Расчет нагрузок на фундаментную плиту: План фундаментной плиты, сбор нагрузок на плиту

Содержание

План фундаментной плиты, сбор нагрузок на плиту

Одной из причин такого наплевательского отношения к компьютерам, существующим теориям и методикам расчета, программному обеспечению и прочим достижениям современной науки и техники являются небольшие размеры дома, ведь мы все-таки не завод собрались строить. А потому некоторый запас по прочности, получаемый при упрощенном расчете, и соответственно перерасход материалов могут обойтись дешевле, чем заказ расчета у специалистов.

Пример расчета монолитной фундаментной плиты

Далее будет рассматриваться расчет сплошного фундамента для некоего условного дома размерами 8.8х13.2 м, у которого также есть внутренние стены. Таким образом требуется рассчитать не просто некоторую плиту, опертую по контуру, а некую статически неопределимую конструкцию с дополнительными опорами посредине. При этом план первого этажа выглядит так:

Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.

Несколько необходимых пояснений:

План 2 этажа не приводится, предполагается, что он приблизительно такой же как и план 1 этажа. Отметка верха фундаментной плиты -0.400 м. Отметка пола 1 этажа +0.100 м. Таким образом подземная часть стен (или часть фундамента под стены) составляет 0.5 м (конструктивные аспекты устройства фундамента под стены в данной статье не рассматриваются). Пол 1 этажа — доски по лагам, перекрытие 1 и 2 этажа — металлические балки (см. рис. 345.1.б). Поэтому при расчете монолитной плиты используется приведенный план 1 этажа (рис. 345.1.в) на котором показаны нагрузки от стен на фундамент с учетом перераспределения нагрузок, при условии, что под дверными проемами фундамент под стены также делается. В итоге под оконными проемами с учетом того, что расстояние от низа проема до верха фундаментной плиты составляет 0.8 (от пола до подоконника) + 0.5 = 1.3 м, нагрузку от стен можно принимать равномерно распределенной по всей длине стены.

Все стены дома планируются из газобетона D600, толщина всех стен составляет 40 см. Над перекрытием 2 этажа планируется двухскатная кровля из профнастила по деревянным стропилам. Предполагаемое место строительства — живописное село под Киевом. Бурение скважин и прочие мероприятия, связанные с геологоразведкой, не планируются. Ожидаемый уровень грунтовых вод в весеннее время -0.500 м, определен опять таки не бурением скважин, а по рассказам жителей села, у которых весной затапливает подвалы.

Так как геологов в селе никогда не видели, тем не менее даже глинобитные хаты, простоявшие лет 100, в селе имеются, то даже если основанием дома будет самая пористая глина, расчетное сопротивление грунта составит Ro = 1 кг/см2 (согласно таблицы 3, приложения 3 к СНиП 2.02.01-83* «Основания и сооружения»).

Конечно, можно воспользоваться формулами, приведенными в том же СНиП, и вычислить расчетное сопротивление грунта более точно, но с учетом того, что основание определено нами на глаз (как минимальное из возможных), не будем слишком углубляться в теорию оснований и сооружений, а перейдем к расчету плиты. Даже если действительное сопротивление грунта будет в 2 или даже в 3 раза больше, ничего страшного в этом нет, только дом будет стоять еще дольше.

Сбор нагрузок на фундамент

1.1 При ориентировочной толщине плиты 30 см плоская равномерно распределенная нагрузка на грунт от веса плиты составит:

qфунд.плиты = 2500х1.2х0.3 = 900 кг/м2 (0.09 кг/см2)

где 2500 — объемный вес железобетона, принимаемый для расчета при проценте армирования до 1% (вряд ли у нашей плиты процент армирования будет больше)

1.2 — коэффициент надежности по нагрузке

1.2. Нагрузку от пола 1 этажа (доски по лагам, выставленным на каменные столбики) можно считать условно равномерно распределенной, так как столбиков будет много, к тому же в теле фундамента плиты нагрузка от столбиков будет дополнительно перераспределяться. Таким образом расчетная нагрузка от пола 1 этажа составит:

qпол1эт. = 500х1.2 = 600 кг/м2 (0.06 кг/см2)

где 500 — нагрузка на пол и собственный вес пола

Общая равномерно распределенная нагрузка составит:

qф = 900 + 600 = 1500 кг/м2

Все остальные нагрузки будут рассматриваться как линейные равномерно распределенные, так как будут передаваться через стены на фундаментную плиту. А при рассмотрении метра ширины или длины плиты нагрузки, передаваемые стенами, могут рассматриваться, как сосредоточенные.

2.1. Нагрузка от подземной части стен (бетон) на расчетный метр ширины или длины плиты составит:

Qфунд.части стен = 2500х1.2х0.5х0.5 = 750 кг

2.2. Нагрузка от стен из газобетонных блоков марки D600 при общей высоте стен 6 м составит:

Qстен = 600х1.3х6х0.4 = 1872 кг

В данном случае коэффициент надежности по нагрузке (γ =1.3) дополнительно учитывает отделку стен внутри и снаружи здания.

2.3.1. Нагрузка от перекрытий на наружные стены составит:

Qнар.стен = 600х1.2х3 + 300х1.2х3 = 3240 кг

где 600 = 400 + 200 — нагрузка на перекрытие 1 этажа (200 — возможный вес конструкции перекрытия)

300 = 150 + 150 — нагрузка на перекрытие 2 этажа (чердачное перекрытие)

2.3.2. Нагрузка от перекрытий на внутреннюю стену составит:

Qвн.стены = (600 + 300)1.2х6 = 6480 кг

Снеговая нагрузка для Киева — 160 кг/м2. Вес кровли и стропильной системы — около 20 кг/м2. При этом распределение снеговой нагрузки и веса стропильной системы будет зависеть от конструктивного решения стропильной системы. В данной статье эти вопросы не рассматриваются, более подробно с принципами расчета стропильных систем можно ознакомиться здесь. При устройстве стропильной системы с подкосами большая часть этой нагузки будет передаваться внутренней стене (если таковая имеется), на которую опирается лежень и подкосы. Однако в нашем случае (см. рис. 345.1.в) в большом помещении такой внутренней стены нет, а стена в правой части здания имеет достаточно широкий дверной проем. В итоге нагрузка на стены, как наружные так и внутренние, в правой и левой частях дома будет разной. Распределение нагрузок на стены мы сделаем на основании следующего примера. Конечно с точки зрения расчетов было бы проще планировать дом с симметричными правой и левой частью, однако с точки зрения бытовых удобств план дома может быть еще более сложным, чем показано на рис. 345.1.

3.1.1. Для всего здания нагрузка от кровли на наружные стены (на рис.345.1.в) показаны более светлым цветом) составит:

Qкровли на нар.стены = (160 + 20)х1.2х4.5х0.25 = 243 кг

где 4.5 — длина горизонтальной проекции стропил, м.

0.25 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами.

3.1.2. Для левой части здания нагрузка от кровли на наружную и внутреннюю стены (на рис.345.1.в) показаны более темным цветом) составит:

Qлкровли на стены = (160 + 20)х1.2х4.5х0.75/2 = 364.5 кг

где 0.75 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами

2 — коэффициент, учитывающий распределение нагрузки на 2 стены

3.1.3. Для правой части здания нагрузка от кровли на внутреннюю стену (с большим дверным проемом) составит:

Qпкровли на вн.стену = (160 + 20)х1.2х4.5х0.75 = 729 кг

Теперь можно приступать к расчету фундаментной плиты, но сначала не мешает ознакомиться с основными положениями, принимаемыми при подобном расчете.

Расчет монолитной плиты фундамента — калькулятор и примеры

Как мы уже писали, монолитный плитный фундамент – это цельная конструкция из армированного бетона, имеющая заданную жесткость на изгиб и прочность на сжатие. Численные величины прочности и жесткости обычно получают в результате расчета плитного фундамента при его проектировании.

Что такое плитный фундамент?

Люди во все времена старались строить свой дом на прочном каменном основании. Именно этот подход давал надежность и долговечность построенным зданиям. И именно он привел к проектированию и строительству на плитных фундаментах.

Плитным фундаментом принято называть конструкцию основания под здание, имеющую вид железобетонной монолитной плиты, располагающейся в границах периметра здания, а чаще несколько выходящую за них.

Существует два вида таких фундаментов:

  • сборные, собранные в единую плиту из готовых заводских блоков или плит;
  • монолитные, изготовленные непосредственно на стройплощадке и представляющие цельную жесткую конструкцию из армированного бетона.

Оба вида этих оснований имеют свои плюсы и минусы, и применяются при разных условиях строительства.

Сборная фундаментная плита сооружается из готовых железобетонных плит, произведенных на ЗЖБИ – заводе железобетонных изделий. Для изготовления могут применяться плиты типа:

  • ПД – плита дорожная;
  • ПДП – дорожная для покрытий;
  • ПДГ – дорожная с рифленой поверхностью;
  • ПДН – дорожная с напряженной арматурой;
  • ПАГ – аэродромная и мн. др.

Сборный фундамент из плит хорошо держит нагрузку на сухих, прочных и непучинистых грунтах. А лучше всего они работают на грунтах с мелко- или крупнообломочной каменной структурой. Для этого вида оснований желательна небольшая глубина промерзания грунтов. Поэтому чаще сборные плиты используются для строительства в южных районах страны, где грунт не замерзает или глубина промерзания незначительная.

Но стоит только супесчаному, глинистому, а особенно лессовому грунту немного подмокнуть, например, от тающего снега или затяжных осенних дождей, так немедленно начинаются проседания отдельных плит и после этого трещат стены и перекрытия дома.

  • Плитный монолитный фундамент является огромным искусственным плоским камнем высокой прочности. Прочность монолитного фундамента на сжатие обеспечивается использованием соответствующей марки бетона, а на изгиб – его арматурным каркасом.
  • Конструкцию каркаса изготавливают из арматурных стержней нужного диаметра и марки стали, пользуясь данными ГОСТ 5781. Можно делать каркас из композитных материалов – стекло или углепластика. Часть композитной арматуры изготавливается на основе базальтового волокна.
  • На месте стальной каркас сваривается электросваркой или связывается мягкой стальной проволокой. Композитный каркас только вяжется проволокой, точно так же, как и стальной.
  • Арматурный каркас имеет вид пространственной конструкции, в которой арматура расположена во взаимно перпендикулярных направлениях и образует две плоскости в виде горизонтальных сеток. Его схема определяется при проектировании.
  • Размер ячейки этих сеток рассчитывается при проектировании и находится в пределах 200 х 200 – 300 х 300 мм. Арматуру используют диаметром 12 – 16 мм.

Виды плитного фундамента

Каркас устанавливается на пластиковых «стульчиках» – опорах. Их высота обеспечивает точное расстояние от нижней и верхней плоскостей фундамента, и составляет 50 мм. Каркасы монтируются так, что бы расстояние от их краев до опалубки так же было по 50 мм. Этот промежуток при заливке и уплотнении бетона образует специальный слой, защищающий арматурный каркас от коррозии. После застывания бетона и набора им прочности, заданной расчетом при проектировании монолитный фундамент готов к возведению здания.

У застройщиков бытует мнение, что монолитная плита фундамента подходит для любого вида грунта. Это не так. Ведь для болотистых и сильно промерзающих, а значит пучинистых грунтов, лучше использовать сваи. Слабо и среднесыпучие грунты монолитные плиты фундамента выдерживают хорошо.

Производим расчет плитного фундамент

Самым важным моментом в расчете является определение толщины плиты основания здания. Полный и наиболее точный расчет производит профессиональный строитель, имеющий соответствующий уровень знаний, опыта проектирования. Но на это нужно время, деньги и наличие профессионала. Частному непрофессиональному застройщику с небольшим превышением материалоемкости и меньшей точностью может быть достаточно более простого расчета фундаментной плиты.

Пример расчета плитного фундамента

1. Начинается расчет с определения типа грунта под будущим зданием.

Например, у вас пески мелкие со средней плотностью. Они выдерживают удельное давление фундамента в 0,35 кг/см2.

Таблица определения типа грунта

2. Рассчитываем общую массу будущего дома
  • Зная размеры дома, места окон, дверей, проемов, материал стен, перекрытий, их конфигурацию и толщину конструкций и, учитывая удельный вес материалов, определяем вес отдельных частей здания.
  • Просуммировав найденные величины, получаем общую массу здания.
  • Имея площадь здания, рассчитываем его снеговую нагрузку, связанную с углом наклона крыши и региона строительства.

Расчет плитного фундамента

3. Рассчитываем удельное давление здания на грунт

Рассчитанная общая масса здания делится на площадь фундаментной монолитной плиты. Получаем удельное давление здания на грунт (без веса фундамента). Определяем необходимый вес плиты.

4. Рассчитываем оптимальный объем и толщину фундамента

Массу плиты делим на плотность железобетона, равную примерно 2500 кг/куб. м. Объем делим на площадь плиты, получаем ее толщину.

5. Округляем полученную толщину

Округляем полученную толщину до большего и меньшего значений, кратных размеру строительного шага 50 мм. Выбираем подходящее значение и, учитывая его, пересчитываем массу фундаментной плиты. Сложив полученную массу с массой дома, рассчитываем удельное давление на грунт.

Затем сравниваем полученные цифры с табличными характеристиками грунта площадки. Разброс должен быть менее ± 25%.

6.Выбираем марку бетона

По результатам расчетов выбираем необходимую марку бетона.

Упростить расчеты плитного фундамента можно, применив калькулятор фундамента.

Конечная цель проектирования

Результатом проектирования должен быть:

  • сборочный чертеж монолитного фундамента;
  • текстовые документы – расчеты и обоснования проекта;
  • план разметки фундамента и привязка его к местности;
  • план отрывки котлована;
  • план сооружения опалубки;
  • план размещения материалов на строительной площадке;
  • планы доставки и заливки бетона, согласованные по времени.

Один из способов расчета параметров фундамента – метод конечных разностей, который показывает, как рассчитать характеристики плитного фундамента.

Расчет фундаментной плиты можно провести методом конечных элементов.

Но проще всего рассчитать фундаментную плиту, используя калькулятор расчета. В нем заложены все нужные формулы и методики.

Некоторые калькуляторы помогают рассчитать нужное количество песка, цемента, щебня, общее количество и стоимость материалов.

