Расчет труб для теплого пола водяного: Расчет трубы для теплого пола :: На сайте интернет-магазина PROFIMANN

Содержание

Расход трубы теплого пола на 1 м2 таблица и параметры расчета

Автор Монтажник На чтение 10 мин Просмотров 45.6к. Обновлено

Теплые полы с водяным подогревом устраивают для отопления помещений во многих индивидуальных домах, для их монтажа используют трубопровод из различных материалов, который помещают под стяжку или укладывают открытым методом. Перед проведением работ составляют план и делают расчет необходимых материалов, при этом одним из важных показателей является расход трубы теплого пола на 1 м2 таблица значений которого может оказаться полезной специалистам или заказчикам.

Если отсутствует предварительный план с инженерными расчетами, перед прокладкой теплых полов приходится решать множество задач, связанных с методами монтажа и определением вида, геометрических размеров и количеством материала трубопровода. Пользователь может сам рассчитать трубу для теплого пола на предварительном этапе, определив важные параметры путем несложных подсчетов или воспользовавшись онлайн-калькуляторами из интернета.

Рис. 1 Варианты покрытий водонагреваемых полов частных домов

Содержание

  1. Преимущества теплых полов перед радиаторным отоплением
  2. Какие технические параметры определяют при укладке трубопровода
  3. Выбор материала трубопровода
  4. Температура пола в помещениях
  5. Температура теплоносителя
  6. Диаметр трубопровода
  7. Максимальная длина контуров отопления
  8. Тип укладки
  9. Расстояние между трубами теплого пола (шаг укладки)
  10. Расход трубы теплого пола на 1 м2 таблица

Преимущества теплых полов перед радиаторным отоплением

Главные виды теплообменников для обогревания индивидуальных домов —  радиаторные батареи и водяной теплый пол, последние имеют следующие преимущества:

  • Энергоэффективность водонагревного пола значительно превышает батарейное отопление, то есть для обогрева помещений потребуется меньше тепловой энергии и соответственно расхода финансовых средств на топливо.
  • Благодаря тому, что трубопровод с тепловым носителем располагается под всей площадью напольного покрытия комнаты, он дает намного более равномерный обогрев помещений, чем точечно расположенные радиаторы около стен.
  • Спрятанный в полу трубопровод не нарушает эстетичный вид комнат в отличии от радиаторов, расположенных около стен. К тому же обогреваемый пол удобнее батарей, которые часто мешают эстетичной и практичной расстановке мебели и предметов интерьера в помещении.
  • Половой обогрев не отнимает полезную площадь в комнатах в отличие от радиаторных теплообменников.
  • Довольно часто в индивидуальных домах кладут на пол плитку, которая обладает высоким коэффициентом теплопроводности и воспринимается всегда холодной. Ее подогрев через пол повышает комфортность пользования помещением, препятствует образованию по углам и в швах плесени или грибка.
  • Комнату с нагреваемым полом без радиаторов намного проще убирать, из-за отсутствия грязи в местах выхода труб помещение чище с гигиенической точки зрения.
  • Из-за большой массы и объема стяжки, плит перекрытия, в которых помещен нагревательный трубопровод, теплый пол обладает значительно большей тепловой инерционностью в отличие от радиаторных теплообменников. Поэтому при аварийных отключениях электроэнергии и прекращении работы нагревательного котла, тепло в доме при половом обогреве будет удерживаться значительно дольше, чем с батареями.

Рис. 2 Укладка водонагреваемых полов на пенополистирольные подложки

Какие технические параметры определяют при укладке трубопровода

Перед укладкой напольного контура обычно проводят тепловой расчет, который учитывает оптимальную температуру в помещении, потери тепла в зависимости от материала стен (теплопроводности), температурные параметры теплового носителя в системе. Полученные данные помогают рассчитать количество труб для теплого пола, то есть определить их оптимальную длину и диаметр. Перед монтажом полового отопления специалисту и (или) домовладельцу следует определиться с рядом перечисленных ниже факторов.

Выбор материала трубопровода

Для укладки теплых полов оптимально подходит несколько видов металлических и полимерных труб, главные требования к материалам: коррозионная стойкость, хорошая теплопроводность, низкий коэффициент температурного расширения и длительный эксплуатационный срок. При выборе материала трубопровода на теплый пол рассматривают следующие разновидности:

Медь. Трубы из отожженной меди обладают наивысшей степенью теплопроводности и высокой коррозионной устойчивостью, их основным недостатком является высокая стоимость. Также медные трубы сложны в монтаже, при их прокладке для сгибания нужен трубогиб, соединение обычно производят при помощи газовой сварки.

Еще одним недостатком меди может служить форма выпуска — стандартной длины бухты в 50 м не всегда достаточно для устройства контура отопления без стыковых соединений под стяжкой.

Нержавейка. Гофрированный трубопровод из нержавейки обладает приемлемой стоимостью при высокой теплопроводности, неплохой коррозионной стойкостью и относительной простотой в укладке. Его основной недостаток — высокое гидравлическое сопротивление водному потоку, связанное с ребристой поверхностью внутренних стенок, а также не всегда приемлемое качество металла в дешевом товаре, приводящее со временем к коррозии стенок и протечкам.

Рис. 3 Трубопроводы из меди и нержавейки

Сшитый полиэтилен РЕХ. Трубы из сшитого полиэтилена (ПЭ) являются основными конкурентами металлических, они имеют более низкую стоимость и наивысшую степень коррозионной стойкости из-за химической нейтральности полимеров.

Основные недостатки трубопровода из сшитого полиэтилена — высокий коэффициент теплового расширения, кислородопроницаемость и низкая теплопроводность ликвидируется одним выстрелом. После дополнения РЕХ-трубы оболочкой из алюминия (металлопластик) резко падает степень линейного расширения материала от тепла и кислородная проницаемость, улучшается теплопередача трубопроводной линии.

РЕХ-трубы без алюминиевой оболочки просты в укладывании, для их подсоединения к распределительным коллекторным гребенкам можно использовать компрессионные евро-фитинги, которые легко фиксируются разводным ключом без применения специнструмента (паяльников, пресс-клещей).

Сшитые полиэтиленовые РЕХ-трубы реализуют в бухтах длиной до 200 м, так что их метража всегда будет достаточно для устройства контуров отопления любой протяженности.

