Теплые полы расчет: Калькулятор для расчета водяного теплого пола онлайн

Содержание

Как рассчитать материалы на водяной теплый пол, расчет теплого пола. Сколько понадобиться трубы и крепежа?



Как рассчитать материалы на водяной теплый пол, расчет теплого пола. Сколько понадобиться трубы и крепежа?

Работаем без выходных 24/7

6:00 — 23:00

Терморегулятор в подарок

При покупке от 2900 грн.

Скидки льготникам

Пенсионеры, многодетные семьи и т.д.

Бесплатная доставка

При сумме заказа от 1000 грн.

  • Home
  • Как рассчитать материалы на водяной теплый пол?

Топ 5 статтей

  1. Обзор стоимости теплых полов за м2, стоимость монтажа
  2. Монтаж электрического и водяного теплого пола своими руками
  3. Какой теплый пол лучше
  4. Какое напольное покрытие можно использовать для теплого пола?!
  5. Во сколько обойдется отопление теплым полом в месяц

Поставьте лайк, поблагодарите автора за его труд!

Скачать инструкцию по водяному и электрическому ТП

Скачать розничный прайс по ТП

  • Популярные
  • Хиты продаж

Для расчета первую очередь нужно понимать цели — теплый пол будет как основное отопление или как вспомогательное. Если теплый пол основное отопление — покройте от 65-70 % площади помещения.

При основном отоплении труба понадобиться в количестве 7 – 8 погонных метров на квадрат, при вспомогательным – 5 погонных метров на квадрат.

 Кроме прочего не забываем о стяжке

 Далее вам понадобиться

коллектор в сборе

(две балки, одна с расходомерами вторая с кранами + крепеж, смесительный узел, циркуляционный насос, термоголовка с датчиком, евроконуса, автоспускник воздуха)

В сборе с насосом:


— Коллектор устанавливаеться либо во внутреннем либо в наружном коллекторном шкафу (1 контур это на 80-100 м/п трубы максимум, или до 15 м2)

— Так же вам понадобиться демпферная лента (укладывается по стене, по периметру комнаты)

— На пол нужно уложить теплоизоляцию (пенополистирол или пенопласт 35 ка), перед этим если первый этаж, позаботьтесь о гидроизоляции

— На пенопласт нужно уложить фольгу с разметкой 40-50 микрон (нужно брать немного больше чем площадь помещения, укладывается в внахлест)

Труба крепиться либо на армированную сетку либо якорями на пенопласт (якорной скобы нужно 3-4 шт на м\п трубы. ), если труба укладывается на стяжку в качестве крепежа может выступать монтажная планка — 4 шт на м2

— Далее заливается стяжка с пластификатором и фиброй 5-7 см

— Теплый пол можно запускать только через 28 дней, после армировки стяжки

Вспомогательные материалы:

Не забывайте все проверять перед заливкой стяжки

   Чтобы узнать как рассчитать площадь под теплый пол, прочтите эту информацию

Схема установки отопления водяным теплым полом

Основная схема


Часто задаваемые вопросы

— Теплый пол может прослужить 50-70 лет без проблем.

— Для маленьких площадей локально – электрический, для отопления дома – водяной.

— Да, теплым полом можно управлять через WiFi и подключать к умному дому.

Если эта статья оказалась для Вас полезной, сделайте себе репост.