По результатам расчётов разрабатывается сборочный чертеж монолитного фундамента и все детализированные чертежи:

  • закладных деталей;
  • сборочный чертеж и деталировка арматурного каркаса;
  • рассчитанная схема размещения готовых каркасных сеток;
  • примерное устройство одноразовой опалубки из досок или устройство металлической многоразовой опалубки и схема ее использования т. п.

Профессионально спроектированный и построенный фундамент будет надежным основанием любого здания.

Расчет монолитной плиты фундамента | Фундамент для Дома

От правильного расчета монолитной плиты будет зависеть прочность, долговечность и эксплуатационные характеристики дома. Перед началом строительства следует провести тщательное исследование грунта, чтобы определить нагрузку, которую он выдержит.

Среди преимуществ монолитного фундамента стоит выделить большую площадь покрытия грунта, что делает его очень надежным. Это позволяет пренебречь расчетом сопротивляемости грунта. При возведении малоэтажного строения конструкция фундамента способна выдержать значительную нагрузку, вне зависимости от типа почвы и материалов, из которых построен дом.

Расчет монолитной плиты фундамента сводится к вычислению размеров основания и количества материалов для его изготовления.

Основные расчеты

Для начала следует рассчитать нагрузку конструкции на фундамент, а также — на грунт. Учитываются как временные, так и постоянные нагрузки. Постоянные нагрузки – это вес самого строения, а также — эксплуатационные характеристики, такие как вес мебели, оборудования и количество людей, которые будут постоянно или периодически находиться в строении.

Переменные нагрузки определяются, исходя из погодных условий в определенном регионе. К примеру, средняя толщина слоя снега и сила ветра.

Расчет монолитной плиты фундамента начинается с определения площади опоры, на которой он будет устанавливаться. Не стоит забывать и про вес самого фундамента. При проведении расчетов необходимо брать во внимание, какие строительные материалы будут использоваться при его возведении. При постройке дома самостоятельно требуется хотя бы приблизительный расчет фундамента.

Это позволит равномерно распределить нагрузку строения на требуемую площадь.

Определение веса дома

Если учесть все элементы постройки, возможен расчет фундаментной плиты вручную. Для этого необходимо определить вес строения, который включает:

  • Вес фундаментной плиты.
  • Стены, потолок, цоколь дома, а также их отделка.
  • Крыша дома.
  • Вес грунта, расположенный выше подошвы фундамента.
  • Пол, который упирается на фундамент.
  • Лестницы.

Примерный вес будущего строительства следует рассчитывать по данным удельного веса строительных материалов, которые будут использоваться. Округлите полученное значение в большую сторону.

Расчет основания

Чтобы рассчитать нагрузку на грунт, следует использовать показатели веса дома и вес фундамента.

Теперь определяем размеры фундамента, которые зависят от типа постройки, ее назначения, используемых материалов и глубины залегания.

Расчет глубины закладки фундамента производится, исходя из типа грунта. Чаще всего глубина составляет не менее 35 см. Для упрощения расчетов следует заранее подготовить эскиз будущего фундамента.

Расчет на продавливание фундаментной плиты

Для определения правильной толщины плиты фундамента следует брать во внимание ее продавливание в зонах сосредоточенных нагрузок. Это могут быть нагрузки от стен, колонн, столбов или прочих элементов строения. Если расчет на продавливание фундаментной плиты показал низкую прочность конструкции, увеличивается класс бетона либо повышается толщина плиты.

Расчет фундаментной плиты на продавливание возле стен очень важен, особенно для сложных конструкций, в которых колонны находятся недалеко от стен. В таком случае прочности фундамента должно хватать на то, чтобы выдержать сосредоточенные в этих зонах повышенные нагрузки.

При расчете следует учитывать сосредоточенный момент из плоскости стены в колонну. Если колонны расположены возле угла стен, то для вычисления продавливания используется значение продольной силы.

Если колонны расположены у края, рекомендуется использовать вязальную проволоку или пластиковые хомуты, иначе конструкция будет недостаточно прочной. Если колонны будут расположены у края конструкции, следует использовать дополнительный коэффициент на продавливание.

Таким образом, толщину фундаментной плиты придется увеличить или использовать бетон более высокого класса. Если в фундаменте имеются технологические отверстия, которые находятся достаточно далеко от колонн, то учитывать их в расчетах необязательно.

Закладка фундамента должна быть произведена согласно предварительным расчетам. При правильном расчете монолитной плиты фундамента обеспечивается дополнительный запас прочности, который позволяет повысить долговечность сооружения, а также его основные эксплуатационные характеристики.

Если в процессе проектировки и расчета фундамента будут допущены ошибки, гарантировать целостность и надежность конструкции будет невозможно.

Расчет плитного фундамента: определение нагрузок, примеры, цена

Плитный фундамент – дорогое удовольствие. Но можно сделать правильный расчет, чтобы не потратить лишнего. Расходы на строительство монолитной плиты будут напрямую зависеть от ее размеров, те в свою очередь – от внешних нагрузок.

Оглавление:

  1. Нагрузка и габариты
  2. Объем плиты
  3. Особенности армирования
  4. Стоимость плитного основания

Определение нагрузок и толщины

Этим занимаются специалисты после обследования участка и составления проекта дома. Но можно ограничиться самостоятельным определением веса объекта – технология несложная. Расчет нагрузки должен учитывать давление возведенного здания и силы пучения грунта. Для этого по плану будущей постройки определяют:

  • общий вес строительных и отделочных материалов без фундамента;
  • ориентировочную массу всей мебели и техники, проживающих людей;
  • снеговые нагрузки для конкретного региона.

К примеру, после такого расчета вы получили вес постройки около 320 т, а сам дом должен опираться на плитный фундамент размером 6х8 м. Тогда давление, передаваемое на почву, в пересчете на единицу площади будет равно 0,67 кг/см2. Но вес основания здесь пока не участвует, так как мы еще не нашли его толщину.

Вопрос – сможет ли грунт выдержать такой дом с учетом массы самой плиты и не опрокинет ли его при пучении? Все зависит от мощности фундамента и состава почвы. Для разных видов слабых грунтов существуют ориентировочные цифры, увязывающие их несущую способность с внешними нагрузками, которые передает плита:

  • 0,25 кг/см2 – оптимальная величина для мелкопесчаной почвы средней плотности и пластичной глины;
  • 0,35 кг/см2 – такое давление должно передавать основание на пылеватые пески и суглинки.

С учетом веса бетона с армированием (2,7 кг/м3), толщина любого фундамента для указанных грунтов выбирается из нескольких возможных вариантов:

Мощность плиты, смОбъем заливки, м3Вес бетона, тВес постройки с основанием, тДавление на почву, кг/см2
157,219,5339,50,34
209,625,9345,90,35
251232,4352,40,35
3014,438,9358,90,36

В нашем примере оптимальный вариант для строительства на суглинке – плитное основание толщиной 20 см. Если же вы получили цифру меньше 15 либо больше 35 см, значит, монолитная плита «не вяжется» с проектом. Слишком мощная говорит о том, что можно обойтись ленточным типом. Излишне тонкая намекнет на избыточный вес дома. При таких условиях постройка просто начнет медленно уходить под землю. В обоих случаях расчет толщины фундамента лучше перепоручить профессионалам.

Многие частные застройщики вполне довольствуются ориентировочными цифрами, имеющими небольшую погрешность:

1. Для бани или гаража толщина фундамента принимается 15 см и увеличивается на 5, если строительство ведется на сильнопучинистом грунте.

2. Для одноэтажного дома из кирпича или монолитного бетона заливают основание в 20 см.

3. Коттеджи повыше потребуют устройства мощной плиты толщиной около 25-30 см.

4. Фундамент для дома из газобетона или других легких стройматериалов (OSB, дерево) допускается делать на 5 см тоньше.

По приведенной выше увязке нагрузок и толщины видно, что этими цифрами можно спокойно пользоваться.

Расчет свайно-плитного основания – отдельная задача, для которой нужно дополнительно определять несущую способность свай, завязанную на их диаметр. Результат будет сильно отличаться в зависимости от глубины погружения опор. Браться за такую работу самостоятельно не стоит, если вы не профессиональный проектировщик с полным набором нужных программ.

Объем заливки

Когда габариты определены, остается только вывести значения, которые потребуются для дальнейшего расчета плитного фундамента:

  • Площадь основания: 6 х 8 = 48 м2.
  • Объем плиты: 48 х 0,20 = 9,6 м3.
  • Площадь боковых стенок: (6 + х 2 х 0,20 = 5,6 м2.

Определение высоты плиты позволяет узнать сразу несколько параметров монолитной основы, такие как требуемое количество бетона для заливки или расстояние между поясами армирования.

Арматура

Расчет количества арматуры для армирования плитного фундамента выполняется для одного пояса, а полученная цифра потом просто удваивается. Размер ячеек, образующихся при пересечении продольных и поперечных стержней, по технологии принимается равным 20-30 см. Выберем более экономный вариант с решеткой в 300 мм.

Диаметр прутьев определяется толщиной заливки и должен составлять 5 %, то есть в нашем случае – 10 мм. При этом их длина будет на 10 см меньше соответствующей стороны основания, чтобы обеспечить стальной арматуре достаточную защиту под 5-сантиметровым слоем бетона. Для рассмотренного примера понадобятся пруты длиной 5,9 и 7,9 м.

Этих данных достаточно для подсчета количества стержней в каждом ряду армирования:

  • 5900 / (300+10) + 1 = 20 шт.
  • 7900 / (300+10) + 1 = 26 шт.

Для двух поясов потребуется 40 прутьев длиной 6 м и 52 – по 8 м, то есть всего 656 м. Если продавец не предоставляет услугу нарезки в размер, прутки стандартной длины придется укорачивать самостоятельно. Так как толщина фундамента по расчету принимается равной 20 см, вертикальные перемычки будут иметь длину 10 см (можно использовать часть обрезков). Количество связей определят точки пересечения стержней. Технология армирования допускает для них увеличение шага вдвое по сравнению с горизонтальными поясами – 600 мм. Тогда число перемычек будет равно 260 шт.

Стоимость строительства

Когда размеры и количество материалов определены, можно выполнить расчет стоимости плитного основания. Для большинства пунктов строительной сметы достаточно знать габариты будущей конструкции. Продолжим на том же примере для дома 6х8 м:

Статья расходовРасчетное количествоПринимаем для фундаментаЦена за единицу, рублиВсего, рубли
Песок48 х 0,3 = 14,4 м315 м373010 950
Щебень 20-4048 х 0,2 = 9,6 м310 м3175017 500
Теплоизоляция

Пеноплекс Фундамент 50 мм

54 м254 м223512 690
Гидроизоляция

Пленка п/э

48 х 2 = 96 м296 м2272 590
Бетон М200

с учетом усадки 2 %

9,8 м310 м3320032 000
Арматура для плиты

d-10 мм

656 + 17 = 673 м673 м1912 790
Проволока

d-1,2 мм отрезки по 0,3 м

1040 шт312 м0,55170
Всего: 88 690

Не забудьте полученные цены скорректировать с учетом стоимости доставки материалов на участок.

Расчет толстых фундаментных плит. План фундаментной плиты, сбор нагрузок на плиту

Когда речь заходит о строительстве дома, гаража, бани или иного сооружения, в первую очередь встает вопрос выбора типа фундамента. В большинстве случаев этот вопрос разрешается в пользу так называемого плитного фундамента, или фундаментной плиты.

Это неудивительно, поскольку данный тип является универсальным и имеет ряд неоспоримых преимуществ, а именно:

  • легкость изготовления в силу простоты конструкции;
  • сравнительно невысокая себестоимость;
  • возможность использования на различных типах почв с разной глубиной промерзания и уровнем грунтовых вод;
  • морозоустойчивость и высокие теплоизоляционные свойства.

Но для того чтобы такой тип основания в полной мере проявил все свои ценные качества, крайне важно произвести грамотный расчет фундаментной плиты. Разумеется, лучше доверить эту работу специалисту, который выполнит все расчеты в соответствии с определенными нормами и правилами. При наличии желания можно осуществить необходимые вычисления самостоятельно.

Плитный фундамент представляет собой монолитную (либо составленную из отдельных заводских плит) железобетонную плиту, располагающуюся подо всей площадью здания и размещенную на подложке из сыпучих материалов.

Наиболее часто используется монолитный плитный фундамент мелкого заложения. Расчет такого основания аналогичен расчету других типов фундамента и включает в себя:

  • предварительный расчет основных размеров;
  • расчет по несущей способности грунта;
  • расчет армирующих конструкций.

Все перечисленные процедуры тесно взаимосвязаны, и изменение лишь одного из параметров неизбежно приведет к пересмотру всех расчетов в целом. Поэтому, приступая к рассмотрению каждого из пунктов, упустим расчет размеров, поскольку впоследствии они могут быть изменены, и примем длину и ширину фундамента равными размерам самого здания, а толщину – равной среднему рекомендуемому значению (около 25 см). Для того чтобы наиболее полно осветить все нюансы, рассмотрим простейший пример расчета .

Расчет фундаментной плиты по несущей способности грунта

После того как намечены основные , возникает необходимость проведения расчета конструкции по несущей способности грунта. Целью данного мероприятия является оценка способности подлежащего грунта выдерживать давление на него здания вместе с фундаментом и прочими несущими нагрузками.

Схема плитного фундамента: 1 – стены здания; 2 – монолитная армированная плита фундамента; 3 – ребра жесткости.

Давление здания на фундамент сопровождается его осадкой и смещением грунта, что может привести к катастрофическим последствиям. Надежная и безопасная эксплуатация основания возможна лишь при соблюдении следующего условия:

S>Kн×F/Kр×R, где:

  1. S – площадь (см²).
  2. Kн – коэффициент надежности, по умолчанию равный 1,2.
  3. F – расчетная нагрузка на основание, включающая общий вес дома с фундаментом и эксплуатационными нагрузками (кг).
  4. Kр – коэффициент условий работы.
  5. R – условное расчетное сопротивление грунта (кг/см²).

Коэффициент условий работы может иметь различные значения для разных типов грунтов и сооружений. Так, если тяжелое здание возводится на грунте, сложенном преимущественно пластичными глинами, этот коэффициент будет равен 1,0. Для слабоглинистых и мелкопесчаных почв он составит 1,2. В случае если легкое здание базируется на крупнопесчаном грунте, данное значение возрастает до 1,4. Более подробно со всеми возможными вариантами можно ознакомиться в специальных таблицах.

