Жидкости для системы отопления дома: Антифриз (незамерзающая жидкость) для системы отопления дома

Содержание

Антифриз (незамерзающая жидкость) для системы отопления дома

Состав антифризов

В основном антифризы включают разного рода присадки, необходимые для придания раствору необходимых качеств. Например:

  • предотвращение разрушение уплотнителей системы;
  • растворение и вывод накипи и осадков, которые накапливаются в системе со временем;
  • коррозийная защита металлов, которые входят в состав системы отопления.

Заливай и пользуйся?

Казалось бы, если есть проблема – риск замерзания воды в системе отопления — незачем медлить, нужно заливать антифриз. Ведь в наших условиях отключение электроэнергии на продолжительное время – обычное дело, причем без предупреждения. А значит, в зимнее время могут возникнуть серьезные проблемы в частных домах. Но есть еще одна сложность. Многие производители отопительных котлов категорически не рекомендуют применять антифризы в системах, в которых участвуют их устройства.

Возникает резонный вопрос, почему?

Причины, по которым производители котлов отказывают в использовании антифриза

Производитель «Протерм» (Словакия) заявляет о том, что не несет ответственности за последствия, вызванные применением антифризов. Чугунные котлы, изготавливаемые компанией, не предназначены для взаимодействия с незамерзающими жидкостями. Vaillant (Германия) еще более категоричен, заявляя о том, что в настенных котлах использовать незамерзающие жидкости нельзя! Что касается иных производителей, то здесь все запутаннее. Некоторые из них информируют об использовании в конструкции котлов специальных прокладок из паронита, которые подходят ко многим видам антифризов. Однако при этом не афишируется обратная сторона медали: сложности с уплотнителями – не единственная проблема при применении антифризов.

Какие существуют проблемы при использовании незамерзающей жидкости в отопительных системах?

Проблема №1

Поскольку вода и антифриз имеют различные физические показатели, при проектировании системы отопления следует учитывать, будет использоваться та или иная жидкость.

Базовые расчеты делаются, конечно, для воды. Если же планируется использование антифриза, потребуется изменить некоторые параметры системы:

  • мощность котла;
  • на 60% увеличить напор циркуляционного насоса;
  • на 50% увеличить объем расширительного бака;
  • на 50% увеличить тепловую мощность радиаторов.

Проблема №2

Антифризы на базе этиленгликоля имеют одну особенность – «не любят» перегрева системы. Например, если в любой точке системы температура превысит критическую для данной марки смеси, произойдет разложение этиленгликоля и присадок, в результате реакции образуются твердые осадки и кислоты. При выпадении осадков на нагревательные составляющие котла появляется нагар, в результате чего снижается теплообмен, стимулируется появление новых осадков, увеличивается вероятность перегрева.  

Образованные при разложении этиленгликоля кислоты вступают в реакцию с металлами системы, в результате чего возможно развитие коррозийных процессов. Разложение присадок способно вызвать снижение защитных характеристик состава по отношению к уплотнителям, что может вызвать течь в местах соединения. Если система имеет цинковое покрытие, использование антифриза недопустимо. При перегреве появляется повышенное пенообразование, а это значит, что гарантировано завоздушивание системы. Следовательно, чтобы все эти явления исключить, нужно жестко контролировать отопительный процесс. Поскольку производителям котлов неизвестны физические свойства используемых теплоносителей (кроме воды), они исключают их применение.

Проблемы №3

Антифризы имеют повышенную текучесть. Следовательно, увеличение количества соединительных мест и элементов влечет за собой рост вероятности образования протечек. Причем в основном такая проблема появляется при остывшей системе, когда отопление выключено. При охлаждении объем металлических соединений уменьшается, появляются микроканалы, по которым и сочится состав. Поэтому важно, чтобы все соединения системы были доступны.

Учитывая токсичность антифризов, их нельзя применять для нагревания воды в системах ГВС. В противном случае смесь может попасть в точки разбора горячей воды, что представит опасность для жильцов.

Что залить в систему отопления частного дома, воду или антифриз

Автор Монтажник На чтение 18 мин Просмотров 21.2к. Обновлено

Индивидуальная система отопления в зимнее время должна функционировать непрерывно, даже при отсутствии жильцов, в экономичном режиме работы. Но если хозяева на долгое время покинули загородный коттедж или дачный дом, могут возникнуть непредвиденные ситуации, приводящие к замерзанию воды в трубах отопления, и в этом случае становится актуальным вопрос — что залить в систему отопления частного дома.

Задача усложняется тем, что существует несколько вариантов замены воды морозоустойчивыми жидкостями, имеющими различные химические свойства и физические характеристики. Также необходим точный расчет объема теплоносителя в системе — это позволит правильно определить нужное количество незамерзающей жидкости для функционирования в системе отопления, и соответственно сэкономить финансовые средства и время.

Рис. 1 Система отопления в частном доме

Что такое теплоноситель и какие бывают виды

Теплоносителем называют жидкое или газообразное вещество, предназначенное для передачи тепловой энергии, в индивидуальной отопительной системе дома используется только жидкое рабочее тело.

В домашнюю систему отопления заливаются следующие виды теплоносителей:

  • Вода. Самый доступный и универсальный теплоноситель, не требующий финансовых затрат на его приобретение и используемый в большинстве систем отопления, обладает наибольшей теплоемкостью среди жидких веществ.
  • Антифризы. Для передачи тепловой энергии используются два вида антифризов — этиленгликоль и пропиленгликоль. Они имеют низкую температуру кристаллизации и разводятся с водой в определенном соотношении — это позволяет изменять точку замерзания жидкости.
  • Смеси антифризов. Наиболее популярные антифризы этиленгликоль и пропиленгликоль обладают разными химическими и физическими свойствами. Некоторые производители добавляют в их состав гликоли для получения жидкостей, сочетающий в себе преимущества двух компонентов.
  • Автомобильные антифризы. Этиленгликоль является одним из основных компонентов автомобильных охлаждающих жидкостей, поэтому можно использовать общеизвестный Тосол для отопления дома. В его марках цифры 40 (голубой цвет) и 65 (красный цвет) означают температуру замерзания.
    При эксплуатации раствор тосола меняет цвет на сине-зеленый, затем зеленый, желтый и в конце обесцвечивается (точнее становится грязно-коричневым из-за отложений ржавчины). Это говорит о снижении ее эксплуатационных качеств и необходимости замены. Нормальной рабочей температурой эксплуатации Тосола считается показатель до 95º С, при превышении этого порога срок службы жидкости резко падает.

Рис. 2 Антифризы — виды

  • Другие вещества. Чтобы понизить точку замерзания воды, можно использовать любые солевые растворы (хлористые натрий, калий, кальций), спирты, глицерин, гликоли, анилин и многие другие химические компоненты. Очень хорошим антифризом считается вода с 40% содержанием этилового спирта, но его использование довольно дорого и ограничено высокой летучестью и воспламеняемостью. Аналогичными свойствами обладает и более дешевый метиловый спирт, который опасно использовать в качестве теплоносителя вследствие его высокой ядовитости.

На рынке встречаются антифризы на основе глицерина — ни в коем случае не следует использовать эти составы в отопительной системе, они обладают температурной неустойчивостью, разлагаются с образованием вредных для материалов компонентов, затрудняют настройку котла отопления.

Основные требования к теплоносителю для отопления загородных домов

Теплоноситель, который следует заливать в систему отопления загородного дома, должен обладать следующими свойствами:

  • Иметь высокую теплоемкость. Данный показатель характеризует свойство вещества накапливать тепловую энергию — чем больше рабочая жидкость впитает в себя энергии, тем больше ее будет подано на радиаторы отопления.
  • Вязкость. Рабочее тело должно иметь низкую вязкость — в этом случае электронасосу для подачи жидкости потребуется меньше электроэнергии.
  • Экологичность. Многие жидкости, обладающие подходящими физическими параметрами для применения в роли теплоносителя, не используются в качестве рабочего тела из-за высокой опасности нанесения вреда здоровью человека.
  • Безопасность. Проводящая тепло жидкость не должна быть взрыво- и пожароопасной.

Рис. 3 Однотрубный контур отопительной системы с открытым расширительным баком

Возможно будет интересно: Однотрубная система отопления — плюсы и минусы, популярные схемы

  • Нейтральность. Теплоноситель не должен оказывать вредного воздействия на трубы, котлы, отопительное оборудование, радиаторы, приводящего к их коррозии, химическому повреждению и соответственно быстрому выходу из строя.
  • Стоимость. Цена теплопроводящей жидкости является наиболее важным параметром при выборе подходящих материалов, многие из них с хорошими физическими характеристиками не используются в системах по той причине, что слишком дороги.
  • Температура. Подающая тепло жидкость должна выдерживать максимальную и минимальную рабочие температуры, а также их нижний и верхний предел с учетом экстренных ситуаций (отключение электроэнергии, поломка оборудования, повреждение магистрали).
  • Срок эксплуатации. Все антифризы в процессе эксплуатации меняют свои химические свойства с ухудшением технических параметров. При использовании в автомобильной технике их рекомендуется менять раз в 3 — 5 лет, этот параметр необходимо учитывать и при использовании в качестве незамерзающей жидкости, выбирая состав с наиболее длительным сроком службы.

Рис. 4  Однотрубная система отопления с герметичным контуром

Вода в качестве теплоносителя

Применение воды в отопительной системе оптимально в том случае, если в доме постоянно проживают люди — даже при каких-то неполадках или длительном отключении электроэнергии в зимнее время, если не удастся быстро устранить неисправность и подключить электричество, можно просто слить воду из системы.

Идеальным вариантом для заполнения магистрали отопления является дистиллированная вода, но ее получение или приобретение в больших количествах обходится слишком дорого. Выходом из положения может быть сбор дождевой воды и ее дальнейшее использование после фильтрации, также воду можно умягчить кипячением или использовать для этого химические реагенты.

Плюсы и минусы воды в роли теплоносителя

Вода является самым распространенным элементом среди используемых жидкостей для переноса тепла, она обладает следующими свойствами:

  • Доступность. Вода есть везде, она практически ничего не стоит, в экстренных ситуациях ее всегда можно слить и снова наполнить систему.
  • Высокая удельная теплоемкость. Среди всех жидкостей вода обладает наивысшей теплоемкостью со средним значением 4200 Дж./кг.*К. (4,2 КДж./кг.*К.) — это означает, что она медленно нагревается, и медленно остывает.
  • Низкая вязкость. Вода имеет низкую кинетическую вязкость 1,006 м. кв./с.(10-6) при температуре 20º С, с увеличением вязкость падает и при рабочей температуре котла около 70 С. данный показатель имеет значение около 0,4 м.кв./с.(10-6). Это означает, что вода меньше поддается сопротивлению при движении во время проталкивания ее в систему рабочим колесом электронасоса.
  • Низкий коэффициент объемного расширения. При нагреве вода незначительно увеличивается в объеме, по сравнению с нулевой температурой при 80 градусах ее объем увеличивается на 2,8%.
  • Экологичность. Применение воды безвредно для здоровья, при аварийных утечках она не нанесет ущерба здоровью человека.
  • Нейтральность. Вода химически нейтральна по отношению ко всем синтетическим материалам, она не оказывает вредного воздействия на широко используемые в настоящее время трубопроводы из сшитого полиэтилена (металлопластик), применяемые для систем отопления.

Рис. 5 Физические свойства воды

К недостаткам относятся следующие свойства воды:

  • Высокая температура замерзания. Это основной недостаток, не позволяющий эксплуатировать систему отопления дома зимой в отключенном состоянии.
  • Коррозионное воздействие на сталь. Использование воды не позволяет применять в качестве материала трубопроводов дешевую сталь длительное время, приходится эксплуатировать трубы из более дорогих материалов и сантехническую арматуру из цветных или нержавеющих сплавов.
  • Накипь. При повышении температуры, соли, содержащиеся в воде, оседают на трубах, в радиаторах и сантехнических приборах — это приводит к уменьшению сечения рабочего канала и нарушению работы запорной и регулирующей арматуры.

Что такое антифриз и его виды

Антифризами называется класс жидкостей, не поддающихся кристаллизации при низких температурах, их основное назначение — охлаждение автомобильных двигателей и работа в низкотемпературных установках.

Известны два основных вида антифризов: пропиленгликоль и этиленгликоль (также в продаже есть составы на основе глицерина), они обладают разными химическими и физическими свойствами и сферами применения.

Использование незамерзающей жидкости в отопительных системах оправдано в тех случаях, если хозяева индивидуальных домов отсутствуют в них зимой некоторое время — при возникновении экстренной ситуации (поломки, отключение электроэнергии) может произойти размораживание отопительной системы. Как только температура воды в трубах упадет до нуля градусов, произойдет ее замерзание и расширение на 10%, связанное с меньшей плотностью льда по сравнению с водой на аналогичную величину. При этом придется менять весь трубопровод, полностью заполненный водой, радиаторы отопления и нагревательный котел — убытки будут огромны.

Рис. 6 Физические свойства гликолей и температуры замерзания антифризов

Плюсы использования антифриза

Помимо предотвращения размораживания трубопроводной системы применение антифризов имеет следующие преимущества:

  • Температурный диапазон работы незамерзающих составов для отопительных систем, лежащий в диапазоне от -70º до +110º С обеспечивает сохранение трубопровода при любых существующих в природе низких температурах и эффективную работу в качестве теплоносителя.
  • При температуре охлаждения гликолей ниже кристаллизации, они становятся желеобразными, незначительно расширяясь в объеме — это не приводит к размораживанию системы и выходу ее из строя. После оттаивания труб жидкость можно разморозить и использовать повторно без потери качества.
  • Наличие специальных присадок (ингибиторы коррозии и другие) в составе гликолей предотвращают появление накипи, ржавчины, пены, завоздушивание, увеличивая тем самым срок службы системы.
  • Использование красителей позволяет легко обнаружить протечки, а изменение цвета жидкости говорит о необходимости ее замены.

Минусы использования антифризов

Использование антифризов имеет следующие недостатки:

  • При применении незамерзающих составов необходимо помнить, что этиленгликолевые антифризы ядовиты, смертельная доза для человека при приеме внутрь составляет 2 мг. на 1 килограмм массы тела. В связи с этим был разработан экологически чистый и абсолютно безопасный пропиленгликоль.
  • Большой минус незамерзающих жидкостей — их слишком высокая цена, стандартная 20-литровая емкость этиленгликоля с предельной температурой — 65º С стоит в среднем около 30 у.е. Такую же стоимость имеет 20-литровая канистра пропиленгликоля с максимальной температурой -30º С — фактически это говорит о том, что пропиленгликолевый состав стоит в 2 раза дороже.
  • Применение относительно недорогого ядовитого этиленгликоля невозможно в доме с открытым расширительным баком.
  • Незамерзающие жидкости имеют ограниченный срок службы, в среднем он составляет 5 лет или 10 отопительных сезонов, после чего жидкость необходимо сливать, промывать трубопровод и заливать новый состав, а при использовании ядовитого этиленгликоля придется дополнительно решать вопрос о его утилизации. Данная процедура приводит к существенным финансовым затратам и потерям времени.

Рис. 7 Влияние процентного содержания этиленгликоля в растворе на температуру его кристаллизации

  • Применение некачественного антифриза или использование его после истечения срока службы может стать причиной повреждения водопроводной арматуры, засорения труб и фитингов — в интернете есть немалое количество подобных примеров.
  • Один из критических недостатков применения незамерзающих составов заключается в том, что многие производители котлов отказывают потребителю в их в дальнейшем гарантийном обслуживании после заливки в систему антифриза.
  • При использовании гликолей придется устанавливать более мощный циркуляционный насос, пропиленгликоль потребует увеличения его напора на 10% и производительности на 60%, аналогично понадобится более объемный расширительный бак.
  • Не рекомендуется использовать пропиленгликолевые составы в электролизных котлах (Галан) и отопительных системах с оцинкованными трубами.