Термостойкий полиэтилен PERT. Термомодифицированный материал по физическим свойствам пластичности и гибкости напоминает обычный полиэтилен, имеет недостатки, присущие сшитому аналогу РЕХ. Более высокими характеристиками обладает улучшенные PERT-трубы с внутренней алюминиевой оболочкой. Трубопровод из термостойкого ПЭ также монтируют на компрессионные муфты (с алюминиевым слоем на пресс-муфты), его длина в бухтах доходит до 200 м.

Рис. 4 ПЭ-трубы – металлопластик и PERT

Температура пола в помещениях

Поверхность водонагревного пола не должна быть слишком холодной, при низкой температуре сложно получить достаточный обогрев помещения, а находиться и перемещаться по такому покрытию станет некомфортно. Противоположная ситуация приведет к перегреву комнат и также к неудобствам при пользовании полом. Общепринятым считается следующие температурные показатели напольного покрытия:

  • для жилых помещений 29 — 32 °С;
  • для ванных комнат, санитарных узлов и бассейнов 32 – 35 °С;
  • для мастерских или рабочих кабинетов с активной физической деятельностью 26 — 28 °С;
  • в коридорах, нежилых помещениях, лестничных площадках, тренажерных залах 18 — 22 °С.

Температура теплоносителя

Температурные характеристики теплоносителя также оказывают существенное влияние на расчет трубы для теплого пола, то есть чем она выше, тем меньшая длина трубопровода понадобится для обогревания помещений.

В отличие от радиаторных батарей, на полы подается теплоноситель в значительно меньшем температурном диапазоне от 40 до 55 °С. Установлено, что оптимальной температурной разницей между подачей и обраткой считается показатель в 10 °С — именно его придерживаются при настройке и регулировке отопительной системы.

Рис. 5 Схемы обогревания индивидуального дома

Диаметр трубопровода

Для укладки теплых полов в основном используют полимерные трубопроводы наружными диаметрами 16 или 20 мм с различной толщиной стенки.

При реализации первого варианта трубопровод легче укладывать, для перекрытия контура понадобится слой стяжки толщиной меньше на 4 мм. Основным недостатком 16 мм линии по сравнению с 20 мм является ее более высокое гидравлическое сопротивление, что приводит к снижению КПД системы. Поэтому рекомендуется укладывать 16 мм трубопровод на объектах небольшой площади, а 20 мм изделия использовать в просторных помещениях с контурами отопления большой длины.

Максимальная длина контуров отопления

Чем больше длина трубопровода и меньше его диаметр, тем более сильное гидравлическое сопротивления испытывает проходящей по контуру теплоноситель и соответственно требуется большая мощность циркуляционного насоса для его проталкивания.

Промышленность выпускает в основном циркулярные электронасосы со стандартизированными параметрами мощности, рассчитанные на определенные нагрузки, то есть если гидравлическое сопротивление в линии станет слишком большим, насос не сможет протолкнуть рабочую среду для ее нормального прохождения по контуру.

Исходя из практических результатов, установлена максимальная длина трубопроводов подогреваемых полов: для 16 мм изделий она не должна превышать 100 м, для 20 мм — 120 м.

Чтобы избежать возможных перегрузок, для работы системы в нормальном режиме обычно не

укладывают 16 мм трубопровод длиной более 80 м, а 20 мм — свыше 100 м.

Рис. 6 Схемы укладки

Тип укладки

Существует две основные формы укладки половых контуров — зигзаг (змейка) и улитка (спираль). Если присмотреться к первому варианту, то очевиден его основной недостаток — разная температура теплоносителя в начальной и более удаленной от распределительной гребенки точки. К тому же при укладке змейкой трубу придется изгибать на 180 градусов, что бывает неприемлемо при использовании жестких материалов (потребует применения трубогиба), а также приведет к повышению гидравлических потерь.

При раскладке улиткой получают абсолютно равномерный прогрев пола, связанный с тем, что ветви подачи и обратки проходит рядом и их суммарная температура всегда равна. То есть в начальной точке контура при наиболее горячей подаче рядом с ней располагается трубопровод с самой холодной обраткой, и такая ситуация наблюдается по всей площади помещения. Еще одно весомое преимущество улитки — ее намного проще укладывать пол, чем зигзаг.

Исходя их вышеперечисленных особенностей, схему укладки зигзагом используют в узких помещениях малой площади и при коротком контуре отопления, а улиткой прокладывают трубопровод в основных помещениях большей площади.

Следует отметить, что недостаток укладки обычным зигзагом устранен в схеме с двойной змейкой, где обратка проходит рядом с трубопроводом подачи.

Рис. 7 Зависимость теплового потока от шага укладки, температуры теплоносителя и диаметра труб

Расстояние между трубами теплого пола (шаг укладки)

Общепринятым шагом укладки считается диапазон от 100 до 300 мм включительно, а стандартным размером его изменений является длина 50 мм. Такие расстояния определены экспериментальным путем, то есть при более близком расположении труб разница температур подачи и обратки будет слишком мала и эффективность работы отопительной системы упадет.

При большем удалении сложно получить необходимую для достижения комфортного температурного режима теплоотдачу, а сама поверхность пола станет нагреваться неравномерно с ощутимыми полосками тепла. Шаг укладки влияет на расчет длины трубы для теплого пола, понятно, чем он меньше, тем длиннее трубопровод необходим для монтажа.

Также при укладке учитывают более низкие температуры стяжки около стен и оконных проемов, выходящих на улицу. Поэтому многие специалисты в районе краевых зон (1 метр от наружных стен) рекомендуют уменьшать шаг укладки на 50 мм от основного расстояния для обеспечения равномерности обогрева полового покрытия.

Также для снижения тепловых потерь трубопровод рекомендуется укладывать на расстоянии не менее 150 мм от стен, выходящих на улицу.

Общепринятым считается шар укладки в больших жилых помещениях 200 мм, малых комнатах типа небольших кухонь, ванных и санитарных узлов — 150 мм.

Рис. 8 Теплопередача полов, залитых цементно–песчаной стяжкой, под разными покрытиями

Статья по теме:

Подключение теплого пола к системе отопления – варианты, схемы, узлы системы. Если читаете про расход трубы теплого пола на 1 м2 таблица, то, возможно, будет также интересно узнать про варианты подключения труб теплого пола к системе отопления, то можете почитать об это м в отдельной статье на нашем сайте.