Расчетное сопротивление грунта также определяется при помощи таблиц, причем значения этого показателя могут варьироваться в зависимости не только от типа грунта, но и от его влажности и пористости.

Итак, если в результате произведенных вычислений уравнение оказывается верным, значит, важнейшее условие безопасной эксплуатации фундамента соблюдено и можно приступать к дальнейшим расчетам. В противном случае необходимо будет либо увеличить площадь подошвы фундамента, либо уменьшить его толщину или изменить какой-то другой параметр и заново провести расчет по несущей способности. Вот почему изначально закладываются лишь приблизительные, ориентировочные .

Плитный фундамент представляет собой сплошную железобетонную конструкцию, размещаемую под всей площадью здания и равномерно воспринимающей все возможные весовые нагрузки. Стандартная схема включает дренаж из утрамбованного песка и щебня, плиту из качественного раствора с объемным армированием и гидроизоляцию, в особо сложных условиях основание утепляют. Главным требованием технологии заложения является выбор правильной толщины этих слоев, точное значение определяет расчет. Исходными данными служат параметры грунта, тип и вес постройки, в ходе вычислений важно соблюдать все нормы проектных стандартов.

Факторы, влияющие на толщину плитного фундамента

Этот тип основания относится к «плавающим», т.е. способным воспринимать и равномерно перераспределять нагрузки. В частных постройках толщина варьируется от 15 до 35 см, изменение в меньшую сторону не допускается по причине риска раскола плиты под воздействием собственного веса здания, в большую – из-за экономической нецелесообразности, увеличения общей массы и потери подвижности. Главным критерием влияния служит тяжесть конструкций, при использовании кирпича или плотных стройматериалов высота плитного фундамента возрастает на 5-10 см в сравнении с домами с газобетонными или каркасными стенами.

Вторым учитываемым фактором идут размеры будущей постройки. Следует помнить, что все фундаменты выдерживают не только нагрузку на сжатие, но и на изгиб, экстремум приходит на середину. Чем больше длина наружных стен, тем выше риск раскалывания монолитной плиты. Частично эта проблема решается увеличением числа внутренних перегородок с несущими способностями, но для полного исключения риска приходится наращивать толщину самого фундамента. Как следствие, при строительстве на узких участках составление проекта и выбор основания лучше доверить специалистам.

Помимо веса и типа здания при расчете фундаментной плиты (в том числе для проверки ее целесообразности) учитываются особенности грунта: глубина промерзания, несущие способности, однородность и уровень подземных вод. При высокой плотности слоев подбирается мелкозаглубленный вариант, в этом случае для его заложения достаточно вынуть около 50-70 см земли, единственным недостатком такого исполнения является отсутствие подвала. На неустойчивых грунтах фундаментная плита размещается ниже глубины промерзания на 60 см, тогда увеличивается вес постройки и на конструкцию действуют повышенные нагрузки.

Интенсивность влияния подземных вод учитывается при подборе марки бетона, материалов гидроизоляции и толщины дренажной подушки, при значительных рисках подтапливания целесообразно выбрать другой тип основания или провести его утепление влагостойкими материалами.

Последовательность и пример расчета

В ходе вычислений придерживаются следующей схемы:

1. Проводится анализ геологического состояния участка, в зависимости от его типа из таблиц выбирается величина оптимального удельного давления на грунт для плитных фундаментов. Также на этом этапе определяется требуемая глубина заложения основания. При строительстве на супесях и твердых глинах стоит провести сравнение с другими типами, воздействие морозного пучения на них будет максимальным, что приводит к необходимости значительного увеличения толщины плиты.


2. Рассчитываются все весовые нагрузки. Удельный вес любого стройматериала несложно найти в таблицах, исходя из размеров стен, кровли и перекрытий находится масса самого здания. К полученному значению прибавляется средняя нагрузка снежного покрова, выбираемая согласно региону проживания и углу наклона кровли (на скатных крышах свыше 60° она принимается равной нулю). Также обязательно учитывается эксплуатационная (полезная) нагрузка, в среднем для цокольных и межэтажных перекрытий она составляет 210 кг/см2, жилых чердаков – 105. Этот показатель рассчитывают для каждого этажа, по окончании они все суммируются.

3. Определяется площадь монолитной плиты (длина дома умножается на ширину) и величина удельной нагрузки на 1 м2 грунта (общие весовые делятся на полученное значение).

4. Находится оптимальный объем фундамента (путем деления на средний удельный вес армированного бетона – 2500 кг/м3) и его предварительная толщина. Показатель округляют до 5 см в ближайшую сторону.

5. Далее расчет плитного фундамента повторяют с учетом полученного веса основания, его прибавляют к общим весовым нагрузкам. Величину удельного давления на грунт (п.3 выше) сравнивают с оптимальным для данного участка, его допустимое отклонение – ±25 %.

6. Исходя из ожидаемых нагрузок находится марка бетона для заливки, с учетом толщины составляется схема армирования: подбираются диаметр прутьев и частота их расположения.


При отклонении расчетной толщины такой плиты от рекомендуемого диапазона (15-35 см) рассматриваются другие типы фундаментов или варианты ее усиления (ребрами жесткости или сваями). Составление проекта в последнем случае безоговорочно доверяется специалистам. В качестве примера представлен простой расчет двухэтажного дома из газобетона D600 8×8 м высотой в 6,5 м, с монолитным ж/б межэтажном и деревянным чердачном перекрытиях, кровлей из металлочерепицы при строительстве на пластичных глинах (оптимальная нагрузка для такого типа – 0,25кг/см2). Тип плиты – мелкое заложение, цокольное перекрытие отсутствует.

При толщине стен в 40 см объем коробки – 166,4 м3, с учетом удельного веса блоков в 180 кг/м3 ее масса равняется 29952 кг. При площади межэтажного перекрытия в 60 м2 оно весит 30000 кг, чердачного в 64 м2 – 9600. Удельный вес кровли – 30 кг/м3, общий согласно данным проекта: 30×84=2520 кг. Величина полезной нагрузки первого, второго этажей и чердака: 64×210+60×210+64×105=32760 кг. Масса снежного покрова для среднего региона РФ принимается равной 100 кг/м2, в данном случае общее значение: 84×100=8400 кг. В сумме весовые нагрузки достигают: 113232 кг.

Удельная нагрузка на 1 м2 грунта – 113232/64=1770кг/м2= 0,177 кг/см2. Разница между оптимальным равняется 0,25-0,177=0,073, требуемая масса монолитной плиты – 46720 кг. Объем – 46720/2500=18,688 м3, толщина – 0,292 м или 30 см, что соответствует норме. Поверка показывает, что при ее весе в 48000 кг и общем здания (113232+48000) =161232 кг, нагрузка на грунт – 0,252 кг/см2. Это отклонение минимальное, все требования соблюдены, расчет необходимой толщины считается завершенным. Далее с помощью онлайн-калькуляторов несложно составить схему армирования, подобрать диаметр продольных и вертикальных прутьев и определить количество стройматериалов.


Что следует учесть при возведении основания данного типа?

Помимо вышеперечисленных условий плитный фундамент требует соблюдения строительных стандартов, в частности, при выборе марки бетона и арматуры и расчете дренажной системы. Наличие подушки обязательно, этот слой защищает основу от подвижек грунта и влаги. Ее толщина зависит от веса и назначения здания, в идеале проводится ее расчет. Минимум для легких щитовых построек – 15 см, 25 – для гаражей, под дома из кирпича засыпается и уплотняется от 20 см щебня и 25-30 песка. Чем выше риск подтапливания, тем надежнее нужна дренажная система, при необходимости по периметру закладываются водоотводные трубы.


Фундамент-монолитная плита для жилых домов усиливается как минимум двумя продольными сетками арматуры диаметром в пределах 12-16 мм, поддерживаемыми вертикальными прутьями (от 6 мм и выше). Рекомендуемых шаг ячеек – от 20 до 30 мм. Соединения и стыки не свариваются, а обвязываются проволокой диаметром в 0,8-1,2 мм или пластиковыми хомутами. Минимальное отступление от края бетона составляет 5 мм, его нарушение приводит к коррозии и разрушению каркаса. С целью соблюдения этого требования под нижние ряды подкладывают специальные пластиковые стаканчики, сетки размещаются равноудаленно от центра и краев. Обязательным условиям является заливка бетона единым монолитом, с виброуплотнением и обеспечением правильных условий затвердевания.

  • Характеристики грунтов, важные для плитного фундамента
    • Требования к бетону для плитного фундамента
    • Преимущества монолитного фундамента
    • Расчет основания по деформациям
    • Расчет осадки под плитным фундаментом

Армированный бетон надежно выдерживает сжимающие усилия, поэтому испытывать на прочность не имеет смысла. Армирование бетонной конструкции необходимо только для того, чтобы улучшить ее сопротивляемость растягивающим нагрузкам.

При этом по деформации основания (грунта) проверку необходимо выполнять обязательно. По несущей способности расчет выполняют, если:

  1. На основание воздействует не только вес, но и большие горизонтальные нагрузки.
  2. Стройку планируют на откосе или близко к его краю.
  3. Основание сложено медленно уплотняющимися грунтами. Это пылевато-глинистые водонасыщенные или биогенные грунты.
  4. В основании скальные грунты.

Расчет необходимо проводить на основании результатов геодезических, геологических и гидрометеорологических исследований. При необходимости следует проводить измерение деформаций грунта на местности.

Характеристики грунтов, важные для плитного фундамента

Расчет бетонной конструкции, какой является фундамент, учитывает .

Поэтому необходимо понимать общее количество обозначений всех величин, которые могут потребоваться.

Из всего многообразия характеристик грунтов укажем их виды и некоторые особенности, которые важны, чтобы рассчитать плитный вариант:

  1. Глинистый грунт. Это связный грунт.
  2. Песок. Несвязный грунт, в котором более 50% частиц имеют размеры, не превышающие 2 мм.
  3. Крупнообломочный грунт. Несвязный грунт, в котором более 50% частиц имеют размеры, превышающие 2 мм.
  4. Ил и сапропель. Насыщенный водой осадок с содержанием частиц менее 0,01 мм.
  5. Грунт торфованный. Песчаный и глинистый, содержащий до 50% и более (по массе) торфа.
  6. Набухающим называют грунт, который в условиях свободного набухания при замачивании водой, увеличивает объем и имеет относительную деформацию более 0,04.
  7. У некоторых видов грунта при замачивании водой даже собственный вес может дать относительную вертикальную просадку более 0,01.
  8. Пучинистый дисперсный грунт. Вследствие образования кристаллов льда имеет относительную деформацию более 0,01.

Вернуться к оглавлению

Требования к бетону для плитного фундамента

Бетон для строительной бетонной конструкции – это идеальный материал, так как он хорошо выдерживает сжимающие нагрузки. Но он очень плохо работает на растяжение. Этот недостаток стараются компенсировать за счет металлическим каркасом, помещая его внутрь. По прочности на сжатие бетон делят на классы (В3-В80) и марки М50-М1000.

Для фундаментов подходят марки не ниже М200. Это значит, что предел прочности на сжатие будет не менее 200 кгс/см². Нормируемой прочности бетон достигает примерно через 28 дней. С течением времени прочность имеет тенденцию к увеличению.

Плита требует как можно больше бетона для одноразовой заливки, поэтому ручной способ приготовления не подойдет. Необходим раствор, приготовленный на бетонном заводе, который хорошо перемешан, что очень важно для его прочности.

По морозостойкости бетон делят на марки F50-F1000, где число обозначает количество циклов замораживание-оттаивание, которое должна выдержать изготовленная из него конструкция.

Очень важной характеристикой является водонепроницаемость бетона. По этому показателю его разделяют на марки W2-W20, где число определяет давление воды (в МПа), которые выдерживает образец установленного размера. Для фундаментов рекомендуют бетон марки W6. Необходимо отметить, что для любой марки бетона гидроизоляция не помешает. Особенно это актуально для такой плитной конструкции.

Прочность основания зависит от соблюдения . Заливать плиту следует на хорошо очищенную поверхность слоями. Для ленточного основания толщина очередного слоя не должна превышать 40 см. Плиту достаточно залить одним слоем. В нем после затвердевания не должно быть пустот, поэтому заливать бетон необходимо с высоты, не превышающей 1,5 м, и его следует хорошо утрамбовывать.

Вернуться к оглавлению

Преимущества монолитного фундамента

  1. Плитный фундамент применяют на пучинистых, глинистых и грунтах с высоким залеганием грунтовых вод. Учитывая, что к глинистым относятся все грунты, содержащие глину, то получается, что каких-либо инженерно-геологических исследований в пределах стройплощадки проводить нет необходимости.
  2. Экономия на земляных работах. Для убедительности сравним с ленточным фундаментом, который необходимо заглублять ниже уровня промерзания грунта.

Например, в Подмосковье этот уровень составляет примерно 1,35 м. Фундамент необходимо заглублять на 20 см ниже этого уровня, то есть глубина траншеи составит примерно 1,6 м.

Для дома размером 10×10 м с двумя внутренними несущими перегородками общая длина ленточного основания составит 55,5 м. Если траншею рыть шириной 0,5 м, то общий объем извлекаемого грунта составит примерно 44 м³, не считая плодородного слоя (почвы), который обычно убирают.

В соответствие с указанной схемой общая деформация определяется суммированием осадки отдельных слоев по формуле:

s=0,8·SUM(σ zp.i ·h i)/E i , (2)

где σ zp. σ zp.с – среднее значение дополнительного напряжения (по вертикали) в i‑том слое; определяется как полусумма напряжений на границах этого слоя;
h i – толщины i-го слоя;
E i – модуль деформации i-го слоя кПа (кгс/см²).

Значение дополнительного напряжения по центру фундамента определяется по формуле:

а в угловых точках фундамента по формуле:

  • σ zp с. = а·р 0 /4. (4)

Коэффициент а определяется в зависимости от формы фундамента (по подошве) и от соотношения сторон (если форма прямоугольная), или от диаметра (если форма круг) и от относительной глубины х=2z/b (z – глубина залегания слоя, b – ширина фундамента).

Одной из причин такого наплевательского отношения к компьютерам, существующим теориям и методикам расчета, программному обеспечению и прочим достижениям современной науки и техники являются небольшие размеры дома, ведь мы все-таки не завод собрались строить. А потому некоторый запас по прочности, получаемый при упрощенном расчете, и соответственно перерасход материалов могут обойтись дешевле, чем заказ расчета у специалистов.