Полезная информация по теплому полу

  1. Heattherm — теплый пол двужильный кабель и мат
  2. ThermoPEX для теплого пола — оптимальный вариант для дома
  3. Бобышки для теплого пола. Маты с бобышками что это?
  4. Боится ли теплый пол воды. Может ли ударить током?
  5. Виды электрических теплых полов
  6. Показать больше
  7. Во сколько обойдется отопление теплым полом в месяц
  8. Водяной теплый пол в деревянном доме
  9. Водяной теплый пол под ламинат. Стоит ли?
  10. Водяной теплый пол. Преимущества и недостатки.
  11. Время монтажа теплого пола. Сколько займет?
  12. Выбор электрического и водяного теплого пола
  13. Где установить гребенку или коллектор теплого пола?
  14. Для какого теплого пола подходит инфракрасная пленка?
  15. Для чего нужен кислородный барьер?
  16. Для чего нужен насос в коллекторе?
  17. Для чего нужна демпферная лента в теплом полу
  18. Для чего нужны расходомеры в теплом полу?
  19. Зачем нужны расходомеры, смесительный узел и евроконус?
  20. Как выбрать мощность теплого пола
  21. Как выбрать нагревательный мат теплого пола
  22. Как выбрать насос для водяного теплого пола?
  23. Как выбрать насос теплого пола. База насоса
  24. Как делать первое включение теплого пола?
  25. Как дешево, экономно сделать теплый пол?
  26. Как заменить датчик теплого пола если он замурован?
  27. Как купить надежный теплый пол?
  28. Как надежны терморегуляторы? Ремонт и замена регулятора
  29. Как отличить стержневой теплый пол от подделки?
  30. Как подключить датчик теплого пола?
  31. Как проверить роботу монтажников по теплому полу?
  32. Как работает система водяного теплого пола? Принцип работы
  33. Как рассчитать количество контуров гребенки?
  34. Как рассчитать количество контуров коллектора?
  35. Как рассчитать количество трубы на квадратный метр?
  36. Как рассчитать материалы на водяной теплый пол?
  37. Как сделать теплый пол если нельзя сделать стяжку!?
  38. Какая должна быть стяжка для теплого пола
  39. Какие бывают виды теплого пола?
  40. Каким должен быть бетон и стяжка теплого пола?!
  41. Какого цвета выбрать трубу теплого пола?
  42. Какое напольное покрытие можно использовать для теплого пола?!
  43. Какое напольное покрытие можно использовать для теплого пола?!
  44. Какое напольное покрытие можно использовать для теплого пола?!
  45. Какой должна быть температура теплого пола
  46. Какой кабель подходит под плитку, а какой в стяжку?
  47. Какой котел лучше использовать для теплого пола?
  48. Какой крепеж используется в водяных теплых полах
  49. Какой теплый пол лучше выбрать под плитку?!
  50. Какой теплый пол лучше? Какой выбрать водяной или электрический
  51. Какой шаг укладки делать в теплом полу 7, 10, 12, 15 или 20 см?
  52. Какую подложку для теплого пола выбрать?
  53. Калькулятор теплого пола
  54. Когда целесообразен монтаж водяного теплого пола ?
  55. Контура теплого пола, какие бывают?
  56. Куда девать остаток нагревательного кабеля .
    Можно ли резать?
  57. Латунь или нержавейка? Какая гребенка лучше?
  58. Лучшие водяные теплые полы и их рейтинг
  59. Лучшие электрические теплые полы и их рейтинг!
  60. Маты с бобышками для водяного теплого пола. Что это?
  61. Минусы и недостатки водяного теплого пола
  62. Можно ли … теплый пол? Ответы!
  63. Можно ли подключить радиатор к коллектору?
  64. Можно ли ремонтировать теплый пол, нагревательный мат и кабель?
  65. Монтаж
  66. Монтаж ламината на теплый пол своими руками
  67. Монтаж стержневого теплого пола?
  68. Монтаж электрического и водяного теплого пола своими руками
  69. Обзор стоимости теплых полов за м2, стоимость монтажа
  70. Основание под водяной теплый пол. Виды и способы укладки.
  71. Основные составляющие водяного теплого пола.
  72. Особенности конструкции бойлеров Ento
  73. Отличие двужильного от одножильного нагревательного кабеля?
  74. Отличие механического терморегулятора от программируемого
  75. Отличие сплошной пленки от классической полосочной?
  76. Отопление дома теплым полом. Стоит ли?
  77. Отопление теплым полом
  78. Отчет об отправке
  79. Официальный сайт теплого пола
  80. Перегревается ли стержневой теплый пол?
  81. Плиточный клей для теплого пола, какой использовать?
  82. Плюсы и минусы электрических и водяных теплых полов
  83. Подключение электрического и водяного теплого пола
  84. Подложка под водяной теплый пол. Для чего она нужна?
  85. Почему мат теплого пола, не кабель?
  86. Почему электрический теплый пол не греет
  87. Правильный водяной и электрический теплый пол
  88. Правильный шаг укладки водяного и электрического теплого пола
  89. Преимущества водяного теплого пола перед радиаторным отоплением.
  90. Преимущество стержневого теплого пола
  91. Прогреет ли теплый пол 5-6 см стяжки?
  92. Проектные работы
  93. Расчет теплого пола водяного и электрического
  94. Ремонт нагревательного кабеля теплого пола
  95. Ремонт электрического и водяного теплого пола
  96. С чего состоит система водяного теплого пола
  97. Система водяных и электрических теплых полов
  98. Система управления водяным теплым полом. Что такое сервопривод?
  99. Сколько потребляет нагревательный кабель? Его мощность.
  100. Сколько потребляет теплый пол?
  101. Сколько энергии потребляет пленочный теплый пол?
  102. Способен ли терморегулятор экономить электричество?
  103. Справочная
  104. Стандартная пленка Felix Excel и ее конструкция
  105. Стоит ли экономить на терморегуляторе?
  106. Схема укладки теплого пола
  107. Сшитый полиэтилен для теплых полов. Какие трубы выбрать?
  108. Сшитый полиэтилен или металлопластик? Какую трубу выбрать?
  109. Тепло инфракрасного от инфракрасного теплого пола Felix Excel
  110. Теплоизоляция под плитку для теплого пола
  111. Теплые полы в гипермаркете
  112. Теплый пол 27 ua или 24 на 7, длительность работать?
  113. Теплый пол без стяжки
  114. Теплый пол в бане и сауне, как реализовать?
  115. Теплый пол в ванной и санузле. Как реализовать?
  116. Теплый пол в ванную электрический и водяной
  117. Теплый пол в стяжку водяной и электрический
  118. Теплый пол в частном доме
  119. Теплый пол и его эпицентр температуры
  120. Теплый пол из металлопластиковых труб
  121. Теплый пол на балконе и лоджии. Как осуществить?
  122. Теплый пол на кухне. Где можно размещать?
  123. Теплый пол от печки или камина, как сделать?
  124. Теплый пол от Розетки
  125. Теплый пол от центрального отопления или котла
  126. Теплый пол под деревянный пол
  127. Теплый пол под ковролин
  128. Теплый пол под ламинат
  129. Теплый пол под линолеум
  130. Теплый пол под линолеум на деревянный пол
  131. Теплый пол под плитку
  132. Теплый пол своими руками
  133. Теплый пол, цена на 2020 год. Обзор цен теплых полов
  134. Терморегулятор водяного теплого пола. Какой выбрать?
  135. Типы изоляции теплого пола. Фторопласт, тефлон, эластомеры
  136. Труба для теплого пола 16 диаметра
  137. Труба теплого пола 14, 16, 17, 18, 20 диаметра, какую выбрать?
  138. Укладка теплого пола, как осуществить? Как правильно сделать
  139. Управление теплым полом. Какие бывают системы?!
  140. Устройство теплого пола водяного и электрического
  141. Утепление и подложки под теплый пол
  142. Чем гребенка отличается от коллектора?
  143. Чем зафиксировать трубу теплого пола?
  144. Чем и как закрепить нагревательный кабель теплого пола
  145. Чем отличается нагревательный мат от кабеля?
  146. Что лучше водяной теплый пол или электрический?
  147. Что подобрать для теплого пола без стяжки?
  148. Шаг укладки теплого пола электрического и водяного?! Расчет
  149. Электрический теплый пол плюсы и минусы
  150. Консультация
  151. Тестовая статья
  152. Доставка и оплата
  153. Сотрудничество теплый пол оптом
  154. Документация
  155. Водяной теплый пол в многоэтажном доме и в квартире. Подключение
  156. Как сделать замер площади под теплый пол самостоятельно?
  157. Можно ли укорачивать нагревательный кабель или мат теплого пола?
  158. Связаться с нами

Спасибо за Ваш заказ!

Мы свяжемся с Вами в самое ближайшее время.

Примеры расчётов электрического тёплого пола

Кухня и комната первого этажа.

Кухня и комната выше первого этажа.

Ванной и туалет.

Лоджии, балкон, мощность максимальная.

Тепловой расчёт подогрева пола для кухни и комнаты первого этажа

Условие задачи: кухня на первом этаже в городской квартире, общая площадь 10 м

2, над тёплым полом планируется заливка стяжки 3… 5 см и укладка керамической плитки.
Требуется найти обогреваемую площадь и рассчитать мощность тёплого пола.

Дано:

S общ = 10 м2.

Помещение — кухня на первом этаже в городской квартире.

Обогрев — комфортный (дополнительный).

Расчёт тёплого пола для кухни первого этажа

Из 10 м2 общей квадратуры вычитаем площадь, занятую мебелью без ножек (холодильник, кухонная мебель, стиральная машина) и вычитаем отступы от стен:

площадь холодильника 0,6 м × 0,6 м = 0,36 м2

площадь мебели 4 м × 0,6 м = 2,4 м2

отступы от стен 5. .. 10 см приблизительно 0,5 м2

10 − 0,36 − 2,4 − 0,5 = 6,7 м2 (это оставшаяся обогреваемая площадь).

