Расчет теплопотерь пола: Теплопотери через пол и стены в грунт

Теплопотери через пол и стены в грунт

Опубликовано 05 мая 2015
Рубрика: Теплотехника | 36 комментариев

/Обратите внимание!!! Статья дополнена P.S. (25.02.2016) и P.S. (08.01.2021)./

Несмотря на то, что теплопотери через пол большинства одноэтажных промышленных, административно-бытовых и жилых зданий редко превышают 15% от общих потерь тепла, а при увеличении этажности…

…порой не достигают и 5%, важность правильного решения задачи определения теплопотерь от воздуха первого этажа или подвала в грунт не теряет своей актуальности.

Особенно важно правильно рассчитать эти теплопотери для подвальных комнат (залов), где они могут составить все 100% для данного типа помещений!

В этой статье рассматриваются три варианта решения поставленной в заголовке задачи. Выводы — в конце статьи.

Считая потери тепла, всегда следует различать понятия «здание» и «помещение».

При выполнении расчета для всего здания преследуется цель — найти мощность источника и всей системы теплоснабжения.

При расчете тепловых потерь каждого отдельного помещения здания, решается задача определения мощности и количества тепловых приборов (батарей, конвекторов и т.д.), необходимых для установки в каждое конкретное помещение с целью поддержания заданной температуры внутреннего воздуха.

Воздух в здании нагревается за счет получения тепловой энергии от Солнца, внешних источников теплоснабжения через систему отопления и от разнообразных внутренних источников – от людей, животных, оргтехники, бытовой техники, ламп освещения, системы горячего водоснабжения.

Воздух внутри помещений остывает за счет потерь тепловой энергии через ограждающие конструкции строения, которые характеризуются термическими сопротивлениями, измеряемыми в м2·°С/Вт:

R=Σ(δii)

δi – толщина слоя материала ограждающей конструкции в метрах;

λi – коэффициент теплопроводности материала в Вт/(м·°С).

Ограждают дом от внешней среды потолок (перекрытие) верхнего этажа, наружные стены, окна, двери, ворота и пол нижнего этажа (возможно – подвала).

Внешняя среда – это наружный воздух и грунт.

Расчет потерь тепла строением выполняют при расчетной температуре наружного воздуха для самой холодной пятидневки в году в местности, где построен (или будет построен) объект!

Но, разумеется, никто не запрещает вам сделать расчет и для любого другого времени года.

Расчет в Excel теплопотерь через пол и стены, примыкающие к грунту по общепринятой зональной методике В.Д. Мачинского.

Температура грунта под зданием зависит в первую очередь от теплопроводности и теплоемкости самого грунта и от температуры окружающего воздуха в данной местности в течение года. Так как температура наружного воздуха существенно различается в разных климатических зонах, то и грунт имеет разную температуру в разные периоды года на разных глубинах в различных районах.

Для упрощения решения сложной задачи определения теплопотерь через пол и стены подвала в грунт вот уже более 80 лет успешно применяется методика разбиения площади ограждающих конструкций на 4 зоны.

Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°С/Вт:

R1=2,1  R2=4,3  R3=8,6  R4=14,2 

Зона 1 представляет собой полосу на полу (при отсутствии заглубления грунта под строением)  шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра или (в случае наличия подпола или подвала) полосу той же шириной, отмеренную вниз по внутренним поверхностям наружных стен от кромки грунта.

Зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания.

Зона 4 занимает всю оставшуюся центральную площадь.

На рисунке, представленном чуть ниже зона 1 расположена полностью на стенах подвала, зона 2 – частично на стенах и частично на полу, зоны 3 и 4 полностью находятся на полу подвала.

Если здание узкое, то зон 4 и 3 (а иногда и 2) может просто не быть.

Площадь пола зоны 1 в углах учитывается при расчете дважды!

Если вся зона 1 располагается на вертикальных стенах, то площадь считается по факту без всяких добавок.

Если часть зоны 1 находится на стенах, а часть на полу, то только угловые части пола учитываются дважды.

Если вся зона 1 располагается на полу, то посчитанную площадь следует при расчете увеличить на 2×2х4=16 м2 (для дома прямоугольного в плане, т.е. с четырьмя углами).

Если заглубления строения в грунт нет, то это значит, что H=0.