Пример расчета монолитной фундаментной плиты

Далее будет рассматриваться расчет сплошного фундамента для некоего условного дома размерами 8.8х13.2 м, у которого также есть внутренние стены. Таким образом требуется рассчитать не просто некоторую плиту, опертую по контуру, а некую статически неопределимую конструкцию с дополнительными опорами посредине. При этом план первого этажа выглядит так:

Рисунок 345.1 . Примерный план 1 этажа для расчета фундаментной плиты.

Несколько необходимых пояснений:

План 2 этажа не приводится, предполагается, что он приблизительно такой же как и план 1 этажа. Отметка верха фундаментной плиты -0.400 м. Отметка пола 1 этажа +0.100 м. Таким образом подземная часть стен (или часть фундамента под стены) составляет 0.5 м (конструктивные аспекты устройства фундамента под стены в данной статье не рассматриваются). Пол 1 этажа — доски по лагам, перекрытие 1 и 2 этажа — металлические балки (см. рис. 345.1.б). Поэтому при расчете монолитной плиты используется приведенный план 1 этажа (рис. 345.1.в) на котором показаны нагрузки от стен на фундамент с учетом перераспределения нагрузок, при условии, что под дверными проемами фундамент под стены также делается. В итоге под оконными проемами с учетом того, что расстояние от низа проема до верха фундаментной плиты составляет 0.8 (от пола до подоконника) + 0.5 = 1.3 м, нагрузку от стен можно принимать равномерно распределенной по всей длине стены.

Все стены дома планируются из газобетона D600, толщина всех стен составляет 40 см. Над перекрытием 2 этажа планируется двухскатная кровля из профнастила по деревянным стропилам. Предполагаемое место строительства — живописное село под Киевом. Бурение скважин и прочие мероприятия, связанные с геологоразведкой, не планируются. Ожидаемый уровень грунтовых вод в весеннее время -0.500 м, определен опять таки не бурением скважин, а по рассказам жителей села, у которых весной затапливает подвалы.

Так как геологов в селе никогда не видели, тем не менее даже глинобитные хаты, простоявшие лет 100, в селе имеются, то даже если основанием дома будет самая пористая глина, расчетное сопротивление грунта составит R o = 1 кг/см 2 (согласно таблицы 3, приложения 3 к СНиП 2.02.01-83* «Основания и сооружения»).

Конечно, можно воспользоваться формулами, приведенными в том же СНиП, и вычислить расчетное сопротивление грунта более точно, но с учетом того, что основание определено нами на глаз (как минимальное из возможных), не будем слишком углубляться в теорию оснований и сооружений, а перейдем к расчету плиты. Даже если действительное сопротивление грунта будет в 2 или даже в 3 раза больше, ничего страшного в этом нет, только дом будет стоять еще дольше.

Сбор нагрузок на фундамент

1.1 При ориентировочной толщине плиты 30 см плоская равномерно распределенная нагрузка на грунт от веса плиты составит:

q фунд.плиты = 2500х1.2х0.3 = 900 кг/м 2 (0.09 кг/см 2)

где 2500 — объемный вес железобетона, принимаемый для расчета при проценте армирования до 1% (вряд ли у нашей плиты процент армирования будет больше)

1.2 — коэффициент надежности по нагрузке

1.2. Нагрузку от пола 1 этажа (доски по лагам, выставленным на каменные столбики) можно считать условно равномерно распределенной, так как столбиков будет много, к тому же в теле фундамента плиты нагрузка от столбиков будет дополнительно перераспределяться. Таким образом расчетная нагрузка от пола 1 этажа составит:

q пол1эт. = 500х1.2 = 600 кг/м 2 (0.06 кг/см 2)

Общая равномерно распределенная нагрузка составит:

q ф = 900 + 600 = 1500 кг/м 2

Все остальные нагрузки будут рассматриваться как линейные равномерно распределенные, так как будут передаваться через стены на фундаментную плиту. А при рассмотрении метра ширины или длины плиты нагрузки, передаваемые стенами, могут рассматриваться, как сосредоточенные.

2.1. Нагрузка от подземной части стен (бетон) на расчетный метр ширины или длины плиты составит:

Q фунд.части стен = 2500х1.2х0.5х0.5 = 750 кг

2.2. Нагрузка от стен из газобетонных блоков марки D600 при общей высоте стен 6 м составит:

Q стен = 600х1.3х6х0.4 = 1872 кг

В данном случае коэффициент надежности по нагрузке (γ =1.3) дополнительно учитывает отделку стен внутри и снаружи здания.

2.3.1. Нагрузка от перекрытий на наружные стены составит:

Q нар.стен = 600х1.2х3 + 300х1.2х3 = 3240 кг

где 600 = 400 + 200 — нагрузка на перекрытие 1 этажа (200 — возможный вес конструкции перекрытия)

300 = 150 + 150 — нагрузка на перекрытие 2 этажа (чердачное перекрытие)

2.3.2. Нагрузка от перекрытий на внутреннюю стену составит:

Q вн.стены = (600 + 300)1.2х6 = 6480 кг

Снеговая нагрузка для Киева — 160 кг/м 2 . Вес кровли и стропильной системы — около 20 кг/м 2 . При этом распределение снеговой нагрузки и веса стропильной системы будет зависеть от конструктивного решения стропильной системы. В данной статье эти вопросы не рассматриваются, более подробно с принципами расчета стропильных систем можно ознакомиться . При устройстве стропильной системы с подкосами большая часть этой нагузки будет передаваться внутренней стене (если таковая имеется), на которую опирается лежень и подкосы. Однако в нашем случае (см. рис. 345.1.в) в большом помещении такой внутренней стены нет, а стена в правой части здания имеет достаточно широкий дверной проем. В итоге нагрузка на стены, как наружные так и внутренние, в правой и левой частях дома будет разной. Распределение нагрузок на стены мы сделаем на основании следующего примера . Конечно с точки зрения расчетов было бы проще планировать дом с симметричными правой и левой частью, однако с точки зрения бытовых удобств план дома может быть еще более сложным, чем показано на рис. 345.1.

3.1.1. Для всего здания нагрузка от кровли на наружные стены (на рис.345.1.в) показаны более светлым цветом) составит:

Q кровли на нар.стены = (160 + 20)х1.2х4.5х0.25 = 243 кг

где 4.5 — длина горизонтальной проекции стропил, м.

0.25 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами.

3.1.2. Для левой части здания нагрузка от кровли на наружную и внутреннюю стены (на рис.345.1.в) показаны более темным цветом) составит:

Q л кровли на стены = (160 + 20)х1.2х4.5х0.75/2 = 364.5 кг

где 0.75 — коэффициент, учитывающий перераспределение нагрузки при стропильной системе с подкосами

2 — коэффициент, учитывающий распределение нагрузки на 2 стены

3.1.3. Для правой части здания нагрузка от кровли на внутреннюю стену (с большим дверным проемом) составит:

Q п кровли на вн.стену = (160 + 20)х1.2х4.5х0.75 = 729 кг

Теперь можно приступать к расчету фундаментной плиты, но сначала не мешает ознакомиться с основными положениями , принимаемыми при подобном расчете.

Монолитный фундамент, как и свайный идеально подходит для строительства буквально практически любого здания. Эти 2 типа оснований одинаково хорошо переносят воздействие высоких нагрузок и перемещения рыхлых грунтов.

При этом монолитные плиты чаще всего применяют при строительстве крупных торговых центров и многоэтажных домов, а сваи при возведении частного сектора из малоэтажных домов.

Монолитная плита в качестве крепкого основания строители выбирают по многим причинам, однако, для того чтобы придать ей прочность и надежность необходимо произвести грамотные расчеты.

Как и любой строительный процесс, расчет фундамента обуславливается правилами проектирования и соответствующими статьями СНиПов. Процесс расчета разделяется на 3 основных этапа:

  1. Проведение замеров и изучение грунта на месте строительства,
  2. Расчет толщины монолитной плиты,
  3. Расчет количества арматуры, необходимой для создания прочного основания.

Есть специальные программы (Мономах, Лира), которые автоматизируют процесс расчета. В тоже время посчитать будущий фундамент можно и вручную.

Процесс изучения основных характеристик почвы


Отбор почвы для анализа

Перед проведением расчетов любого из типов фундамента, для начала необходимо определить базовые характеристики основания на местности под будущее здание или сооружение. Главные показатели, значения которых влияют на расчет фундамента следующие:

  • Показатель водонасыщенности;
  • Несущая способность грунта.

Для строительства крупного объекта, перед проведением этапа разработки всего комплекса проектной документации, нужно дополнительно провести процедуру геологических изысканий. Данное обследование включает в себя операции:

  1. Бурение в грунте скважин;
  2. Проведение лабораторных исследований с грунтом.

В результате заказчик получается разработанный отчет, в котором помечают все особенности и основные характеристики грунта. Однако проведение полного комплекса геологических изысканий грунта обходится застройщикам довольно дорого. Именно по этой причине для проектирования частных домов скважины не бурят, этап изучения грунта проводят с применением шурфов.

Что такое шурфы и для чего они нужны?

Отрывка шурфов необходима для изучения состава грунта. Шурфы представляют собой ямы, которые выкапываются строителями вручную. Для этого с помощью лопаты откапывается шурф, который должен на 50 см быть глубже, чем будут располагаться подошвы основания. Состав почвы в свою очередь изучается по полученному срезу.

Благодаря шурфам определяется примерный тип несущего слоя на участке строительства, а также соотношение грунта и воды в нем.

Если по итогам обследования грунт перенасыщен водой, то частные дома строят либо на плите, либо опорах из свай.

Во время проведения мероприятий на этапе исследования и оценки почвы нужно обязательно выкапывать шурфы или делать скважины в нескольких точках площадки.

Простой пример: для многоэтажных домов нормой считается бурение 5 скважин на каждые 100 м2 площади будущего здания.Располагаются скважины точно под пятном будущей застройки, которая описана на генплане.

Как только с монолитным основанием определились, останется выяснить только оптимальные удельные значения давления на грунт. Эта информация берется из таблицы в соответствующем разделе СНиПа.

Пример расчета толщины монолитной плиты

Правила расчета монолитной плиты полностью описаны в строительных правилах (нормах)по проектированию и устройству монолитных оснований и фундамента для зданий и сооружений. Этап расчета толщины плиты состоит из двух операций:

  1. Собрать ;
  2. Рассчитать значения несущей способности для основания.

При сборе нагрузки необходимо провести работы, связанные с вычислением общей массы здания вместе с учетом предполагаемого веса снеговой нагрузки в указанном регионе. Кроме того, при подсчете нагрузки от веса учитывается вес мебели, кровли, установленного оборудования и переменный вес людей в доме. Данные показатели берутся из таблицы в зависимости от материала, который будет применяться при возведении несущих стен, перегородок и перекрытий. Также при расчете необходимо учитывать коэффициент надежности – в среднем 1,3. Показания по снеговой нагрузке берутся из строительных норм по строительной климатологии и определаются в зависимости от снегового района, где будет возводиться сооружение.

При выборе значений из таблицы необходимо также учитывать толщину конструкций.

В итоге, общая масса здания формируется как сумма всех нагрузок на грунт, умноженная на общую площадь будущего здания. При этом обязательно учтите, что каждая из указанных при расчете нагрузок должна быть умножена на нормированный коэффициент надежности. Таким образом, проектировщики обеспечивают запас прочности по несущим способностям конструкции из монолитного бетона.

Основные формулы и коэффициенты при расчете толщины подошвы

Различные нагрузки имеют определенные коэффициенты надежности, которые нормируются СНиПом. Как правило, значения указываются в пределе от 1,05 до 1,4 в зависимости от типа нагрузки. Для монолитного основания из бетона строителями принимается коэффициент равный 1,3.

При уклоне кровли здания больше 60 градусов, можно давление от снеговой нагрузки в расчет не учитывать. При указанной крутизне ската кровли снег не будет скапливаться на поверхности крыши.

Формула для расчета подошвы и нагрузок на нее записывается в следующем виде:

Значения удельной нагрузки на почву без учета веса фундамента вычисляются, как P/S,

где под Р подразумевается сумма всех нагрузок на здание, а S — это проектная площадь будущей монолитной плиты из бетона.

Таким образом, узнав удельную нагрузку по таблице из строительных норм, вы подберете подходящую ширину подошвы.

Общий пример расчета для одноэтажного частного дома

Проведем пример. При расчете будем использовать следующие исходные данные об объекте:

  1. Здание представляет собой конструкцию одноэтажного частного дом с небольшой мансардой и общей площадью 36 кв. м.;
  2. Материал для возведения несущих стен – бруса, толщина которого 200 мм;
  3. Общее значение площади стен (4 стены с наружной высотой равной 4,5 м) равно 108 кв.м.;
  4. Внутренние перегородки выполнены из гипсокартона и составляют 75 кв.м. площади;
  5. На крыше используется образец металлической четырехскатной кровли, с уклоном в 30ᵒ;
  6. При исследовании грунт оказался пластичным, а качественный состав показал глину;
  7. Значения снеговой нагрузки для выбранного региона равняется 180 кг/м²;
  8. Перекрытия в частном доме будут из дерева, общая площадь составит 72 кв.м.

Пример сбора нагрузки для здания

Любой сбор нагрузки на будущее бетонное осуществляется с учетом всех конструкций, а также снеговой и ветровой нагрузки. Все данные заносятся в табличную форму. Посмотрите видео, как рассчитать все нагрузки, а также возвести монолитный фундамент.

При расчете необходимо учитывать нормативную и расчетную нагрузку в совокупности с коэффициентом надежности. Для нашего примера получим такие результаты:

  1. Нагрузка от стен вычисляется: 108*160*1,1 = 19008 кг,
  2. Нагрузка от гипсокартонных перегородок: 75*30*1,2 = 2750 кг,
  3. Нагрузка от деревянных перекрытий: 72*150*1,1 = 11880 кг,
  4. Давление металлической кровли: 42*60*1,1 = 2772 кг,
  5. Полезная и снеговая нагрузки: 72*150*1,2 + 42*180*1,4 = 23544 кг.