Как мы уже говорили в предыдущей статье, для кухни первого этажа при дополнительном отоплении на 1 м2 закладываем мощность 140 Вт на м2. Эта цифра берётся с тем расчётом, что под квартирой находится холодный подвал.

6,7 м2 × 140 Вт/м2 = 930 Вт

Обогреваемую площадь 6,7 м2 умножаем на 140 Вт на м2 и получаем 930 Вт — такова требуемая общая мощность нагревательной системы тёплый пол.

Задание: найти обогреваемую площадь и рассчитать мощность электрического тёплого пола.

Ответ: обогреваемая площадь кухни составляет 6,7 м2, для дополнительного обогрева требуется тёплый пол мощностью 930 Вт.

Что ж, теперь осталось только выбрать нагревательный кабель и выбрать регулятор температуры тёплого пола.

Тепловой расчёт подогреваемого пола для кухни и комнаты выше первого этажа

Условие задачи: кухня находится выше первого этажа в городской квартире, общая площадь 10 м2, над тёплым полом планируется заливка стяжки 3. .. 5 см и укладка керамической плитки.

Требуется найти обогреваемую площадь и рассчитать мощность тёплого пола.

Дано:

S общ = 10 м2.

Помещение — кухня выше первого этажа в городской квартире.

Обогрев — комфортный (дополнительный).

Расчёт тёплого пола для кухни выше первого этажа

Из 10 м2 общей S вычитаем площадь, занятую мебелью без ножек (холодильник, кухонная мебель, стиральная машина) и вычитаем отступы от стен:

площадь холодильника 0,6 м × 0,6 м = 0,36 м2

площадь мебели 4 м × 0,6 м = 2,4 м2

отступы от стен 5… 10 см приблизительно 0,5 м2

10 − 0,36 − 2,4 − 0,5 = 6,7 м2 (это оставшаяся обогреваемая площадь).

Для кухни первого этажа при дополнительном отоплении на 1 м2 закладываем мощность 120 Вт на м2. Эта цифра берётся с тем расчётом, что под квартирой находится другая тёплая квартира.

6,7 м2 × 120 Вт/м2 = 800 Вт

Обогреваемую площадь 6,7 м2 умножаем на 120 Вт на м2 и получаем 800 Вт — такова требуемая общая мощность нагревательной системы тёплый пол.

Задание: найти обогреваемую площадь и рассчитать мощность электрического тёплого пола.

Ответ: обогреваемая площадь кухни составляет 6,7 м2, для дополнительного обогрева требуется тёплый пол мощностью 800 Вт.

Далее можно переходить к выбору нагревательного кабеля и к выбору регулятора температуры пола.

Расчёт тёплого пола для ванной комнаты и туалета

Условие задачи: ванная комната и туалет раздельны, общая площадь ванной 2,6 м2, а туалета — 1,4 м2, над тёплым полом планируется заливка стяжки 3… 5 см и укладка керамической плитки.

Требуется найти обогреваемую площадь и рассчитать мощность тёплого пола.

Дано:

S ванной=2.6 м2.

Обогрев — комфортный (дополнительный).

Расчёт тёплого пола для ванной комнаты

Из 2,6 м2 общей площади ванной комнаты вычитаем S, занятую ванной, стиральной машиной, ножкой тюльпана и вычитаем отступы от стен:

площадь ванны 1,7 м × 0,7 м = 1,2 м2

площадь стиральной машины 0,7 м × 0,4 м = 0,3 м2

ножка тюльпана 0,4 м × 0,2 м = 0,1 м2

отступы от стен 5… 10 см приблизительно 0,2 м2

2,6 − 1,2 − 0,3 − 0,1 − 0,2 = 0,6… 0,8 м2 (это оставшаяся обогреваемая площадь).

Для влажного помещения любого этажа при дополнительном отоплении на 1 м2 закладываем мощность 140 Вт на м2.

0,7 м2 × 140 Вт/м2 = 100 Вт

Площадь обогрева 0,7 м2 умножаем на 140 Вт на м2 и получаем 100 Вт — такова требуемая общая мощность нагревательной системы тёплый пол для ванной комнаты.

Задание: найти обогреваемую площадь и рассчитать мощность электрического тёплого пола.

Ответ: обогреваемая площадь ванной комнаты составляет 0,7 м2, для дополнительного обогрева требуется тёплый пол мощностью 100 Вт.

Дано:

S туалета=1,4 м2.

Обогрев — комфортный (дополнительный).

Расчёт тёплого пола для туалета

Из 1,4 м2 общей площади туалета вычитаем2адратуру, занятую унитазом и сзади него, и, по традиции, вычитаем отступы от стен:

площадь унитаза и сзади него 0,9 м × 0,8 м = 0,7 м2; отступы от стен 5… 10 см приблизительно 0,2 м2;

1,4 − 0,7 − 0,2 = 0,5 м2 ( оставшаяся обогреваемая площадь).

Для влажного помещения любого этажа при дополнительном отоплении на 1 м2 закладываем мощность 140 Вт на м2.

0,5 м2 × 140 Вт/м2 = 70 Вт

Обогреваемую площадь 0,5 м2 умножаем на 140 Вт на м2, получается 70 Вт — это общая мощность нагревательной системы тёплый пол для туалета.

Задание: найти обогреваемую площадь и рассчитать мощность электрического тёплого пола.

Ответ: обогреваемая площадь туалета составляет 0,5 м2, для дополнительного обогрева требуется тёплый пол мощностью 70 Вт.

Тепловой расчёт тёплого пола для лоджии, балкона, мощность максимальная

Условие задачи: лоджия в городской квартире общей площадью 6 м2, хороший тройной стеклопакет, стены и пол утеплены максимально, над тёплым полом планируется заливка стяжки 3… 5 см и укладка плитки.

Требуется найти обогреваемую площадь и рассчитать мощность тёплого пола.

Прежде, чем приступить к расчёту, надо отметить, что на лоджии или балконе получить комнатную температуру при помощи одного тёплого пола будет трудно, даже несмотря на хороший стеклопакет и утепление пола и стен. Дело в том, что через стеклопакет идут большие теплопотери, и площадь окна велика по отношению к площади лоджии. Поэтому для получения зимой комнатной температуры желательно подключать дополнительные источники обогрева.

Дано:

Размеры лоджии = 1,5 × 3 м.

Обогрев — основной.

Расчёт тёплого пола для лоджии

Для нахождения обогреваемой площади лоджии вычитаем по 10 см отступов от стен с каждой стороны (если стены ещё не готовы, учтите, что они могут нарасти).