Расход трубы теплого пола на 1 м

2 таблица

Перед тем, как рассчитать длину трубы для теплого пола, определяют следующие показатели:

  • общую площадь помещений в квадратных метрах под обогрев;
  • и сколько метров трубы надо на 1 квадратный метр теплого пола.

Затем умножают найденную длину трубы на 1 м2 на общий квадратаж и получают искомый результат.

Определить, сколько трубы пойдет на квадратный метр теплого пола, можно без всяких формул, призвав на помощь логику. К примеру, если трубопровод укладывается с шагом 200 мм, то на участке площадью 1 м2 можно уложить 5 отрезков длиной 1 м, то есть получим искомый результат 5 м.

По аналогии на 1 м2 площади при шаге 300 мм уйдет 3 отрезка по 1 м и дополнительно 1/3 длины, то есть 3,3 м.

Если при подсчетах мы учитывали, к примеру, поперечные участки, то не следует забывать и о продольных, то есть к полученным значениям в конце придется прибавить общую длину двух стен комнат или сразу отобразить это в таблице, увеличив подсчитанный ручным методом показатель.

Рис. 9 Таблица расхода трубы на 1 м2 водонагревного пола

Чтобы определить общую длину трубопровода водяного теплого пола, сначала рассчитывают его расход на 1 квадратный метр, а затем умножают полученный результат на общую площадь помещения. Обычно длина трубопровода для обогреваемых полов не должна превышать 100 м, если это происходит, укладывают два и более контуров отопления.

Расчет трубы для теплого пола водяного, формула длины трубы — Строительный портал ПрофиДОМ

Как делается расчет длины трубы для водяного теплого пола. Формулы расчета длины системы труб, описание, советы, как сэкономить на укладке.

Расчет трубы для теплого пола

Семь раз отмерь – один отрежь. Собирая информацию, не ленитесь еще раз перепроверить данные и схемы. Трубу для теплого пола продают бухтами, если вы ошибетесь и купите несколько сот лишних метров, у вас могут возникнуть проблемы с возвратом.

Перед началом расчета вам нужно собрать следующие данные:

  1. Длина помещения. Если помещение неправильной формы – то длины всех прямоугольников.
  2. Ширина помещения. Если помещение неправильной формы – то длины всех прямоугольников.
  3. Расстояние от коллектора или коллекторного шкафа до точки входа.
  4. Максимальная величина контура – максимальная длина трубы выбранного вами типа.
  5. Диаметр трубы для теплого пола.
  6. Шаг укладки – расстояние между соседними трубами.
  7. Тип схемы укладки.

Подготовка расчета теплого пола

Помните, что не всегда нужно обогревать всю площадь комнаты. Посмотрите, раньше использовались радиаторы, которые крепились под окнами. Их мощности вполне хватало. Теперь вы собираетесь резко увеличить площадь теплоотдачи. Не нужно перестраховываться. Даже если вы в будущем уберете тяжелый шкаф и оставите пространство пустым, комната будет хорошо прогреваться.

  • Теплый пол лучше не прокладывать под тяжелыми предметами, например, мебелью
  • Части комнаты, заставленные предметами, которые не перемещаются, можно не обогревать

Сокращая площадь обогрева, вы экономите на трубах. Конечно, делать это нужно без фанатизма, исходя из рациональных соображений.

Максимальная величина контура, то есть, наибольшая возможная длина трубы, зависит от производителя и типа трубы. Обычно этот показатель укладывается в пределах от 70 до 120 метров.

Поэтому максимальная площадь, которую можно охватить одним контуром, составляет от 15 м2 до 25 м2.

Составление плана помещения

Нарисуйте на листке план помещения, даже если перед вами простая квадратная комната. Наглядная схема, в которой указаны все промеры, поможет избежать ошибки в расчетах. Если вы будете греть не весь пол, отметьте это на схеме. Поделите участки, где вы собираетесь укладывать трубы, на прямоугольники. Если не получается, сократите обогреваемую площадь таким образом, чтобы она делилась на прямоугольники.

Следует избегать угловатых фигур, например, треугольников. Теоретически можно укладывать трубы по кругу, но и этого лучше избегать. Даже работая с трубой из сшитого полиэтилена, вам будет сложно долго формировать изгиб с одинаковым радиусом.

Расчет длины трубы для теплого пола

Какую бы из предложенных схем вы ни выбрали, расход трубы сильно не изменится. Не существует какого-то одного варианта укладки, который бы одновременно обеспечивал и хорошую теплопередачу, и минимальный расход трубы. Выбор конкретной схемы зависит только от размера помещения и удобства монтажа. Некоторые мастера привыкли работать с одним вариантом и используют только его.

Схемы укладки трубы

Змейка последовательная

Используется в небольших помещениях – коридорах, проходах, отдельных прямоугольных элементах большой комнаты.

Плюсы:

  • Максимально простой монтаж
  • Легко регулировать расход трубы, просто увеличивая шаг

Минусы:

  • Помещение прогревается неравномерно, этим можно пренебречь только на небольшой площади

Змейка параллельная

Можно применять в помещениях любой площади и конфигурации.

Плюсы:

  • Удобно покрывать прямоугольные и многоугольные площади
  • Равномерный прогрев помещения

Минусы:

  • Сложный монтаж

Улитка — спиральная укладка трубы теплого пола

Самый популярный вариант. Большинство профессиональных мастеров скажет вам, что нужно выбирать именно спираль. Подходит для больших помещений.

Плюсы:

  • Прекрасно покрывает площади квадратной формы
  • Равномерная теплопередача

Минусы:

  • Самый сложный монтаж, новички допускают ошибки

Формула расчета длины трубы

Помните! Длина каждого контура рассчитывается отдельно. В одной комнате может быть несколько контуров.

Шк х (Дк / У) + У х 2 х (Дк / З) + Кх2

Где все значения даются в метрах:

  • Шк – ширина комнаты
  • Дк – длина комнаты
  • У – шаг укладки
  • К — расстояние от коллектора или коллекторного шкафа до точки входа

Рекомендуем добавить к полученному результату не менее 5%. Для простоты его можно просто умножить на 1,05. Это коэффициент запаса. Часть трубы уйдет под фитинги, где-то вы можете допустить ошибку. Разные углы сгибания трубы также могут незначительно увеличить расход.