В итоге, в данном примере, мы получаем общую нагрузку здания в районе 59904 кг (это с учетом коэффициента надежности). Ширина подошвы бетонного основания вычисляется с учетом условия, что его ширина на 20 см больше, чем у дома. Таким образом, общая площадь основания равна 372100 кв. см.

Высчитываем удельную нагрузку на почву под домом по формуле: 59904 кг: 372100 кв.см. = 0,16 кг/см². Сравниваем полученные и заданные при расчете значения — Δ = 0,25 — 0,16 = 0,09 кг/см². Высчитываем массу будущего здания — М = Δ*S = 0,09*372100 = 33489 кг. Получаем в итоге толщину подошвы: t = 33489/2500 = 13,4 см. Так как значение не целое, за толщину бетонного основания принимают либо 10 см, либо 15 см.

При проверке на наименьший расход бетонного раствора и массы арматуры требованиям расчета удовлетворило значение толщины в 15 см. Остается посчитать лишь расход арматуры на монолитный фундамент выбранного одноэтажного дома для нашего примера.

Расчет арматуры на плиту

Дальнейшие расчеты примера по количеству арматуры основаны на следующих данных:

  1. Выбрана плита с общей толщиной в 15 см,
  2. Будет использовано 2 рабочие сетки,
  3. Диаметр металлических стержней выбран в 12 мм, а шаг стержней на расстоянии 150 мм,
  4. По количеству стержней получаем следующее количество штук (для двух слоев): 84*2=168 штуки,
  5. В результате, общую массу арматуру считаем по формуле: 1018,08 м * 0,888 кг/м = 905 кг.

Упрощенный расчет вручную необходимой толщины фундаментного основания и общего количества (веса) арматуры является несложной задачей, требующей небольшого количества свободного времени. Самое главное не запутаться в формулах и учесть всех коэффициенты.

Под землёй 2 | Конструктор

Случилась эта история несколько дней назад. Я как обычно сидел на работе, делал какой-то текущий проект параллельно слушая музыку и своих коллег по кабинету, как вдруг на рабочую почту мне приходит сообщение :

«Вадим , привет!

Ко мне обратились товарищи с просьбой сделать расчет фундамента (ж/б плиты) под ЛОС.

Очень прошу тебя помочь мне и моим товарищам за определенное вознаграждение.

Сможешь? «

Написал это мой знакомый ГИП с которым мы вместе работаем — молодой парень. Мы знакомы уже около четырех лет, отношения у нас приятельские, вместе прошли несколько интересных объектов.

— Заманчивое предложение, — подумал я- но что я знаю о ЛОСах??

— Да практически ничего.

Залез в поисковик и через 10 минут уже обладал кое какой требуемой информацией:

ЛОСы-ливневые очистные сооружения , устанавливаются либо на фундамент, либо на грунт, корпус из стеклопластика. Внутри система фильтрации (это меня уже не сильно интересовало). Также я нашел очень полезную таблицу с весами ЛОСов в сухом состоянии и заполненных водой.

Встречайте!!Его величество ЛОС!

Встречайте!!Его величество ЛОС!

А так он выглядит на чертеже

А так он выглядит на чертеже

— Ладно возьмусь, — пишу ему .- Сколько фундаментов под ЛОСы нужно?

Он высылает мне 4 файла с чертежами, оказывается, что кто-то уже разработал 4 фундамента под ЛОСы разного объема (50,70,90 и 100 л.) и 2 фундамента под колодцы рядом с ЛОСами. Моя задача была проверить правильность армирования и общего исполнения этих фундаментов.

Тут возник самый сложный для меня вопрос: «А сколько денег брать за эту работу?». Мой «внутренний еврей» сразу стал обдумывать как бы подороже все обыграть.

— Давай за 15 т.р? .

— Блин, у них лимит 10 ка (!-отвечает он

— ОК договорились!!

Договорившись через два дня отдать ему расчеты, я приступил к работе…

Самое главное в расчете, на мой взгляд это собрать все нагрузки и главное правильно приложить их. Вот и здесь мне пришлось задуматься, а как нагрузка с ЛОСа передается на фундаментную плиту. Так как форма у ЛОСа цилиндрическая и если смотреть в разрезе он круглый то нагрузка распределяется не по всей площади плиты , примерно по такой схеме:

С этим определились, дальше непосредственно идет сбор нагрузок. С ним ничего сложного нет нагрузки на фундаментную плиту:

  1. Собственный вес фундаментной плиты — расчетная программа сама генерирует его.
  2. Нагрузка от резервуара — для ее определения мне помогла ранняя найденная табличка с весами
  3. Вес грунта выше резервуара — над резервуаром примерно 2.6 метра грунта, умножив 2.6 метра на плотность грунта я нашел требуемую нагрузку
  4. Нормативная нагрузка на поверхности над резервуаром — была найдена по СП «Нагрузки и воздейcтвия «

Также нельзя забывать про коэффициент надежности. В общем таблица со сбором нагрузок у меня выглядела вот так:

Сами расчеты я выполняю в ПК «Лира-Сапр». Начал работать в ней еще с института, а это больше 15 лет назад (о ужас как давно это было). Сделав шесть схем под разные типы резервуаров и колодцы, задав все необходимые характеристики сечений и приложив найденные нагрузки, я все еще не смог получить результат, т.к. фундаменты надо считать как плиту на упругом основании, а для этого нужно в специальном модуле » Грунт» создать модель грунта по скважинам и подключить эту модель к моим расчетным схемам. Сказано сделано, модель грунта мне создавать не пришлось , т.к у меня есть заготовка такой модели с насыпными грунтами, а вот для того чтобы подключить каждую из плит к грунту и правильно расположить по вертикали нагрузку, а потом еще и получить результат, пришлось повозиться с пол часика .

Фундаментная плита, посаженная в модуле «Грунт»

Фундаментная плита, посаженная в модуле «Грунт»

В итоге всех этих манипуляций, я получил расчетные схемы в ПК » Лира-Сапр» с нормальными «коэффициентами постели» и корректные результаты с этих расчетных схем.

И еще один важный момент — нужно сделать 3D картинку резервуара на плите, этот момент необязателен и на расчет не влияет но я заметил, что записки выглядят гораздо лучше и интереснее с такими картинками. Пришлось потратить еще где то полчаса, хорошо что расчетная программа «Лира-сапр» позволяет получать простенькие 3D картинки ( а мне лучше и не нужно).

Результат получаса работы

Результат получаса работы

Следующий шаг — компоновка основной части пояснительной записки. В основную часть пз входят:

  1. Мозайки требуемого армирования по X и по Y у верхней и у нижней грани фундаментных плит
  2. Мозайки осадок фундаментных плит
  3. Мозайки давлений под подошвой фундамента
Мозайка требуемого армирования плиты

Мозайка требуемого армирования плиты

Мозайка давления под подошвой фундамента

Мозайка давления под подошвой фундамента

Получилось двадцать страниц с мозаиками. Знаю по себе ,что смотреть и тем более анализировать все эти мозайки долгое и муторное занятие, поэтому решил свести все в табличную форму. Получилась аккуратная и небольшая таблица , в которой все наглядно видно и понятно:

Ну и вывод куда же без него…

Вывод: В результате расчета были проверены фундаментные плиты под ЛОСы и колодцы в представленной документации, а также были найдены максимальные давления под подошвами фундаментов и максимальные осадки фундаментов. Представленные фундаментные плиты под ЛОСы не проходят проверку по прочности, в них требуется верхнее армирование, а также увеличение диаметра нижнего армирования (см. сравнительную таблицу), в фундаментах под колодцы армирование можно уменьшить. Максимальные осадки фундаментов не превышают предельно допустимых деформаций- 150 мм. Максимальное давление под подошвой фундамента не превышает предельно допустимого — 20 т/ м2.

Все!! ну слава богу. Пишу гипу на почту мол все готово, скидываю ему записку в формате PDF. Деньги переведены мне на карту и все вроде бы довольны, но есть одно маленькое но.

Т.к по расчету арматура не проходит , гип предлагает мне отредактировать чертежи за дополнительную плату.

Но как говорится «это совсем другая история»….

Расчет фундаментной плиты в SCAD.

Попробуем рассчитать фундаментную плиту под небольшое гражданское здание, нам ассистирует программа SCAD и КРОСС

Считаем что у нас все готово, а именно мы знаем что давит на нее сверху и что сопротивляется этому давлению снизу. 

Шаг 1. Создаем очертание плиты. Создаем контур, отступая от габаритов колонн или стен здания. Вылет консоли плиты желательно делать не менее ширины плиты. Теперь контур необходимо разбить на определенной количество пластинчатых элементов. В SCAD существует как минимум два способа:

Первый

На вкладке «узлы и элементы» выбираем элементы(1), затем создаем элементы(2) и после разбиваем(3). Минусы — постоянно необходимо просчитывать на какое количество элементов ты хочешь разбить и в обоих направлениях, при это неусыпно следить за направлениями собственных осей. Если у вас сетка 6х6 — хорошо. А если нет, а если кривое здание и треугольные элементы? Для треугольных элементов есть своя кнопка, аналог (3), но ей лучше никогда не пользоваться, как и треугольными элементами. Это окно будет сниться, если будете делать это впервые для плиты как в этом примере.

Второй

На вкладке «схема» находим кнопку (1), затем определяем контур при помощи кнопки (2). Окончанием определения контура должно служить двукратное нажатие левой кнопки мыши. После кнопка (3) и появится окно для выбора параметров разбивки.

Я обычно в этом окне выбираю метод «В», «создание ортогональной сетки с заданным максимальным размером элемента», «шаг триангуляции» назначаю в зависимости от толщины (как правило шаг 0,3 — 0,4) и ставлю галочку «объединить 3-х узловые элементы в 4-х узловые». Можно и сразу назначит жесткости.

Эффективным, как и должно быть, является смешанный метод. Первым методом задаешь количество в том или ином направлении, а вторым затем разбиваем с тем же шагом. Так же не забываем изменить/задать тип элементов фундаментной плиты — это должен быть 44 тип КЭ (вкладка «назначение» — «назначение типов конечных элементов»). Ранее у нас колонны/стены были защемлены якобы в фундаменте. Сейчас вместо него плита и если мы уберем защемление, то все наше «добро» «провалится» и расчет не будет выполнен. Есть несколько подходов к решению этой проблемы. Некоторые защемляют несколько узлов по краям и в середине, или полосами вдоль и поперек.  Некоторые используют 51 тип КЭ. Я пробовал и тот и другой вариант. При использовании защемления в этих местах получим пиковое армирование, а в случае 51 КЭ — нет. В остальном разницы не нашел, поэтому я за 51 КЭ. Все узлы фундаментной плиты выделяем и задаем «связи конечной жесткости» («узлы и элементы» —  «специальные элементы»).

Шаг 2. Расчет при помощи КРОСС.

То, что будет описано ниже — воистину танец с бубном! Если нет времени лучше неуклонно следовать инструкции, но сначала дочитайте до конца.

Для первоначального расчета  нам необходимо значение равномерно распределенной нагрузки на поверхность плиты. Взять ее можно из протокола решения задачи, сложив суммарные нагрузки по Z, и разделив на площадь фундаментной плиты. Площадь фундаментной плиты можно попытаться измерить инструментом «определении площади полигона» на вкладке «управления». Если даже объект смоделирован в SCAD и хотелось бы рассчитать «так как есть», то все равно придется первый раз пробежаться с равномерно распределенной, потому что во так вот. При передачи данных в КРОСС нас будут спрашивать постоянно «открыть ли существующую площадку». Первый раз все-таки «нет», а потом возможно что «да». Увлекательный процесс задания грунтов и скважин не описывается, о нем можно прочитать здесь. Задаем равномерно распределенную нагрузку и отметку фундаментной плиты. Рассчитываем и предаем данные в SCAD. В окне «назначения коэффициентов упругого основания» можно изменить количество коэффициентов, а можно и не менять. После коэффициенты применяются к плите. Результат можно увидеть нажав правой кнопкой мыши на иконку «номера типов жесткости» панели «фильтры отображения и выполнив ряд манипуляций.

Выполняем расчет. На этом можно закончить, но если есть желание посидеть еще пару часов, то после расчета опять выделяем элементы фундаментной плиты и пытаем передать данные в КРОСС. Вот оно, окно.

Соглашаемся и выбираем загружение или комбинацию

Данные передаются в КРОСС. Далее по идеи необходимо зайти в «настройки» — «нагрузки получены из SCAD» и убрать равномерно распределенную нагрузку (сделать ее равной нулю). Можно считать. После расчета (если получилось), передаем снова данный в SCAD, пересчитываем, снова передаем в КРОСС и т.д. пока не надоест. Если что-то не получилось я отметил ниже, то с чем столкнулся сам, может поможет:

— Если задать грунт, а потом редактировать номера скважин, то усилия могут пойти прахом, грунты могу исчезнуть (как у меня) и придется заполнять заново.
— Менее важно, но все же — при заполнении таблицы “грунты”, если вы забыл какой-то слой ввести в порядке очереди, для порядку, то вставить его в нужное место потом уже не получиться (как у меня).
— Тоже пустяк — если грунт водонасыщенный, то надо бы задать его отдельным слоем, со своими параметрами, другого механизма нет.
— И еще, уже подсказка — при заполнении скважин лучше давать отметки как есть в геологии, абсолютные, а то запутаться можно.
— В окне «назначения коэффициентов упругого основания» лучше всего ограничивать число коэффициентов, хотя бы до 100, по двум причинам: читать результат будет легче и есть подозрение, что если ничего не трогать коэффициенты не присваиваются.
— Очень важное наблюдение — если вы, вдруг, захотели изменить геометрию плиты и засунуть в существующую площадку, то вам не повезло. Конечно можно создать новую, но экспорта ни грунтов ни скважин я не нашел, то есть геологию придется вводить по новый. Если не хочется вводить по новый, а геометрию все-таки изменили, то путь решения проблемы следующий:
— создаем новую площадку и выписываем от туда ее габариты (можно больше), чтобы в точности (можно не в точности) вставить их в существующую
— есть кнопка удалить, воспользуемся ее и удалим существующий контур фундаментной плиты (возможно, что операция и лишняя, и достаточно выполнить пункт ниже)
— этот пункт сложнее всего выполнить. из SCAD передаем в существующую площадку КРОСС новую геометрию (с измененным габаритом и уделенным контуром). теперь самое интересное. контур новой плиты отображен на площадке, а его очертание привязано к курсору мыши и перемещается по экрану вместе с ним. если нажать правую кнопку — результата не будет, все пропадет. остается один способ — левая кнопка. но(!) нужно попасть очертанием на контур (чтобы синие линии стали желтыми!), причем чуть-чуть промахнуться можно, но на сколько, только КРОСС знает. если что-то пойдет не так — он (КРОСС) остановит сообщением “ошибка импорта”
Для выполнения итераций КРОСС — SCAD пришлось своим умом пройти тернистый не логичный путь, чтобы данные из SCAD все-таки учитывались в КРОСС (потрясающая программа отняла у меня два дня жизни). Разработанный мною алгоритм не совпадает с описанным в руководстве пользователя. Там (в руководстве) предлагают просто передать нагрузку в существующую площадку, затем удалить нагрузку равномерно распределенную, затем в меню “настройки” поставить галочку “нагрузки полученные из SCAD”. Схема преобразится, но если нажать расчет выскочит сообщение о нулевых осадках. Лечится созданием схемы только с геологией и отметкой подошвы (с нулевой нагрузкой на плиту). Вставляя в эту схему и щелкая “нагрузки полученные из SCAD” действительно все работает.
Шаг 3. Расчет средствами SCAD
Как бы хорош не был КРОСС, возможности в этом направлении у SCAD еще хуже. Одно то чувство при работе с КРОСС — серьезная программа, дружественный интерфейс, почти все функции работают и почти все понятно. Когда делаешь то же самое в SCAD такие чувства не возникают.  Возникает одно — а стоит ли делать это в SCAD? Я проверил — ответ между строк. Во такое диалоговое окно, после того как мы прошлись по вкладке «назначения» — «назначения коэффициентов упругого основания»