1,5 − 0,1 − 0,1 = 1,3 м

3 − 0,1 − 0,1 = 2,8 м

1,3 × 2,8 = 3,64 м2

Для основного обогрева лоджии закладываем мощность 180 Вт на м2.

3,64 м2 × 180 Вт/м2 = 655 Вт

Обогреваемую площадь 3,64 м2 умножаем на 180 Вт на м2 и получаем 655 Вт. Мы нашли требуемую мощность тёплого пола для лоджии.

Задание: рассчитать мощность электрического тёплого пола.

Ответ: для основного обогрева лоджии требуется тёплый пол мощностью 800 Вт.

Итак, на этой странице мы рассмотрели несколько практических примеров тепловых расчётов электрического тёплого пола для следующих помещений. ..

  • кухня, комната первый этаж;
  • кухня, комната не первый этаж;
  • ванная и туалет;
  • лоджия, балкон, мощность максимальная.

Теперь вы и сами можете сделать тепловой расчёт пола, подставив по аналогии свои данные.

Вы ознакомились с практическими примерами расчетов тёплого пола для разных типов помещений.

Для получения детальной консультации и расчёта помещения по вашим параметрам обращайтесь по телефонам или email.

Есть вопросы? Спрашивайте, ответим!

 

Консультация и срочная доставка
тёплых полов Теплолюкс
Национальный Комфорт
Теплолюкс-Profi

Выезд на ремонт тёплого пола
(495) 229–39–84
[email protected]

Выезд на ремонт бытовой техники
+79175035454

онлайн расчет бесплатно + схемы и таблицы

Подогрев пола — удивительно комфортная вещь. Понимаешь это побывав в доме с таким отоплением и невольно задумываешься о том, а не сделать ли себе. Чтобы принять решение, да и выбрать способ подогрева, нужно прикинуть объем работ, материалов и стоимость всей затеи. Поможет в этом расчет теплого пола. Это только часть всего что надо. Ведь нужны будут еще термостаты, датчики температуры, в водяном полу — коллекторы и расходомеры.

Для людей, которые хотят сами спроектировать и смонтировать водяные полы, наш онлайн калькулятор для расчета водяного теплого пола будет просто незаменим!

Область применения нашего онлайн калькулятора:

  • расчет сметы (будет просчитана и отображена средняя стоимость всех материалов)
  • расчет материалов (калькулятор рассчитает длину трубы для водяного теплого пола, коллектор, количество утеплителя, фитингов и крепежных элементов)

Вы можете сделать расчет теплых водяных полов по площади, калькулятор все сам просчитает и выдаст список всех материалов и их количество.

Онлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.

Рекомендуется соблюдать шаг укладки в диапазоне 150-300 мм, для труб диаметром 16, 18, 20 мм не превышать длину контура более чем на 100, 120, 125 м, соответственно.

В больших помещениях со значительной протяженностью контура, для того чтобы сохранить тепловой поток необходимой мощности, следует увеличить расстояние между трубами и выполнить укладку дополнительных контуров. При завышении предельно допустимых значений основных параметров, калькулятор укажет на ошибки.

Тепловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.

Правильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.

Система теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.

Полученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.

Полезные таблицы при расчете теплого пола:

Таблица: Расход трубы при монтаже теплого пола

 

Таблица: Температура теплого пола под плитку, ламинат и линолеум

Видео: Труба для водяного теплого пола 

Для более точного расчета обязательно обратитесь к квалифицированным специалистам в вашем регионе!

Общие сведения по результатам расчетов

1. Общий тепловой поток — Количество выделяемого тепла в помещение. Если тепловой поток меньше тепловых потерь помещения, необходимы дополнительные источники тепла, например, такие как настенные радиаторы.

2. Тепловой поток по направлению вверх — Количество выделяемого тепла в помещение с 1 квадратного метра площади по направлению вверх.

3. Тепловой поток по направлению вниз — Количество «теряемого» тепла и не участвующего в обогреве помещения. Для уменьшения данного параметра необходимо выбирать максимально эффективную теплоизоляцию под трубами ТП* (*теплого пола).

4. Суммарный удельный тепловой поток — Общее количество тепла, выделяемого системой ТП с 1 квадратного метра.

5. Суммарный тепловой поток на погонный метр — Общее количество тепла, выделяемого системой ТП с 1 погонного метра трубы.

6. Средняя температура теплоносителя — Средняя величина между расчетной температурой теплоносителя подающего трубопровода и расчетной температурой теплоносителя обратного трубопровода.

7. Максимальная температура пола — Максимальная температура поверхности пола по оси нагревательного элемента.

8. Минимальная температура пола — Минимальная температура поверхности пола по оси между трубами ТП.

9. Средняя температура пола — Слишком высокое значение данного параметра может быть дискомфортно для человека (нормируется СП 60.13330.2012). Для уменьшения данного параметра необходимо увеличить шаг труб, снизить температуру теплоносителя либо увеличить толщину слоев над трубами.

10. Длина трубы — Общая длина трубы ТП с учетом длины подводящей магистрали. При высоком значении данного параметра калькулятор рассчитает оптимальное кол-во петель и их длину.

11. Тепловая нагрузка на трубу — Суммарное количество тепловой энергии, получаемое от источников тепловой энергии, равное сумме теплопотреблений приемников тепловой энергии и потерь в тепловых сетях в единицу времени.

12. Расход теплоносителя — Массовое кол-во теплоносителя предназначенного для подачи необходимого кол-ва тепла в помещение в единицу времени.

13. Скорость движения теплоносителя — Чем выше скорость движения теплоносителя, тем выше гидравлическое сопротивление трубопровода, а также уровень шума, создаваемого теплоносителем. Рекомендуемое значение от 0.15 до 1м/с. Данный параметр можно уменьшить за счет увеличения внутреннего диаметра трубы.

14. Линейные потери давления — Снижение напора по длине трубопровода, вызванного вязкостью жидкости и шероховатостью внутренних стенок трубы. Без учета местных потерь давления. Значение не должно превышать 20000 Па. Можно уменьшить за счет увеличения внутреннего диаметра трубы.

15. Общий объем теплоносителя — Общее кол-во жидкости для заполнения внутреннего объема труб системы ТП.

Смежные нормативные документы:

  • СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха»
  • СП 29.13330.2011 «Полы»
  • СП 71.13330.2017 «Изоляционные и отделочные покрытия»
  • СП 41-102-98 «Проектирование и монтаж трубопроводов систем отопления с использованием металлополимерных труб»
  • СП 41-109-2005 «Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из «сшитого» полиэтилена»

Загрузка. ..

Понравилось? Поделись с друзьями!