Пример расчетов длины трубы для теплого пола

Возьмем для примера помещение площадью в 20 м2 со сторонами 5х4 метра и расстоянием до коллектора в 5 м. Допустим, что мы делаем расстояние между трубами равным 0,2 м. Получим:

5м х (4м/0,2м) + 0,2м х 2 х (4м/3) + 5м х 2 = 110,53 м

Добавляем к полученной цифре 5% запаса и получаем 116,06 м. Можно сократить в меньшую сторону и приобрести 116 погонных метров трубы для теплого пола.

Другая формула расчета длины трубы для водяного теплого пола

Некоторые мастера и производители оборудования применяют формулу, учитывающую лишь площадь помещения. Она хорошо подходит для квадратных площадей. Но в формуле используется большой повышающий коэффициент. Это упрощает расчеты, но может привести к увеличению остатков неиспользуемой трубы.

П / У х 1,1 + Кх2

Где все значения даются в метрах, а площадь – в квадратных метрах:

  • П – площадь помещения
  • У – шаг укладки
  • К — расстояние от коллектора или коллекторного шкафа до точки входа

Пример расчета длины трубы по альтернативной формуле

Возьмем то же самое помещение 4х5 м, то же расстояние до коллектора – 5 м и шаг укладки в 0,2 м. Мы получим:

20 м2 / 0,2 м х 1,1 + 5м х2 = 120 м. Как видите, разница с более точным расчетом составила всего 4 метра.

Перед покупкой материалов проконсультируйтесь с продавцом. Ознакомьтесь с рекомендациями по монтажу и инструкцией по эксплуатации.

Выбрать трубу для теплого пола — https://comfohouse.com/24-truba-dlya-teplogo-pola


Детальніше в цій категорії: « Лучшие строительные компании мира: список Опубликованы ранее засекреченные документы по Керченскому мосту. Часть 4 »

вгору

формулы, выбор шага укладки, как определить расход

Несмотря на сложность монтажа, теплый пол с помощью водяного контура считается одним из самых экономичных способов обогрева помещения. Чтобы система функционировала максимально эффективно и не вызывала сбоев, необходимо правильно рассчитать трубы для теплого пола – определить длину, шаг петель и схему укладки контура.

От этих показателей во многом зависит комфортность пользования водяным отоплением. Эти вопросы мы разберем в нашей статье – расскажем, как выбрать оптимальный вариант трубы с учетом технических характеристик каждой разновидности. Также, прочитав эту статью, вы сможете правильно выбрать шаг монтажа и рассчитать необходимый диаметр и длину контура теплого пола для конкретного помещения.

Содержание статьи:

  • Параметры расчета теплового контура
    • Площадь покрытия труб
    • Тепловой поток и температура теплоносителя
    • Тип покрытия пола
  • Оценка технических свойств при выборе труб

    9 Сшитый полиэтилен (PEX)

  • Вариант №2 — металлопластик
  • Вариант №3 — медные трубы
  • Вариант №4 — полипропилен и нержавеющая сталь
  • Возможные способы укладки контура
    • Способ №1 — змейка
    • Способ №2 — улитка или спираль
  • Методика расчета труб
    • Принципы построения контура
    • Базовая формула с пояснениями 92 Термотех определение шага контура
    • Окончательный выбор длины контура
  • Конкретный пример расчета теплоотвода
    • Шаг 1 — расчет теплопотерь через элементы конструкции
    • 2 этап — тепло на отопление + общие теплопотери
    • 3 этап — необходимая мощность теплового контура
    • 4 этап — определение шага укладки и длины контура
  • Выводы и полезное видео по теме
  • Параметры расчета теплового контура

    На этапе проектирования необходимо решить ряд вопросов, определяющих теплый пол и режим работы – выбрать толщину стяжки, насос и другое необходимое оборудование.

    Технические аспекты организации теплового отделения во многом зависят от его назначения. Помимо назначения, для точного расчета метража водяного контура понадобится ряд показателей: площадь покрытия, плотность теплового потока, температура теплоносителя, тип настила.

    Трубное покрытие

    При определении размеров основания для прокладки труб учитывается пространство, не загроможденное крупной техникой и встроенной мебелью. Нужно заранее продумать расположение предметов в комнате.

    Если в качестве основного поставщика тепла используется водяной пол, то его мощность должна быть достаточной для компенсации 100% теплопотерь. Если змеевик является дополнением к радиаторной системе, то он должен покрывать 30-60% затрат тепловой энергии помещения

    Тепловой поток и температура теплоносителя

    Плотность теплового потока – расчетный показатель, характеризующий оптимальное количество тепла энергии для обогрева помещения. Величина зависит от ряда факторов: теплопроводности стен, пола, площади остекления, наличия утеплителя и интенсивности воздухообмена. По тепловому потоку определяется шаг укладки петель.

    Максимальный показатель температуры теплоносителя 60°С. Однако толщина стяжки и напольного покрытия сбивают температуру — фактически на поверхности пола наблюдается около 30-35°С. Разница между тепловыми показателями на входе и выходе контура не должна превышать 5°С.

    Тип напольного покрытия

    Отделка влияет на работоспособность системы. Оптимальная теплопроводность плитки и керамогранита – поверхность быстро нагревается. Хороший показатель эффективности водяного контура при использовании ламината и линолеума без теплоизоляционного слоя. Самая низкая теплопроводность деревянного покрытия.

    Степень теплопередачи также зависит от материала наполнителя. Система наиболее эффективна при использовании тяжелого бетона с природным заполнителем, например, морской галькой мелкой фракции.

    Цементно-песчаный раствор обеспечивает средний уровень теплоотдачи при нагреве теплоносителя до 45°С. Эффективность схемы значительно падает при устройстве полусухой стяжки

    При расчете труб для теплого пола установленные нормы температурного режима покрытия следует учитывать:

    • 29°С — гостиная;
    • 33°С — помещения повышенной влажности;
    • 35°С — проходные зоны и холодные зоны — участки по торцевым стенам.