Ниже представлен скриншот программы расчета в Excel теплопотерь через пол и заглубленные стены для прямоугольных в плане зданий.

Площади зон F1, F2, F3, F4 вычисляются по правилам обычной геометрии. Задача громоздкая, требует часто рисования эскиза. Программа существенно облегчает решение этой задачи.

Общие потери тепла в окружающий грунт определяются по формуле в КВт:

QΣ=((F1+F)/R1+F2/R2+F3/R3+F4/R4)*(tвр-tнр)/1000

Пользователю необходимо лишь заполнить в таблице Excel значениями первые 5 строчек и считать внизу результат.

Для определения тепловых потерь в грунт помещений площади зон придется считать вручную и затем подставлять в вышеприведенную формулу.

На следующем скриншоте показан в качестве примера расчет в Excel теплопотерь через пол и заглубленные стены для правого нижнего (по рисунку) помещения подвала.

Сумма потерь тепла в грунт каждым помещением равна общим тепловым потерям в грунт всего здания!

На рисунке ниже показаны упрощенные схемы типовых конструкций полов и стен.

Пол и стены считаются неутепленными, если коэффициенты теплопроводности материалов (λi), из которых они состоят, больше 1,2 Вт/(м·°С).

Если пол и/или стены утеплены, то есть содержат в составе слои с λ<1,2 Вт/(м·°С), то сопротивление рассчитывают для каждой зоны отдельно по формуле:

Rутепл i=Rнеутепл i+Σ(δjj)

Здесь δj – толщина слоя утеплителя в метрах.

Для полов на лагах сопротивление теплопередаче вычисляют также для каждой зоны, но по другой формуле:

Rна лагах i=1,18*(Rнеутепл i+Σ(δjj))

Расчет тепловых потерь в MS Excel через пол и стены, примыкающие к грунту по методике профессора А.Г. Сотникова.

Очень интересная методика для заглубленных в грунт зданий изложена в статье «Теплофизический расчет теплопотерь подземной части зданий». Статья вышла в свет в 2010 году в №8 журнала «АВОК» в рубрике «Дискуссионный клуб».

Тем, кто хочет понять смысл написанного далее, следует прежде обязательно изучить вышеназванную статью.

А.Г. Сотников, опираясь в основном на выводы и опыт других ученых-предшественников, является одним из немногих, кто почти за 100 лет попытался сдвинуть с мертвой точки тему, волнующую многих теплотехников. Очень импонирует его подход с точки зрения фундаментальной теплотехники. Но сложность правильной оценки температуры грунта и его коэффициента теплопроводности при отсутствии соответствующих изыскательских работ несколько сдвигает методику А.Г. Сотникова в теоретическую плоскость, отдаляя от практических расчетов. Хотя при этом, продолжая опираться на зональный метод В.Д. Мачинского, все просто слепо верят результатам и, понимая общий физический смысл их возникновения, не могут определенно быть уверенными в полученных числовых значениях.

В чем смысл методики профессора А.Г. Сотникова? Он предлагает считать, что все теплопотери через пол заглубленного здания «уходят» в глубь планеты, а все потери тепла через стены, контактирующие с грунтом, передаются в итоге на поверхность и «растворяются» в воздухе окружающей среды.

Это похоже отчасти на правду (без математических обоснований) при наличии достаточного заглубления пола нижнего этажа, но при заглублении менее 1,5…2,0 метров возникают сомнения в правильности постулатов…

Несмотря на все критические замечания, сделанные в предыдущих абзацах, именно развитие алгоритма профессора А.Г. Сотникова видится весьма перспективным.

Выполним расчет в Excel теплопотерь через пол и стены в грунт для того же здания, что и в предыдущем примере.

Записываем в блок исходных данных размеры подвальной части здания и расчетные температуры воздуха.

Далее необходимо заполнить характеристики грунта. В качестве примера возьмем песчаный грунт и впишем в исходные данные его коэффициент теплопроводности и температуру на глубине 2,5 метров в январе. Температуру и коэффициент теплопроводности грунта для вашей местности можно найти в Интернете.

Стены и пол выполним из железобетона (λ=1,7 Вт/(м·°С)) толщиной 300мм (δ=0,3 м) с термическим сопротивлением R=δ/λ=0,176 м2·°С/Вт.