пример расчета водяной системы теплых полов

На эффективность теплого пола влияет множество факторов. Без их учета, даже если система правильно смонтирована и для ее монтажа использованы самые современные материалы, реальная теплоэффективность не оправдает ожиданий.

По этой причине монтажным работам должен предшествовать грамотный расчет теплого пола, и только тогда можно гарантировать хороший результат.

Проектирование системы отопления дело недешевое, поэтому многие домашние мастера производят расчеты самостоятельно. Согласитесь, идея удешевления обустройства теплого пола кажется очень заманчивой.

Мы расскажем, как создать проект, какие критерии учитывать при выборе параметров системы отопления и распишем пошаговый порядок расчета. Для наглядности мы подготовили пример расчета теплого пола.

Содержание статьи:

  • Исходные данные для расчета
  • Определение параметров теплого пола
    • Методика расчета теплопотерь
    • Пример расчета бетона
    • Необходимое тепло для обогрева воздуха
  • Расчет необходимого количества труб
  • Рассчитываем циркуляционный насос
  • Советы по выбору толщины стяжки
  • Выводы и полезное видео по теме

Исходные данные для расчет

Изначально правильно спланированный ход проектно-монтажных работ избавит от неожиданностей и неприятных проблем в будущем.

При расчете теплого пола необходимо исходить из следующих данных:

  • материал стен и конструктивные особенности;
  • размер помещения на плане;
  • тип отделки;
  • проектирование дверей, окон и их размещение;
  • расположение элементов конструкции в плане.

Для грамотного проектирования необходимо учитывать установленный температурный режим и возможность его регулировки.

Для грубого расчета принято, что 1 м 2 Система отопления должна компенсировать потери тепла в 1 кВт. Если водяной контур отопления используется как дополнение к основной системе, то требуется покрыть только часть теплопотерь

Приведены рекомендации по температуре на полу, обеспечивающие комфортное пребывание в помещениях различного назначения:

  • 29°С — жилой сектор;
  • 33°С — баня, помещения с бассейном и другие с повышенным показателем влажности;
  • 35°С — холодные зоны (у входных дверей, наружных стен и т. п.).

Превышение этих значений влечет за собой перегрев как самой системы, так и финишного покрытия с последующим неизбежным повреждением материала.

После предварительных расчетов можно выбрать оптимальную по личным ощущениям температуру теплоносителя, определить нагрузку на отопительный контур и приобрести насосное оборудование, прекрасно справляющееся со стимуляцией движения теплоносителя. Подбирается с запасом расхода теплоносителя 20%.

Прогрев стяжек мощностью более 7 см занимает много времени. Поэтому при установке водяных систем стараются не превышать указанный лимит. Напольная керамика считается наиболее подходящим покрытием для водяных полов. Теплый пол не подходит под паркет из-за его сверхнизкой теплопроводности.

На этапе проектирования следует решить, будет ли теплый пол основным поставщиком тепла или будет использоваться только как дополнение к ветке радиаторного отопления. От этого зависит доля потерь тепловой энергии, которую ему приходится компенсировать. Он может варьироваться от 30% до 60% с вариациями.

Время прогрева водяного пола зависит от толщины элементов, входящих в стяжку. Вода как теплоноситель очень эффективна, но сама система сложна в монтаже.

Фотогалерея

Фото

Для выполнения расчетов системы водоснабжения, теплого пола в первую очередь производят расчеты теплопотерь, которые должны компенсировать контур. Если это дополнительная система, то учитывается часть теплопотерь.

Расчеты производятся только для той части пола, на которой будет располагаться нагревательный змеевик. Участки, где трубы не проложены, например, под мебелью, в расчетах не учитываются

Для проведения расчетов необходимы средние значения температуры теплоносителя на выходе из коллекторного устройства и на возврате на вход

Для получения точного результата необходимо знать теплопроводность планируемых к прокладке труб и ориентировочная длина отопительного контура

Водяной теплый пол в деревянном доме

Вариант расположения водяного контура

Коллектор и трубопровод системы отопления

Медный контур теплого пола

Определение параметров теплого пола

Цель расчета — получение величины тепловой нагрузки. Результат этого расчета влияет на следующие шаги. В свою очередь, на тепловую нагрузку влияет средняя зимняя температура в конкретном регионе, расчетная температура внутри помещений, коэффициент теплопередачи потолка, стен, окон и дверей.

Причиной теплопотерь является плохо утепленные стены, окна, двери дома. Наибольший процент тепла уходит через систему вентиляции и крышу (+)

Окончательный результат расчетов по типу воды будет зависеть от наличия дополнительных отопительных приборов, в том числе от теплоотдачи проживающих в доме людей и домашних животных. Обязательно учитывают в расчете наличие инфильтрации.

Одним из важных параметров является конфигурация комнат, поэтому вам нужен поэтажный план дома и соответствующие разрезы.

Метод расчета теплопотерь

Определив этот параметр, вы узнаете, сколько тепла должен вырабатывать пол для самочувствия людей, находящихся в помещении, сможете подобрать котел, насос и пол по мощности. Другими словами: тепло, отдаваемое отопительными контурами, должно компенсировать теплопотери здания.

Связь между этими двумя параметрами выражается формулой:

Mp = 1,2 x Q где

  • Mp — требуемая мощность шлейфа;
  • Q — потери тепла.

Для определения второго показателя оформляются замеры и расчеты площади окон, дверей, полов, наружных стен. Так как пол будет с подогревом, площадь данной ограждающей конструкции не учитывается. Замеры производятся снаружи с захватом углов здания.

При расчете будет учитываться как толщина, так и коэффициент теплопроводности каждой из конструкций. Нормативные значения (λ) для наиболее часто используемых материалов можно взять из таблицы.

Из таблицы можно взять значение коэффициента для расчета. Значение термического сопротивления материала важно узнать у поставщика, если окна металлопластиковые (+)

Расчет теплопотерь выполняется отдельно для каждого элемента здания по формуле :

Q = 1 / R * (tv-tn) * S x (1 + ∑b) где

  • R — термическое сопротивление материала, из которого изготовлена ​​ограждающая конструкция;
  • S — площадь конструктивного элемента;
  • тв и тн — температура соответственно внутренняя и внешняя, при этом второй показатель принимается по наименьшему значению;
  • б — дополнительные теплопотери, связанные с ориентацией здания относительно сторон света.

Показатель термического сопротивления (R) находится путем деления толщины конструкции на коэффициент теплопроводности материала, из которого она изготовлена.

Значение коэффициента b зависит от ориентации дома:

  • 0,1 — север, северо-запад или северо-восток;
  • 0,05 — запад, юго-восток;
  • 0 — юг, юго-запад.

Если рассмотреть вопрос на любом примере расчета водяного теплого пола, он становится более понятным.