    Климатические особенности региона будут играть важную роль в определении плотности прокладки водяного контура. При расчете тепловых потерь следует учитывать минимальную температуру в зимний период.

    Как показывает практика, снизить нагрузку поможет предварительное утепление всего дома. Имеет смысл сначала утеплить помещение, а потом уже приступать к расчету теплопотерь и параметров контура труб.

    Оценка технических свойств при выборе труб

    В связи с нестандартными условиями эксплуатации к материалу и размерам змеевика водяного пола предъявляются высокие требования:

    • химическая инертность стойкость к коррозионным процессам;
    • абсолютно гладкое внутреннее покрытие не склонное к образованию известковых наростов;
    • прочность — изнутри на стены постоянно воздействует теплоноситель, а снаружи стяжка; труба должна выдерживать давление до 10 бар.

    Желательно, чтобы ветка отопления имела небольшой удельный вес. Водяной пирог уже оказывает значительную нагрузку на потолок, а тяжелый трубопровод только усугубит ситуацию.

    Согласно СНиП в закрытых системах отопления применение сварных труб запрещено независимо от вида шва: спиральный или прямой

    Этим требованиям в той или иной степени соответствуют три категории трубной продукции: сшитый полиэтилен, металлопластик, медь.

    Вариант №1 — Сшитый полиэтилен (PEX)

    Материал имеет ячеистую широкоячеистую структуру молекулярных связей. Модифицированный от обычного полиэтилен отличается наличием как продольных, так и поперечных связок. Эта структура увеличивает удельный вес, механическую прочность и химическую стойкость.

    Водяной контур из труб PEX имеет ряд преимуществ:

    • высокая эластичность , позволяющая укладывать змеевик с малым радиусом изгиба;
    • безопасность — при нагревании материал не выделяет вредных компонентов;
    • теплостойкость : размягчение — от 150°С, плавление — 200°С, горение — 400°С;
    • сохраняет структуру при колебаниях температуры;
    • устойчивость к повреждениям — биологические разрушители и химикаты.

    Трубопровод сохраняет первоначальную пропускную способность — на стенках не откладывается осадок. Расчетный срок службы контура PEX составляет 50 лет.

    Недостатками сшитого полиэтилена являются: боязнь солнечных лучей, негативное влияние кислорода при его проникновении в конструкцию, необходимость жесткой фиксации змеевика при монтаже

    Имеется четыре товарные группы:

    1. РЕХ -а — пероксидная сшивка . Достигается максимально прочная и однородная структура с плотностью скрепления до 75%.
    2. PEX-b — Силановое сшивание . В технологии используются силаниды – токсичные вещества, неприемлемые для бытового применения. Производители сантехнических изделий заменяют его безопасным реагентом. К установке допускаются трубы с гигиеническим сертификатом. Плотность сшивки составляет 65-70%.
    3. PEX-c — радиационный метод . Полиэтилен облучают потоком гамма-лучей или электронами. В результате облигации уплотняются до 60%. Недостатки PEX-c: небезопасное использование, неравномерное сшивание.
    4. PEX-d — азотирование . Реакция создания сетки протекает за счет радикалов азота. На выходе получается материал с плотностью сшивки около 60-70%.

    Прочностные характеристики труб PEX зависят от способа сшивания полиэтилена.

    Если вы остановились на трубах из сшитого полиэтилена, то рекомендуем ознакомиться с системами теплого пола из них.

    Вариант №2 — металлопластик

    Лидер проката труб для обустройства теплых полов — металлопластик. Конструктивно материал включает пять слоев.

    Внутреннее покрытие и внешняя оболочка — полиэтилен высокой плотности, придающий трубе необходимую гладкость и теплостойкость. Промежуточный слой — алюминиевая прокладка

    Металл повышает прочность магистрали, снижает скорость теплового расширения и действует как антидиффузионный барьер — блокирует поступление кислорода к теплоносителю.

    Особенности пластиковых труб:

    • хорошая теплопроводность;
    • способность удерживать заданную конфигурацию;
    • температура эксплуатации с сохранением свойств — 110°С;
    • низкий удельный вес;
    • бесшумное движение теплоносителя;
    • безопасность использования;
    • коррозионная стойкость;
    • Срок эксплуатации — до 50 лет.

    Недостатком композитных труб является недопустимость изгиба вокруг оси. При многократном скручивании есть риск повредить алюминиевый слой. Рекомендуем ознакомиться с пластиковыми трубами, что поможет избежать повреждений.

    Вариант №3 — трубы медные

    По техническим и эксплуатационным характеристикам оптимальным выбором будет желтый металл. Однако его актуальность ограничивается высокой стоимостью.

    По сравнению с синтетическими трубопроводами медный контур выигрывает по нескольким параметрам: теплопроводность, термическая и физическая прочность, неограниченная вариативность на изгиб, абсолютная газонепроницаемость

    Помимо высокой стоимости медный трубопровод имеет дополнительный минус — сложность. Чтобы согнуть контур, нужен пресс-машина или .

    Вариант №4 — полипропилен и нержавеющая сталь

    Иногда ветку отопления создают из полипропиленовых или нержавеющих гофрированных труб. Первый вариант доступный, но достаточно жесткий на изгиб – минимальный радиус восемь диаметров изделия.

    Это означает, что трубы размером 23 мм придется размещать на расстоянии 368 мм друг от друга — увеличенный шаг не обеспечит равномерного прогрева.

    Нержавеющие трубы отличаются высокой теплопроводностью и хорошей гибкостью. Минусы: хрупкость резинок, создание гофре сильного гидравлического сопротивления

    Возможные способы укладки контура

    Для того чтобы определить расход трубы для обустройства теплого пола, следует определиться с раскладкой водяного контура. Главной задачей планировки помещения является обеспечение равномерного обогрева с учетом холодных и неотапливаемых зон помещения.

    Возможны следующие варианты компоновки: змейка, двойная змейка и улитка. При выборе схемы необходимо учитывать размеры, конфигурацию помещения и расположение наружных стен

    Способ №1 — змейка

    Теплоноситель подается в систему по стене, проходит через змеевик и возвращается в . При этом половина помещения отапливается горячей водой, а оставшаяся часть охлаждается.

    При кладке змейкой невозможно добиться равномерного прогрева — перепад температур может достигать 10°С. Способ применим в узких помещениях.