Я выбирал «расчет коэффициентов деформированности основания» руководствуясь те, что имею в качестве исходных данных именно модуль деформации, который там и требуется (если выбрать «расчет коэффициентов упругого основания» то с нас потребуют модуль упругости). На самом деле меня ввели в заблуждение или я сам заблудился. Расчет необходимо вести по упругому основанию, а так результат сопоставим с разницей в 10 раз. Появляется окно с характеристиками. Вводим данные слоя, сохраняем, вводим новый и т.д. Затем расчет и применяем к элементам. Очень утомительно, если на площадке больше одной скважины

Вывод.

Сначала по делу. При итерациях КРОСС — SCAD изменения можно увидеть и не только при смене равномерно распределенной нагрузки на результаты реакции грунта. Только на результат в итоге это не сильно повлияло, возможно у меня был такой «неудачный» пример. А вот если рассмотреть методическое пособие, на которое ссылался выше, то там различия мне найти не удалось, сколько не всматривался. Результат полученный собственно SCAD сопоставим с КРОССом.

Чтобы не быть голословным вот таблица

Давление грунта под подошвой (расположение соответственно таблице)

\

Спасибо создателем КРОСС, что не бросили нас в беде вместе со SCAD, только один вопрос — 

создатели SCAD и КРОСС, кто вы? Мне казалось что эти люди если не одни и те же, то хотя бы сидят рядом.

Расчет нагрузки на фундамент

| Расчет нагрузки для конструкции опоры

Статья посвящена расчету нагрузок при расчете колонн и фундаментов.

На колонну действуют следующие виды нагрузок: —

1. Собственный вес колонны x Количество этажей
2. Собственный вес балок на погонный метр
3. Нагрузка стен на погонный метр
4. Общая нагрузка на перекрытие (постоянная нагрузка + динамическая нагрузка + собственный вес)

Колонны также чувствительны к изгибающим моментам, которые следует учитывать при создании окончательной конструкции.Существуют различные типы передового программного обеспечения для проектирования конструкций, такое как ETABS или STAAD Pro, которые можно применять для эффективного проектирования хорошей конструкции. Расчет нагрузки на конструкцию В профессиональной практике основан на некоторых фундаментальных допущениях.

Для колонн: собственный вес бетона составляет примерно 2400 кг на кубический метр, что соответствует 240 кН. Собственный вес стали составляет примерно 8000 кг на кубический метр. Предположим, что большая колонна размером 230 мм x 600 мм с содержанием стали 1% и стандартной высотой 3 метра, собственный вес колонны составляет приблизительно 1000 кг на пол, что идентично 10 кН.Итак, здесь собственный вес колонны принимается от 10 до 15 кН на этаж.

Для балок: расчет такой же, как и выше. Предположим, каждый метр балки содержит размеры 230 мм х 450 мм без учета толщины плиты. Таким образом, собственный вес составляет примерно 2,5 кН на погонный метр.

Для стен: Плотность кирпича варьируется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр можно измерить нагрузку на погонный метр, эквивалентную 0.150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр. Следуя этой методике, можно измерить нагрузку на погонный метр для любого типа кирпича.

Для блоков из автоклавного газобетона, таких как Aerocon или Siporex, вес на кубический метр должен оставаться в пределах 550–700 кг на кубический метр. Если эти блоки используются для строительства, нагрузка на стену на погонный метр остается на уровне 4 кН / метр, что приводит к снижению стоимости строительства.

Для плиты: предположим, что толщина плиты составляет 125 мм.Теперь каждый квадратный метр плиты содержит собственный вес 0,125 x 1 x 2400 = 300 кг, что аналогично 3 кН. Предположим, что конечная нагрузка составляет 1 кН на метр, а наложенная временная нагрузка составляет 2 кН на метр. Таким образом, нагрузка на плиту должна оставаться от 6 до 7 кН на квадратный метр.

Фактор безопасности: Наконец, после того, как расчет всей нагрузки на колонну будет завершен, следует также принять во внимание коэффициент безопасности. Для IS 456: 2000 коэффициент запаса прочности равен 1,5.

Расчет нагрузок при проектировании колонн и фундаментов | Структурный дизайн

Как рассчитать общие нагрузки на колонну и соответствующее основание?

Эта статья написана по просьбе моих читателей.Студенты-инженеры обычно путаются, когда дело доходит до расчета нагрузок для конструкции колонн и опор. Ручной процесс прост.

Виды нагрузок на колонну
  1. Собственный вес колонны x Этажность
  2. Собственная масса балок на погонный метр
  3. Нагрузка на стены на погонный метр
  4. Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Колонны также подвергаются действию изгибающих моментов, которые необходимо учитывать при окончательном проектировании.Лучший способ спроектировать хорошую конструкцию — использовать передовое программное обеспечение для проектирования конструкций, такое как ETABS или STAAD Pro. Эти инструменты намного опережают ручную методологию проектирования конструкций и настоятельно рекомендуются.

В профессиональной практике мы используем несколько основных допущений при расчетах нагрузок на конструкции.

Вы можете нанять меня для решения ваших задач по проектированию конструкций. Свяжитесь со мной.

Для колонн

Собственный вес бетона составляет около 2400 кг на кубический метр, что эквивалентно 240 кН.Собственный вес стали составляет около 8000 кг на кубический метр. Даже если предположить, что большая колонна размером 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на пол, что эквивалентно 10 кН. Поэтому в своих расчетах я предполагаю, что собственный вес колонны составляет от 10 до 15 кН на пол.

Для балок

Расчеты, аналогичные приведенным выше. Я предполагаю, что каждый метр балки имеет размеры 230 мм x 450 мм, исключая толщину плиты.Таким образом, собственный вес может составлять около 2,5 кН на погонный метр.

Для стен

Плотность кирпича колеблется от 1500 до 2000 кг на кубический метр. Для стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр, мы можем рассчитать нагрузку на погонный метр, равную 0,150 x 1 x 3 x 2000 = 900 кг, что эквивалентно 9 кН / метр. С помощью этой методики можно рассчитать нагрузку на погонный метр для любого типа кирпича.

Для блоков из автоклавного газобетона, таких как Aerocon или Siporex, вес на кубический метр составляет от 550 до 700 кг на кубический метр.При использовании этих блоков для строительства нагрузка на стену на погонный метр может составлять всего 4 кН / метр , что может привести к значительному снижению стоимости строительства.

для плиты

Предположим, что плита имеет толщину 125 мм. Теперь каждый квадратный метр плиты будет иметь собственный вес 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН. Теперь предположим, что чистовая нагрузка составляет 1 кН на метр, а наложенная временная нагрузка — 2 кН на метр. Таким образом, мы можем рассчитать нагрузку на плиту примерно от 6 до 7 кН на квадратный метр.

Фактор безопасности

В конце, после расчета всей нагрузки на колонну, не забудьте добавить коэффициент запаса прочности. Для IS 456: 2000 коэффициент безопасности равен 1,5.

Вы можете использовать приложение RCC Column Design для расчета стали, необходимой для расчетной осевой нагрузки, используя этот метод.

Нравится:

Нравится Загрузка …

Связанные

Нагрузка на колонну, балку и плиту | Расчеты конструкции колонны Pdf | Как рассчитать размер колонны для здания

Как рассчитать нагрузку на колонну, балку и плиту

Общее Расчет нагрузки на колонны, балки, перекрытия , мы должны знать о различных нагрузках, приходящих на колонну.Как правило, расположение колонн , балки и плиты можно увидеть в конструкции каркаса типа . В каркасной конструкции нагрузка передается от плиты к балке, от балки к колонне, и в конечном итоге она достигает фундамента здания .

Для расчета нагрузки на здание необходимо рассчитать нагрузки на следующие элементы,


Что такое столбец

Колонна — это вертикальный компонент в строительной конструкции , которая в основном предназначена для восприятия сжимающей и продольной нагрузки .Колонна — один из важных конструктивных элементов строительной конструкции. В соответствии с загрузкой , поступающей на колонку , размер увеличивается или уменьшается.

Длина колонны обычно составляет в 3 раза по их наименьший поперечный размер поперечного сечения . Прочность любой колонны в основном зависит от ее формы и размера поперечного сечения, длины, расположения и положения колонны.

Расчет нагрузки на колонну


Что такое балка

Балка — это горизонтальный структурный элемент в конструкции здания , которая спроектирована как , чтобы выдерживать сдвигающее усилие , изгибающий момент , а передает нагрузку на колонны с обоих концов.Нижняя часть балки испытывает силу растяжения , а верхняя часть сила сжатия . Таким образом, арматура More из стали предусмотрена внизу по сравнению с верхней частью балки.


Что такое плита

Плита представляет собой уровень структурный элемент здания, который предназначен для создания плоской твердой поверхности . Эти плоские поверхности плит используются для изготовления этажей , крыш и потолков .Это горизонтальный структурный элемент, размер которого может варьироваться в зависимости от размера конструкции и области , а его толщина также может варьироваться.

Но минимальная толщина плиты указана для нормального строительства около 125 мм . Как правило, каждая плита поддерживается балкой, колонной и стеной вокруг нее.


Нагрузка на колонну, балку и плиту

1) Собственная масса колонны X Количество этажей

2) Собственная масса балок на погонный метр

3) Нагрузка стен на погонный метр

4) Общая нагрузка на плиту (статическая нагрузка + динамическая нагрузка + собственный вес)

Помимо указанной выше нагрузки, стойки также подвергаются изгибающим моментам , которые необходимо учитывать в окончательной конструкции .

Самый эффективный метод проектирования конструкции — это использование расширенного программного обеспечения для проектирования конструкций , такого как ETABS или STAAD Pro.

Эти инструменты сокращены. трудоемких и методов, требующих ручных расчетов для структурного проектирования , это настоятельно рекомендуется в настоящее время в полевых условиях.

для профессиональных структурного проектирования практики , существуют некоторые базовые допущения , которые мы используем для расчетов нагрузок на конструкции.

Подробнее : Таблица Excel для расчета количества стали


Расчет конструкции колонны

1. Расчет нагрузки на колонну

, мы знаем, что собственный вес Concrete составляет около 2400 кг / м3, , что эквивалентно 240 кН, а собственный вес стали составляет около 8000 кг / м3.

Итак, если мы предположим, что размер колонны 230 мм x 600 мм с 1% стали и стандартной высотой 3 метра, собственный вес колонны составляет около 1000 кг на этаж, этот id равен 10 кН.

  • Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
  • Вес бетона = 0,414 x 2400 = 993,6 кг
  • Вес стали (1%) в бетоне = 0,414 x 0,01 x 8000 = 33 кг
  • Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

При расчетах конструкции колонны мы предполагаем, что собственный вес колонн составляет от от 10 до 15 кН на пол.


2. Расчет балочной нагрузки

Мы применяем тот же метод расчета и для балок .

мы предполагаем, что каждый метр балки имеет размеры 230 мм x 450 мм без учета толщины плиты.

Предположим, что каждый (1 м) метр балки имеет размер

  • 230 мм x 450 мм без плиты.
  • Объем бетона = 0,23 x 0,60 x 1 = 0.138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в бетоне = 0,138 x 0,02 x 8000 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3,5 кН / м

Таким образом, собственный вес будет около 3,5 кН на погонный метр.


3. Расчет нагрузки на стену

известно, что плотность кирпича колеблется в пределах от 1500 до 2000 кг на кубический метр.

Для кирпичной стены толщиной 6 дюймов, высотой 3 метра и длиной 1 метр,

Нагрузка на погонный метр должна быть равна 0,150 x 1 x 3 x 2000 = 900 кг,

, что эквивалентно 9 кН / метр.

Этот метод может быть принят для расчета нагрузки кирпича на погонный метр для любого кирпича типа с использованием этого метода.

Для газобетонных блоков и блоков из автоклавного бетона, таких как Aerocon или Siporex , вес на кубический метр составляет от 550 до 700 кг на кубический метр.

, если вы используете эти блоки для конструкции , нагрузка на стену на погонный метр может быть всего 4 кН / метр , использование этого блока может значительно снизить стоимость проекта.


4.

Расчет нагрузки на перекрытие

Пусть, Предположим, плита имеет толщину 125 мм.

Таким образом, собственный вес каждого квадратных метра плиты будет

.

= 0,125 x 1 x 2400 = 300 кг, что эквивалентно 3 кН.

Теперь, если мы примем чистовую нагрузку , равную 1 кН на метр, а наложенная нагрузка будет составлять 2 кН, на метр.

Итак, исходя из приведенных выше данных, мы можем оценить нагрузку на плиту примерно в 6–7 кН на квадратный метр.


5. Фактор безопасности

В конце концов, после расчета всей нагрузки на колонну, не забудьте добавить коэффициент запаса прочности, который наиболее важен для любого проекта здания для сейфа и удобного исполнения здание в течение проектного срока продолжительности.