Пример расчета бетона

Допустим, стены дома для временного проживания толщиной 20 см выполнены из газобетонных блоков. Общая площадь ограждающих стен без оконных и дверных проемов 60 м². Температура снаружи -25°С, внутри +20°С, постройка ориентирована на юго-восток.

Учитывая, что теплопроводность блоков λ = 0,3 Вт/(м°*С), можно рассчитать потери тепла через стены: R = 0,2/0,3 = 0,67 м²°С/Вт.

Потери тепла также наблюдаются через слой штукатурки. Если его толщина 20 мм, то Rшт. = 0,02/0,3 = 0,07 м²°С/Вт. Сумма этих двух показателей даст значение теплопотерь через стены: 0,67 + 0,07 = 0,74 м²°С/Вт.

Имея все исходные данные, подставляем их в формулу и получим теплопотери помещения с такими стенами: Q = 1/0,74 * (20 — (-25)) * 60 * (1 + 0,05) = 3831,08 Вт.

Таким же образом тепловые потери рассчитываются через остальные ограждающие конструкции: окна, дверные проемы, кровлю.

Тепла, выделяемого отопительными контурами, может не хватить для нагрева воздуха внутри дома до нужного значения, если их мощность недооценена. При превышении мощности произойдет перелив теплоносителя

Для определения теплопотерь через перекрытие его термическое сопротивление принимают равным значению для планируемого или существующего вида утепления: R = 0,18/0,041 = 4,39 м²°С/ W.

Площадь потолка равна площади пола и составляет 70 м². Подставив эти значения в формулу, получим потери тепла через верхнюю ограждающую конструкцию: Qпот. = 1/4,39* (20 — (-25)) * 70 * (1 + 0,05) = 753,42 Вт.

Чтобы определить потери тепла через поверхность окон, нужно рассчитать их площадь. При наличии 4 окон шириной 1,5 м и высотой 1,4 м их общая площадь составит: 4 * 1,5 * 1,4 = 8,4 м².

Если изготовитель указывает отдельно термическое сопротивление для стеклопакета и профиля — 0,5 и 0,56 м²°С/Вт соответственно, то Рокон = 0,5*90+0,56*10)/100 = 0,56 м²°С/Вт. Здесь 90 и 10 — доли, приходящиеся на каждый оконный элемент.

На основании полученных данных продолжаются дальнейшие расчеты: Q окна = 1/0,56 * (20 — (-25)) * 8,4 * (1 + 0,05) = 708,75 Вт.

Наружная дверь имеет площадь 0,95 * 2,04 = 1,938 м². Потом РДВ. = 0,06/0,14 = 0,43 м² °С/Вт. Q дв. = 1 / 0,43 * (20 — (-25)) * 1,938 * (1 + 0,05) = 212,95 Вт.

Поскольку наружные двери часто открываются, через них теряется много тепла. Поэтому важно обеспечить их герметичное закрытие

В результате тепловые потери составят: Q = 3831,08 +753,42 + 708,75 + 212,95 + 7406,25 = Вт.

К этому результату добавляются дополнительные 10% на инфильтрацию воздуха, тогда Q = 7406,25 + 740,6 = 8146,85 Вт.

Теперь можно определить тепловую мощность пола: Mp = 1, * 8146,85 = 9776,22 Вт или 9,8 кВт.

Необходимое количество тепла для обогрева воздуха

Если дом , то часть тепла, вырабатываемого источником, должна расходоваться на нагрев воздуха, поступающего извне.

Для расчета используйте формулу:

Qc. = с * м * (тв — тн) где

  • c = 0,28 кг⁰С и обозначает теплоемкость воздушной массы;
  • м Символ указывает на массовый расход наружного воздуха в кг.

Последний параметр получается путем умножения общего объема воздуха, равного объему всех помещений, при условии, что воздух каждый час обновляется на плотность, изменяющуюся в зависимости от температуры.

На графике представлена ​​зависимость плотности воздуха от его температуры. Данные необходимы для расчета количества тепла, необходимого для обогрева воздушной массы, поступающей в дом в результате принудительной вентиляции (+)

Если в здание входит 400 м 3 /ч, то m = 400 * 1,422 = 568,8 кг/ч. Кк. = 0,28 * 568,8 * 45 = 7166,88 Вт.

В этом случае значительно возрастет необходимая тепловая мощность пола.

Расчет необходимого количества труб

Для устройства пола с водяным отоплением, различающихся по своей форме: змейка трех видов — собственно змейка, угловая, двойная и улитка. В одной смонтированной схеме можно найти комбинацию разных форм. Иногда для центральной зоны пола выбирают улитку, а для краев – один из видов змей.

«Улитка» — рациональный выбор для больших помещений с простой геометрией. В помещениях сильно вытянутых или имеющих сложную форму лучше использовать «змейку» (+)

Расстояние между трубами называется ступенькой. При выборе этого параметра необходимо соблюсти два требования: ступня стопы не должна ощущать перепад температур в отдельных зонах пола, а трубы должны использоваться максимально эффективно.

Для граничных участков пола рекомендуется шаг 100 мм. В других областях можно сделать выбор шага в диапазоне от 150 до 300 мм.

Теплоизоляция пола очень важна. На первом этаже его толщина должна достигать не менее 100 мм. Для этого используется минеральная вата или экструдированный пенополистирол.

Для расчета длины трубы существует простая формула:

L = S/N * 1,1 где

  • S — площадь контура;
  • N — шаг укладки;
  • 1,1 — запас на изгиб 10%.

К итоговой величине добавить кусок трубы, проложенной от коллектора до разводки теплого контура как на обратке, так и на подаче.

Пример расчета.

Исходные значения:

  • площадь — 10 м²;
  • расстояние коллектора — 6 м;
  • шаг укладки — 0,15 м.

Решение задачи простое: 10/0,15*1,1+(6*2)=85,3 м.

При использовании металлопластиковых труб длиной до 100 м чаще всего выбирают диаметр 16 или 20 мм. При длине трубы 120-125 м ее сечение должно быть 20 мм².

Одноконтурная конструкция подходит только для помещений с небольшой площадью. Пол в больших помещениях делится на несколько контуров в соотношении 1:2 – длина конструкции должна превышать ширину в 2 раза.

Ранее рассчитанное значение является общей длиной. Однако для полноты картины нужно выделить длину отдельного контура.

На этот параметр влияет гидравлическое сопротивление контура, определяемое диаметром выбранных труб и объемом подаваемой воды в единицу времени. Если пренебречь этими факторами, потери давления будут настолько велики, что ни один насос не будет обеспечивать циркуляцию теплоносителя.