    Схема угловой змейки оптимальна, если необходимо утеплить холодную зону у торцевой стены или в коридоре

    Двойная змейка обеспечивает более мягкий температурный переход. Прямая и обратная цепи параллельны друг другу.

    Способ №2 — улитка или спираль

    Считается оптимальной схемой, обеспечивающей равномерный прогрев напольного покрытия. Передняя и обратная ветви укладываются поочередно.

    Дополнительный плюс «ракушек» — установка отопительного контура с плавным поворотом изгиба. Этот метод актуален при работе с трубами недостаточной гибкости.

    На больших площадях реализована комбинированная схема. Поверхность разбивают на сектора и для каждого разрабатывают отдельный контур, выходящий на общий коллектор. По центру помещения трубопровод выкладывается улиткой, а вдоль наружных стен – змейкой.

    У нас на сайте есть очередная статья, в которой мы подробно рассмотрели теплый пол и дали рекомендации по выбору оптимального варианта в зависимости от особенностей конкретного помещения.

    Процедура расчета труб

    Чтобы не запутаться в расчетах, предлагаем разделить решение вопроса на несколько этапов. В первую очередь необходимо оценить теплопотери помещения, определить шаг монтажа, а затем рассчитать длину отопительного контура.

    Принципы построения контура

    Приступая к расчетам и созданию эскиза, следует ознакомиться с основными правилами расположения водяного контура:

    1. Трубы целесообразно прокладывать вдоль оконного проема – это значительно снизит теплопотери здания.
    2. Рекомендуемая площадь покрытия одним водяным контуром 20 кв.м. В больших помещениях необходимо разделить пространство на зоны и к каждой проложить отдельную отопительную ветку.
    3. Расстояние от стены до первой ветки 25 см. Допустимый шаг поворотов труб в центре помещения до 30 см, по краям и в холодных зонах — 10-15 см.
    4. Определять максимальную длину трубы для теплого пола следует исходя из диаметра змеевика.

    Для контура сечением 16 мм допускается не более 90 м, ограничение для трубопровода толщиной 20 мм — 120 м. Соблюдение норм обеспечит нормальное гидравлическое давление в системе.

    В таблице указан расчетный расход трубы в зависимости от шага петли. Для получения обновленных данных следует учитывать запас по оборотам и расстояние до коллектора

    Основная формула с пояснениями

    Расчет длины контура теплого пола выполняется по формуле:

    L = S/n * 1,1 + k ,

    Где:

    • L – желаемая длина теплотрассы;
    • S — крытая площадь пола;
    • n — шаг укладки;
    • 1,1 — стандартный десятипроцентный запас на отводы;
    • к — удаленность коллектора от пола — учитывается расстояние до разводки цепи на подаче и обратке.

    Crucial будет воспроизводить зону покрытия и шаг поворотов.

    Для наглядности на бумаге необходимо составить план помещения с указанием точных размеров и обозначить проход водяного контура

    Следует помнить, что размещение труб отопления не рекомендуется под крупными бытовыми приборами и встроенная мебель. Параметры отмеченных объектов необходимо вычесть из общей площади.

    Для выбора оптимального расстояния между ответвлениями необходимо провести более сложные математические манипуляции, оперируя тепловыми потерями помещения.

    Теплотехнический расчет с определением шага контура

    Плотность труб напрямую влияет на величину теплового потока, поступающего от системы отопления. Для определения требуемой нагрузки необходимо рассчитать затраты тепла в зимний период.

    Затраты тепла через конструктивные элементы здания и вентиляцию должны полностью компенсироваться за счет вырабатываемой тепловой энергии водяного контура

    Мощность системы отопления определяется по формуле:

    М = 1,2 * Q ,

    Где:

    • М — производительность схемы;
    • Q — общие теплопотери помещения.

    Значение Q можно разложить на составляющие: потребление энергии через ограждающие конструкции и затраты, связанные с работой системы вентиляции. Разберемся, как рассчитать каждый из показателей.

    Потери тепла через элементы здания

    Необходимо определить расход тепловой энергии на все ограждающие конструкции: стены, потолок, окна, двери и т.д. Формула расчета:

    Q1 = (S/R) * Δt ,

    Где:

    • S — площадь элемента;
    • R — термическое сопротивление;
    • Δt — разница между температурой в помещении и на улице.

    При определении Δt используется показатель самого холодного времени года.

    Тепловое сопротивление рассчитывается следующим образом:

    R = A / Kt ,

    Где:

    • И — мощность слоя, м;
    • Ct — коэффициент теплопроводности, Вт/м*К.

    Для комбинированных строительных элементов необходимо суммировать сопротивления всех слоев.

    Коэффициент теплопроводности строительных материалов и утеплителей можно взять из справочника или посмотреть сопроводительную документацию на конкретный товар

    Еще значения коэффициента теплопроводности для наиболее популярных строительных материалов мы представили в таблице содержится .

    Теплопотери на вентиляцию

    Для расчета показателя используется формула:

    Q2 = (V * K / 3600) * C * P * Δt ,

    Где:

    • V помещение, куб м;
    • К — кратность воздухообмена;
    • С — удельная теплоемкость воздуха, Дж/кг*К;
    • P — плотность воздуха при нормальной комнатной температуре — 20°С.

    Кратность воздухообмена в большинстве помещений равна единице. Исключение составляют дома с внутренней пароизоляцией – для поддержания нормального микроклимата воздух необходимо обновлять два раза в час.

    Удельная теплоемкость является справочным показателем. При стандартной температуре без давления значение равно 1005 Дж/кг*К.

    В таблице представлена ​​зависимость плотности воздуха от температуры окружающей среды при атмосферном давлении — 1,0132 бар (1 Атм)

    Суммарные потери тепла

    Общее количество потери тепла в помещении будут равны: Q = Q1 * 1,1 + Q2 . Коэффициент 1,1 — увеличение энергопотребления на 10% за счет просачивания воздуха через щели, неплотности в строительных конструкциях.

    Умножая полученное значение на 1,2, получаем необходимую мощность теплого пола для компенсации теплопотерь. По графику зависимости теплового потока от температуры теплоносителя можно определить подходящий шаг и диаметр трубы.

