Как проверить полевой транзистор на исправность: Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром — Интернет-журнал «Электрон» Выпуск №5

Содержание

Как проверить полевой МОП (Mosfet) — транзистор цифровым мультиметром — Интернет-журнал «Электрон» Выпуск №5

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Полевой транзистор с изолированным затвором мы знаем под более привычным названием МОП -транзистор (метал -окисел-полупроводник), МДП -транзистор(метал -диэлектрик-полупроводник), либо в английском варианте MOSFET(Metal-Oxide-Semiconductor-Field-Effect-Transistor)

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

 

Проверка полевого MOSFET транзистора цифровым мультиметром

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Проверка встроенного диода

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверка работы полевого МОП транзистора

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

 

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

исследование транзистора с помощью мультиметра

В современной электронике MOSFET-транзисторы являются одними из самых широко применяемых радиоэлементов. Несмотря на свою надёжность, они нередко выходят из строя, что связано с нарушениями режима в их работе. При этом поиск неисправного элемента в связи со спецификой устройства полевого транзистора вызывает определённые трудности. Но зная принцип работы радиодетали, проверить мосфет мультиметром не так уж и сложно.

  • Особенности работы MOSFET
    • Виды и конструкция
    • Характеристики радиоэлемента
    • Принцип работы
  • Способы измерения
    • Транзистор с управляющим электродом
    • Мосфет с изолированным затвором

Особенности работы MOSFET

Отличие полевого транзистора от классического биполярного состоит в том, что его работа зависит от приложенного напряжения, а не тока. В литературе часто такой радиоэлемент называют МОП-транзистор (метал-оксид-полупроводник) или МДП-транзистор (метал-диэлектрик-полупроводник). В английском варианте его название звучит как мосфет, образованное от MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Полевые транзисторы являются активными элементами, то есть их работа невозможна без приложения к выводам напряжения. Впервые идея создания прибора, поток носителей заряда в котором управляется величиной приложенного напряжения, была предложена австро-венгерским учёным Юлием Лилиенфельдом. Однако отсутствие технологий создания такого устройства позволило выпустить прототип лишь в 1960 году. С 1977 году мосфеты начали применять при производстве электронно-вычислительных машин, тем самым увеличивая производительность последних.

Различные учёные мира постоянно ведут исследования по улучшению работы электронного прибора, поэтому на сегодняшний день изобретено и внедрено в производство несколько видов полевых транзисторов. Каждый из них обладает своими преимуществами и недостатками, но общий принцип работы у них одинаков.

Виды и конструкция

Разделяют мосфеты на две группы. В зависимости от вида управляющего электрода они могут быть: с p-n переходом и изолированным затвором. В последнее время первого вида элементы начинают использовать всё реже. Транзисторы с управляющим p-n переходом конструктивно представляют собой полупроводниковое основание, основными носителями заряда которого могут быть как дырки (p-тип) так и электроны (n-тип).

На концах основания выполняются выводы, называемые сток и исток. К этим контактам подключается управляемая часть схемы. Управление же прибором происходит через третий вывод транзистора (затвор), образованный путём соединения с основанием проводника обратной проводимости. Таким образом, p-n транзистор имеет три вывода:

  1. Исток — вход, через который поступают основные носители энергии.
  2. Сток — выход устройства, через который уходят основные носители энергии.
  3. Затвор — вывод управляющий прохождением зарядов через прибор.

В зависимости от типа проводимости управляющего электрода такие мосфеты делятся на n и p типа.

Радиоэлемент с изолированным затвором устроен иначе. Его затвор отделён от основания слоем диэлектрика. При изготовлении прибора используется полупроводник, обладающий высоким удельным сопротивлением. Его называют подложкой или затвором. На нём создаются две зоны с обратным типом проводимости — сток и исток. Таким образом, получается три области.

Расстояние между управляемыми электродами очень мало, а отделяемый от них затвор покрывается слоем диэлектрика порядка 0,1 микрометра. Обычно в качестве диэлектрика используется соединение SiO2.

В зависимости от способа изготовления устройства с изолированным контактом разделяют на два типа: обеднённые и обогащённые. Первые выпускаются только n-типа и могут иметь два затвора, а вторые бывают как n, так и p-типа.

Обогащённого типа устройства называются транзисторами с индуцированным каналом. В них управляемые контакты не связаны проводящим слоем. Поэтому ток на стоке появляется только при приложении определённой разности потенциалов к затвору относительно истока. Обеднённые транзисторы в своей конструкции содержат встроенный канал, из-за чего транзистор реагирует на напряжение как положительной, так и отрицательной полярности.