Это важно, когда выполняется расчет нагрузки на колонну .

Согласно IS 456: 2000 коэффициент запаса прочности равен 1,5.

как рассчитать нагрузку на здание pdf скачать

Как рассчитать размер колонны для здания

Колонна — один из важных элементов любой строительной конструкции. Размер колонны для здания рассчитан исходя из нагрузки , приходящейся на колонну от надстройки .

Для зданий с тяжелыми условиями нагрузки размер колонны увеличен. Размер колонны является важным фактором при проектировании любой конструкции здания .

Разница размеров колонн, используемых при проектировании зданий ,

  • 9 ″ x 9 ″
  • 9 ″ x 12 ″
  • 12 ″ x 12 ″
  • 12 ″ x 15 ″
  • 15 ″ x 18 ″
  • 18 ″ x 18 ″
  • 20 ″ x 24 ″
  • Согласно Структурная нагрузка Можно использовать более размер .

Для расчета размера колонки нам потребовались следующие данные:

  • Марка стали
  • Марка бетона
  • Фактор нагрузки на колонну

(Примечание: Минимальный размер колонны не должен быть меньше 9 ″ x 9 ″ (230 мм x 230 мм)

Ниже приведены этапы расчетов конструкции колонны для определения размера колонны для здания.

Pu = 0.4 f ck A c + 0,67 f y A sc (Пункт №: 39.3 Страница №: 71 IS 456: 2000)

Pu = осевая нагрузка на колонну

f ck = Характеристики прочности бетона на сжатие

A c = Площадь бетона

f y = Характеристики Прочность бетона на растяжение

A sc = Площадь стальной арматуры

A c = A g — A sc

A sc = 0.01 A г

A c = 0,99 A г

Где A г = Общая площадь колонны

Учитывать 1% стали в столбце,

A c = A г — A sc

Пример: Спроектируйте короткую квадратную колонну RCC , подвергающуюся осевой сжимающей нагрузке 600 кН . Марка бетона составляет M -20 , а марка стали Fe -500 .Возьмем Сталь 1% и Коэффициент запаса прочности = 1,5.

Pu = 600 кН, f ck = 20 Н / мм 2 , f y = 500 Н / мм 2 , сталь = 1%, коэффициент безопасности = 1,5

Колонна ПКК

Pu = осевая сжимающая нагрузка на колонну = 600 кН

Факторная нагрузка на колонну = Pu = 600 x 1,5 = 900 кН

P u = 0,4 f ck A c + 0,67 f y A sc

900 x 10 3 = 0.4 x 20 x (0,99 A г ) + 0,67 x 500 x (0,01 A г )

900 x 10 3 = 7,92 A г + 3,35 A г

900 x 10 3 = 11,27 A г

A г = 79858 мм 2

Для квадратной колонны ,

Размер столбца = √79858

Размер колонны = 282,59 мм

Обеспечьте квадратную колонку размером 285 мм x 285 мм

A г = Прилагается = 81225 мм 2

A sc = 0.01 A г = 0,01 x 81225

A sc = 812,25 мм 2

Секция проектирования колонн RCC

Обеспечьте 8 номеров стали диаметром 12 мм с площадью стали = 905 мм 2

Размер колонны для нагрузки 600 кН составляет 285 мм x 285 мм (12 ″ x 12 ″)


Посмотреть видео: Расчет нагрузки на колонну

Часто задаваемые вопросы

Как рассчитать нагрузку на балку?

Факторами, влияющими на общую нагрузку на балку, являются вес бетона и вес стали (2%) в бетоне.
Следовательно, Общий вес балки = Вес бетона + Вес стали .
Приблизительная нагрузка на балку размером 230 мм x 450 мм составляет около 3,5 кН / м.

Как рассчитать нагрузку плиты на балку?

Обычно плита имеет толщину 125 мм. Таким образом, собственный вес каждого квадратного метра плиты будет равен произведению толщины плиты и нагрузки на квадратный метр бетона , которая оценивается примерно в 3 кН .
Учитывайте чистовую нагрузку и наложенную временную нагрузку,
Общая нагрузка на плиту составит около 6–7 кН на квадратный метр .

Как продолжить расчет нагрузки на стену?

Расчет нагрузки на стену:
1. Плотность кирпичной стены с раствором находится в диапазоне 1600-2200 кг / м3 . Таким образом, мы будем считать, что собственный вес кирпичной стены составляет 2200 кг / м3
2. Мы будем рассматривать размеры кирпичной стены как Длина = 1 метр, Ширина = 0.152 мм, а высота = 2,5 метра, следовательно, объем стены = 1 м × 0,152 м × 2,5 м = 0,38 м3
3. Рассчитайте статическую нагрузку кирпичной стены, которая будет равна: Вес = объем × плотность, Собственная нагрузка = 0,38 м3 × 2200 кг / м3 = 836 кг / м
4, что равно 8,36 кН / м — это мертвая часть кирпичной стены.

Что такое столбец?

A Колонна — это вертикальный элемент конструкции здания, который в основном предназначен для выдерживания сжимающей и продольной нагрузки .Колонна — один из важных конструктивных элементов строительной конструкции. В зависимости от нагрузки, поступающей на столбец, размер увеличивается или уменьшается.

Как рассчитать статическую нагрузку на здание

Расчет Статическая нагрузка для здания = Объем элемента x Удельный вес материалов.
Это делается путем простого вычисления точного объема каждого элемента и умножения на удельного веса соответствующих материалов , из которых он состоит, и статическая нагрузка может быть определена для каждого компонента.

Расчет нагрузки на колонну

Объем бетона = 0,23 x 0,60 x 3 = 0,414 м³
Вес бетона = 0,414 x 2400 = 993,6 кг
Вес стали (1%) в бетоне = 0,414x 0,01 x 8000 = 33 кг
Общий вес колонны = 994 + 33 = 1026 кг = 10 кН

Расчет балочной нагрузки

300 мм x 600 мм без учета толщины плиты.
Объем бетона = 0.30 x 0,60 x 1 = 0,18 м³
Вес бетона = 0,18 x 2400 = 432 кг
Вес стали (2%) в бетоне = 0,18 x 2% x 7850 = 28,26 кг
Общий вес колонны = 432 + 28,26 = 460,26 кг / м = 4,51 кН / м

Нагрузка на колонну

Колонна — это вертикальный элемент строительной конструкции, который в основном предназначен для восприятия сжимающей и продольной нагрузки. Длина колонн обычно в 3 раза меньше их наименьшего поперечного размера в поперечном сечении.Прочность любой колонны в основном зависит от ее формы и размеров поперечного сечения, длины, расположения и положения колонны.

Расчет статической нагрузки для здания

Собственная нагрузка = объем элемента x удельный вес материалов.
Посредством вычисления объема каждого элемента и умножения его на удельный вес материалов, из которых он состоит, можно определить точную статическую нагрузку для каждого компонента.

Расчет динамической нагрузки

Для расчета динамической нагрузки необходимо соблюдать допустимые значения динамической нагрузки в IS-875.Обычно для целей жилого дома мы принимаем 3 кН / м2. Значение ЖИВОЙ НАГРУЗКИ изменяется в зависимости от типа конструкции, и для этого вы должны увидеть IS-875

.

Расчет нагрузки здания

Строительная нагрузка — это сумма статической, временной, ветровой и снеговой нагрузки, если здание находится в зоне снегопада. Постоянные нагрузки — это статические силы, которые остаются неизменными в течение длительного времени. Они могут находиться в состоянии растяжения или сжатия. Динамические нагрузки в основном переменные или подвижные нагрузки .Эти нагрузки могут иметь значительный динамический элемент и могут включать такие факторы, как удар, импульс, вибрация, динамика всплесков жидкости и т. Д.


Вам также может понравиться:

Расчет нагрузки на колонну — Расчет нагрузки на колонну, балку, стену и перекрытие

Что такое столбец?

Колонна является важным элементом конструкции RCC, который помогает передавать нагрузку надстройки на фундамент .

Это вертикальный сжимающий элемент, подверженный прямой осевой нагрузке, и его эффективная длина в три раза больше, чем его наименьший поперечный размер.

Когда конструктивный элемент является вертикальным и подвергается осевой нагрузке, известной как колонна, тогда как если он наклонный и горизонтальный, он известен как распорка.

Что такое луч?

Это важный структурный компонент каркасной конструкции, который в основном выдерживает нагрузку, приложенную к оси балки сбоку. В основном это режим прогиба из-за изгиба.

Из-за приложенной нагрузки возникают силы реакции в точке опоры балки , и действие этих сил создает в ней поперечную силу и изгибающий момент , что вызывает деформацию, внутренние напряжения и отклонение балки.

Его нижняя часть испытывает растяжение, а верхняя часть — растяжение; следовательно, в нижней части балки предусмотрена дополнительная сталь, чем в верхней части.

Обычно балки классифицируются в соответствии с условиями их опоры, условиями равновесия, длиной, формой поперечного сечения и материалом.

Что такое стена?

Это непрерывная вертикальная конструкция, которая разделяет или ограничивает пространство территории или здания, а также обеспечивает укрытие и безопасность. Обычно его строят из кирпича и камня.

В здании в основном есть два типа стен: внешняя стена и внутренняя стена. Внешняя стена помогает обеспечить ограждение здания.

В то время как внутренняя стена разделяет замкнутое пространство на помещения необходимого размера.Внутренняя стена также известна как перегородка.

В здании стена является основной частью надстройки и помогает разделить внутреннее пространство, а также обеспечивает уединение, звукоизоляцию и защиту от огня.

Что такое плита?

Плита — это широко используемый конструктивный элемент, который образует перекрытия и крыши зданий. Это плоский элемент, глубина которого намного меньше его ширины и размаха.

Плита может поддерживаться каменными стенами, балкой RCC или непосредственно колонной. Он обычно несет равномерно распределенные гравитационные нагрузки, действующие на его поверхность, и передают ее на опору за счет сдвига, изгиба и кручения.

Типы расчета нагрузки на колонну, балку, стену и перекрытие

Собственный вес колонны × Количество этажей

Собственный вес балки на погонный метр

Нагрузка на стену на погонный метр

Общая нагрузка на плиту = собственная нагрузка (из-за складирования мебели и других вещей) + динамическая нагрузка (из-за движения человека) + собственный вес

Помимо вышеуказанной нагрузки, колонны также испытывают изгибающие моменты, учитываемые при окончательном проектировании.

Наиболее продуктивным способом проектирования конструкций является использование передового программного обеспечения для проектирования конструкций, такого как Staad pro и Etabs.

Эти инструменты помогают избежать трудоемкого и утомительного метода ручных расчетов при проектировании конструкций. В настоящее время это настоятельно рекомендуется в области проектирования конструкций.

При профессиональном проектировании конструкций существуют некоторые фундаментальные допущения, которые мы принимаем во внимание при расчетах нагрузок на конструкции.

Расчет нагрузки на колонну

Мы знаем, что плотность бетона составляет 2400 кг / м3 или 24 кН, а плотность стали составляет 7850 кг / м3 или 78.5 кн.

Рассмотрим колонну размером 300 × 600 с 1% стали и длиной 3 метра.

  • Объем бетона = 0,3 x 0,60 x 3 = 0,54 м³
  • Вес бетона = 0,54 x 2400 = 1296 кг
  • Вес стали (1%) в бетоне = 0,54 x 0,01 x 7850 = 42,39 кг
  • Общий вес колонны = 1296 + 42,39 = 1338,39 кг = 13,384 кН

Примечание — I KN = 101,9716 кг, например, 100 кг

Расчет нагрузки балки

Мы выполняем аналогичную процедуру расчета для балки , как и для колонны.

Примем размеры поперечного сечения балки 300 мм x 450 мм без учета толщины плиты.

, следовательно,

  • 300 мм x 450 мм без учета толщины плиты
  • Объем бетона = 0,3 x 0,60 x 1 = 0,138 м³
  • Вес бетона = 0,138 x 2400 = 333 кг
  • Вес стали (2%) в дюймах Бетон = = 0,138 x 0,02 x 7850 = 22 кг
  • Общий вес колонны = 333 + 22 = 355 кг / м = 3.5 кН / м

Таким образом, собственный вес будет примерно 3,5 кН на метр.

Расчет нагрузки на стену

Нам известно, что плотность кирпича составляет от 1500 до 2000 кг / м3.

Для кирпичной стены толщиной 9 дюймов, длиной 1 метр и высотой 3 метра

Нагрузка на метр = 0,230 x 1 x 3 x 2000 = 1380 кг или 13 кН / метр.

Этот процесс можно использовать для расчета нагрузки Brick на метр для любого типа кирпича.

Для блоков AAC (автоклавный газобетон) вес на кубический метр составляет от 550 до 700 кг / м3 .

Если вы используете блоки AAC для строительства, нагрузка на стены на метр может составлять всего 4 кН / метр . Использование этого блока позволяет значительно снизить стоимость проекта.

Расчет нагрузки перекрытия

Рассмотрим плиту толщиной 100 мм.

Следовательно, собственный вес плиты на квадратный метр будет

.

= 0.100 x 1 x 2400 = 240 кг или 2,4 кН.

Если учесть, что наложенная временная нагрузка составляет около 2 кН, на метр, а чистовая нагрузка составляет около 1 кН на метр.

Следовательно, мы можем оценить, что нагрузка на плиту будет примерно 6-7 кН (приблизительно) на квадратный метр из приведенного выше расчета.

Расчет нагрузки здания

Нагрузка на здание — это сумма статической нагрузки, приложенной или временной нагрузки, ветровой нагрузки, землетрясения, снеговой нагрузки, если конструкция расположена в зоне снегопада.

Статические нагрузки — это статические нагрузки, возникающие из-за собственного веса конструкции, который остается неизменным на протяжении всего срока службы здания. Эти нагрузки могут быть растягивающими или сжимающими нагрузками.

Возникающие или временные нагрузки — это динамические нагрузки, возникающие в результате использования или размещения в здании, включая мебель. Эти нагрузки время от времени меняются. Динамическая нагрузка — одна из важных нагрузок при проектировании.

Расчет динамической нагрузки

Для расчета динамической нагрузки здания мы должны руководствоваться допустимыми значениями нагрузки согласно IS-875 1987 часть 2.