И, наконец, дописываем в исходные данные значения коэффициентов теплоотдачи на внутренних поверхностях пола и стен и на наружной поверхности грунта, соприкасающегося с наружным воздухом.

Программа выполняет расчет в Excel по нижеприведенным формулам.

Площадь пола:

Fпл=B*A

Площадь стен:

Fст=2*h*(B+A)

Условная толщина слоя грунта за стенами:

δусл=f(h/H)

Термосопротивление грунта под полом:

R17=(1/(4*λгр)*(π/Fпл)0,5

Теплопотери через пол:

Qпл=Fпл*(tвtгр)/(R17+Rпл+1/αв)

Термосопротивление грунта за стенами:

R27=δуслгр

Теплопотери через стены:

Qст=Fст*(tвtн)/(1/αн+R27+Rст+1/αв)

Общие теплопотери в грунт:

QΣ=Qпл+Qст

Замечания и выводы.

Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!

Дело  в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!

К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.

Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.

Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:

R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.

Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:

 δусл= (½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Но математически правильно должно быть:

δусл= 2*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

или, если множитель 2 у λгр не нужен:

δусл= 1*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…

Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!

Предлагаю читателям блога протестировать оба варианта расчетов в реальных проектах и результаты представить в комментариях для сравнения и анализа.

Все, что сказано в последней части этой статьи, является исключительно мнением автора и не претендует на истину в последней инстанции. Буду рад выслушать в комментариях мнение специалистов по этой теме. Хотелось бы разобраться до конца с алгоритмом А.Г. Сотникова, ведь он реально имеет более строгое теплофизическое обоснование, чем общепринятая методика.

Ссылка на скачивание файла:

teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)

P. S. (25.02.2016)

Почти через год после написания статьи удалось разобраться с вопросами, озвученными чуть выше.

Во-первых, программа расчета теплопотерь в Excel по методике А.Г. Сотникова считает все правильно — точно по формулам А.И. Пеховича!

Во-вторых, внесшая сумятицу в мои рассуждения формула (3) из статьи А.Г. Сотникова не должна выглядеть так:

R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

В статье А. Г. Сотникова — не верная запись! Но далее график построен, и пример рассчитан  по правильным формулам!!!

Так должно быть  согласно А.И. Пеховичу (стр 110, дополнительная задача к п.27):

R27=δуслгр=1/(2*λгр)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Отсюда:

δусл=R27гр=(½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2))) 

P.

S. (08.01.2021)

Время не стоит на месте… Широкому кругу инженеров стали доступны программы численного решения физических полей методом конечных элементов.

Рассмотренный в статье пример расчета теплопотерь подвала выполним в программе Agros2D, которую можно свободно скачать с официального сайта agros2d.org (с русским интерфейсом).

Исходные данные для расчета — те же:

1. Размеры подвала в плане по внутренним замерам – 9×12 м, заглубление – 2,5 м.

2. Стены и пол выполнены из железобетона толщиной 0,3 м с коэффициентом теплопроводности λ=1,7 Вт/(м·К).

3. Теплопроводность грунта λ=1,16 Вт/(м·К).

4. На границе «внутренняя поверхность подвала – воздух в подвале» коэффициент теплоотдачи α=8,7 Вт/(м2*К), температура воздуха в подвале tвр=+16 °С.

5. На границе «наружная поверхность грунта – наружный воздух» коэффициент теплоотдачи α=23 Вт/(м2*К), температура наружного воздуха tнр=-37 °С.

6. Нижняя граница грунта — ломаная изотермическая поверхность с постоянной температурой tгр=+4 °С.

7. Через боковые поверхности блока грунта и через верхние поверхности железобетонных стен тепловой поток отсутствует.

Форма нижней поверхности грунта выбрана таким образом, что глубина промерзания грунта на удалении от здания составляет ~ 2,4 м.

На скриншоте представлено стационарное температурное поле, рассчитанное в программе Agros2D.

Результаты расчета:

1. Теплопотери подвала через пол – 1,23 КВт.

2. Теплопотери подвала через стены – 4,12 КВт.

3. Общие теплопотери подвала – 5,35 КВт.

Выводы:

1. Полученный результат в 1,6 раза больше результата, полученного по зональной методике Мачинского и в 3 раза меньше результата по методике Сотникова.