    По вертикальной шкале — средний температурный режим водяного контура, по горизонтальной — показатель выработки тепла системой отопления на 1 кв. км. м

    Данные актуальны для теплого пола на песчано-цементной стяжке толщиной 7 мм, материал покрытия керамическая плитка. Для других условий требуется корректировка значений с учетом теплопроводности отделки.

    Например, при ковровом покрытии температуру теплоносителя следует повысить на 4-5°С. Каждый дополнительный сантиметр стяжки снижает теплоотдачу на 5-8%.

    Окончательный выбор длины контура

    Зная шаг укладки витков и площадь покрытия, легко определить расход труб. Если полученное значение больше допустимого, то необходимо оборудовать несколько контуров.

    Оптимально, если петли будут одинаковой длины – ничего регулировать и балансировать не нужно. Однако на практике чаще возникает необходимость разбить тепломагистраль на разные участки.

    Разброс длин контуров должен оставаться в пределах 30-40%. В зависимости от назначения форма помещения может «играть» шагом контура и диаметрами труб

    Конкретный пример расчета отопительной ветки

    Предположим, что требуется определить параметры теплового контура дома с площадью 60 квадратных метров.

    Для расчета необходимы следующие данные и характеристики:

    • размеры помещения: высота — 2,7 м, длина и ширина — 10 и 6 м соответственно;
    • В доме 5 металлопластиковых окон по 2 кв. м;
    • наружные стены — газобетон, толщина — 50 см, КТ = 0,20 Вт/мК;
    • дополнительное утепление стен — пенопласт 5 см, СТ=0,041 Вт/мК;
    • материал перекрытия — железобетонная плита, толщина — 20 см, КТ = 1,69 Вт/мК;
    • утепление чердака — пенополистирольные плиты толщиной 5 см;
    • размеры входной двери — 0,9*2,05 м, теплоизоляция — пенополиуретан, слой — 10 см, КТ=0,035 Вт/мК.

    Далее рассмотрим пошаговый пример расчета.

    Этап 1 – расчет теплопотерь через элементы конструкции

    Тепловое сопротивление материалов стен:

    • газобетон: R1 = 0,5/0,20 = 2,5 кв.м*К/Вт;
    • пенополистирол: R2 = 0,05/0,041 = 1,22 кв.м*К/Вт.

    Тепловое сопротивление стены в целом равно: 2,5+1,22=3,57 кв.м*К/Вт средняя температура в доме +23°С, минимальная на улице 25°С со знаком минус. Разница составляет 48 °С.

    Расчет общей площади стен: S1 = 2,7 * 10 * 2 + 2,7 * 6 * 2 = 86,4 кв. м. Из полученного показателя необходимо вычесть стоимость окон и дверей: S2 = 86,4-10-1,85 = 74,55 кв. м

    Подставив полученные параметры в формулу, получим теплопотери стены: Qc = 74,55/3,57* 48 = 1002 Вт

    По аналогии рассчитываются затраты тепла через окна, дверь и потолок. Для оценки потерь энергии через чердак учитывают теплопроводность материала перекрытия и утеплителя

    Суммарное тепловое сопротивление перекрытия составляет: 0,2/1,69+0,05/0,041=0,118+1,22=1,338 кв. м*К/Вт. Тепловые потери составят: Qп=60/1,338*48=2152 Вт.

    Для расчета теплопотерь через окна необходимо определить средневзвешенное значение теплового сопротивления материалов: стеклопакета — 0,5 и профиля — 0,56 кв.м*К/Вт соответственно.

    Rо = 0,56 * 0,1 + 0,5 * 0,9 = 0,56 кв.м * К/Вт. Здесь 0,1 и 0,9 — доли каждого материала в оконной конструкции.

    Теплопотери окна: Qо = 10 / 0,56 * 48 = 857 Вт.

    С учетом теплоизоляции двери ее тепловое сопротивление составит: Rd = 0,1 / 0,035 = 2,86 кв.м * К/Вт. Qd = (0,9 * 2,05) / 2,86 * 48 = 31 Вт.

    Суммарные потери тепла через ограждающие элементы равны: 1002 + 2152 + 857 + 31 = 4042 Вт. Полученный результат необходимо увеличить на 10%: 4042 * 1,1 = 4446 Вт.

    Шаг 2 — тепло на отопление + общие теплопотери

    Сначала рассчитаем расход тепла на подогрев приточного воздуха. Объем комнаты: 2,7*10*6=162 куб. м. Соответственно потери тепла на вентиляцию составят: (162*1/3600)*1005*1,19* 48 = 2583 Вт.

    По этим параметрам помещения общие затраты тепла составят: Q = 4446 + 2583 = 7029 Вт.

    Шаг 3 — необходимая мощность теплового контура

    Рассчитываем оптимальную мощность контура необходимо для компенсации теплопотерь: N = 1,2 * 7029 = 8435 Вт.

    Далее: q = N/S = 8435/60 = 141 Вт/кв.м.

    Исходя из требуемой производительности системы отопления и активной площади помещения можно определить плотность теплового потока на 1 кв.м

    Шаг 4 — определение шага укладки и длины контура

    Полученное значение сравнивается с графиком зависимости. Если температура теплоносителя в системе 40°С, то подойдет контур со следующими параметрами: шаг – 100 мм, диаметр – 20 мм.

    Если в стволе циркулирует вода, нагретая до 50°С, то расстояние между ответвлениями можно увеличить до 15 см и использовать трубу сечением 16 мм.

    Считаем длину контура: L = 60/0,15*1,1=440 м.

    Отдельно необходимо учитывать расстояние от коллекторов до тепловой системы.

    Как видно из расчетов, для обустройства водяного пола придется делать минимум четыре отопительных контура. А как правильно укладывать и крепить трубы, а также другие секреты монтажа мы.

    Выводы и полезное видео по теме

    Наглядные видеообзоры помогут сделать предварительный расчет длины и шага теплового контура.

    Выбор наиболее эффективного расстояния между ветвями системы теплого пола:

    Справочник, как узнать длину петли эксплуатируемого теплого пола:

    Метод расчета нельзя назвать простым . При этом следует учитывать множество факторов, влияющих на параметры контура. Если вы планируете использовать водяной пол как единственный источник тепла, то лучше доверить эту работу профессионалам – ошибки на этапе планирования может быть дорого .