Сравнение антифриза с водой

Используемые в системах обогрева незамерзающие составы уступают воде по всем параметрам:

  • Имеют на 10% меньшую теплопроводность — это говорит о том, что для передачи одинакового с водой количества тепла скорость их движения по трубам должна быть больше на 10%.
  • Вязкость некоторых антифризов в 5 -10 раз превышает аналогичный показатель воды, поэтому насосу понадобится приложить больше кинетической энергии (возрастут затраты электроэнергии) для продвижения жидкости по трубам.
  • Антифризы обладают высокой текучестью, то есть будут проникать через мелкие щели, в которых ранее задерживалась вода — это может привести к дополнительным протечкам, данный недостаток устраняют применением высококачественных соединений и уплотнителей (паронитовые или тефлоновые прокладки).
  • Коэффициент теплового расширения этиленгликоля в 1,5 раза больше, чем у воды, то есть при температуре + 80º С он может достигать 4,5% от общего объема и в некоторых случаях понадобится установка расширительного бака больших размеров.

Рис. 8 Сравнение характеристик антифриза и воды

Основные виды антифризов и их свойства

Антифризы применяют для того, чтобы не разморозилась отопительная система, их основные виды — водные пропиленгликолевые и этиленгликолевые растворы, порог замерзания которых зависит от соотношения гликоля и воды.

Состав антифризов

Низкозамерзающие жидкости состоят из активного вещества (антифриз 60 — 65%) дистиллированный или деионизированной воды (около 30 — 35% от общего объема) и 3 — 4% специальных присадок (ингибиторов коррозии), которые поставляются крупными зарубежными химическими концернами (BASF). Иногда производитель поставляет на рынок дешевые низкозамерзающие жидкости, в состав которых входит диэтиленгликоль, обладающий низкой химической стабильностью и соответственно малым сроком службы.

Этиленгликолевый антифриз — когда стоит выбрать

На рынок поставляются две основные разновидности этиленгликолевой незамерзающей жидкости (красный цвет), температура кристаллизации которых составляет -30 и -65º С, несмотря на токсичность использовать его можно без сильных опасений в закрытых отопительных системах. Большой угрозы в закрытом контуре он здоровью детей и животных не представляет, в отличие от лекарственных препаратов и бытовой химии, находящихся дома в доступных местах.

Этиленгликоль вреден только при попадании внутрь организма (детей может привлечь его сладкий вкус), долгое вдыхание его паров вызывает кратковременное расстройство здоровья, при попадании на кожу рук в случае ликвидации протечки или прорыва трубопровода нужно будет их просто промыть водой.

Рис. 9 Сравнение температуры замерзания антифризов

Пропиленгликолевый антифриз когда стоит выбрать

Положительные качества пропиленгликоля — малый коэффициент теплового расширения и абсолютная безвредность для человека (он является пищевой добавкой), поэтому использовать его можно в контурах с открытыми расширительными баками. На рынок поставляется пропиленгликолевый состав зеленого цвета (в название часто добавляют ЭКО) с температурой замерзания до -30º С, для получения стандартной температуры замерзания в пределах 20 градусов его следует разбавить водой приблизительно на 40%. К недостаткам относят низкую теплопроводность (на 30% меньше, чем у воды), поэтому при использовании низкотемпературной жидкости производительность насоса придется повышать.

Триэтиленгликолевый антифриз — когда стоит выбрать

Основное отличие триэтиленгликоля от других теплоносителей — способность выдерживать рабочую температуру до 170 — 180º С, и высокая вязкость (в 2 раза больше этиленгликоля), что делает проблематичным его использование в качестве антифриза в высоких концентрациях. Триэтиленгликоль используют в качестве добавок в смеси с другими незамерзающими жидкостями в антифризных составах для повышения верхнего температурного порога.

Плюсы использования антифризов с присадками

Отличительные особенности антифриза различных производителей — наличие присадок разного химического состава и назначения, в большинстве случаев они предназначены для борьбы с ржавчиной в металлических трубах и содержат ингибиторы коррозии. При использовании незамерзающих жидкостей в системах со стальными трубами и элементами отопительной системы, чугунными радиаторами польза от таких присадок несомненна — они замедляют коррозионные процессы в 100 раз.

При применении незамерзающей жидкости в современных пластиковых трубах и алюминиевых радиаторах антикоррозионные присадки бесполезны (за исключением веществ, растворяющих накипь) и не оказывают положительного влияния на работу системы.

Рис. 10 Объем теплоносителя, который заливают в трубы для отопления

Расчет жидкости в системе отопления

Определить объем жидкости можно двумя способами: путем расчетов и экспериментов, в последнем случае магистраль заполняют водой и затем ее сливают, измеряя полученное количество ведрами или другими емкостями с известными параметрами.

Для расчета по формулам складывают объемы следующих составляющих (кроме расширительного бака):

  • V(объем) = V(труб) + V(радиаторов) + V(котла)

Для расчета объема жидкости в трубах используется следующее уравнение:

  • V(объем) = S(площадь сечения трубы) х L(длина трубы)

Площадь сечения можно вычислить вручную по формуле площади круга:

  • S = 3,14(число пи) х R2(радиус в квадрате)

или определить по таблицам объема жидкости в одном погонном метре трубы заданного внутреннего диаметра (Рис. 10) – такой вариант намного проще и точнее.

Объем воды в радиаторах обычно указывается в паспорте, при его утере можно воспользоваться таблицами с указанием данных для одной секции батарей различного образца и материала изготовления (рис. 11), параметры котла берут из паспортных данных.

Рис. 11 Таблица расчета объема радиаторов

Объем расширительного бака берут не менее 10% от общего объема системы — этого должно хватить для любого теплоносителя, наибольший коэффициент теплового расширения имеет этиленгликоль, и данный показатель не превышает 5% при температуре до 80º С.

Что залить в систему отопления частного дома — выбор производителя антифриза

При покупке антифризов следует выбирать составы от отечественного производителя — их стоимость значительно ниже импортных при одинаковых показателях (многие жидкости изготавливаются на основе импортного фармакологического пропиленгликоля, отсюда их высокая стоимость).

Наиболее известными поставщиками своей продукцией считаются фирмы Форвард групп (торговые марки Dixis, Теплый дом), ВинтХим (марка Hot Blood), Primoclima, Обнинскоргсинтез (марки Thermagent, Sintec, Sintoil), при выборе товара сложно отдать предпочтение какому-либо производителю — все гликоли имеют практически одинаковый состав, приблизительно равную стоимость и высокий срок службы в 5 лет.

Рис. 12 Популярные марки гликолей

Как самостоятельно приготовить антифриз

Единственным приемлемым вариантом самостоятельного изготовления антифриза является использование 40% спиртового раствора с достаточно низкой температурой замерзания (около -28,9º С).

Если рассматривать затраты на изготовление данной смеси, то стоимость 5-литровой канистры 95% этилового спирта составляет около 20 у.е., 20-литровая емкость будет стоить 80 у.е., а 40% раствор такого же объема обойдется потребителю в 33,7 у.е. — это близко к цене пропиленгликоля, который заливается как теплоноситель.

Если вместо высококачественного этилового спирта использовать денатурат (метанол не стоит рассматривать — он очень ядовит), то по затратам можно получить стоимость относительно недорогого этиленгликоля.

Применение самостоятельного приготовленного спиртового раствора в качестве теплоносителя имеет неоспоримые преимущества по сравнению с составами промышленного изготовления, основные из них:

  • Длительное использование. Через 10 лет, если не раньше, антифриз придется сливать и заливать в систему новый состав. Спиртовой раствор в закрытой системе можно использовать очень долгое время — это уменьшение затрат минимум в 2 раза.
  • Экономия электроэнергии. Спиртосодержащий раствор имеет значительно меньшую вязкость, чем незамерзающие жидкости, поэтому электронасос будет работать в таком же режиме, как и при использовании воды.
  • Водно-спиртовой раствор имеет аналогичное с водой поверхностное натяжение — это уменьшает риск протечек в отличие от незамерзающих жидкостей.
  • Если воду со спиртом сравнивать с промышленным антифризом, то состав оказывает полезное влияние на трубопроводную магистраль, растворяя накипь и препятствуя коррозии.
  • Проверить качество теплоносителя в отличие от антифризов намного проще — для этого понадобится простейший спиртометр. А при понижении процентного содержания спирта его легко повысить доливанием основного компонента и использовать раствор дальше.
  • У производителя будет слишком мало оснований отказать в гарантийном обслуживании котла при применении данного раствора.
  • Некачественные антифризы засоряют систему осадком и даже способны повредить сантехническую арматуру, вызывая ее ускоренную коррозию продуктами распада — с водно-спиртовым раствором этого можно избежать.

Рис. 13 Характеристики некоторых марок гликолей

Как заливать незамерзающую жидкость в систему отопления самостоятельно

Перед применением состава, его разводят водой для получения необходимой точки замерзания. При использовании пропиленгликолей оптимальным считается раствор с температурой кристаллизации -25º С для котлов на жидком и твердом топливе, при применении нагревателей газового или электрического типа, выбирают нижний температурный порог — 20º С.

При использовании полипропиленгликолевого состава с температурой -30º С, для получения необходимых температурных значений обычно добавляют 10% и 20% воды (для температур -25º С и -20º С соответственно). Если используют растворы этиленгликоля с предельной температурой в -30º или -65º С, то количество добавленной воды рассчитывают с учетом процентного содержания гликолей для разных температур по таблицам (Рис. 7).

К примеру, если мы имеем состав объемом 20 л. с температурой кристаллизации -30º С с 46% содержанием гликоля, то для получения жидкости с температурой замерзания -20º С. необходима его 36% концентрация, умножаем  20 на 46, делим на 36 и получаем искомое значение 25,55.

Для получения состава с температурой  кристаллизации -20º С. необходимо долить 5,5 литра воды — для разбавления используют умягченную или дистиллированную воду.

Рис. 14 Плотность этиленгликоля в зависимости от температуры

При самостоятельной заливке жидкости в систему поступают следующим образом:

  • Сливают теплоноситель через кран опорожнения и заполнения, расположенный в области водонагревательного котла, также минимум один раз промывают систему.
  • Это делают с помощью электронасоса любого типа (можно использовать недорогие вибрационные модели Малыш). Промывают трубопровод и элементы отопительной системы, подавая в магистраль воду из емкости под давлением около 2 бар.
  • После наполнения магистрали прекращает подачу воды, перекрывают кран подачи и включают котел на некоторое время (от одного часа) до нагрева воды. Не обязательно производить нагревание до 80 градусов, следует лишь добиться чистого состояния грязевого фильтра, который до и в процессе промывания периодически очищают. Промывку магистрали считают законченной, если в течение 30 минут работы на фильтре не появится грязь.
  • По завершении промывочной процедуры сливают воду, и приступают к заполнению радиаторной системы. Для этого накачивают насосом (можно использовать ручные гидравлические насосы) глюколь до двух атмосфер и начинают стравливать воздух из радиаторов, при этом важно учесть, что работу следует начинать с нижних этажей.
  • Воздух в радиаторах выпускают через краны Маевского, открывая их шлицевой отверткой или специальным сантехническим ключом до появления жидкости. При этом давление в магистрали немного падает, и его снова поднимают до необходимого порога подкачкой гликоля в систему.
  • Процедуру стравливания и подкачки производят повторно, после чего теплоноситель нагревают до температуры приблизительно 65º С и проверяют радиаторы на нагрев с двух противоположных сторон. Если одна половина более холодная, значит воздух стравлен не полностью и процедуру необходимо повторить.
  • Если при стравливании воздуха из радиатора идет пена (она образуется при прохождении гликоля через крыльчатку компрессионного насоса), оборудование и насос отключают, давая жидкости возможность отстояться.

Рис. 15 Как незамерзающую жидкость залить в систему

Решая, что залить в отопительную систему для предотвращения ее размораживания, можно прийти к выводу, что наилучшим вариантом является спиртовой 40% раствор, изготовленный самостоятельно. Его стоимость сопоставима с выпускаемыми промышленностью гликолями для теплоносителей, а совокупные физические характеристики состава (вязкость, теплоемкость, экологичность, срок службы и другие) на порядок выше широко разрекламированных незамерзаек.

Незамерзающая жидкость для системы отопления дома: какую выбрать?

Автономные системы отопления в загородных домах могут работать на различных принципах. Очень популярной конструкцией для создания частных отопительных систем является оборудование с жидким теплоносителем.

Частный дом с незамерзающей жидкостью в системе отопления

Она состоит из нагревательного котла, системы трубопроводов и отопительных радиаторов.

Обычно в качестве теплоносителя используется обычная вода. Для того, чтобы предотвратить образование накипи в такую «техническую» воду зачастую добавляют химические присадки. Но такая система требует постоянного нагрева – в случае замерзания воды внутри трубопроводной системы последняя выходит из строя. Для того, чтобы обеспечить возможность пауз в работе используется незамерзающая жидкость для отопления.

Почему в системе отопления лучше использовать незамерзающую жидкость, а не воду?

Незамерзающая жидкость (или антифриз) в системе отопления существенно упрощает работу с оборудованием. Если вы используете в качестве теплоносителя обыкновенную воду, то отопительную систему приходится оборудовать дополнительными устройствами, например крана для выпуска воздуха из расширительного бачка. Кроме того, в варианте не постоянно используемого загородного дома – воду в отопительную систему придется сливать или заливать при каждом посещении, иначе зимой она просто замерзнет.

С одной стороны вода обладает большей теплоемкостью и при перемещении по трубопроводам системы отопления дольше сохраняет тепло. Именно это обуславливает более широкое применение воды, как теплоносителя в частных загородных домах.

Можно ли использовать антифриз?

схема теплоснабжения с антифризом вместо воды

Антифризы или незамерзающие жидкости известны практически каждому. Они широко используются в системах охлаждения автомобилей в зимний период. В автомобильном двигателе антифриз переносит излишнее тепло от двигателя, охлаждая его. При этом даже в самые сильные морозы он не замерзает. Именно эти свойства – способность переносить тепло даже в самые низкие температуры и обусловили использование антифризов для строительства систем отопления. Особенно актуально применение такого теплоносителя в системе, часть трубопровода которой проходит по открытой местности.

Хорошей особенностью «незамерзайки» является и то, что она меньше, чем обычная вода провоцирует образование коррозии на внутренней поверхности трубопроводных систем. Еще одним несомненным плюсом является отсутствие в незамерзающих жидкостях взвешенных растворов известняка – таким образом вы можете не беспокоиться по поводу возможного образования накипи.

Существует несколько модификаций незамерзающих жидкостей, которые можно использовать в отопительных системах .Выбор конкретной разновидности производится с учетом климатических условий и конфигурации системы отопления вашего дома.

Что такое промывочная жидкость для отопительной системы и нужно ли ее промывать?

Кроме собственно теплоносителя – при эксплуатации отопительной системы вам придется еще приобрести жидкость, предназначенную для промывки трубопроводом и радиаторов отопления.

Конечно, в крайнем случае можно провести промывку внутренней поверхности труб и обычной водопроводной водой, но лучше это сделать все-таки с помощью специальных жидкостей, в которые введены специальные химические добавки.

промывка отопления

Альтернативным вариантом промывки может являться использование воды с добавленным в нее раствором каустической соды. Такая смесь заливается в систему отопления и примерно в течении часа остается внутри ее. Раствор соды вступает в контакт с накипью на внутренней поверхности системы и растворяет ее. Кроме того, раствор соды растворит участки с коррозией.

 Как выбрать жидкость для отопительной системы?

  • Прежде всего необходимо определить рабочие параметры системы. Здесь вам будут важны два крайних значения – максимальная температура теплоносителя при нагреве в котле и минимальная температура окружающего воздуха.
  • Далее вам необходимо внимательно изучить технические характеристики вашей отопительной системы. Собственно, основное внимание нужно обратить на характеристики теплообменника в котле. Некоторые производители могут не допускать использование незамерзающих жидкостей.
  • И, наконец, после определения допустимости использования незамерзающей жидкости и ее возможных температурных параметров – приступайте непосредственно к выбору марки жидкости, делая упор на ее наименьшую токсичность. Все-таки отопительная система будет расположена в жилом помещении, и возможные утечки жидкости не должны приводить к отравлениям.

Использование спирта в качестве теплоносителя

Как бы не кощунственно это звучало для мужского уха – но допускается использование спирта в качестве теплоносителя. Спирт не замерзает и может использоваться в широком диапазоне температур. Естественно в таком качестве используется технический спирт, который для человека является смертельным ядом. Однако многие производители котлов и теплообменников критические относятся к использованию в качестве теплоносителя таких жидкостей как бишофит или этиленгликоль.