2. Если в расчетной модели уменьшить глубину промерзания грунта с 2,4 м до 2,0 м, добавив на поверхность слой снега, то рассчитанные в Agros2D теплопотери будут весьма близки к результату, полученному по зональной методике.

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Полы по грунту

Слои конструкции пола по грунту (изнутри наружу)
ТипТолщина, ммМатериалλ, Вт/(м²•˚С)R, (м²•˚С)/Вт
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление конструкции
Слои конструкции заглубленной части стен (изнутри наружу)
ТипТолщина, ммМатериалλ, Вт/(м²•˚С)R, (м²•˚С)/Вт
Термическое сопротивление Rа
Термическое сопротивление Rб
Термическое сопротивление конструкции
Результаты расчета
ЗонаНаименованиеПлощадь, м²R, (м²•˚С)/ВтQ, кВт•ч
Вся конструкция
Тепловые потери за отопительный сезон, кВт•ч
Тепловые потери за час при температуре самой холодной пятидневки, Вт•ч
Требуемое сопротивление теплопередаче
Санитарно-гигиенические требования [Rс]
Значение поэлементных требований с учетом регионального коэфф-та [Rэ]
Базовое значение поэлементных требований [Rт]

Санитарно-гигиенические требования

Поэлементные требования

Как рассчитать тепловые потери в БТЕ для лучистого отопления

Расчет тепловых потерь в БТЕ лучше оставить профессионалам, но это можно сделать на основе оценки, если вы рассматриваете первоначальные варианты для своего дома. Как и следовало ожидать, чем выше качество утепления и окон, тем меньше вероятность потери тепла.

Одна из наиболее распространенных ошибок, допускаемых при самостоятельной оценке потребности в лучистом тепле, заключается в учете общих потенциальных потерь тепла в помещении, которое вы хотите обогреть. Потери тепла, очевидно, имеют решающее значение для общей эффективности вашей системы и должны оцениваться как можно точнее.

Какова средняя мощность напольного покрытия с подогревом?

Общая оценка такова, что пол с лучистым теплом нагревается на уровне 25 БТЕ на квадратный фут. Однако окна, двери, теплоизоляция и общие температурные сдвиги в вашей конкретной среде могут повлиять на это число.

При выборе системы лучистого отопления вам следует заручиться помощью доверенного эксперта по лучистому теплу, чтобы убедиться, что вы не преувеличиваете размеры для своего конкретного помещения. Система отопления, которая слишком велика для отведенного пространства, означает неэффективность и дополнительные эксплуатационные расходы. Это также может способствовать ненужным колебаниям температуры, которых можно было бы легко избежать при правильной установке в первый раз.

Могу ли я самостоятельно рассчитать потери тепла?

Как правило, для расчета теплопотерь требуется профессиональный расчет, но вы можете воспользоваться этим общим руководством:

— Отсутствие изоляции в помещении с неплотно установленными окнами: 60-100 БТЕ/кв.м. футов

-R-11 изоляция стен и потолков, ограниченная изоляция подполья с плотно закрывающимися окнами: 50-60 БТЕ. кв. футов

-Р-19 в стенах, Р-30 в потолках, Р-11 в полах в связке с герметичными окнами: 30-35 БТЕ/кв. футов

— Рейтинг Energy Star с изоляцией R-24+, R-40 на потолке, R-19 на полу и герметизацией окон высочайшего качества: 20-25 БТЕ/кв. фут.

Конечно, в таком регионе, как Тихоокеанский Северо-Запад, температура может резко измениться, даже за короткий период времени, что может привести к значительному отличию цифр от этих справочников.

 

Если вы планируете укладку напольного покрытия с подогревом, лучше доверить это профессионалам. Найм квалифицированного поставщика лучистого тепла, такого как The Earth Heating, означает, что вы отдаете потребности в отоплении своего дома в надежные руки. Они были надежным источником в районе Портленда в течение десятилетия. Позвоните (503) 788-7777, чтобы узнать больше.

Тепловое излучение

Почему важно нанять специалиста для установки лучистого тепла?

Процесс установки может быть быстрым и легким в зависимости от размера проекта, но важно, чтобы этот процесс выполнялся только профессионалом.

Земляное отопление 17.04.22

Лучистое тепло

Насколько безопасно лучистое отопление по сравнению с другими системами?

Насколько безопасно лучистое отопление? Давайте взглянем.