Характеристики радиоэлемента

На схемах и в литературе принято обозначать мосфет латинскими буквами VT, после которых идёт его порядковый номер в схеме. Графически полевой элемент изображается кругом, в середине которого рисуются прямые линии, обозначающие путь прохождения тока. На выводе затвора указывается в виде стрелки тип проводимости. Затвор, сток и исток подписываются соответственно буквами латинского алфавита — S, D, G.

Полевые устройства характеризуются множеством параметров.

Но среди основных выделяют следующие характеристики:

  1. Напряжение между управляемыми электродами. Показывает величину напряжения, которое может выдержать транзистор без ухудшения своих параметров. То есть практически это максимальное напряжение источника питания, на работу с которым рассчитан транзистор.
  2. Сила тока стока. Обычно указывается максимальное значение для определённой величины постоянного напряжения, приложенного к затвору — истоку.
  3. Импеданс канала сток-исток в открытом состоянии. Чем это значение будет больше, тем хуже работает транзистор, так как на сопротивлении возникают потери энергии, и увеличивается нагрев мосфета.
  4. Мощность рассеивания. Зависит от температуры окружающей среды. Этот параметр изображается в виде характеристики, показывающей зависимость мощности от температуры.
  5. Уровень насыщения канала исток-затвор. Обозначает граничную величину разности потенциалов, при преодолении которой ток через канал не проходит.
  6. Порог включения. Это минимальное напряжение, которое необходимо приложить к транзистору для открытия его проводящего канала.
  7. Ёмкость затвора. Существенный недостаток полевых транзисторов связан именно с этим параметром. Так, из-за паразитной ёмкости ограничивается применение устройств в высокочастотных цепях, снижая скорость переключения режимов работы.

Важно также знать, что мосфеты чувствительны к статическому электричеству, особенно это касается приборов с изолированным затвором. Поэтому проводя проверку полевого транзистора мультиметром, следует надеть на обе руки антистатические браслеты, при этом также не стоит надевать на себя шерстяную одежду.

Принцип работы

Суть работы радиоэлемента с изолированным затвором заключается в управлении величиной тока, проходящего через него, с помощью изменения разности потенциалов. Когда к истоку и затвору прикладывается напряжение, то в приборе образуется электрическое поле поперечное приложенному. Это поле увеличивает число свободных носителей заряда в приповерхностном слое.

Из-за этого возле диэлектрика начинает скапливаться значительное количество носителей заряда, в результате чего формируется зона проводимости. Через эту область начинает протекать ток, то есть между управляемыми выводами. При снятии напряжения с открытого затвора проводимость исчезнет, и течение тока прекратится.

Немного другие процессы происходят в работе полевого транзистора с p-n переходом. Если на этот переход подаётся напряжение обратное основным носителям заряда, его область начинает расширяться. Увеличение перехода приводит к сужению толщины проводящего канала, а значит, увеличению сопротивления. В результате проходящий между стоком и истоком ток уменьшается. Таким образом, изменяя уровень напряжения, изменяется и сила тока, проходящая через транзистор.

Способы измерения

Для измерения параметров полевых транзисторов применяются специализированные приборы. В основе их работы лежит использование микроконтроллера и встроенного генератора. Сигнал определённого вида подаётся на контакты транзистора, в результате чего изменяется. С помощью встроенного анализатора устройство оценивает эти изменения и преобразует данные в удобную для восприятия информацию. Вся суть пользования таким измерителем сводится к установлению мосфета в специальные контактные площадки и нажатии кнопки запуск.

В быту же радиолюбителями часто применяются самодельные устройства. Так, простейшего вида приспособление из нескольких элементов позволяет измерить сопротивление каналов. Для этого используется: вольтметр, автомобильная лампочка, источник напряжения и резистор номиналом около 100 Ом. Собрав такую схему, можно без труда измерить Rds радиоэлемента, тем самым проверить мосфет на работоспособность.

Но проще всего и быстрее для диагностики радиоэлемента использовать мультиметр. С его помощью несложно проверить мосфет на способность работы в ключевом режиме. И если по результатам проверки он нормально открывается и закрывается, то вероятность его исправности очень велика.

Транзистор с управляющим электродом

Для лучшего понимания процесса проверки мосфета его можно представить в виде эквивалентной схемы как треугольник. Две стороны такого треугольника представляют собой два диода, а третья — резистор. При этом точка соединения диодов считается затвором, а соединение их с резистором — стоком и истоком.