бишофит

Минусом использования чистого спирта в качестве теплоносителя является его высокая испаряемость – примерно пять литров за год у вас будет испаряться через микроскопические поры в системе.

Какую марку антифриза выбрать?

Немаловажным фактором при выборе незамерзающей жидкости для отопительной системы станет подбор совместимости жидкости с материалом изготовления трубопроводной системы. Так, в качестве материала изготовления труб в системах отопления могут использовать полипропилен, алюминий, сталь или чугун. С каждым из материалом определенные марки незамерзающих жидкостей могут вести себя по-разному.

незамерзайка «Теплый дом»

Кроме того очень важен и максимальный температурный режим, которому будет подвергаться жидкость-теплоноситель. Этот параметр во многом зависит от топлива, используемого в отопительной системе. Так жидкие сорта топлива, например солярка имеют гораздо большую температуру горения, нежели обычные березовые дрова. Соответственно и жидкость-теплоносителя в таких системах будет нагреваться в большей степени.

При использовании антифриза необходимо учитывать и его повышенную текучесть и проницаемость, вызванную небольшим коэффициентом поверхностного натяжения. Вследствие этого антифризы могут просачиваться буквально сквозь мельчайшие поры в соединениях. Таким образом использование антифриза предусматривает тщательную ревизию всех соединительных узлов в системе отопления вашего дома.

Учтите, что разные марки антифризов от разных производителей могут иметь разный химический состав. «Антифриз» — это просто общее название рода незамерзающих жидкостей. Соответственно поведение каждой жидкости с индивидуальным химическим составом будет также индивидуальным.

Последствия применения незамерзайки с этиденгликолем

Очень часто в состав незамерзающей жидкости производителями вводится этиленгликоль. Помните, что этиленгликоль представляет собой агрессивное и ядовитое химическое вещество. Вследствие этого при эксплуатации систем отопления с теплоносителем-антифризом необходимо соблюдать ряд мер безопасности. В любом случае при использовании незамерзающих жидкостей система теплоснабжения и система горячего водоснабжения вашего дома должны быть физически разделены, чтобы не допустить смешивания используемых в них жидкостей. В крайнем случае, при реальной возможности попадания теплоносителя в систему горячего водоснабжения необходимо использовать пропиленгликоль. Он обладает меньшей эффективностью, чем этиленгликоль, но гораздо менее токсичен.

Перед первой заливкой незамерзающей жидкости в отопительную систему не забудьте провести промывку внутренней поверхности трубопроводов.

Как производят антифриз?
Основным компонентом незамерзающих жидкостей является обычная вода. И от ее качества и чистоты во много зависит эффективность работы отопительной системы. Дело в том, что мельчайшие примеси загрязнения в воде являются теми участками, вокруг которых начинается ее замерзание. Хорошо очищенная, дистиллированная вода не замерзает даже при небольших минусовых температурах.

Кроме того, примеси в воде – это и есть накипь, которая образуется на внутренних стенках трубопроводах. Чем чище будет вода, используемая при производстве незамерзающей жидкости – тем меньше вероятность образования накипи, тем меньше

Для снижения негативных эффектов при производстве «незамерзайки» используются различные химические присадки. Они полностью растворяются в воде и препятствуют началу коррозии металлических поверхностей, играя в происходящих химических реакциях роль ингибиторов.

Какие присадки добавляются в незамерзающую жидкость?

Среди химических присадок, используемых при производстве «незамерзаек» можно выделить следующие:

  • Ингибиторы, то есть вещества, тормозящие химические реакции с металлом. К нем можно отнести силикаты и фосфаты.
  • Гибридные присадки, выполняющие одновременно несколько функции. Эти смеси бывают на органической и на неорганической основе.
  • Добавки на основе карбосиликатов. Это довольно свежее решение в этой отрасли и оно имеет широкую перспективу в развитии.

 Преимущества и недостатки теплоносителя на основе антифризов

Самым главным преимуществом жидкостей на основе антифризов при их использовании в отопительных системах является из способность сохранять текучее состоянии при отрицательных температурах. Даже при очень низкой температуре такая жидкость не становится твердым веществом а образует субстанцию, напоминающую кашицу, которая не сможет повредить трубопроводы и оборудование вашей системы. Кроме того, при низкой температуре и частичном замерзании антифриз не увеличивается в размерах. После повышения температуры он полностью восстанавливает свои свойства.

Но за такую эффективность при низких температурах антифризу приходится расплачиваться пониженной теплоемкостью, которая снижена на величину до 15 процентов относительно обычной воды. Это приводит к повышенному расходу энергоносителей для нагрева жидкости в отопительной системы. Также при использовании «незамерзаек» придется использовать более мощные радиаторы отопления, с большим количеством секций. Антифриз более вязок, чем вода и перемещать его по системе придется более мощными насосами.

Учтите, что после заполнения системы отопления незамерзающей жидкостью ей необходимо дать выстояться в течении двух-трех часов. За это время из жидкости выйдет присутствующий в ней воздух. Только после этого в системе можно создавать рабочее давление.

Чтобы избежать подсоса воздуха в жидкость в ходе работы системы – в ней необходимо установить расширительный бачок. По сравнению с системами, работающими на воде бачок должен иметь больший объем, что связано с большим коэффициентом расширения от тепла для «незамерзаек». Также незамерзающая жидкость может иметь склонность к вспениванию, что также должно компенсироваться бачком расширения.

При эксплуатации отопительной системы с антифризом недопустимо допускать ее перегрева, что может привести к необратимым последствиям и потребовать полной замены жидкости в системе.

Обучающее видео по незамерзающим жидкостям для систем отопления в частных домах

Незамерзающая жидкость для систем отопления дома своими руками

На чтение 7 мин Просмотров 486 Опубликовано Обновлено

Во время работы системы отопления возможно замерзание теплоносителя. Это приводит к созданию аварийных ситуаций. Избежать их можно только заменив воду в магистралях на специальный состав, температура замерзания которого значительно ниже 0°С. Можно ли сделать подобную незамерзающую жидкость для систем отопления дома своими руками?

Делаем антифриз самостоятельно

Замерзание воды – главная причина использования антифриза

Следует сразу отметить, что обыкновенная вода является лучшим типом теплоносителя. Она обладает достаточной теплоемкостью, имеет оптимальную плотность, доступную стоимость. Поэтому если вероятность воздействия отрицательных температур на теплоснабжение минимальна – лучше всего использовать дистиллированную воду.

Но при невозможности соблюдения этого условия потребуется специальная жидкость незамерзающая для котлов отопления. Она представляет собой раствор, в котором вода занимает до 70% от общего объема. Остальное это добавки, которые снижают порог кристаллизации до -60°С. В их состав входит:

  • Основной компонент – этиленгликоль, пропиленгликоль или глицерин. Эта незамерзающая жидкость для системы отопления дома имеет высокий коэффициент вязкости, что и приводит к желаемому эффекту;
  • Присадки. Именно благодаря им незамерзающая жидкость для водяного отопления не пенится, и при повышении температуры не образует кристаллический осадок.
Устройство для заливки незамерзающей жидкости

Проблема самостоятельного изготовления подобного состава заключается в правильном подборе последнего компонента. Все производители не разглашают полный перечень компонентов. Но даже зная как сделать правильный состав, в домашних условиях это сделать невозможно – для этого понадобится специальное оборудование и соблюдение технологии изготовления.

Как самому сделать незамерзающую жидкость для отопления, и к каким последствиям может привести ее применение?

  • Повышение уровня пены во время нагрева теплоносителя повлечет за собой быстрое образование осадка на стенках труб и радиаторов;
  • Уменьшение теплоотдачи самодельной незамерзающей жидкости. Это станет причиной существенного снижения КПД отопления;
  • Изготовленная незамерзающая жидкость для отопления своими руками может негативно воздействовать на стальные элементы системы из-за большого содержания кислорода. Ускорятся процессы коррозии.

Любая незамерзающая жидкость для печного отопления или твердотопливного котла не должны стать причиной появления этих нежелательных эффектов. Поэтому для сохранения безопасности системы рекомендуется использовать только качественную незамерзающую жидкость для водяного отопления от надежного производителя.

Перед применением антифриза следует ознакомиться не только с его составом и рекомендациями по применению, но и тщательно изучить инструкцию котла отопления. В ней должны быть указаны типы теплоносителя, которые можно заливать.

Виды незамерзающей жидкости для отопления

Заводской антифриз для отопления

Определившись, что незамерзающие теплоносители для системы отопления должны быть только заводского качества – можно приступать к выбору определенного состава. Он должен быть адаптирован к определенной схеме теплоснабжения, а его эксплуатационные показатели не могут ухудшать параметры системы.

Перед тем как залить в систему отопления незамерзающую жидкость нужно узнать – не будет ли она негативно воздействовать на компоненты теплоснабжения. Для этого следует ознакомиться с инструкцией по применению, которая обязательно должна прилагаться. Также важно обращать внимание на основной компонент жидкости незамерзающей для котлов отопления. От этого зависит не только состояние компонентов теплоснабжения, но и условия эксплуатации:

  • Этиленгликоль. Характеризуется высокой токсичностью. Поэтому может быть применен только в замкнутых схемах. Могут возникнуть сложности при заливке в систему отопления этого типа намерзающей жидкости. В парообразном состоянии опасен для здоровья человека;
  • Пропиленгликоль. Фактически является пищевой добавкой, поэтому допускается применение как в открытой, так и в закрытой системах отопления. В отличие от этиленгликоля температура кристаллизации на уровне +80°С, что дает возможность использовать ее для работы твердотопливных высокотемпературных котлах. Единственный недостаток – высокая стоимость;
  • Глицерин. Наиболее популярный вид незамерзающей жидкости для печного отопления. Его эксплуатационные качества несколько ниже, чем у пропиленгликоля. Однако наряду с этим стоимость глицериновых антифризов на порядок меньше. К недостаткам можно отнести большую текучесть. Это может отразиться на герметичности трубопроводов. Выход – замена резиновых прокладок на паронитовые.

В настоящее время применение незамерзающая жидкость для системы отопления дома на основе глицерина является оптимальным вариантом.

НаименованиеСоставЦена, руб/л
Теплый дом -30°СПропиленгликоль65
Dixis -65Глицерин75
Технология Уюта -65Этиленгликоль120

Производители предлагают 2 типа незамерзающих теплоносителей для системы отопления – в состоянии готовом к использованию и концентрат. Для больших схем теплоснабжения выгоднее приобретать именно концентрат. Однако при этом усложняется процесс заполнения системы.

При приобретении готовой к использованию жидкости нужно обращать внимание на нижний критический уровень температуры замерзания. Он может быть от -25°С до -65°С.

Особенности заливки антифриза в систему отопления

ручной насос для опрессовки и заполнения отопления антифризом

Для того чтобы не делать самому незамерзающую жидкость для отопления и при этом рисковать работоспособностью всей системы – необходимо приобрести уже готовый состав. Однако помимо этого следует ознакомиться с технологией заливки.

Если в системе есть старый теплоноситель – его следует слить. При этом рекомендуется проверить его состояние. Степень загрязнения укажет на актуальность проведения комплексной очистки. Она выполняется до того как залить в систему отопления антифриз. Последующие этапы работы заключаются в выполнении таких пунктов:

  • Если до этого использовался антифриз – обязательно выполняется полная промывка системы. В противном случае смешивание двух разных незамерзающих жидкостей для печного теплоснабжения может привести к нежелательным химическим реакциям;
  • Закрытая система. В ней точка заливки должна находиться ниже всех остальных приборов отопления. С помощью насосного оборудования выполняется заполнение незамерзающей жидкостью системы отопления частного дома. Важно, чтобы давление в трубах не превышало значение 3 атм;
  • Открытая система. Для нее использование незамерзающей жидкости для водяного отопления не рекомендуется. Постоянный контакт с воздухом может привести к значительному повышению вспенивания. Заливка выполняется через верхний расширительный бачок;
  • Тестирование отопления. Температура в системе повышается постепенно. Одновременно с этим проверяется герметичность всех узлов, а также отсутствие посторонних шумов при циркуляции теплоносителя.

Во время эксплуатации потребуется доливать незамерзающую жидкость для отопления самостоятельно. Поэтому рекомендуется приобретать ее с запасом – на 15-20% больше от рассчитанного объема системы.

Нельзя самому сделать незамерзающую жидкость для теплоснабжения. Также не рекомендуется применение автомобильных антифризов, так как они в большинстве случаев сделаны на основе небезопасного пропиленгликоля.

Ограничения по применению антифриза в теплоснабжении

Повреждения ТЭНа электрокотлов из-за неправильно подобранной незамерзающей жидкости

Несмотря на все свои положительные стороны не каждая жидкость незамерзающая подойдет для котлов отопления. Неправильное использование может привести к постепенному разрушению теплообменника и быстрому выходу из строя дорогого оборудования.

Помимо этого есть ряд других ограничений, которые нужно учитывать при использовании незамерзающего теплоносителя отопительных систем:

  • Многие модели двухконтурных котлов не предназначены для антифриза. Он может попасть в систему ГВС, что является нежелательным фактором;
  • Незамерзающая жидкость негативно воздействует на оцинкованную поверхность. Происходит быстрое разрушение защитного слоя и как следствие – выход элемента отопления из строя;
  • Так как вязкость у антифриза намного выше, чем у воды – нужно доукомплектовать отопление мощными циркуляционными насосами. Чем ниже критический уровень температуры замерзания – тем большая производительность должна быть у насосов;
  • Замену антифриза следует выполнять четко по рекомендации производителя. Он со временем теряет свои свойства, что напрямую сказывается на эксплуатационных показателях системы отопления.

Концентрат незамерзающей жидкости разбавляется только дистиллированной водой. Обыкновенная проточная для этого непригодна – большое количество сторонних элементов может вызвать нежелательную химическую реакцию.

В видеоматериале подробно рассказывается о параметрах выбора антифриза для систем теплоснабжения:

какую жидкость для радиаторов и труб отопления выбрать, фото и видео примеры

Содержание:

1. Применение антифриза в системах отопления
2. Жидкость для промывки отопительной конструкции
3. Выбор жидкости для отопительных систем
4. Выбор антифриза для труб и радиаторов
5. Нежелательное применение антифриза с этиленгликолем
6.

 Особенности процесса изготовления антифриза
7. Виды присадок для антифриза
8. Преимущества и недостатки антифриза

От того, какой вид жидкости используется в качестве теплоносителя в отопительной конструкции, зависит эффективность ее функционирования, стоимость обслуживания и срок эксплуатации. В том случае, когда в качестве жидкости для отопительных систем используется вода, необходимо довольно часто спускать попавший воздух из расширительного бачка с помощью специального крана. Располагают данную емкость в самой высокой точке конструкции теплоснабжения. 

Необходимость в данной процедуре вызвана тем, что в воде содержится кислород, со временем вызывающий коррозийные процессы. Они происходят внутри трубопровода и радиаторов и могут привести к полному выходу из строя этих элементов отопительной системы.

Из всех видов жидких теплоносителей потребители предпочитают использовать воду, поскольку она имеет большую теплоемкость, а именно способна продолжительное время сохранять степень нагрева. Такие ее характеристики являются причиной широкого использования для обогрева домов. 

Применение антифриза в системах отопления


Незамерзающая жидкость для отопительных систем известна как антифриз (детальнее: «Незамерзающая жидкость для систем отопления — делаем правильный выбор»). На фото можно увидеть, как выглядят упаковки с этим теплоносителем. Даже в самые суровые морозы он не замерзает, поэтому его широко задействуют при наличии наружных труб для теплоснабжения. Коррозийные процессы в трубопроводах и батареях, если используется антифриз для системы отопления, значительно снижаются, а значит, долговечность отопительной конструкции увеличивается. Также на внутренних поверхностях элементов системы не образуется накипь. 

Выбирается незамерзающая жидкость в систему отопления дома в зависимости от финансовых возможностей владельца объекта недвижимости. Кроме этого имеет значение, будут ли в процессе эксплуатации трубы находиться под влиянием низких температур.  