Определение расхода труб в зависимости от выбранного шага укладки

Контуры одинаковой длины — это идеальный случай, но редко встречающийся на практике, т.к. площадь помещений разного назначения сильно отличается и просто нецелесообразно приводить длину контуров к одному значению. Профессионалы допускают разницу в длине трубы от 30 до 40%.

Величина диаметра коллектора и пропускной способности узла смешения определяет допустимое количество подключаемых к нему петель. В паспорте на смесительный узел всегда можно найти значение тепловой нагрузки, на которую он рассчитан.

Предположим, что коэффициент пропускной способности ( Kvs ) равен 2,23 м 3 / ч С этим коэффициентом некоторые модели насосов могут выдерживать нагрузку от 10 до 15 Вт.

Для определения количества контуров необходимо рассчитать тепловую нагрузку каждого. Если площадь, занимаемая теплым полом, 10 м², а теплоотдача 1 м², то показатель Квс равен 80 Вт, тогда 10*80 = 800 Вт. Это значит, что смесительный узел сможет обеспечить 15 000/800 = 18,8 помещений или контуров площадью 10 м².

Эти показатели максимальные, и применять их можно только теоретически, а реально цифру нужно уменьшить хотя бы на 2, тогда 18 — 2 = 16 контуров.

Нужно для подбора посмотреть, много ли у него выводов.

Проверка правильности подбора диаметра труб

Для проверки правильности подбора сечения трубы можно воспользоваться формулой:

υ = 4 * Q * 10ᶾ / n * d²

Когда скорость соответствует найденному значению, сечение трубы выбрано правильно. Нормативные документы допускают максимальную скорость 3 м/с. диаметром до 0,25 м, но оптимальное значение 0,8 м/с., так как с увеличением его значения увеличивается шумовой эффект в трубопроводе.

Дополнительная информация по расчету труб теплого пола приведена в .

Рассчитываем циркуляционный насос

Чтобы система была экономичной, нужно обеспечить необходимое давление и оптимальный расход в контурах. В паспортах на насосы обычно указывают давление в контуре наибольшей длины и общий расход теплоносителя во всех контурах.

На давление влияют гидравлические потери:

∆ h = L * Q² / k1 где

  • L — длина контура;
  • Q — расход воды л/с;
  • к1 — коэффициент, характеризующий потери в системе, показатель можно взять из гидравлических справочников или из паспорта оборудования.

Зная давление, рассчитайте расход в системе:

Q = k * √H где

k Коэффициент расхода. Профессионалы принимают расход на каждые 10 м² дома в пределах 0,3-0,4 л/с.

Среди компонентов водяного теплого пола особая роль отводится циркуляционному насосу. Преодолеть сопротивление в трубах

может только агрегат, мощность которого на 20 % выше фактического расхода теплоносителя. на самом деле на них влияют длина и геометрия сети. Если давление слишком высокое, уменьшите длину контура или увеличьте диаметр труб.

Советы по выбору толщины стяжки

В справочниках можно найти информацию о том, что минимальная толщина стяжки 30 мм. Когда помещение достаточно высокое, под стяжку укладывают утеплитель, что повышает эффективность использования тепла, отдаваемого отопительным контуром.

Самый популярный материал подложки. Его сопротивление теплопередаче значительно ниже, чем у бетона.

При устройстве стяжек с целью выравнивания линейного расширения бетона периметр помещения оформляют демпферной лентой. Важно правильно подобрать его толщину. Специалисты советуют при площади помещения, не превышающей 100 м², устраивать компенсирующий слой толщиной 5 мм.

Если площадь больше за счет длины, превышающей 10 м, толщина рассчитывается по формуле:

b = 0,55*L где

L — это длина помещения в м.

Выводы и полезное видео по теме

О расчете и монтаже теплого гидравлического пола этот видеоматериал:

В видео даны практические рекомендации по укладке пола. Информация поможет избежать ошибок, которые обычно совершают влюбленные:

Расчет позволяет спроектировать систему «теплый пол» с оптимальными характеристиками. Отопление допустимо устанавливать, используя паспортные данные и рекомендации.

Подойдет, но профессионалы советуют все же потратить время на расчет, чтобы в итоге система потребляла меньше энергии.

У Вас есть опыт расчета теплого пола и составления проекта контура отопления? Или есть вопросы по теме? Делитесь своим мнением и оставляйте комментарии.

Расчет лучистой тепловой нагрузки

Вы здесь:- Главная > индекс обогревателя > индекс лучистого нагрева > настенные лучистые обогреватели > Расчет размеров лучистого обогревателя

Лучистая тепловая нагрузка — это количество инфракрасной энергии, необходимое для нагрева заданная площадь; выражается в кВт на квадратный метр (кВт/м2).

Расчет лучистой тепловой нагрузки

Наш онлайн-калькулятор лучистого отопления рассчитает требуемую лучистая тепловая нагрузка на помещение с учетом его размеров и конструкции.

Чтобы вручную рассчитать лучистую тепловую нагрузку для здания, определите его площадь (в квадратных метрах) и умножить на коэффициенты, указанные в таблице ниже:

Факторы лучистого обогревателя Activair
Тип здания Множитель
Маленький здание с хорошей изоляцией или подвесным потолком 0,08
Большой помещение или помещение с хорошей изоляцией, высотой потолков до 3 м 0,1
Плохо изолированная площадь с высокими потолками и бетонным полом 0,15
Неизолированный здание, где требуется разумный уровень комфорта 0,2 ​​
Общие отопление в большом здании или мастерской 0,25
Зональное отопление для малоотапливаемой местности или без нее 0,45

Шаг первый

Рассчитайте отапливаемую площадь в квадратных метрах.

Площадь (м2) = длина (м) x ширина (м) Шаг второй

Из приведенной выше таблицы выберите фактор, наиболее точно соответствующий зданию. тип.

Тепловая нагрузка (кВт) = площадь (м2) x коэффициент Шаг третий

Выберите инфракрасные излучающие обогреватели Activair, которые соответствуют или немного превышать требуемую тепловую нагрузку.

Практические соображения

Для равномерного распределения тепла лучше использовать несколько меньших лучистые обогреватели, установленные на противоположных стенах, чем одна большая. См. установку керамические инфракрасные обогреватели для получения дополнительной информации.

Пример

Небольшой промышленный объект необходимо отапливать инфракрасными обогревателями Activair. Блок состоит из двух зон. Мастерская, в которой есть большие рольставни дверь, которую часто оставляют открытой, и небольшой офис (С).

Для расчета лучистой тепловой нагрузки мастерская имеет разделен на две части, отмеченные на рисунке (A) и (B). Это для того, чтобы позволить дополнительный обогрев в грузовом отсеке для защиты от холодных сквозняков.