Отопление Земли 04.04.22

Пример расчета теплопотерь помещения

Простой пример для двухквартирного дома

Основные сведения о расчете теплопотерь дома описаны на отдельной странице этого сайта. Прежде чем рассматривать этот пример, просмотрите страницу, посвященную расчетам, чтобы понять основные принципы.

Для этого примера, помимо размеров, показанных на приведенных выше чертежах, также необходимо знать:

  1. Высота всех комнат 8 футов.
  2. Все наружные стены представляют собой 11-дюймовые полости без изоляции.
  3. Стена вечеринки из полнотелого кирпича толщиной 9 дюймов.
  4. Внутренние стены все оштукатурены, 4,5-дюймовый кирпич, штукатурка.
  5. Пол — подвесной брус.
  6. Все остекление выполнено из UVPC с двойным остеклением.
  7. Расчетная температура наружного воздуха до 30°F.
  8. Температура в соседнем помещении неизвестна, поэтому предположим, что разница температур составляет 5°F.
  9. Расчетная температура помещения — смотрите на этой странице.
  10. Большие окна имеют размер 10 футов x 4 фута, меньшие окна имеют размер 4 фута x 4 фута.
  11. Крыша черепичная на войлоке с изоляцией 100 мм.
  12. План не в масштабе!!

В этом примере мы подробно рассмотрим одну комнату (гостиную).

  1. Рассмотрим 4 стены по очереди и рассчитаем площадь каждого вида ткани:
    • Передняя стенка:
      1. Общая площадь стен 14 футов x 8 футов = 112 кв. футов
      2. Окно 10 футов x 4 фута = 40 кв. футов
      3. Полая стена — 112 — 40 = 72 кв. фута
    • Стена для вечеринки:
      1. Общая площадь стен 15 футов x 8 футов = 120 кв. футов
    • Стена в столовую:
      1. На этой стене нет разницы температур, поэтому нет потока тепловой энергии, поэтому нет необходимости вычислять площадь.
    • От стены до зала:
      1. Общая площадь стены 15 футов x 8 футов = 120 кв. футов
      2. Дверь рассматривается как стена
    • Потолочные и напольные покрытия:
      1. 15 футов x 14 футов = 210 кв. футов:
  2. Используя приведенные выше рисунки, значения U (см. эту страницу) и температуру разница между каждой стеной/потолком/полом позволяет рассчитать потери тепла (площадь x значение U x разница температур).
      район
    (кв. фут)
    Значение U
    температура
    разница
    всего
    Передняя стенка: полая стенка 72 0,18 40 518,4
    Окно 40 0,51 40 816
    Стенка для вечеринок 120 0,38 5 228
    Стена столовой 0,39 0 0
    Стена зала 120 0,39 10 468
    Потолок 210 0,29 5 304,5
    Этаж 210 0,12 40 1008
    Общая потеря ткани = 3342,9

    Таким образом, общие потери тепла через ткань здания составляют 3345 БТЕ
  3. Теперь нужно рассчитать потери тепла из-за воздухообмена.
    • объем помещения = 14 х 15 х 8 = 1680 кубических футов
      воздухообмен = 1 в час (зависит от помещения — смотрите на этой странице)
      , поэтому потери тепла при воздухообмене составляют
                 1680 x 1 x 0,02 x 40 = 1344 БТЕ
  4. Сложите результаты 2 и 3 вместе, и получите общие потери тепла в час:
    • 3345 + 1344 = 4689 БТЕ/ч

Это расчеты для гостиной, теперь необходимо провести расчеты для всех остальных комнат в доме. Учтите, что при «потерях» тепла через внутренние стены или пол/потолок одна комната теряет тепло, а другая получает его. В расчетах помещение, получающее тепло, покажет отрицательную потерю тепла для этой конкретной части строительной ткани.

всего
  потеря ткани потеря воздухообмена (БТЕ/час)
Столовая 3391 3046 6437
Гостиная 3343> 1344 4687
Кухня 1714 941 2655
Прихожая 1501 1250 2751
Спальня 1 1162 666 1828
Спальня 2 1678 588 2266
Спальня 3 1009 134 1143
Ванная комната 2192 1129 3321
 
Итого по дому = 25 088

Справа показаны результаты расчетов для всех комнат в доме-примере.