Жидкость для промывки отопительной конструкции


Помимо теплоносителя для отопительных систем нужно также подобрать средство для промывки ее элементов. В частных домовладениях для этих целей обычно используют водопроводную воду. Для качественного выполнения такой работы необходимо на протяжении одного часа заполнять систему раствором, содержащим каустическую соду, который прекрасно справляется с накипью и местами, где имеются коррозийные образования (прочитайте также: «Средство для промывки теплообменников котлов»). 

Выбор жидкости для отопительных систем


Перед тем, как подобрать жидкость для отопительных систем, следует определить, какой должна быть температура замерзания теплоносителя. Существенным фактором, оказывающим влияние на выбор, является то, что ведущие компании-производители отопительного оборудования обычно отдают предпочтение исключительно воде. 

Правда, некоторые из них допускают применение в системе отопления водно-спиртового раствора и сохраняют гарантию на поставляемую продукцию. Недостаток спирта, используемого в отопительной конструкции, заключается в том, что он в процессе эксплуатации испаряется в количестве 5 литров в течение одного года. Еще одним немаловажным моментом является токсичность и другие характеристики жидкого теплоносителя. 

Выбор антифриза для труб и радиаторов


Чтобы подобрать жидкость для отопительных систем, учитывают вид конструкции для обогрева и материалы, из которых изготавливают ее элементы. При производстве такого оборудования в основном задействуют сталь, чугун, алюминий и пропилен. Большое значение имеет вид используемого топлива, которое предназначается для нагрева котла. 
Для теплоагрегатов, функционирующих на жидком или твердом виде топлива, применяют в качестве теплоносителя разные жидкости. Поскольку антифриз обладает невысоким коэффициентом поверхностного натяжения, он характеризуется тягучестью. По этой причине при применении данного вида теплоносителя все узлы, резьбовые и сварные соединения системы должны обладать абсолютной непроницаемостью.  

Антифриз не относится к жидкостям, имеющим конкретный химический состав. Данное название является обобщенным понятием, означающим любую из низкозамерзающих смесей. Антифриз используют для охлаждения двигателей и агрегатов внутреннего сгорания, работающих при температуре ниже нулевой отметки.  Читайте также: «Какой теплоноситель для алюминиевых радиаторов отопления лучше использовать».

Нежелательное применение антифриза с этиленгликолем


Когда используют незамерзающую жидкость для труб отопления и других элементов отопительной конструкции, необходимо знать, что в ее составе присутствует этиленгликоль, который является химически ядовитым веществом. Поэтому для безопасной эксплуатации такого теплоносителя, следует соблюдать определенные правила безопасности.  Читайте также: «Какую жидкость для отопления частного дома выбрать – использование незамерзайки».
Если возможно попадание теплоносителя из отопительной конструкции в систему водоснабжения, тогда нужно применять только антифриз, в основе которого находится пропиленгликоль, поскольку он менее токсичен. Правда, он не такой эффективный. 

До того, как залить теплоноситель в ранее используемую отопительную конструкцию, ее предварительно промывают специально для этого предназначенным средством. 

Особенности процесса изготовления антифриза


При производстве антифриза имеет значение, какая используется для этого вода. Поскольку от появления накипи спасает только дистиллированная вода, которая не содержит в своем составе соли. Чтобы понизить агрессивное влияние коррозии на внутреннюю поверхность элементов отопительной конструкции, в незамерзающую жидкость для радиаторов отопления и трубопроводов добавляют присадки, играющие роль ингибиторов в разрушающих металл химических реакциях. 

Виды присадок для антифриза


Присадки, которые добавляют в антифриз, подразделяются на три группы:
  • ингибиторы неорганические — нитраты, силикаты, фосфаты т.д.;
  • гибридные добавки — органические и неорганические;
  • карбоксилатные – появились недавно, но считаются наиболее перспективными в использовании присадками.  

Когда в качестве теплоносителя используется незамерзающая жидкость для радиаторов отопления и трубопроводов, это позволяет использовать отопительную конструкцию в самые суровые зимние морозы. 

Преимущества и недостатки антифриза


Основным преимуществом антифриза считается то, что он не замерзает при минусовых температурах. Эта жидкость отличается от воды тем, что образует аморфную структуру. Антифриз не обладает способностью увеличивать свой объем и тем самым его применение не приводит к разрушению отопительных систем. После того, как температура становится плюсовой, он вновь обладает жидкой консистенцией и может выполнять свое функциональное назначение. 

Что касается недостатков антифриза, то они следующие:

  • у незамерзающей жидкости при рабочей температуре теплоемкость примерно на 10-15% ниже, чем у воды и по этой причине она меньше накапливает тепло, что сказывается на затратах потребителей – им необходимо будет покупать более дорогие и мощные отопительные радиаторы;
  • вязкость антифриза превышает данный показатель по сравнению с водой в 4-5 раз, что снижает скорость передвижения его по системе;
  • для предупреждения завоздушивания системы отопления необходимо установить расширительный бак большого объема, поскольку при сравнении с водой коэффициент теплового расширения у антифриза больше;
  • в процессе циркуляции незамерзающая жидкость может вспениться, что приводит к ограничению возможности регулировки системы (при применении термостатов).  

Для удаления пузырьков воздуха необходимо после заполнения антифризом отопительной конструкции на протяжении 2-3 часов выдержать ее без давления. Также нельзя перегревать незамерзающую жидкость, иначе она потеряет свои первоначальные физические свойства.

На видео показан процесс заливки жидкости в систему отопления:


Незамерзающая жидкость для систем отопления дома

Промывка
  • Промывка
  • Промывка труб отопления
  • Промывка теплоносителей
  • Промывка кондиционера
  • Промывка вентиляции
  • Промывка пластинчатых теплообменников
  • Промывка систем холодоснабжения

Принцип работы отопительной системы предусматривает использование жидкостей для отопления. При помощи такого вещества тепловая энергия от источника поставляется к потребителю. В качестве теплоносителей могут использоваться разнообразные вещества и составы, включающие как газы, так и отдельные типы жидкостей. Выбор той или иной жидкости для батарей зависит от характеристик материала, его преимуществ и недостатков. Каждый тип хорошо работает при конкретных условиях для решения поставленных задач. В соответствии с разновидностью теплоносителя проектируется и собирается система под конкретную жидкость для отопления.

Содержание статьи:

 

 

Часто применяются следующие типы теплоносителей:

  • вода;
  • этиленгликоль;
  • пропиленгликоль;
  • смеси разных теплоносителей.

Основные виды теплоносителей

Каждый теплоноситель отличается своими химическими и физическими свойствами. Кроме этого, каждое вещество по-разному воздействует на экологию и на человека. В таблице приведено сравнение основных антифризов и их главные достоинства и недостатки.

Вид теплоносителя Достоинства Недостатки
Вода Не токсична, не наносит вреда экологии, полностью безопасна для человека. Восполняемый и не дорогой ресурс Замерзает при достижении 0 0С, что ограничивает область использования. Необходимо добавление присадок и тщательная очистка от солей.
Этиленгликоль Хорошие теплофизические данные, но хуже чем у воды. Возможность работы при -65 0С. Опасен для человека. Загрязняет экологию. Требует особых навыков в эксплуатации. Средняя стоимость.
Пропиленгликоль Экологически чист. Безопасен для человека. Отличные физические и химические показатели, но хуже чем у этиленгликоля и воды. Возможность работы при температуре до -57 0С. По свойствам – может уступать этиленгликолю. Относительно большая стоимость. Важно соблюдать пропорции, чтобы достичь максимальных показателей.
Глицерин Экологически чистый материал. НЕ ПОДХОДИТ В ВИДЕ ТЕПЛОНОСИТЕЛЯ. Цена, не опасен для человека.

 

Основные производители теплоносителей, представленные в нашем магазине.

 

Характеристики материалов

Название Материал Этиленгликоль Температура замерзания Температура кипения
Dixis 65 (Диксис) Мономер — этиленгликоль -65 0С ~ +95 0С -66 0С +111 0С
Теплый Дом — Эко Пропиленгликоль -30 0С ~ +106 0С -30 0С +170 0С
Primoclima Antifrost Пропиленгликоль -30 0С ~ +106 0С -30 0С +120 0С
ТЕРМАГЕНТ 30 Этиленгликоль -20 0С ~ +90 0С -30 0С +170 0С

 

Срок службы и возможность изменения концентрации вещества, при помощи воды

Название Материал Срок работы Водный раствор
Dixis 65 (Диксис) Мономер — этиленгликоль 5 лет Да
Теплый Дом — Эко Пропиленгликоль 5 лет Да
Primoclima Antifrost Пропиленгликоль 5 лет Да
ТЕРМАГЕНТ 30 Этиленгликоль 10 лет Нет

 

Вода

Часто старые отопительные системы заправлены водой, так как это самый доступный и недорогой материал. В отдельных случаях это универсальное решение. Вода — естественное вещество, которое находится в свободном доступе, не требуется особых усилий для ее производства. Ресурс постоянно возобновляется. Практически 70 % систем отопления заполнены водой. Кроме доступности и безопасности с точки зрения экологии такой теплоноситель обладает рядом преимуществ.

  • Вода отличается высокой плотностью и большой удельной теплоемкостью.
  • При эксплуатации важна низкая вязкость, а также довольно большой коэффициент теплоотдачи.
  • Вода обладает низкой химической активностью.
  • Температуру теплоносителя легко регулировать.
  • На фоне всех достоинств, благодаря которым вещество получило свою популярность, есть еще и ряд недостатков.
  • Низкий верхний предел нагревания. Для материала в контуре системы отопления температура равна 150 0С, при создании необходимого для этого давления.
  • При хорошей изоляции системы, потеря тепла равна 1 0С на километр пути.
  • Главный недостаток — вода не используется как незамерзающая жидкость для частного дома, так как температура замерзания равна 0. Несоблюдение данного правила приводит к повреждению жизненно важных элементов системы отопления. Вода, которая замерзла внутри труб, разрывает их, приводя всю конструкцию в негодность.
  • При установке металлических труб или фитингов есть опасность возникновения очагов коррозии. Это повышает уровень износа теплопровода и снижает срок эксплуатации.
  • Плохо очищенная вода после нагревания более 80 0С откладывает накипь и в ней выпадают нерастворимые осадки солей. Чтобы снизить вероятность возникновения накипи, а также уберечь трубы от повреждения, используется дистиллированная вода, в которую добавляются вспомогательные присадки.
  • Системы, где в качестве рабочей жидкости используется вода, требуют своевременного и частого обслуживания. Нужно промывать весь контур, а также очищать его от отложений солей и накипи.
  • В отопительный период важно следить за удельным сопротивлением воды и своевременно его корректировать.

Вода применяется в качестве жидкости для отопления в местах, где нет крайне высоких и крайне низких температур.

Этиленгликоль


В системах, где вода не может быть использована, применяют антифриз. Больше 25 % современных теплоносителей составлены на основе этиленгликоля с добавлением дополнительных присадок и ингибиторов. Добавление вспомогательных веществ нужно для того, чтобы замедлить вредные химические процессы, а также избежать появления коррозии и накипи. Температура замерзания такого антифриза достигает -60 0С. По своим качествам материал хорошо подходит для работы в тепловых системах и в качестве теплоносителя для отопления дома нежилого назначения. Этиленгликоль отличается рядом достоинств от других теплоносителей, представленных на рынке.

  • Вещество относится к средней ценовой категории.
  • Отличается низким уровнем отложения накипи и осадка на стенках трубопровода.
  • Имеет низкую температуру замерзания и высокий показатель кипения.

Широкое распространение вещество не получило. В качестве незамерзающей жидкости для отопления жилого дома его использовать нельзя по причине его токсичности. Оно вредно для человека. Достаточно 50-500 мг для того, чтобы привести к летальному исходу. Поэтому в открытых системах этиленгликоль не используется. Среди недостатков следует выделить еще ряд, из-за которых антифриз не популярен.

  • При сильном понижении температуры повышается вязкость вещества. Это важно учитывать при проектировании систем отопления на базе этиленгликоля.
  • Из-за токсичности жидкости, при попадании ее на плитку, доски или другие элементы в доме, они портятся и подлежат замене.

Важно соблюдать особые правила эксплуатации, а также применять средства защиты при работе с таким теплоносителем.

Пропиленгликоль


Поиск антифриза, который можно использовать как жидкость для отопительной системы дома, привел к внедрению пропиленгликоля. Все потому, что этот материал менее токсичен и обладает всеми требуемыми теплофизическими свойствами для реализации поставленной задачи. Часто используется смесь, созданная на базе пропиленгликоля. При добавлении специальных веществ, присадок и ингибиторов, можно получить требуемые качества теплоносителя для дома. Вещество экологически безопасно и не токсично при правильных условиях хранения и использования.

Если в системе отопления была обнаружена какая-либо течь и часть теплоносителя на базе пропиленгликоля вытекла, ее можно убрать при помощи обычной тряпки, не прибегая к особым правилам предосторожности. Нет необходимости соблюдения специализированных условий эксплуатации и защиты при работе с жидкостью для отопления. Состав не вызывает отравления у человека, даже при вдыхании паров.

Антифризы, созданные на базе пропиленгликоля могут замерзать при достижении температуры от -60 0С до -70 0С. Часто в системах отопления частных домов концентрация пропиленгликоля как специализированного теплоносителя не превышает 5 %. Он может быть применен в качестве жидкости для отопления при обогреве жилых помещений, общественных сооружений и для других зданий, где работают и просто находятся люди. Компания Solventis предлагает своим клиентам теплоносители, которые можно использовать в качестве основного рабочего вещества в домах и офисах. Материал обладает рядом достоинств в отличие от аналогичных веществ.

  • Главное достоинство раствора на базе пропиленгликоля — низкая агрессивность к элементам системы отопления и другим изделиям. Вещество обладает низкой химической активностью.
  • Применение пропиленгликоля позволяет применять металлы, которые нельзя использовать для работы с водой. Пропиленгликоль не способен развивать крупные очаги возникновения коррозии.
  • При полном удалении воды из состава теплоносителя для отопления дома, его температура замерзания остается на прежнем уровне и составляет -60 0С, в то время как в аналогичных условиях этиленгликоль начинает замерзать при -13 0С.
  • Благодаря внедрению пропиленгликоля можно предотвратить появление гидроударов, так как материал отличается прекрасными смазывающими свойствами.

По своим теплофизическим свойствам пропиленгликоль и этиленгликоль — схожи. Отличие лишь в цене и в безопасности для человека. Преимущества теплоносителей на базе пропиленгликоля полностью покрывают все недостатки и его применение становится более выгодным и рентабельным.

Смеси

К смесям можно отнести теплоносители, созданные на базе двух компонентов в разной концентрации. Это необходимо для получения вещества, которое обладает большим количеством преимуществ обоих компонентов и минимальным количеством недостатков. Чаще всего разрабатываются смеси этиленгликоля и пропиленгликоля. Повышенная вязкость, которой обладает пропиленгликоль, недопустима для использования в отдельных специализированных системах и в качестве жидкости для батарей отопления. Это может усложнить запуск оборудования, снизить эффективность работы насоса и системы в целом. Использование смеси с этиленгликолем позволяет добиться нужной консистенции и полностью использовать все преимущества двух компонентов. Такое решение позволяет снизить энергозатраты в среднем на 20 % при заливке в систему отопления.

Существуют и другие варианты смесей жидкостей для батарей.

 

Солевой раствор

Хлорид натрия (известный как поваренная соль, столовая, каменная) часто используется в качестве одного из компонентов при создании теплоносителя на водной основе. Добавление такой соли позволяет снизить температуру замерзания до -55 0С. К сожалению, ухудшаются остальные свойства жидкости. Необходимо использовать дополнительные вещества и реагенты для нейтрализации, чтобы уберечь трубопровод от повреждений. Применение дополнительных присадок, а также смежных веществ и ингибиторов пагубно сказывается на экологичности данного антифриза. Наличие соли в растворе, даже при работе с присадками, требует проведения частых обслуживаний системы отопления, промывки и очистки от жестких отложений на стенках трубопровода.