    Рассчитать необходимый метраж труб для теплого пола и их оптимальный диаметр самостоятельно? Может быть, у вас остались вопросы, которые мы не затронули в этой статье? Задайте их нашим специалистам в разделе комментариев.

    Если вы специализируетесь на расчете труб для монтажа водяного теплого пола и вам есть, что добавить к вышеизложенному материалу, пишите свои комментарии ниже под статьей.

    Система теплого пола – как рассчитать требуемую мощность?

    3 минуты чтения

    1. Температура воды на подаче и температура обратной воды системы теплого пола должна быть определена расчетным путем, температура воды на подаче не должна превышать 60°C, температура воды на подаче в гражданских зданиях должна быть от 35℃ до 50℃, разница температур не должна превышать 10℃.

    2. Средняя температура поверхности земли (℃)

    Площадь Подходящий диапазон (℃) Верхний предел (℃)
    People always stay area 24-26 28
    People temporary stay area 28-30 32
    People not stay area 35-40 42

    3. Толщина изоляционного слоя пенополистирола.

    Тип пола Толщина изоляционного материала (мм)
    Слой изоляции на полу между этажами 20
    Термическая изоляция на полу, прилегающем к почве или безрассудным комнатам 30
    Тепловая изоляция на полу, прилегающем к наружному воздуху 40571 40571 40571. комплексной системы напольного отопления расчетная температура в помещении должна быть на 2°C ниже, чем расчетная температура в помещении конвективной системы отопления, или от 90% до 99% общей тепловой нагрузки, рассчитанной системой конвективного отопления.

    5. Тепловая нагрузка системы локального теплого пола может быть определена путем умножения тепловой нагрузки, рассчитанной по общему лучистому отоплению всего помещения, на отношение площади площади к площади помещения и дополнительной коэффициенты, указанные в следующей таблице.

    572
    Отношение площади обогрева к общей площади помещения 0,55 0,4 0,25
    Дополнительный коэффициент

    1,357

    1,35 1,5

    6. Для помещений глубиной более 6 м целесообразно от наружной стены отводить 6 м в качестве граничной зоны для расчета тепловой нагрузки и прокладки трубопроводов отдельно.

    7. На земле под застройку, где проложены трубы отопления, потери теплопередачи грунта не следует рассчитывать.

    8. При расчете тепловой нагрузки системы напольного отопления не требуется учитывать дополнительную высоту.

    9. При расчете тепловой нагрузки системы теплого пола с бытовым учетом тепла следует учитывать такие факторы, как прерывистое отопление и теплопередача между домохозяйствами.

    Используйте табличный метод для определения расстояния между трубами напольного отопления:

    Тепловыделение Qr и потери теплопередачи вниз Qs на единицу площади поверхности трубы PE-X (Вт/м²)

    Внешний диаметр трубы составляет 20 мм, толщина слоя заполнения 50 мм, толщина слоя изоляции из пенополистирола 20 мм, а разница температур между подающей и обратной водой составляет 10 ℃ (цементный или керамический пол, термическое сопротивление R=0,02(㎡. к/ж))

    Average water temp Indoor temp Heating pipe spacing (mm)
    300 250 200 150 100
    Qr Qs Qr Qs Qr Qs Qr Qs Qr Qs
    35 16 84.7 23.8 92.5 24 100。5 24.6 108.9 24.8 116.6 24.8
    18 76.4 21.7 83.3 22 90.4 22.6 97.9 22.7 104.7 22.7
    20 68 19.9 74 20. 2 80.4 20.5 87.1 20.5 93.1 20.5
    40 16 108 29.7 118.1 29.8 128.7 30.5 139.6 30.8 149.7 30.8
    18 99.5 27.4 108.7 27.9 118.4 28.5 128.4 28.7 137.6 28.7
    20 91 25.4 99.4 25.7 108.1 26.5 117.3 26.7 125.6 26.7
    45 16 131.8 35.5 144.4 35.5 157.5 36.5 171.2 36.8 183.9 36.8
    18 123. 3 33.2 134.8 33.9 17 34.5 159.8 34.8 171.6 34.8
    20 144.5 31.7 125.3 32 136.6 32.4 148.5 32,7 159,3 32,7

    Рассеивание тепла Qr и теплопередача вниз Qs на единицу площади поверхности трубы PE-X (Вт/м²).

    Наружный диаметр трубы 20 мм, толщина слоя заполнения 50 мм, толщина слоя изоляции из пенополистирола 20 мм, разница температур между подающей и обратной водой 10 ℃ (деревянный пол, тепловое сопротивление R =0.1 (㎡.k/w))

    Average water temp Indoor temp Heating pipe spacing (mm)
    300 250 200 150 100
    Qr Qs Qr Qs Qr Qs Qr Qs Qr Qs
    35 16 64. 2 24.4 66.0 24.6 69.6 25.0 73.1 25.5 76.2 26.1
    18 56.3 22.3 59.6 22.5 62.8 22.9 65.9 23.3 68.7 23.9
    20 50.3 20.1 53.1 20.5 56.0 20.7 58.8 21.1 61.3 21.6
    40 16 79.1 30.2 83.7 20.7 88.4 31.2 92.8 31.9 96.9 32.5
    18 72.9 28.3 77.2 28.6 81.5 31.2 92.8 31.9 96.9 32.5
    20 66. 8 26.3 70.7 26.5 74.6 26.9 78.3 27.4 81.7 28.1
    45 16 96.0 36.4 101.8 36.9 107.5 37.5 112.9 38.2 117.9 39.1
    18 89.8 34.1 95.1 34.8 100.5 35.3 105.6 36.0 110.2 36.8
    20 83.6 32.2 88.6 32.7 93.5 33.1 98.2 33.8 102.6 34.5

    Estimated heating  design:

    Building type Advised underfloor heating kw data 
    No insulation measures Выполнены мероприятия по утеплению
    Жилой 58-64 40-45
    Комплекс жилой застройки 60-68 45-55
    School, office 60-68 50-70
    Hospitals, kindergartens 65-80 55-70
    Hotel 60-70 50-60
    Shop 65-80 55-70
    Canteen 115-140 100-130
    Theaters, exhibition halls 95 -115 80-105
    Аудитория 115-165 100-150

    по тепловому показателю.