Обычно мы считаем значение временной нагрузки для жилых домов равным 3 кН / м2. Значение динамической нагрузки зависит от типа здания, для которого мы должны соблюдать нормы IS 875-1987, часть 2.

Расчет статической нагрузки

Для расчета статической нагрузки здания мы должны определить объем каждого элемента, такого как фундамент, колонна, балка, плита и стена, и умножить его на удельный вес материала, из которого оно изготовлено.

Суммируя статическую нагрузку всех конструктивных элементов, мы можем определить общую статическую нагрузку здания.

Фактор безопасности

Наконец, после расчета всей нагрузки на колонну не забудьте добавить коэффициент безопасности, который наиболее важен для конструкции конструкции любого здания для ее безопасной и подходящей работы в течение всего срока службы.

Это необходимо, когда расчет нагрузки на колонну выполнен.

Коэффициент запаса прочности равен 1.5 согласно IS 456: 2000,

Надеюсь, теперь вы поняли , как рассчитать нагрузку на колонну, балку, стену и перекрытие .

Спасибо!

Также прочтите

Что такое цокольная балка? Защита цоколя — разница между балкой цоколя и поперечной балкой

Разница между уровнем цоколя, уровнем порога и уровнем перемычки

Что такое столбец? — Типы колонн, арматуры, порядок проектирования

Разница между длинным столбцом и коротким столбцом

Разница между предварительным и последующим натяжением

Бетонная крышка — прозрачная крышка, номинальная крышка и эффективная крышка

Оценка строительных работ — метод длинных стенок, коротких стенок, метод осевой линии

Общие сведения о передаче нагрузок с плиты на балки

🕑 Время чтения: 1 минута

Передача нагрузок от плиты к балкам контролируется геометрическими размерами плиты и направлением арматуры.Нагрузка плиты, включая собственный вес, временную нагрузку и приложенную статическую нагрузку, распределяется по балкам по их сторонам.

Нагрузки на плиту выражаются в весе на единицу площади, тогда как нагрузки на балки выражаются в единицах веса на длину балки.

Если плита имеет стандартные размеры, перенос нагрузки может быть осуществлен легко и быстро. Однако, если он имеет неправильную форму, рекомендуется использовать подходящие программы, такие как SAP2000, SAFE и ETABS.

Односторонняя плита

Нагрузка односторонней плиты прямоугольной формы распределяется поровну между соседними балками. Внутренняя балка принимает на себя половину общей нагрузки плиты с каждой стороны.

Рисунок 1: Передача нагрузок от прямоугольной односторонней плиты на балки на двух сторонах плиты

Если плита поддерживается только с двух сторон или поддерживается со всех четырех сторон, но отношение более длинной стороны к более короткой стороне больше 2, она называется односторонней плитой, см. Рисунок-2.

Рисунок 2: Одностороннее перекрытие к балкам

Двусторонняя плита

Нагрузки на двухстороннюю плиту передаются на все балки со всех сторон. Таким образом, каждая балка выдерживает определенную нагрузку от плиты. Плиту обычно делят на трапециевидные и треугольные области, проводя линии из каждого угла прямоугольника под углом 45 градусов.

Рисунок-3: Передача нагрузок от прямоугольной двухсторонней плиты на четыре балки Рисунок 4: Для квадратной двухсторонней плиты нагрузка, передаваемая на четыре балки, равна

Распределенная нагрузка на балку вычисляется путем умножения площади сегмента (трапециевидной или треугольной площади) на удельную нагрузку плиты, деленную на длину балки.Для внутренней балки часть веса плиты с другой стороны оценивается аналогичным образом и добавляется к весу предыдущей, то есть к нагрузке на плиту с другой стороны балки. Итак, межкомнатные балки принимают нагрузки с двух сторон.

Рисунок 5: Передача нагрузок от двухсторонних плит на внутренние балки

Пример

Плита на рисунке, показанном ниже, имеет толщину 150 мм и, помимо собственного веса, поддерживает перегородку 0,85 кН / м 2 и динамическую нагрузку 2.4 кН / м 2 . Распределите нагрузку плиты на балки со всех четырех сторон.

Рисунок 6: Переход двухсторонней плиты на балки

Решение:

Собственный вес плиты = толщина плиты * вес бетонной единицы

= 0,15 * 24 = 3,6 кН / м 2

Общая статическая нагрузка на плиту = 3,6 + 0,85 = 4,45 кН / м 2

Можно распределить служебную нагрузку (неактивную нагрузку) на балку или предельную распределенную нагрузку на плиту; используйте факторную нагрузку как для статической, так и для временной нагрузки плиты в соответствии со спецификациями ACI 318-19.

В этом примере мы используем разные коэффициенты нагрузки, а затем используем комбинацию нагрузок для расчета предельной распределенной нагрузки на плиту. После этого на балки передается предельная распределенная нагрузка.

Предельная распределенная нагрузка (Wu) = 1,2 * статическая нагрузка + 1,6 * переменная нагрузка

Предельная распределенная нагрузка (Wu) = 1,2 * 4,45 + 1,4 * 2,4 = 8,7 кН / м 2

Нагрузка плиты на балку (4 м) = площадь треугольника * Wu

= 4 * 8.7 = 34,8 кН

Равномерно распределенная нагрузка плиты на балку (4 м) = 34,8 / 4 = 8,7 кН / м

Нагрузка плиты на балку (4 м) = площадь трапеции * Wu

= 8 * 8,7 = 69,6 кН

Равномерно распределенная нагрузка плиты на балку (6 м) = 69,6 / 6 = 11,6 кН / м

Плита сложной геометрии

Моделирование методом конечных элементов следует использовать для распределения нагрузки плиты сложной геометрии на балку. Для этого можно использовать компьютерные программы, такие как SAP200, SAFE и ETABS.Этот метод также можно рассмотреть для плит с регулярной геометрией.

Часто задаваемые вопросы

Как нагрузка передается с плиты на балки?

В односторонней плите нагрузки передаются только в одном направлении, тогда как нагрузки на двухстороннюю плиту передаются в двух направлениях.

Какие основные виды нагрузок на конструкции?

Типы нагрузок, действующих на конструкции зданий и других сооружений, можно в широком смысле классифицировать как вертикальные нагрузки, горизонтальные нагрузки и продольные нагрузки.Вертикальные нагрузки состоят из статической нагрузки, временной нагрузки и ударной нагрузки. Горизонтальные нагрузки складываются из ветровой нагрузки и землетрясения. Продольные нагрузки, т.е. тяговые и тормозные силы, учитываются в частных случаях проектирования мостов, портальных балок и т. Д.

Как рассчитывается временная нагрузка на плиту?

Временная нагрузка на плиту определяется в зависимости от функции конструкции. Например, для офисов используйте 2,4 кН / м2 (50 фунтов на квадратный фут) в соответствии с таблицей 4-1 стандарта ASCE (ASCE / SEI 10-7).

Как рассчитать статическую нагрузку на бетонные элементы?

Собственная нагрузка бетонного элемента рассчитывается путем умножения объема бетонного элемента на вес бетонной единицы.

Какая нагрузка на здание?

Возложенная нагрузка описывается как нагрузка, которая прилагается к конструкции, не является постоянной в течение срока службы конструкции и может изменяться.

Подробнее

Как напряжения передаются от R.C. Колонны к опорам?

Виды нагрузок на конструкции — здания и другие сооружения

МЕРТВЫХ НАГРУЗОК — Роберт Манн Архитектура

A «Собственная нагрузка» — это давление конструкции, направленное вниз под действием силы тяжести. При рассмотрении опор конструкции здания на фундамент участка необходимо учитывать статическую нагрузку конструкции и обеспечивать адекватность опорной конструкции. Например, : подвесная бетонная плита создает большую нагрузку, чем деревянный каркасный пол.

Значения статической нагрузки обычных строительных материалов (кН / м3):

Мягкая сталь = 77

Стекло = 25,5

Железобетон = 24

Масса бетона = 23,5

Лиственных пород = 11

Хвойная древесина = 8

В приведенном ниже сценарии показан расчет статической нагрузки:

Подвесная бетонная балка

Длина балки: 6 м (однопролетный)

Профиль балки: ширина 200 мм, глубина 400 мм

Объем луча: 6.0 x 0,2 x 0,4 = 0,48 м3

Удельный вес железобетона = 24 кН / м3

Статическая нагрузка = 0,48 м3 x 24 кН / м3 = 11,52 кН

Посчитав объем каждого элемента и умножив его на удельный вес, можно определить точную статическую нагрузку. Важно рассчитать статическую нагрузку и необходимую опорную конструкцию сверху вниз. Затем различные компоненты можно сложить вместе, чтобы определить статическую нагрузку всего здания.В отличие от других сил, собственные нагрузки не меняются во времени. Также важно помнить, что статические нагрузки всегда действуют в вертикальной плоскости и должны передаваться на поддерживающие конструкции ниже, даже если они смещены.

Нормативная информация

Австралийский стандарт, определяющий требования к статическим нагрузкам:

AS1170.1 Часть 1 — Мертвые и живые нагрузки 1981 г.

* * *

Информация, содержащаяся в статье и на сайте, носит общий характер и является мнением автора, основанного на его профессиональном опыте и исследованиях.Щелкните здесь, чтобы получить более подробную информацию о нашем содержании.

Используйте стрелки влево / вправо для навигации по слайд-шоу или проведите пальцем влево / вправо при использовании мобильного устройства

Как рассчитать собственный вес плиты | статическая нагрузка на плиту

Как рассчитать собственный вес плиты, Как рассчитать нагрузку плиты на колонну, В этом разделе мы знаем, как рассчитать собственный вес плиты и нагрузку плиты на колонну.

При проектировании строительных конструкций архитектором и инженером-строителем учитывается, какая нагрузка приложена к колонне перекрытием и кирпичной стеной и распределяется в основании и в грунте по основанию фундамента.

На колонку RCC действуют различные нагрузки. Расчет нагрузки, прилагаемой к колонне из ж / б, при проектировании конструкций и конструкции, размер фундамента, размер колонны и размер балки, а также минимальная толщина плиты будут определяться в соответствии с прочностью и грузоподъемностью

. Как рассчитать нагрузку на плиту на колонну

◆ Вы можете подписаться на меня в Facebook и подписаться на наш канал на Youtube

Вам также следует посетить: —

1) что такое бетон, его виды и свойства

2) Расчет количества бетона для лестницы и его формула

3) как рассчитать вес листа из мягкой стали и получить его формулу

4) рассчитать количество цементного песка для кирпичной кладки 10м3

5) Расчет цемента в плиточных работах

соток

6) расчет веса стального стержня и его формула

7) что такое добавка в бетон, ее виды и свойства

Различные виды нагрузок, действующих на колонну

1) собственный вес колонны

2) собственный вес балки на метр длины пробега

3) вес плиты на кв.метр

4) кирпичной стены на метр беговой длины

Собственный вес плиты представляет собой общий расчет статической нагрузки от нагрузки на чистовую отделку перекрытия и динамической нагрузки

Различные типы нагрузок, прилагаемых плитой к колонне

1) собственный вес плиты

2) нагрузка на пол

3) переменная нагрузка

1) Собственный вес плиты : — Собственный вес плиты RCC также известен как собственная нагрузка плиты, это неподвижная конструкция в строительстве, поэтому она называется статической нагрузкой и постоянной нагрузкой, поэтому неподвижная конструкция из плиты RCC — собственный вес плиты.

2) Нагрузка на отделку пола : — пол из плиты RCC оформлен штукатуркой и укладкой плитки, поэтому количество штукатурного материала и количество укладки плитки — это нагрузка отделки пола на плиту RCC, которая составляет , что составляет около 1 килограмм Ньютона на квадратный метр. над плитой ПКК

3) Динамическая нагрузка : — Под динамической нагрузкой понимается нагрузка от различных типов мебели и присутствие людей над плитой RCC. Что считается примерно 2 килограмма Ньютона на квадратный метр над плитой RCC

Нагрузка плиты на колонну = (D.L + F.L + L.V)

Где D.L = статическая нагрузка плиты

F.L = нагрузка на пол

L. V = временная нагрузка

Как рассчитать собственный вес плиты

Расчет: — толщина плиты = 5 ″

То есть 125 мм = 0,125 м

Площадь плиты = 1м2

Для расчета собственной нагрузки для плиты нам необходим собственный вес бетона, который составляет 2500 кг / м3 для плиты RCC, и собственный вес стали, который составляет приблизительно 8000 кг / м3

Собственный вес плиты равен весу бетона в плите и весу стали, которая используется при строительстве плиты.Сначала рассчитываем вес бетона в плите.

A) Вес бетона, использованного в плите

Площадь плиты = 1 кв.м

Толщина плиты = 0,125 м

Объем бетона = толщина × площадь

Объем бетона = 0,125 м × 1 м2

Объем бетона = 0,125 м3

Вес бетона = объем × плотность

Вес конц = 0,125 м3 × 2500 кг / м3

Вес конц = 312,5 кг / м2

Мы должны перевести в килограммы Ньютон, чтобы получить нагрузку, приложенную бетоном к плите, примерно 3.125 кН

B) теперь рассчитайте вес стали, используемой в плите, по правилу , мы знаем, что примерно 1% бетонной стали используется в плите

Плотность стали = 8000 кг / м3

Объем стали 1% бетона

Вес стали = 0,01 × 0,125 м3 × 8000 кг / м3

Вес стали = 10 кг / м2

Теперь переведите килограммы на метр в килограммы ньютонов, чтобы нагрузка, прикладываемая сталью к плите, составляла примерно 0,10 кН

Теперь общий собственный вес плиты равен весу бетона и весу стали

.

Общий вес = 312.5 кг + 10 кг

Общий вес = 322,5 кг / м 2

Теперь общая собственная нагрузка плиты составляет около 3,225 кН, действуя на колонну

Как рассчитать нагрузку на плиту на колонну

Нагрузка плиты на колонну = (D.L + F.L + L.V)

Где D.L = статическая нагрузка плиты = 3,225 кН / м2

F.L = нагрузка на отделку пола = 1 кН / м2

L. V = временная нагрузка = 2 кН / м2

Следовательно, нагрузка на плиту = 3,225 + 1 + 2 кН / м2

Следовательно, нагрузка на плиту = 6,226 кН / м2

Нагрузка плиты на колонну составляет около 6.226 кило Ньютон на квадратный метр

.