Состав на базе глицерина


Часто в качестве незамерзающей жидкости для отопления используются растворы, созданные на базе глицерина. Такие составы защищают систему от возникновения очагов коррозии, а также могут применяться в контурах, созданных из любых материалов. Смесь не влияет на структуру металла, не разрушает его. Теплоноситель не повреждает фитинги и резиновые уплотнители. Часто глицерин может растворять набивные уплотнения, которые присутствуют при резьбовых соединениях. Максимальная температура, при которой может работать раствор на базе глицерина, не превышает 95 0С. При этом температура замерзания снижается до -30 0С. Вещество при замерзании не расширяется, а для восстановления его прежних свойств и эффективности достаточно просто нагреть контур и довести его до оптимального рабочего температурного показателя. Все составы, созданные на базе глицерина, — безопасны, не токсичны и по большей части инертны.

 

Спиртовой раствор

Большая часть спиртовых растворов обладает температурой замерзания -30 0С и ниже. Так как это водный раствор, необходимо добавлять антикоррозийные присадки и ингибиторы, чтобы сохранить целостность системы отопления. При использовании в качестве теплоносителя для отопления дома, спиртовые растворы отличаются повышенной летучестью основных рабочих материалов — при достижении рабочей температуры более 90 0С. После замерзания вода в составе кристаллизуется, но трубопроводы сохраняются в целостности, не разрушаются, как и остальные элементы в отопительной системе дома.

Расчет количества теплоносителя

 

Перед тем, как приступить к заполнению веществом систему — требуется точно рассчитать количество вещества, которое для этого необходимо. Все зависит от типа используемой системы, от вида теплоносителя и от его состава. Важно учесть геометрические и габаритные особенности установленной системы теплоснабжения. Нужно знать диаметр и тип трубы, а также из какого материала она была создана.

 

Для того, чтобы примерно знать количество теплоносителя — можно воспользоваться таблицей, где указано объем жидкости (в литрах) на один погонный метр системы, в зависимости от диаметра.

Диаметр трубы, мм Количество теплоносителя (в литрах) на один погонный метр, в зависимости от материала трубы
  Стальные трубы Полипропиленовые Металлопластиковые
15 0,177 0,098 0,113
20 0,314 0,137 0,201
25 0,491 0,216 0,314
32 0,804 0,353 0,531
40 1,257 0,556 0,865

 

Важно помнить

Теплоноситель для отопления дома выбирается в соответствии с типом конструкции и способом отопления, а также исходя из того, какой материал был применен для сборки основного контура и трубопровода.

 

Все представленные теплоносители как отечественного, так и иностранного производства, продаются в удобной для работы таре из пластика. Компания Solventis поставляет теплоносители объемом по 10, 20, а также 50 кг.

 

Большинство производителей не допускают смешивание и использование каких-либо альтернативных веществ в качестве жидкостей для отопления. Чаще всего подобные требования обусловлены правилами безопасности. Особенно при работе с токсичными материалами, такими как этиленгликоль (и его производными). Иногда конструкция радиатора или основного котла не предусматривает использование альтернативных теплоносителей. Применение стандартных уплотнителей также ограничивает круг выбора незамерзающих жидкостей для отопления. Системы, которые предназначены для воды, не будут корректно работать с растворами солей или пропиленгликоля, а глицериновые составы снижают эффективность насоса.

 

Применение типа теплоносителя, не описанного в технической документации на радиаторы и котел, может привести к возникновению внештатной аварийной ситуации и выходу элементов из строя. В таком случае в сервисном обслуживании и гарантийном ремонте может быть отказано.

 

Перед тем как купить теплоноситель для системы отопления загородного дома, важно проконсультироваться со специалистом. Для этого можно заполнить форму обратной связи у нас на сайте, и менеджер свяжется в удобное для вас время. Звоните (+7 (495) 225-60-33) или пишите нам: ([email protected]).

 

Интересные статьи

Теплонесущая незамерзающая жидкость для отопления


Возможно, ли увеличить эффективность системы обогрева дома без замены водогрейного котла, радиаторов и других важных узлов? Благодаря современным технологиям это стало действительно возможным. Для этого вместо традиционной воды в системе используется специальная незамерзающая жидкость для отопления. Что это такое? Какие разновидности этого теплоносителя бывают, а также, какие плюсы и минусы есть у каждой вида антифриза?

Если правильно выбрать теплоноситель для системы отопления, появляется не только возможность экономии расхода топлива, но и исчезает необходимость в сливе жидкости, если здание не будет отапливаться зимой, какое- то время. Еще одним неоценимым плюсом является значительное увеличение срока службы всех важных узлов системы.

Незамерзающая отопительная жидкость – что это?

Незамерзающий теплоноситель для систем отопления – это пар или жидкость, которую используют для транспортировки тепла к радиаторам. В него добавлены определенные присадки и наполнители. Они служат следующим целям:

  1. Снижение агрессивности теплоносителя. Уменьшение его коррозионных свойств, уменьшение воздействие органических солей и т.д.
  2. Уменьшение способности жидкости к расширению и сужению при изменении температуры.
  3. Увеличение мощности обогрева дома.
  4. Снижение расхода топлива необходимого для отопления помещений.


В зависимости от того какими именно свойствами должна обладать незамерзающая жидкость для системы отопления, могут использовать:

  1. Обычную или дистиллированную воду.
  2. Антифриз.
  3. Тосол.

Виды антифриза, основные преимущества и недостатки

В качестве антифриза могут использовать большое количество самых разнообразных веществ. Но в качестве основы используются всего лишь несколько:

  • Пропиленгликоль.
  • Этиленгликоль.
  • Глицерин.


У каждого из них есть свои преимущества и недостатки, а также существуют ограничения по их применению.

К незамерзающей жидкости для отопления предъявляются высокие требования, она не должна быть токсичной, пожароопасной. В ее составе должны быть исключены все присадки, которые запрещены к использованию в жилых помещениях. Категорически не допускается закачивать теплоноситель в виде автомобильного тосола, трансформаторного масла и этилового спирта, а также других самостоятельно изготовленных смесей!

Пропиленгликоль

Является нетоксичным и рекомендуется для использования в жилых помещениях. Это теплоноситель для открытой системы отопления, поэтому часто его применяют для обогрева частных домов и небольших промышленных зданий. В качестве его основных преимуществ можно отметить следующее:

  1. Отсутствие токсичных веществ. Основной компонент применяют в качестве пищевой добавки.
  2. Температура замерзания. Теплоноситель пропиленгликоль может сохранять текучесть до -40 градусов.
  3. Хорошие теплофизические характеристики.


Незамерзающая жидкость для систем отопления домов на основе пропиленгликоля имеет всего два существенных недостатка:

  1. Высокая стоимость.
  2. Невозможность применения с оцинкованными деталями.


Теплоноситель для систем отопления на основе пропиленгликоля, является наиболее приемлемым вариантом антифриза, но его применение чаще всего ограничено высокой стоимостью.

Этиленгликоль

Популярность этого антифриза обусловливает низкая стоимость и большой диапазон температур, при которых он может работать. Существенным недостатком является высокая токсичность, из-за чего применение этого антифриза ограничено. Поэтому эта теплонесущая жидкость в закрытой системе, может быть достаточно эффективной, но не подходит для конструкции открытого типа.

Его сверхтекучесть проявляется в том, что он способен просачиваться даже через микротрещины. Что крайне негативно влияет на работу узлов котла. Если такую жидкость заливают в систему отопления, через время может оказаться, что соединения батарей, для герметизации которых использовалась масляная пакля, подтекают, станут заметны все дефекты и трещины.

В некоторых случаях это приводит к опасным ситуациям. Для бытового использования лучше всего подойдет теплоноситель на основе пропиленгликоля.

Альтернативы этиленгликоля и пропиленгликоля

В качестве аналогов антифриза возможно использование дополнительных средств. К примеру, можно придать определенные свойства обычной воде, добавив специальные присадки в теплоноситель. В зависимости от используемого вида котла могут понадобиться специальные средства.

Теплоноситель для парового отопления, неизбежно столкнется с воздействием высоких температур, поэтому должен иметь особый состав и компоненты, способствующие эффективности теплоотдачи. Поэтому в качестве незамерзающей жидкости для парового отопления не подходят антифризы на этиленгликоле.

Особого внимания заслуживает теплоноситель на основе глицерина. Он имеет превосходные антикоррозионные свойства, может использоваться в системах открытого типа, пищевой промышленности и учебных заведениях. Также это идеальный теплоноситель для алюминиевых радиаторов отопления. После замерзания он полностью восстанавливает свои свойства.

Теплоноситель на основе глицерина может без замены эксплуатироваться в течение 8 лет. Его особый состав исключает возгорание и причинение вреда здоровью человека, и делает возможным его применение в любой системе обогрева независимо от материала, который используется для трубопровода.

Экологичность, приемлемая стоимость, длительность эксплуатации сделало теплоноситель для системы отопления на глицерине, наиболее успешным аналогом традиционных антифризов.

Нагреватели горячего масла и теплоносители: полное руководство

Теплообмен

Для целей теплообмена описанную конфигурацию можно разделить на три части в соответствии с методом теплопередачи и с учетом требуемых технических ограничений в каждой точке, чтобы достичь энергоэффективности и долговечности благодаря заправке теплоносителя и материалам оборудования. (см. Теплопередача).

На рисунке 3 четко выделены три зоны:

1.Излучение

Оно охватывает практически всю камеру сгорания, точнее, внутреннюю поверхность внутреннего змеевика, и в этой области решающим с технической точки зрения является знание точных значений максимальной температуры, достигаемой обоими. теплоноситель и материал змеевика, потому что, хотя это область с наибольшей теплообменной емкостью, она также подвержена риску превышения максимально допустимых значений. — Рисунок 4 -.

Рисунок 4.Площади котла по способу теплопередачи. В зависимости от достигнутой температуры массы и пленки — см. Температуры-.

Характеристики используемого теплоносителя, топлива, регулирования горения, диаметра пламени, требований к обмену, необходимого минимального циркулирующего потока жидкого теплоносителя и, следовательно, его скорости и диаметра трубы змеевика — все это параметры. которые определяют, что следует считать критическим в конструкции — размер диаметра и длины камеры.

Слишком малый диаметр камеры сгорания обеспечил бы оптимальную передачу тепла, но поставил бы под угрозу полезный срок службы заряда жидкого теплоносителя, а также самого котла, а также вызвал бы потерю заряда дымового контура, что может быть чрезмерным бременем для стандартной горелки.

С другой стороны, слишком большой диаметр камеры сгорания снижает энергоэффективность оборудования.

Длина камеры сгорания также имеет большое значение для надежности оборудования.Камера сгорания, слишком короткая для требуемой мощности, будет иметь необычно высокие температуры в нижней крышке и в верхней крышке камеры, что может привести к частичному разрушению этих элементов.

2. Переходная зона

Включает внутренние поверхности концов внутренней и внешней катушек. В зависимости от настройки горелки он может частично включать внешнюю грань внутреннего змеевика. В этой области излучение и конвекция сосуществуют как процессы теплопередачи, и поэтому в отношении тепла необходимо принимать во внимание как меры предосторожности при обмене посредством излучения, так и ограничения, связанные с обменом посредством конвекции.

Особое внимание следует уделить конструкции изменения направления газового контура в нижней части камеры сгорания, так как должна быть достигнута полная герметичность (в противном случае дымовые газы будут проходить непосредственно из 1-го прохода в дымоход. выход, что дает очень плохую производительность и, что еще хуже, с чрезвычайно высокими температурами в дымоходе, которые могут вызвать его разрушение) вместе с низкой потерей заряда при изменении направления дымовых газов.

3. Зона конвекции

Это соответствует обеим сторонам внешнего змеевика и внутренней поверхности внутреннего змеевика.

Хотя может существовать небольшой риск превышения максимальных температур использования теплоносителя и материалов (см. Рисунок 4), основная проблема при проектировании этой зоны заключается в достижении высокого уровня теплопередачи за счет значительной скорости. дымовых газов, но без значительного риска загрязнения в дымоходах 2 и 3 из-за недостаточного размера этих каналов или высокой потери заряда в дымовом контуре (известной как избыточное давление котла), что затрудняет использование стандартных горелок.

Рис. 3. Отдельные области в бойлере с жидким теплоносителем для целей теплообмена

В дополнение ко всем параметрам, описанным выше, змеевики также должны быть тщательно спроектированы так, чтобы с точки зрения гидравлики теплоноситель потери заряда контура невелики, что приведет к нестандартным насосам и высокому потреблению электроэнергии, и в то же время гарантирует достаточную скорость теплоносителя для обеспечения удовлетворительных коэффициентов теплопередачи — см. рисунок 5.

Рисунок 5. Скорость теплоносителя / коэффициент теплопередачи. Значения для BP Transcal N. Температура теплоносителя 290 ° C. Другие факторы исключены для лучшего понимания важности скорости

Дифференциал тепла. Количество проходов в змеевиках

Дифференциал тепла , также известный как скачок тепла , представляет собой максимальное повышение температуры теплоносителя, которое котел может получить при номинальной тепловой мощности при расчетном расходе теплопередачи. жидкость.

Наиболее распространенными тепловыми скачками являются 20 ° C и 40 ° C, хотя эти значения имеют некоторый запас в зависимости от используемого теплоносителя и рабочей температуры, поэтому на самом деле мы должны говорить об интервалах между 18-22 ° C в в первом случае и 36-42 ° C во втором случае.

Важно помнить, что один котел не лучше и не хуже другого котла с той же тепловой мощностью, но с другим скачком. При правильной конструкции оба типа котлов будут иметь одинаковые энергетические характеристики и аналогичные рабочие функции.

Причина наличия котлов с разной температурой дифференциала заключается в том, чтобы обеспечить наилучшую адаптацию котла к характеристикам производственного процесса и, в частности, к бытовым приборам системы.

Первоначально котел с скачком тепла на 20 ° C может обеспечить большую однородность температуры в потребляющих устройствах из-за большего циркулирующего потока, хотя при изначально более дорогой установке из-за большего диаметра трубы, большей емкости теплоносителя в системы и более высокое потребление электроэнергии в главном насосе.Однако котел с перепадом тепла 40 ° C может также достичь тех же результатов с помощью контуров рециркуляции с вторичными насосами, которые обеспечивают большую скорость потока в бытовых приборах и, следовательно, большую однородность. Однако в последнем случае стоимость установки теплового дифференциального котла значительно выше, что не является положительным фактором.

Перепад тепла выше 40 или 50 ° C не является обычным явлением, учитывая, что на срок полезного использования жидкого теплоносителя влияют такие высокие и резкие изменения температуры, и конструкция котла должна предусматривать меры по поглощению дополнительных расширений, что делает конструкцию более специализированный и более дорогой.Однако в приложениях для солнечных тепловых электростанций можно найти котлы с теплоносителем с перепадом тепла до 100 ° C.

Мы рекомендуем пользователю связаться с производителем котла, авторизованным установщиком, штатным или внешним инженером, чтобы обсудить, какой перепад тепла будет наиболее подходящим для их процесса.

Мы уже видели, что определение разности температур, в основном по характеристикам потребляющих устройств, определяет расход циркулирующего теплоносителя, необходимый в системе.Но этот поток также должен соответствовать определенным требованиям, обозначенным на котле.

Скорость теплоносителя в змеевиках должна быть достаточно высокой, чтобы обеспечить хороший теплообмен, не превышая при этом температуру пленки используемого теплоносителя, чтобы избежать его быстрой деградации. Но эти высокие скорости циркуляции, которые требуются, также подразумевают значительные потери заряда (потери давления), поскольку потери заряда пропорциональны квадрату высокой скорости, с возможностью использования очень больших насосов с чрезмерно высоким потреблением электроэнергии для достижения гидравлического давления. стабильность в цепи.

Согласование факторов высокой скорости и приемлемых потерь заряда возможно только при точном тепловом и гидравлическом исследовании катушек, диаметра их трубок, их длины и их соединения.

С помощью диаграмм на рисунке 6 и небольшого примера мы постараемся немного прояснить все эти вопросы. Мы упростили возможные варианты гидравлики исключительно в этих трех случаях. В действительности параллельные проходы катушек могут составлять от 1 прохода до 6, 7 или 8.

Рабочая температура T 1 и его тепловая мощность в кВт одинаковы на всех трех диаграммах на Рисунке 6. Кроме того, общая длина составляющей трубы змеевика одинакова — 4L.