Представив эквивалентную схему, можно приступить к проверке элемента. Для примера удобно рассмотреть один из типов проводимости, например, n-тип:

  1. Измерение сопротивление канала. Для этого с помощью переключателя выбора измерений мультиметр устанавливается в режим проверки сопротивления. Предел измерения выбирается около двух мегом. Щупами прибора касаются стока и истока транзистора. В результате на экране мультиметра появится число равное сопротивлению перехода. После меняется полярность щупов, и снова измеряется сопротивление. При исправном мосфете эти значения должны быть примерно одинаковыми. Такое подключение на эквивалентной схеме соответствует положению, когда измерялась бы величина сопротивления резистора.
  2. Проверка перехода затвор-исток. Для этого мультиметр переключается в режим прозвонки диодов. Измерительным проводом, подключённым к плюсу тестера, прикасаются к затвору, а минусовым — к истоку. Итогом такого действия будет измерение мультиметром падения напряжения на открытом переходе. Его значение должно составлять примерно 600–700 милливольт. На следующем этапе изменяется полярность приложенных проводов. Если мосфет исправен, тестер покажет бесконечность. Это будет обозначать, что переход закрыт.
  3. Исследование перехода сток-затвор. Мультиметр оставляется в режиме прозвонки диодов. Но положительным щупом прикасаются к затвору, а отрицательным к стоку. В этом случае тестер должен показать падение напряжения на переходе порядка 600–700 милливольт. При смене полярности в случае работоспособности транзистора тестер покажет бесконечность.

Если все три пункта выполнились правильно, мосфет считается работоспособным. Проверка радиоэлемента другого типа осуществляется аналогично, только изменяется полярность подключению щупов.

Мосфет с изолированным затвором

Такой вида транзистора имеет в своём корпусе встроенный диод, располагающийся между истоком и стоком, поэтому первоначально на исправность проверяется именно он. Для его проверки мультиметр переключается в режим проверки диодов, а его щупы подключаются к стоку и истоку. В прямом направлении прибор должен показать падение напряжения, а в случае смены полярности — бесконечность.

Основная проверка транзистора заключается в имитации его работы в режиме ключа.

В случае радиоэлемента n-типа его диагностика осуществляется следующим образом:

  1. Мультиметр переключается на проверку диодов.
  2. Щупом, подключённым к минусу, дотрагиваются до истока, а к плюсу — до затвора.
  3. Плюсовой провод переносится к стоку. Если мосфет рабочий, то сопротивление перехода будет очень низким, то есть канал станет открытым.
  4. Далее, положительный щуп подключается к истоку, а отрицательный — к затвору. После этих действий транзистор закроется.

По результатам измерения делается вывод о работоспособности элемента. Таким образом, соблюдая последовательность приведённых действий, можно проверить мосфет любого типа на работоспособность с помощью мультиметра.

Что такое FET (полевой транзистор)?

Полевой транзистор (FET) представляет собой тип транзистора, который использует электрическое поле для управления током, протекающим через полупроводниковый канал. Полевые транзисторы широко используются в электронных схемах из-за их высокого входного сопротивления, низкого выходного сопротивления и высокого коэффициента усиления.

Как работает полевой транзистор (FET)?

Полевые транзисторы имеют три вывода: исток (S), сток (D) и затвор (G). Когда мы подаем напряжение на затвор, создается электрическое поле, которое либо притягивает, либо отталкивает носители заряда (электроны или дырки) в области канала. Притягиваются или отталкиваются носители заряда, зависит от полярности напряжения. Процесс подачи напряжения на затвор полевого транзистора управляет проводимостью канала и протеканием тока между выводами истока и стока.

Изображение MOSFET, подтипа FET. | Изображение: Shutterstock

Еще от этого экспертаЧто такое электрический заряд?

 

Характеристики полевого транзистора 

Устройство, управляемое напряжением

Полевой транзистор – это устройство, управляемое напряжением. Это означает, что его выходной ток контролируется напряжением, которое мы подаем на его клемму затвора.

 

Высокое входное сопротивление

Полевые транзисторы имеют очень высокое входное сопротивление, что означает, что они не нагружают источник сигнала и могут использоваться в качестве буферных усилителей. Использование полевых транзисторов в качестве буферных усилителей может помочь предотвратить искажение сигнала и улучшить общее качество выходного сигнала схемы. Кроме того, полевые транзисторы энергоэффективны, что делает их привлекательным выбором для устройств с батарейным питанием.

 

Униполярное устройство

Полевые транзисторы являются униполярными устройствами, что означает, что они используют только один тип носителей заряда (электроны или дырки) для управления протеканием тока. Альтернативой монополярному устройству является биполярное устройство. В отличие от однополярного устройства, такого как полевой транзистор, биполярное устройство, такое как транзистор с биполярным переходом (BJT), использует как электроны, так и дырки для управления протеканием тока. Биполярные устройства имеют высокий коэффициент усиления по току и могут работать с более высокими уровнями мощности, что делает их подходящими для приложений с усилением мощности.

 

3 клеммы

Исток, сток и затвор — это три клеммы полевого транзистора. Исток и сток подключены к каналу, а затвор управляет протеканием тока через канал.

