяйственных культур — различные испытания показали, что светодиодные фонари для выращивания растений дают лучшие урожаи с точки зрения роста растений и их более быстрого роста по сравнению с лампами HPS.Кроме того, светодиоды могут быть изготовлены со спектром, направленным на конкретную цель, такую ​​как накопление антоцианов, ингибирование цветения, усиление укоренения и т.