Различия относятся к температурам на входе в котел (температура обратки от потребляющих устройств после подачи необходимой энергии), T2, T3 и T4. Расходы циркулирующего потока Q, Q 1 y Q 2 и потери заряда ΔP 1 , ΔP 2 и ΔP 3 также различаются.

Реальный числовой пример

У нас есть бойлер с жидким теплоносителем с перепадом тепла 40ºC и мощностью нагрева 1100 кВт. Его обменная поверхность составляет 54 м. 2 с выходом порядка 86-89% в зависимости от рабочей температуры.

Схема его конструкции — A) на рисунке 6, с двумя последовательными катушками и двумя параллельными проходами на катушку. Расчетный расход для этих условий составляет 52 м 3 / ч, с потерей заряда 2,37 бар при рабочей температуре 260 ° C.

Если мы попытаемся эксплуатировать этот котел с тепловым скачком 20 ° C, расход должен составить 104 м 3 / ч, а ожидаемые потери заряда при той же температуре, что и раньше, 260 ° C, будут 8,17 бар. Придется прибегнуть к очень сложным и дорогим насосам с очень высоким потреблением электроэнергии.

С другой стороны, если мы воспользуемся схемой конструкции B) на рисунке 6 (два змеевика последовательно с тремя параллельными проходами на змеевик) с одинаковым расходом, 104 м 3 / ч, и поверхностью обмена, 54 м 2 , потеря заряда составит 2.62 бар, что приемлемо для обычных насосов.

Этот тип конструкции B) неприменим для котла с перепадом тепла 40 ° C, поскольку при требуемом низком расходе 52 м 3 / ч не возникнет проблем с падением давления (всего 0,71 бар) но вместо этого проблема будет заключаться в преодолении температуры пленки жидкости, поскольку она будет примерно на 44 ° C выше, чем рабочая температура.

Как видно из раздела «Температура», максимальная температура пленки обычно на 10-20 ° C выше максимальной рабочей температуры, поэтому в этом гипотетическом случае мы либо испытаем быстрое ухудшение заряда теплоносителя, либо мы были бы вынуждены работать при низких температурах, что может быть неприемлемо для нашей производственной системы.

Конструкция C), с двумя змеевиками, соединенными параллельно, каждая из которых имеет три прохода теплоносителя, соответствует довольно необычной конструкции и типичной для котлов, требующих очень малых перепадов тепла, порядка 10 или 15 ° C. В этих условиях скорость потока, 205 м 3 / ч, очень высока, и если бы эта конфигурация не была выбрана, потери заряда теплоносителя были бы чрезмерно высокими, даже с трехходовой конфигурацией в схеме конструкции B) , учитывая, что это будет около 8.45 бар.

Рисунок 6. Типы подключения катушек. A) Последовательно, два прохода на катушку параллельно. Б) Последовательно, три прохода на катушку параллельно. C) Параллельно, два прохода на змеевик параллельно

Таким образом, мы видим, что требуемый скачок тепла сильно влияет на конструкцию котла и, следовательно, должен рассматриваться как ключевой фактор в проекте установки теплообменника. система передачи жидкости.

Общие сведения о теплоносителях и системах теплопередачи



Спрос на технологический нагрев и контроль температуры в отрасли продолжает расти, поскольку производители и промышленные предприятия растут, расширяются и стремятся улучшить свои существующие операции.Эти системы технологического нагрева должны работать стабильно, безопасно и с минимальным временем простоя.

Промышленные предприятия, использующие распределенные технологические системы в масштабах предприятия, обычно имеют одну из двух технологических систем: паровые котлы или системы нагрева теплоносителя системы . В прошлом котлы часто использовались по умолчанию, но системы нагрева теплоносителя являются лучшим решением для многих приложений, предлагая повышенную гибкость, управляемость и надежность.


Управление теплоносителем

Системы нагрева теплоносителя работают в замкнутом контуре с теплоносителем (также называемым жидким теплоносителем) в постоянной циркуляции.Эта непрерывная циркуляция при постоянной температуре подачи обеспечивает источник тепла, к которому пользователи могут получить доступ по мере необходимости. Пользователями можно управлять индивидуально, а температуру теплоносителя можно изменять (от пользователя к пользователю) с помощью вторичных контуров управления. В большинстве систем теплоноситель или жидкий теплоноситель остается в жидком состоянии по всему контуру, хотя для некоторых нишевых приложений доступны жидкости в паровой фазе, которые могут извлекать выгоду из скрытой теплоты по сравнению с простым теплом.

Типы теплоносителей

Термомасло, вода и водно-гликолевые растворы обычно используются в системах нагрева теплоносителя.Все эти теплоносители обладают различными преимуществами и недостатками в зависимости от рабочей температуры и требований к производительности системы. Важно понимать, что представляет собой каждый вариант жидкости, чтобы можно было сделать правильный выбор для каждого приложения.

  • Горячая вода и водно-гликоль. Вода является наилучшим из имеющихся теплоносителей с учетом теплофизических свойств, но она также имеет ряд недостатков. В основном, он может быть коррозионным, содержать загрязняющие вещества, кипеть при 212ºF и замерзать при 32ºF.Добавление гликоля в раствор с водой увеличивает температуру кипения и снижает температуру замерзания, хотя это приводит к некоторому снижению теплоемкости.
  • Термомасло. Термомасла выдерживают более высокие температуры, чем формулы на водной основе, без кипения или чрезмерного повышения давления в системе. Натуральные масла могут достигать температуры до 600 ° F, в то время как некоторые синтетические материалы позволяют системам на масляной основе достигать 800 ° F. Эти условия позволяют системам отопления на масляной основе соответствовать разделу VIII ASME, обеспечивая долгосрочную экономию, поскольку тепловые системы сертифицированы в соответствии с Раздел VIII ASME обычно не требует наличия на объекте лицензированного оператора котла.Термомасла также обычно не вызывают коррозии, и их не нужно обрабатывать как воду, чтобы предотвратить образование отложений жесткой воды в системе.


Преимущества систем нагрева теплоносителя

Системы нагрева теплоносителя и, в частности, термомасляные системы имеют ряд преимуществ по сравнению с традиционными котлами. Эти преимущества включают в себя:

Достижение высоких температур при низких давлениях

Теплоносители предлагают более широкий диапазон температур и более высокую максимальную температуру.Эти системы могут достигать температуры 0–750 ° F при использовании термомасла, тогда как паровые системы работают только до 350 ° F, прежде чем рабочее давление превысит 425 фунтов на кв. Дюйм. Системы теплоносителя, использующие водно-гликолевые растворы, также могут достигать 32–350 ° F при несколько более низком давлении, чем пар, что по-прежнему предлагает значительно большую гибкость, чем традиционные системы.

Хотя диапазон температур важен, низкое давление не менее важно. Большинство горячих масел, работающих при температуре ниже 600 ° F, не требуют давления пара, а максимальное давление в системе — это только то, что создается центробежными циркуляционными насосами.Даже высокотемпературные синтетические материалы, работающие при температуре 750 ° F, требуют давления пара менее 100 фунтов на кв. Дюйм. Для паровой системы при температуре 750 ° F потребуется более 3200 фунтов на квадратный дюйм рабочего давления.

Минимальное обслуживание

За исключением регулярных испытаний на температуру воспламенения, системы нагрева теплоносителя требуют относительно небольшого обслуживания.

Контуры просты, и жидкость не требует частых регулировок или добавлений при условии, что за ней периодически ухаживают и проверяют для выявления любых потенциальных проблем.Кроме того, системы теплоносителя не нуждаются в продувке, замене трубок, обслуживании конденсатоотводчика или водоподготовке, как это делают традиционные бойлеры.

Оператор не нужен

В связи с повышенными требованиями к безопасности котлов вблизи рабочих, более промышленные, государственные и местные нормы требуют присутствия стационарного инженера в котельных. На многих предприятиях по всей стране в течение активных периодов работы в котельной должен находиться хотя бы один сотрудник, прошедший специальную подготовку, для контроля за работой котла.Чаще всего это требуется для паровых котлов.

На предприятиях, где используются нагреватели теплоносителя и необожженный парогенератор, часто не требуется стационарный обслуживающий персонал. Это преимущество зависит от конкретных государственных и местных требований.

Установка вне помещения

Системы теплоносителя создают энергию косвенного нагрева, что означает, что их можно устанавливать в удаленных помещениях или на открытом воздухе. Хранение нагревателя и основных компонентов системы вдали от других ключевых производственных участков помогает повысить общую безопасность предприятия.

Системы теплоносителя легко установить на открытом воздухе, хотя есть дополнительные соображения по установке. При выборе циркуляционного насоса и двигателя необходимо учитывать условия холодного пуска. Также может потребоваться заливка плит, атмосферостойких наружных трубопроводов и оборудования и т. Д.

Использовать центральное отопление

На более крупных или многоцелевых объектах могут быть высокотемпературные процессы в сочетании с потребностями в закачке пара без обратной связи. Традиционно для этих объектов потребуются нагреватель теплоносителя и паровой котел.Однако сегодня эти объекты могут использовать теплообменники и полагаться только на систему нагрева теплоносителя.

Некоторые типы теплообменников в сочетании с легкодоступным горячим маслом могут производить почти мгновенный пар, когда в них втекает теплоноситель. Операторы могут использовать этот пар для стерилизации, промывки и других процессов. Преимущества системы центрального отопления с теплообменником (-ами) включают:

  • Меньшее обслуживание
  • Меньше затрат (потому что нет бойлера)
  • Тепловая система, которая достигает высоких температур при низком давлении


Типы тепловых нагревателей жидкости


Системы нагрева теплоносителя идеальны для предприятий, которым необходимо постоянно поддерживать высокие температуры.Системы на масляной основе имеют много названий, но все они относятся к одному и тому же типу замкнутой системы отопления на масляной основе. Другие распространенные имена включают:

  • Котел для горячего масла
  • Нагреватель горячего масла
  • Система горячего масла
  • Нагреватель теплоносителя
  • Теплоноситель
  • Термомасляный котел
  • Термомасляный нагреватель
  • Термомасляная система

Следует отметить, что системы на основе термомасла все еще часто называют «котлами», даже если они фактически не кипятят технологическую жидкость.В замкнутых системах косвенного нагрева с более низкими требованиями к температуре процесса в качестве теплоносителей обычно используются горячая вода и водно-гликолевые смеси.

Опции нагревателя теплоносителя

В Sigma Thermal ассортимент наших систем включает следующее:


Работа с Sigma для удовлетворения ваших потребностей в технологическом обогреве


Sigma Thermal — ведущий поставщик систем нагрева теплоносителя, запчастей и вспомогательных услуг. Мы предлагаем высококачественное оборудование, которое удовлетворяет потребности наших клиентов в энергии, отоплении и технологических процессах в широком спектре отраслей.

  • Установки для тепловых систем отопления
  • Услуги по модернизации
  • Обучение
  • Техническое обслуживание
  • Программы обработки деталей

Поговорите с нашими инженерами и техническими специалистами сегодня о потребностях вашего объекта в отоплении, включая техническое обслуживание, детали и полные системы. Запросите расценки сегодня, чтобы начать свой проект.


Heat Transfer Fluid — обзор

9.3.1.2 Жидкий теплоноситель

HTF играет очень важную роль в косвенном (замкнутом) SWH. HTF действует как среда для передачи тепла, собираемого солнечными коллекторами, к реальной воде, которую необходимо нагреть с помощью HX. Выбор HTF для SWHS зависит от нескольких факторов, включая термодинамические и теплопередающие свойства HTF, а также местоположение. Для успешной работы такого солнечного водонагревателя необходим тщательный подбор рабочей жидкости.Выбранная жидкость должна обладать большинством желаемых свойств с точки зрения термодинамики и теплопередачи, таких как коэффициент расширения, вязкость, удельная теплоемкость, точка замерзания, точка кипения и температура вспышки. Воздух и вода обычно используются в качестве HTF в SWHS. Воздух имеет определенные преимущества по сравнению с водой, например, он не вызывает коррозии и не склонен к кипению / замерзанию. Однако из-за очень низкой теплоемкости его можно было использовать только для низкотемпературных применений, а не для нагрева воды для бытовых нужд.С другой стороны, высокая удельная теплоемкость, низкая вязкость, нетоксичность и меньшая стоимость воды сделали воду самой популярной рабочей жидкостью в SWHS. Однако его коррозионная природа (особенно при высоких температурах), а также проблемы с замерзанием и образованием накипи создают проблемы для коллекторных труб и водопровода. Чтобы преодолеть относительно высокую температуру замерзания воды, добавка гликоля используется вместе с водой в качестве антифриза [29].

В непрямых (замкнутых) системах SWH хлорфторуглеродные хладагенты чаще используются в качестве HTF из-за их стабильности, негорючести, низкой токсичности, некоррозийности и низкой температуры замерзания.Конкретные примеры включают R-11, R-12, R-13, R-113, R-114 и R-115. Природные жидкости считаются долгосрочными HTF, потому что они не содержат галогенов, экологически безвредны и очень низкий или близкий к нулю потенциал разрушения озонового слоя (ODP) и потенциал глобального потепления (GWP) [30]. Типичные природные HTF включают пропан (R-290), бутан (R-600), изобутан (R-600a), пропилен (R-600), аммиак (R-717) и диоксид углерода (CO 2 ; R- 744). Исследования CO 2 набирают обороты с целью изучить возможность использования CO 2 в тепловом насосе SWHS и, в частности, оценить производительность при работе в транскритических условиях [31–33].CO 2 — многообещающая природная жидкость, поскольку она негорючая, некоррозионная и нетоксичная, а также имеет низкую критическую точку (31,1 ° C при 73,7 бар). Водонагреватель с тепловым насосом CO 2 может производить горячую воду с температурой до 90 ° C без каких-либо эксплуатационных проблем, а потребление первичной энергии может быть снижено более чем на 75% по сравнению с электрическими системами.

Типы систем отопления дома

Существует несколько типов систем, используемых для обеспечения тепла в доме, и в пределах каждого широкого типа существует множество вариаций.Некоторые системы отопления имеют общие компоненты с охлаждающим оборудованием дома, а некоторые системы обеспечивают как отопление, так и охлаждение. Термин HVAC — отопление, вентиляция и кондиционирование — используется для описания всей системы климат-контроля в доме.

Независимо от того, какая система отопления, вентиляции и кондиционирования воздуха используется, все отопительные приборы предназначены для отвода тепловой энергии от источника топлива и передачи ее в жилые помещения для поддержания комфортной температуры окружающей среды. В системах отопления могут использоваться различные источники топлива, включая природный газ, пропан, мазут, биотопливо (например, дрова) и электричество.В некоторых домах имеется более одной системы отопления, например, когда дополнительный или готовый подвал обогревается другой системой, чем остальная часть дома.

Системы принудительного воздушного отопления / охлаждения

Безусловно, наиболее распространенной системой отопления, вентиляции и кондиционирования воздуха в современных домах в Северной Америке является система приточного воздуха, в которой используется печь с нагнетательным вентилятором, который подает теплый воздух в различные комнаты дома через сеть воздуховодов. Системы с принудительной подачей воздуха очень быстро регулируют температуру в помещении, а поскольку в системах кондиционирования могут использоваться один и тот же вентилятор и воздуховоды, это эффективная общая система HVAC.

Источники топлива: Топки, питающие системы с наддувом, могут работать на природном газе, жидком пропане (LP), мазуте или электричестве.

Распределение: Воздух, нагретый горелкой печи или нагревательным элементом, воздух распределяется по сети каналов к нагревательным регистрам в отдельных помещениях. Другая система каналов возвращает воздух обратно в топку через возврат холодного воздуха.

Преимущества:

  • Системы с принудительной подачей воздуха можно фильтровать для удаления пыли и аллергенов.Однако они также могут увеличить количество переносимых по воздуху аллергенов.
  • Увлажнитель (или осушитель) может быть интегрирован в систему принудительной подачи воздуха.
  • Печи с принудительной циркуляцией воздуха относительно недороги.
  • Эти печи могут достигать самых высоких показателей AFUE (годовой эффективности использования топлива) среди всех систем отопления (но это не обязательно означает, что это наиболее эффективный способ обогрева дома).
  • Системы с принудительной подачей воздуха могут сочетать охлаждение с обогревом.