Соответствующие материалы Объяснение NMOS-транзисторов и PMOS-транзисторов

 

Проводимость канала

Мы можем контролировать проводимость канала в полевом транзисторе с помощью напряжения, подаваемого на затвор. В n-канальном полевом транзисторе положительное напряжение, приложенное к затвору, будет притягивать электроны к каналу и повышать его проводимость. В p-канальном полевом транзисторе отрицательное напряжение, приложенное к затвору, будет притягивать дырки к каналу и повышать его проводимость.

Произошла ошибка.

Невозможно выполнить JavaScript. Попробуйте посмотреть это видео на сайте www.youtube.com или включите JavaScript, если он отключен в вашем браузере.

Введение в полевые транзисторы (FET). | Видео: Neso Academy

 

Типы полевых транзисторов 

Полевой транзистор (JFET)

В JFET канал состоит из полупроводникового материала, и канал имеет две области на каждом конце. Они известны как клеммы источника и стока. Ворота представляют собой PN-переход, который формируется перпендикулярно каналу. Клемма затвора смещена в обратном направлении. Это создает область истощения, которая контролирует ширину канала. Когда мы подаем напряжение на затвор, обедненная область расширяется, тем самым уменьшая ширину канала и ток, протекающий через него.

 

Полевой транзистор металл-оксид-полупроводник (MOSFET)

Подобно JFET, в MOSFET канал также образован полупроводниковым материалом и имеет две области на каждом конце, известные как клеммы истока и стока. Однако в МОП-транзисторах затвор отделен от канала тонким изолирующим слоем, который обычно состоит из диоксида кремния. Как только на затвор подается напряжение, создается электрическое поле, которое притягивает или отталкивает носители заряда в канале в зависимости от полярности напряжения. Этот процесс управляет шириной канала и протеканием тока между выводами истока и стока.

МОП-транзисторы можно разделить на два подтипа: МОП-транзисторы с режимом улучшения и с режимом истощения.

 

Полевые МОП-транзисторы в режиме расширения

В полевых МОП-транзисторах в режиме расширения канал обычно закрыт, и для его включения необходимо подать положительное напряжение на затвор.

 

МОП-транзисторы с режимом истощения

В МОП-транзисторах с режимом истощения канал обычно включен, и для его выключения необходимо подать отрицательное напряжение на затвор.

 

Преимущества использования полевых транзисторов 

Полевые транзисторы имеют ряд преимуществ по сравнению с другими типами транзисторов, что делает их популярными в различных электронных приложениях.

  • Высокий входной импеданс : Полевые транзисторы имеют очень высокий входной импеданс, что означает, что мы можем использовать их для буферизации и усиления сигналов, не загружая источник сигнала. В результате полевые транзисторы идеально подходят для использования в предусилителях, смесителях и других схемах обработки сигналов.
  • Низкий уровень шума : Полевые транзисторы имеют низкий уровень шума, что означает, что мы можем использовать их в малошумящих усилителях и других приложениях, где шум является проблемой.
  • Низкое энергопотребление : Для работы полевых транзисторов требуется очень мало энергии, поэтому они идеально подходят для устройств с батарейным питанием и других приложений с низким энергопотреблением.
  • Высокая скорость переключения : Полевые транзисторы имеют очень высокую скорость переключения, что делает их идеальными для использования в цифровых схемах, импульсных источниках питания и других высокочастотных устройствах.
  • Температурная стабильность : Полевые транзисторы обладают превосходной температурной стабильностью, что означает, что их характеристики остаются стабильными в широком диапазоне температур.
  • Способность работать с высоким напряжением : Полевые транзисторы могут работать с высоким напряжением, что делает их подходящими для использования в высоковольтных цепях, таких как усилители мощности и источники питания.

Еще из словаря Built In Tech Что такое ЭМИ?

 

Недостатки использования полевого транзистора 

Несмотря на свои преимущества, у полевых транзисторов есть и недостатки, которые следует учитывать при проектировании электронных схем.

  • Чувствительность к статическому электричеству : Полевые транзисторы чувствительны к статическому электричеству, которое может повредить устройство при обращении или сборке.
  • Высокая входная емкость : Полевые транзисторы имеют высокую входную емкость, которая может ограничивать их полосу пропускания и скорость в определенных приложениях, таких как высокочастотные усилители или схемы, где входная емкость полевых транзисторов может ограничивать полосу пропускания схемы.
  • Температурная зависимость : Хотя полевые транзисторы обладают хорошей температурной стабильностью, на их характеристики все же могут влиять изменения температуры, особенно в приложениях с большой мощностью, таких как источники питания, где полевые транзисторы подвергаются высоким уровням тока и рассеиваемой мощности.