Недостатки:

  • Требуется воздуховод и занимает место в стенах.
  • Печные вентиляторы могут быть шумными.
  • Движущийся воздух может распространять аллергены.
  • Движущийся воздух может стать сухим, если его не увлажнить.
  • Поскольку системы с принудительной подачей воздуха нагревают воздух, а не предметы в комнате, это не считается самым удобным способом обогрева.
BanksPhotos / Getty Images

Системы гравитационных печей на воздухе

Предшественники систем принудительной подачи воздуха, гравитационные воздушные печи также распределяют воздух через систему металлических каналов, но вместо того, чтобы нагнетать воздух через воздуходувку, гравитационные системы воздуха работают по простой физике: теплый воздух поднимается и холодный воздух опускается.Печь с гравитационным воздухом в подвале нагревает воздух, который затем поднимается по воздуховодам в разные комнаты. Холодный воздух возвращается в топку по системе каналов возврата холодного воздуха. Так называемые печи «осьминоги», которые можно найти во многих старых домах, представляют собой печи с гравитационным воздухом.

Системы гравитационного воздуха больше не устанавливаются, но во многих старых домах они продолжают работать эффективно.

Источник топлива: Печи с принудительным воздухом могут работать на природном газе, жидком пропане (LP), мазуте или электричестве.

Распределение : Кондиционированный воздух циркулирует по сети металлических воздуховодов.

Преимущества :

  • Гравитационные системы не имеют движущихся частей и могут служить многие десятилетия.
  • Системное оборудование очень надежно и требует минимального обслуживания.

Недостатки :

  • Воздух не фильтруется эффективно.
  • Энергоэффективность ниже, чем у более новых печей.
  • Регулировка температуры происходит медленно, потому что системы работают за счет простых конвекционных потоков.

Системы лучистого отопления для пола

Современные теплые полы — это разновидность систем лучистого отопления. Лучистое отопление отличается от принудительного воздушного отопления тем, что нагревает предметы и материалы, такие как мебель и пол, а не только воздух. Большинство излучающих систем для всего дома распределяют тепло через горячую воду, нагретую в бойлере или водонагревателе.

Напольное отопление включает в себя пластиковые водопроводные трубы, устанавливаемые внутри бетонных перекрытий или прикрепляемые к верхней или нижней части деревянных полов.Он тихий и в целом энергоэффективный. Он имеет тенденцию нагреваться медленнее и требует больше времени для адаптации, чем принудительное воздушное тепло, но его тепло более стабильно.

Существуют также внутрипольные системы, в которых используется электропроводка, проложенная под напольными покрытиями, обычно керамической или каменной плиткой. Они менее энергоэффективны, чем системы горячего водоснабжения, и обычно используются только в небольших помещениях, таких как ванные комнаты.

Источники топлива : Системы трубопроводов горячей воды обычно обогреваются центральным котлом, который может работать на природном газе, жидком пропане (LP) или электричестве.Горячая вода также может быть обеспечена солнечными системами горячего водоснабжения, которые обычно используются в дополнение к топливным системам.

Распределение : Напольные системы обычно распределяются по горячей воде, протекающей по пластиковым трубам.

Преимущества :

  • Излучающие системы обеспечивают комфортное, равномерное тепло.
  • При отоплении котлами излучающие системы могут быть очень энергоэффективными.

Недостатки :

  • Излучающие системы относительно медленно нагреваются и приспосабливаются к изменениям температуры.
  • Установка внутрипольных систем может быть дорогостоящей.
  • При возникновении проблем с обслуживанием доступ к скрытым трубопроводам затруднен.
  • Котельные системы нельзя комбинировать с кондиционированием воздуха.
elenaleonova / Getty Images

Традиционные котельные и радиаторные системы

Старые дома и многоквартирные дома в Северной Америке часто отапливаются традиционными котельными и радиаторными системами. К ним относится центральный котел, который направляет пар или горячую воду по трубам к радиаторам, расположенным в стратегически важных местах вокруг дома.Классический радиатор — чугунный вертикальный блок, обычно устанавливаемый возле окон — часто называют паровым радиатором, хотя этот термин иногда неточен.

На самом деле с этими старыми радиаторами используются два типа систем. Настоящие паровые котлы действительно направляют газообразный пар по трубам к отдельным радиаторам, который затем конденсируется обратно в воду и возвращается в котел для повторного нагрева. В современных радиаторных системах горячая вода подается к радиаторам с помощью электронасосов. Горячая вода отдает тепло в радиаторе, а охлажденная вода возвращается в котел для дополнительного нагрева.Радиаторные системы с горячей водой очень распространены в Европе.

Источники топлива: Системы котлов / радиаторов могут работать на природном газе, жидком пропане, мазуте или электричестве. Оригинальные котлы могли даже работать на угле.

Распределение: Тепло вырабатывается паром или горячей водой, циркулирующими по металлическим трубам к радиаторам, форма которых облегчает передачу тепловой энергии.

Преимущества :

  • Лучистое тепло довольно комфортно и не сушит воздух, как принудительное тепло.
  • Радиаторы
  • можно обновить до низкопрофильных плинтусов или стеновых панельных радиаторов.
  • При замене старых котлов современные котлы могут предложить очень хорошую энергоэффективность.

Недостатки :

  • Радиаторы могут быть некрасивыми.
  • Расположение радиаторов может ограничивать размещение мебели и оконные покрытия.
  • Котельные системы нельзя комбинировать с кондиционированием воздуха.
Дэвид Де Лосси / Getty Images

Радиатор плинтуса с горячей водой

Еще одна более современная форма лучистого тепла — это система плинтуса с горячей водой, также известная как гидронная система.В этих системах также используется централизованный бойлер для нагрева воды, которая циркулирует по системе водяных труб к низкопрофильным нагревательным элементам на плинтусе, которые излучают тепло от воды в комнату через тонкие металлические ребра, окружающие водопроводную трубу. По сути, это просто обновленная, усовершенствованная версия старых вертикальных радиаторных систем.

Источники топлива: Котлы для гидравлических систем могут работать на природном газе, жидком пропане (LP), мазуте или электричестве. Им также могут помочь солнечные системы отопления.

Распределение :

  • Горячая вода, нагретая бойлером, направляется к плинтусам типа «ребристая труба», установленным вдоль стен. Ребра увеличивают площадь отвода тепла для повышения эффективности.
  • Тепло распространяется за счет естественной конвекции: нагретый воздух поднимается от плинтуса, а холодный воздух падает в сторону блока для обогрева.

Преимущества :

  • Гидравлические системы могут предложить отличную энергоэффективность.
  • Системы
  • Hydronic работают тихо, потому что в них нет вентиляторов или нагнетателей.
  • Температуру можно точно контролировать.
  • Радиаторные системы очень долговечны и не требуют значительного обслуживания.

Недостатки :

  • Блоки излучения / конвекции плинтуса должны оставаться свободными и могут создавать проблемы при расстановке мебели и дизайне драпировки.
  • Радиаторы медленно нагреваются.
  • Системы горячего водоснабжения нельзя комбинировать с системами кондиционирования воздуха.
  • Если тепло будет отключено на продолжительное время, трубы отопления могут замерзнуть.
Thinkstock Images / Getty Images

Системы отопления с тепловым насосом

Новейшая технология отопления (и охлаждения) дома — это тепловой насос. Используя систему, аналогичную кондиционеру, тепловые насосы извлекают тепло из воздуха и доставляют его в дом через внутренний кондиционер. Стандартные домашние системы представляют собой воздушные тепловые насосы, которые забирают тепло из наружного воздуха.Существуют также наземные или геотермальные тепловые насосы, которые отбирают тепло из глубины земли, а также тепловые насосы с водным источником, которые получают тепло от пруда или озера.

Популярный тип теплового насоса с воздушным источником — это мини-сплит или бесканальная система. Это относительно небольшой наружный компрессорный агрегат и один или несколько внутренних воздухообрабатывающих агрегатов, которые легко добавить к пристройке комнаты или удаленным районам дома. Многие системы тепловых насосов являются реверсивными и могут быть переключены в режим кондиционирования летом.Тепловые насосы могут быть энергоэффективными, но они подходят только для относительно мягкого климата; они менее эффективны в очень жаркую и очень холодную погоду.

Источники топлива: Тепловые насосы обычно работают от электричества, хотя также доступны модели, работающие на природном газе.

Распределение : Тепло (и охлаждение) обеспечивается настенными блоками, которые продувают воздухом змеевики испарителя, связанные с наружным насосом, который отбирает или поглощает тепло снаружи.

Преимущества :

  • Системы предлагают как обогрев, так и охлаждение.
  • Тепловые насосы могут быть очень энергоэффективными.
  • Индивидуальные настенные блоки позволяют точно контролировать каждую комнату.
  • Вентиляторы тише, чем центральные приточно-вытяжные системы.
  • Воздуховодов не требуется.

Недостатки :

  • Тепловые насосы лучше всего подходят для относительно мягкого климата.
  • Распределение нагретого или охлажденного воздуха может быть ограничено, поскольку он исходит от одного блока (в каждой комнате или зоне).

Системы электрического сопротивления

Электрические обогреватели для плинтусов и другие типы электрических обогревателей обычно не используются для первичных систем отопления дома, в основном из-за высокой стоимости электроэнергии. Тем не менее, они остаются популярным вариантом дополнительного отопления в готовых подвалах, домашних офисах и сезонных помещениях (например, трехсезонных верандах и соляриях). Электрические обогреватели просты и недороги в установке, и для них не требуются воздуховоды, насосы, кондиционеры или другое распределительное оборудование.Агрегаты недорогие, не имеют движущихся частей и практически не требуют обслуживания.

Помимо обычных обогревателей для плинтусов, существуют электрические лучистые обогреватели, которые нагреваются излучением. Обычно они устанавливаются под потолком и направлены на людей, находящихся в комнате, обеспечивая более сфокусированное тепло, чем при использовании плинтусов. Лучистые обогреватели также более энергоэффективны, чем плинтусы.

Распределение : В обогревателях плинтуса используется естественная конвекция для циркуляции тепла по комнате.Настенные обогреватели и многие специальные обогреватели (например, обогреватели toekick) обычно имеют внутренние вентиляторы, которые выдувают нагретый воздух.

Преимущества :

  • Нагреватели универсальны и могут быть установлены практически в любом месте.
  • Системам требуется только электрическая цепь для питания.
  • Агрегаты без вентиляторов работают бесшумно.
  • Лучистые электрические обогреватели нагревают предметы в помещении, как и лучистое тепло в полу.
  • Не требуются воздуховоды или дорогостоящая установка.

Недостатки :

  • Электронагреватели очень дороги в эксплуатации.
  • Они потребляют много электроэнергии и поэтому вносят непропорциональный вклад в чрезмерное использование энергосистемы общего пользования и связанные с этим проблемы.
  • Большая часть электроэнергии вырабатывается угольными электростанциями, поэтому электрические обогреватели, хотя и чисты в эксплуатации, в значительной степени способствуют загрязнению воздуха и выбросу углерода в атмосферу.

Выбор теплоносителя | Насосы и системы

Насосы и системы, ноябрь 2008

Семь соображений по выбору подходящего теплоносителя.

1. Рабочая температура

Учитывайте рабочую температуру жидкости, так как термическая стабильность должна соответствовать ей. Обычно определяется температурой жидкости, выходящей из нагревателя, это самая высокая температура жидкости в объеме. Температура масла в объеме имеет значение, но то, что подтверждает пригодность жидкости, — это температура пленки кожи при нагревании по сравнению с температурой жидкости.

2. Дополнительная рабочая температура

Если система используется как для нагрева, так и для охлаждения, жидкость будет иметь вторую рабочую температуру.Вторая критическая температура — это температура жидкости, покидающей радиатор в системе. Термическая стабильность обычно не является проблемой в этом случае, но важны свойства теплопередачи жидкости (в основном связанные с ее вязкостью) при более низкой температуре.

3. Условия запуска при низких температурах

Иногда возникают проблемы при запуске при низких температурах. Органические теплоносители не замерзают при увеличении объема, как вода, но вязкость этих жидкостей может увеличиваться на порядки, если температура опускается ниже 32 ° F (0 ° C).Подсчитано, что жидкость будет перекачиваться в типичном центробежном насосе до тех пор, пока ее вязкость не достигнет 2000 сантистоксов.

4. Физические свойства, влияющие на производительность

Физические свойства, которые влияют на рабочие характеристики теплоносителя, включают вязкость, плотность, теплопроводность и удельную теплоемкость. Проще говоря, жидкость можно рассматривать как конвейерную ленту для тепла или как бесконечную конвейерную ленту с ведрами, каждая из которых содержит единицы тепла. Если ковши относительно большие, ленте не нужно двигаться так быстро, чтобы передавать такое же количество тепла.Произведение плотности и удельной теплоемкости соответствует размеру ковша, поэтому для передачи тепла от источника к технологическим сосудам желательны высокие значения плотности и удельной теплоемкости.

В источнике тепла и в технологической емкости жидкость должна выполнять другую функцию — передавать тепло через границу раздела. Способность жидкости передавать тепло через поверхность раздела зависит от таких свойств жидкости, как вязкость, теплопроводность, удельная теплоемкость и плотность. Для хорошей теплопередачи вязкость должна быть низкой, а три других свойства должны быть высокими.Вязкость жидкости часто оказывает подавляющее влияние, поскольку она сильно зависит от температуры.

При сравнении способности различных жидкостей передавать тепло через границу раздела, необходимо учитывать свойства технологической жидкости на другой стороне границы раздела. Если технологическая жидкость также является водоподобной жидкостью с низкой вязкостью, она не будет иметь большого сопротивления теплопередаче, и свойства теплоносителя будут важны. С другой стороны, если технологическая текучая среда является вязкой, такой как расплав полимера или, возможно, газ, она будет иметь такое высокое сопротивление теплопередаче, что свойства текучей среды-теплоносителя не будут иметь большого значения.

5. Поставщик жидкости

Рассмотрите поставщика жидкости. Авторитетный поставщик должен быть в состоянии избавить клиента от большей части бремени обслуживания жидкости, включая рекомендации подходящей жидкости для области применения, предоставление рекомендаций или помощи по замене, создание программы мониторинга жидкости и предоставление регулярных анализов проб с комментариями по состояние жидкости и любые корректирующие действия.

Помимо таблиц данных о жидкостях, поставщики жидкостей часто предоставляют информацию о физических свойствах своих продуктов на веб-сайтах компаний или в специализированном программном обеспечении.Обычно это позволяет проводить расчеты и распечатку физических свойств в различных системах единиц в любом заданном диапазоне температур.

Программное обеспечение также позволяет рассчитывать коэффициенты теплопередачи h внутри трубы и падение давления жидкости для труб различных размеров. Некоторые из них позволяют рассчитывать коэффициенты теплопередачи и перепады давления для жидкости от любого поставщика при условии ввода соответствующих данных о физических свойствах. Это полезная функция при сравнении жидкостей от разных поставщиков, поскольку она гарантирует, что в каждом случае используется одна и та же корреляция.Однако из-за возможных переформулировок со стороны конкурентов мы рекомендуем получать обновленные данные о конкурирующих маслах у соответствующего производителя.

6. Измерения жидкостей, связанные с пожарной безопасностью

Важными измерениями жидкости, относящимися к пожарной безопасности, являются температура вспышки и температура самовоспламенения. Точка воспламенения — это температура, при которой пар над поверхностью жидкости будет гореть или «вспыхивать», если присутствует источник воспламенения.Температура самовоспламенения — это температура, при которой соответствующая смесь воздуха и паров жидкости будет самовоспламеняться, не требуя источника воспламенения.

Чем выше эти две температуры, тем меньше вероятность возгорания, но наличие системы с трубами и уплотнениями в хорошем состоянии, вероятно, не менее важно для предотвращения возгорания. Если жидкость не контактирует с воздухом или имеет ограниченный контакт, вероятность возгорания мала.

Обычно системы без сбоев работают при температурах выше точки воспламенения жидкости.Температуры самовоспламенения обычно на 212–392 ° F (от 100 до 200 ° C) выше, чем точки вспышки, и находятся в диапазоне температур, при котором разложение жидкости является проблемой. Воспламеняется пар в воздушном пространстве над жидкостью, а не жидкость. Следовательно, низкое давление пара при рабочей температуре является желательной характеристикой для предотвращения возгорания.

Пожары изоляции являются общей проблемой для всех органических теплоносителей. Трубы в системах теплопередачи обычно покрыты волокнистой изоляцией с блестящим отражающим покрытием.Если жидкость просочится в изоляцию и останется в контакте с горячей поверхностью трубы, сочетание тепла и большой площади поверхности, обеспечиваемой изоляцией, может вызвать тлеющий пожар.

7. Экологические и токсикологические свойства

Необходимо оценить экологические и токсикологические свойства и выбрать жидкости с низкой токсичностью. Поставщики должны предоставить паспорта безопасности материалов (MSDS) с описанием токсикологической опасности продукта.Ассоциация США по охране труда и безопасности (OHSA) и Канадская информационная система по опасным материалам на рабочем месте (WHMIS) предоставляют аналогичные списки материалов, которые, как считается, оказывают неблагоприятное воздействие на здоровье рабочих. Лучше всего выбирать жидкости, не содержащие компонентов в списках OHSA или WHMIS.

Учитывайте запах жидкости. Хотя, возможно, это не связано напрямую с воздействием на здоровье, некоторые жидкости обладают сильным запахом, который может ухудшить рабочую среду.

Теплоносители | Chem Group Evansville Indiana

Полный цикл поставки и обслуживания теплоносителей

CHEM Group — единственный универсальный магазин для всех ваших поставок и услуг для высокоэффективных теплоносителей (HTF).

За последние 25 с лишним лет мы работали с сотнями клиентов, помогая их системам работать бесперебойно и эффективно.

Мы предлагаем только самые экономичные и рентабельные продукты и услуги «полного цикла» для теплопередачи, чтобы помочь вам определить лучшую жидкость для вашей системы и оптимизировать технологические операции, чтобы максимизировать производительность вашего теплоносителя.

CHEM Group находит время, чтобы понять ваши конкретные требования и создать специальные программы, которые не только оптимизируют производительность вашей системы, но и экономят ваши деньги.

Вы можете доверять нашим знающим и опытным профессионалам, которые помогут вам в устранении проблем с жидкостями и предложат доступные решения для вашей системы HTF.

Щелкните здесь, чтобы узнать больше о жидких теплоносителях.

Щелкните здесь, если вы ищете наши услуги по утилизации теплоносителя.

Ознакомьтесь с нашими продуктами HTF

Thermaflo®

Линия продуктов Thermaflo — это эксклюзивная переработанная продукция Chem Group, разработанная для обеспечения высоких эксплуатационных характеристик, низкого воздействия на окружающую среду и значительной экономии средств. Эти жидкости соответствуют требованиям производителей оригинального оборудования и совместимы с жидкостями аналогичного химического состава.

Посмотреть продукцию Thermaflo® можно здесь

MARLOTHERM®

Продукция MARLOTHERM® используется в химической обрабатывающей промышленности почти 40 лет.Chem Group является эксклюзивным дистрибьютором теплоносителей Marlotherm ® в США и Канаде.

Посмотреть продукцию MARLOTHERM® можно здесь

CALFLO ™

Chem Group является авторизованным дистрибьютором линейки теплоносителей CALFLO ™ компании Petro Canada. Эти жидкости совместимы с закрытыми системами теплопередачи в жидкой фазе без давления и работают в широком диапазоне температур.

См. Продукты CALFLO ™ здесь

Позвоните нам по телефону 1-800-489-2306 или щелкните здесь, чтобы связаться с нами.Наша команда готова помочь вам подобрать лучшую жидкость для вашей системы.

Обзор жидкостей-теплоносителей

Хотите узнать больше о том, что такое жидкости-теплоносители и что они могут для вас сделать?

Читайте дальше.

Что такое жидкий теплоноситель?

Жидкий теплоноситель (HTF) — это любой газ или жидкость, передающая тепло от одной системы к другой для нагрева, охлаждения или поддержания постоянной температуры.

Ко всем системам предъявляются разные требования, и в результате для них требуются разные теплоносители.

Однако есть общие черты, на которые вы можете обратить внимание при покупке перекачивающих жидкостей для вашей системы.

Идеальная HTF должна иметь:

  • Высокая температура кипения — низкое давление паров
  • Низкая температура застывания и вязкость для облегчения запуска при низких температурах
  • Хорошая термическая стабильность при рабочих температурах
  • Хорошие теплопередающие свойства
  • Нет — вызывает коррозию обычных материалов конструкции
  • Высокая температура вспышки и температура самовоспламенения
  • Нет / минимальные нормативные ограничения
  • Низкая токсичность и раздражение кожи
  • Низкая стоимость в течение всего срока службы жидкости
Как теплопередающая жидкость Работа?

Что происходит, когда (например, при выпечке шоколадного торта) повар пытается растопить плитку шоколада на сковороде, имеющей прямой контакт с источником тепла?

  1. Плитка шоколада плавится легко и равномерно
  2. Плитка шоколада плавится неравномерно и пригорает к сковороде
  3. Плитка шоколада остается твердой
  4. Ни один из вышеперечисленных

Ответ — Б.Плитка шоколада плавится неравномерно и часто пригорает, образуя беспорядок.

Однако, если растопить ту же плитку шоколада на том же источнике тепла, используя пароварку с водой в нижней кастрюле, ответ будет A… Плитка шоколада плавится легко и равномерно.

Вода равномерно и тщательно передает тепло на верхнюю кастрюлю, что приводит к равномерному таянию и постоянной температуре, предотвращая таяние плитки шоколада.

Жидкие теплоносители в вашей системе работают точно так же, позволяя равномерно распределять тепло.

Является ли вода хорошей перекачивающей жидкостью?

Поскольку вода обладает большинством свойств идеального теплоносителя (и использовалась в приведенном выше примере), кажется, что вода является отличным кандидатом на роль теплоносителя.

Однако, хотя вода обладает хорошей теплопроводностью и теплоемкостью, при более высоких температурах она очень нестабильна, и ее пар может вступать в реакцию со стенками емкости, что делает ее уязвимой для ржавления.

По этим причинам вода не является идеальным теплоносителем для вашей системы.

Существуют ли HTF, которые лучше подходят для определенных температур?

В некоторых отраслях и сферах применения требуются чрезвычайно высокие или низкие температуры, и лучше всего использовать HTF, подходящие для этих условий.

Так в чем разница между высокотемпературными и низкотемпературными перекачивающими жидкостями?

Высокотемпературная HTF имеет высокую температуру кипения и низкое давление пара.

Обладают высокими температурами вспышки и высокой теплоемкостью.

Поскольку высокотемпературные HTF подвергаются воздействию высоких температур, срок службы этих HTF значительно сокращается при частом использовании.

Более того, высокие температуры, превышающие их максимальный предел, вызывают растрескивание этих HTF и образование более крупных молекулярных углеродных соединений.

Это приводит к образованию осадка внутри трубопроводов и проточных каналов, что снижает эффективность.

По этой причине важно периодически проверять жидкость.

Промывка и замена жидкости часто обходятся дешевле, чем покупка запасных частей или совершенно новой системы.

Низкотемпературная HTF имеет низкую вязкость, низкие температуры застывания, хорошую теплоемкость, широкий температурный диапазон, стабильность при чрезвычайно низких температурах, высокую диэлектрическую проницаемость и более низкую молекулярную массу.

Обычно они используются в системах отопления, которые работают в холодных климатических условиях, в пищевой промышленности и производстве напитков, для охлаждения пищевых и молочных продуктов, а также в установках глубокой заморозки.

Для чего используется HTF?

Основная цель использования теплоносителей в системе — передача тепла от одной системы к другой.

Этот принцип применяется либо для нагрева системы путем передачи ей тепла, либо для охлаждения системы путем постоянного отвода тепла от нее.

При контролируемом потоке его можно использовать для поддержания постоянной температуры путем регулирования потока HTF.

Любая система, которую необходимо постоянно нагревать или охлаждать, использует HTF для достижения желаемых температур.

Чтобы получить представление о том, в каких системах используются перекачивающие жидкости, ознакомьтесь с отраслями и областями применения, указанными ниже.

и. Производство полиэфирных и синтетических волокон.

Завод по производству полиэфирных и синтетических волокон подготавливает волокна с использованием таких процессов, как полимеризация, плавление, удлинение и сушка.

Для работы этих процессов требуется относительно высокая и стабильная температура.

Жидкий теплоноситель безопасно обеспечивает стабильное и точное нагревание этих систем.

Эффективное функционирование этих процессов зависит от постоянной температуры, эффективной теплопередачи и стабильного теплового потока через теплоносители.

ii. Нефть и газ

На многих этапах добычи нефти и газа требуется жидкий теплоноситель, включая начальную добычу, транспортировку, переработку и переработку.

Во время регенерации гликолей на морских установках HTF используются для удаления воды из образующегося природного газа.

Нефтеперерабатывающие заводы перегоняют многие масла и нефтепродукты путем нагрева котлов, реакторов, резервуаров и колонн с использованием теплоносителей.

Нефтеперегонные и насосные станции вдоль нефтепроводов требуют очень высоких температур для поддержания вязкости нефти для плавной прокачки нефти по трубам.

HTF используются для обеспечения высоких температур на этих дистилляционных и насосных станциях.

iii. Химическая индустрия.

Некоторые химические вещества при обработке требуют теплопередачи для косвенного нагрева.

Тепло используется во многих областях, включая отслеживание трубопроводов, рекуперацию энергии, когенерацию при низком давлении, сушку и нагрев сыпучих материалов.

Эти процессы требуют определенных температур с использованием подходящих теплоносителей, которые уменьшают образование кокса на внутренних трубах и проходах.

Использование постоянного тепла помогает создать стабильную среду для химических реакций, очистки, сушки, ректификации, производства растворителя и сохранения тепла.

iv.Фармацевтическая индустрия.

Фармацевтическая обработка должна обеспечивать определенную температуру в течение продолжительных периодов времени для нагрева, а также охлаждения продуктов.

Высокие температуры могут вызывать химические реакции с продуктами, а низкие температуры вызывать их кристаллизацию.

Важно отметить, что для обработки фармацевтических препаратов необходимо использовать жидкие теплоносители пищевого качества.

Эти HTF имеют высокую вероятность контакта с производимыми продуктами и, следовательно, должны быть безопасными.

v. Угольная химическая промышленность.

В угольной промышленности используются такие процессы, как фракция гудрона, гидрирование бензола, производство антрахинона, реакции, дистилляция и ректификация; все требуют высокой температуры для работы.

Для эффективной работы этих процессов в угольной промышленности необходим широкий диапазон температур со стабильным нагревом при низком давлении и высокой проводимостью.

vi. Пластик и резина.

Промышленности пластмасс и резины необходимо добиться однородной полимеризации и конденсации полиэфирных, нейлоновых и резиновых изделий.

При формовании, экструзии, нагревании прессов, нанесении покрытий на валки и вулканизации вам необходимо иметь точные температуры для образования твердого продукта.

HTF с высокой стабильной теплотой, антиоксидантной, необрастающей и нетоксичной природой необходима для обеспечения этих требуемых температур.

vii. Металлообрабатывающее оборудование и отливки.

Металлообрабатывающее оборудование и отливки предъявляют высокие требования к нагреву при гальванике, сушке распылением, прокатке, обжиге и литье в расплав.

HTF, используемые в машиностроении и литейной промышленности, должны иметь низкоуглеродистый шлам, низкое кислотное число и стойкость к коксованию для эффективной передачи тепла.

Использование таких HTF приведет к снижению потребности в техническом обслуживании и увеличению срока службы вашего оборудования.

viii. Опреснение морской воды.

Установки по опреснению морской воды работают за счет испарения морской воды и охлаждения паров с образованием воды.

Эффективность и стоимость эксплуатации опреснительной установки во многом зависят от эффективного теплообмена без потери тепла в атмосферу.

Для эффективной работы опреснительной установки очень важно, чтобы теплоноситель эффективно проводил тепло.

Среди различных процессов оптимизации опреснения стараются поддерживать максимальный теплообмен.

HTF для опреснительных установок должен иметь высокую проводимость, низкий уровень коррозии и быть нетоксичным.

ix. Хранение и транспортировка.

Некоторые химические продукты, такие как асфальт, необходимо хранить и транспортировать, поддерживая постоянную температуру в контейнерах, чтобы избежать каких-либо реакций.

Температура такого контейнера для хранения поддерживается с помощью перекачивающей жидкости для поддержания необходимого диапазона температуры во время хранения и транспортировки химического вещества.

х. Производство продуктов питания и напитков.

Для дезодорирования растительного масла, производства пищевых добавок, упаковки и приготовления пищевых продуктов требуются жидкие и парофазные теплоносители.

Там, где HTF на основе пара не может использоваться в определенных процессах, синтетические HTF пищевого качества могут служить этой цели.

Пищевая промышленность и производство напитков используют HTF в теплообменниках для поглощения от продукта или передачи тепла к нему.

xi. Производство биотоплива

Когда биомасса нагревается или охлаждается при длительных и фиксированных температурах, она дает биотопливо, такое как этанол, биодизельное топливо и другие виды топлива.

Установкам, производящим биотопливо, необходима точная температура для оптимального выхода.

HTF, используемые для обеспечения и контроля тепла, должны быть антиоксидантными, чтобы избежать реакции с углеродом.

xii. Индустрия каннабиса

HTF используются в индустрии каннабиса для поддержания постоянной температуры при экстракции и / или дистилляции каннабиса.

Без надлежащей температуры продукты могут стать несовместимыми и неэффективными.

Хотите приобрести теплоносители?

Теперь, когда вы узнали, что такое жидкости-теплоносители и в каких отраслях они используются, у вас должно быть базовое представление о том, какие жидкости вам нужны для вашей системы.

Нужна помощь в выборе подходящего теплоносителя или вы хотите разместить заказ?

Позвоните нам по телефону 1-800-489-2306 или щелкните здесь, чтобы связаться с нами.

Теплоноситель — Высокотемпературные теплоносители

Полный спектр жидких теплоносителей и высокоэффективных смазочных материалов для высокотемпературных систем теплопередачи, работающих с очень долгим сроком службы.

Описание

Жидкости-теплоносители серии CONDAT ( CALFLUID , THERMOL ) — это жидкости, предназначенные для использования в качестве теплоносителей в высокотемпературных системах отопления или системах охлаждения, в жидкой фазе в системах без давления.

Приложения

Масла-теплоносители CONDAT могут применяться в различных областях:

  • Поддержание температуры в резервуарах для хранения
  • Отопительное оборудование разное:
    • Помещение
    • тепловые бани, автоклавы, печи
    • водяная баня
    • асфальтобетонные установки (битум)
    • теплообменники в агропродовольственной промышленности
  • Терморегуляторы инструментов для смазки пластмассовых или алюминиевых деталей

Характеристики

  • Доступны в минеральной или синтетической технологии (гидроочищенное масло)
  • Адаптирован к высоким температурам
  • Сформулировано со специальными маслами и присадками, подобранными по их характеристикам
  • Доступен ассортимент пищевых продуктов

Преимущества продукта

Различные жидкие теплоносители специально разработаны для удовлетворения потребностей отраслей, стремящихся к повышению производительности:

  • Снижение затрат на техническое обслуживание и периодичность доливки: Низкое испарение и эффективность, подтвержденная в течение длительного периода времени
  • Сниженный риск утечек: Совместимость со всеми эластомерами (прокладки)
  • Оптимальный возврат до замены масла
  • Лучше устойчивость к возгоранию (гидроочищенные масла по сравнению с минеральными маслами), снижение риска возгорания (высокая температура воспламенения)
  • Длительный срок службы вращающихся частей
  • Улучшение условий труда : нетоксично, без запаха

Техническая помощь

CONDAT имеет большой опыт внедрения своих продуктов и может оказать вам поддержку благодаря своей технической помощи для устранения всех проблем, связанных с черными и битумными остатками, которые загрязняют ваши установки и ухудшают их работу.

Сопутствующие товары

CONDAT предлагает широкий спектр дополнительных продуктов для обслуживания вашего оборудования:

Другие продукты в ассортименте


.