Клиент хочет знать эксплуатационные расходы на лучистые обогреватели. Из его счета за электроэнергию стоимость одной единицы электроэнергии составляет 0,20

.

Лучистая тепловая нагрузка для Зоны A

Площадь (А) = 5 м x 5 м = 25 м2

Зональный обогрев выбирается из таблицы (А) с учетом дополнительного нагрева для компенсировать дверной проем.

Тепловая нагрузка для площади (А) = 25 x 0,45 = 11,25 кВт

Выбраны два настенных инфракрасных обогревателя HS6000 мощностью 6 кВт.

Лучистая тепловая нагрузка для Зоны (B)

Площадь (B) = 10 м x 5 м = 50 м2

Зона (B) плохо изолирована бетонным полом, поэтому из таблицы (A) a выбран коэффициент 0,15.

Тепловая нагрузка для площади (B) = 50 x 0,15 = 7,5 кВт

Для обеспечения равномерного распределения тепла четыре стены HS2000 выбираются навесные лучистые обогреватели.

Лучистая тепловая нагрузка для Зоны (C)

Площадь (С) = 5 м x 5 м = 25 м2

Зона (C) хорошо изолирована с потолком высотой 2,5 м, поэтому коэффициент 0,1 выбрано.

Тепловая нагрузка для площади (C) = 25 x 0,1 = 2,5 кВт

Поскольку лучистые обогреватели работают лучше всего, когда они расположены напротив стены выбраны два настенных инфракрасных обогревателя HS1500.

Промышленный блок имеет общую лучистую тепловую нагрузку 21,25 кВт и может быть отапливается 8 настенными лучистыми обогревателями.

Почасовая стоимость эксплуатации

Чтобы рассчитать эксплуатационные расходы в час, сложите размеры лучистого обогревателя. и умножить на стоимость одной единицы электроэнергии.

Общая мощность лучистого обогревателя = (2 x 6) + (4 x 2) + (2 x 1,5) = 23 кВт

Эксплуатационные расходы в час = 23 x 0,2 = 4,60

Фактические эксплуатационные расходы, скорее всего, будут меньше. Выбирая энергию при сохранении управления настенные лучистые обогреватели будут включены только при необходимости.

Лучистое отопление очень экономично

Лучистое отопление недорого в установке и эксплуатации. Идеально подходит для промышленные здания с высокими потолками, открытыми дверями, большими потерями тепла и т. д. Поскольку его мощность может быть направлена ​​именно туда, где это необходимо, энергия не напрасный обогрев неиспользуемых площадей. Используя энергоэффективные элементы управления, которые превращают инфракрасные обогреватели включаются только тогда, когда они необходимы; эксплуатационные расходы сведены к минимуму. минимум. Для получения дополнительной информации см. лучистое отопление домашняя страница.

Вы здесь:- Главная > индекс обогревателя > индекс лучистого нагрева > настенные лучистые обогреватели > Расчет размеров лучистого обогревателя

Если вы нашли эту страницу полезной, пожалуйста, найдите минутку
, чтобы рассказать об этом другу или коллеге.


Copyright 2004/6, W. Tombling Ltd.

Как рассчитать потери тепла в доме [Формула потерь тепла]

Перед тем, как выбрать конкретную систему теплого пола для своего дома, необходимо провести энергоаудит. Это отличный способ точно определить области, в которых происходит потеря тепла, и получить профессиональные рекомендации по наиболее эффективному способу ее устранения.

Чтобы выбрать правильную систему, вам необходимо знать, сколько БТЕ (британских тепловых единиц) требуется для замены тепла, уходящего из вашего дома через стены и другие поверхности. Он определяется путем расчета тепловой нагрузки, который состоит из расчета поверхностных тепловых потерь и тепловых потерь из-за инфильтрации воздуха.

Эта статья будет служить нетехническим руководством к тому, что происходит во время энергоаудита и как производятся расчеты.

Для заключительного аудита рекомендуется пригласить подрядчика или системного разработчика, однако вы можете подготовиться к энергоаудиту, загерметизировав очевидные утечки вокруг окон и дверей и выяснив места, где требуется теплоизоляция.

6 шагов для расчета теплопотерь

1. Определение расчетной температуры

Первым шагом является определение разницы между идеальной температурой внутри вашего дома и средней температурой, ниже которой в вашем географическом регионе никогда не бывает зимой. Результат этого расчета будет называться Дельта Т. Если расчетная температура внутри вашего дома составляет около 68 градусов, а средняя зимняя температура снаружи равна 40, то Дельта Т = 28 градусов, что является разницей между ними.

2. Вычислите площадь поверхности

Площадь поверхности или площадь стен дома будет равна общей длине наружных стен x высоте этих стен минус квадратные метры дверей и окон в этой стене. Потери тепла через двери и окна следует рассчитывать отдельно. Если длина вашей внешней стены составляет 25 футов, а высота стены — 8 футов, то площадь поверхности будет 25 футов x 8 футов = 200 квадратных футов. Если бы в стенах было 36 квадратных футов окон и дверей, расчет площади поверхности был бы 200 — 36 = 164 квадратных фута.

3. Рассчитайте R-значение и U-значение

Значение R стены будет основано на изоляции в стене. Неизолированная жилая стена 2 × 4 будет иметь значение R 4, в то время как та же стена с изоляцией, одобренной нормами, будет иметь значение R 14,3. Чтобы получить значение U, разделите значение R на 1. Значение U в этом примере будет равно 0,07.

4. Расчет поверхностных тепловых потерь

Тепловые потери в стене измеряются в БТЕ по формуле: Значение U x Площадь стены x Дельта Т. В нашем примере это будет: 0,07 x 164 x 28 = 321,44 БТЕ·ч. (Британские тепловые единицы в час). Это количество тепла, которое уходит через наружные стены в зависимости от количества изоляции в них. Другой расчет внутренней поверхности предназначен для потолка. Типовой изоляцией потолка будет R-19.который имеет значение U 0,53. Это приводит к потере 5 565 БТЕ в час.

Чтобы рассчитать потери тепла окнами и дверями, вам нужно будет подставить их значения U в эту формулу и прибавить к сумме. Например, дверь из цельного дерева со значением R, равным 4, будет иметь значение U, равное 0,25. Формула будет выглядеть так: 0,25 x 21 (3’x7’) x 28 = 147 потерь БТЕ в час через одну дверь. Окно размером 3×5 футов со значением U 0,65 будет терять 273 БТЕ в час.

5. Расчет тепловых потерь при инфильтрации воздуха

Тепловые потери при инфильтрации воздуха – это неконтролируемые потери тепла через швы в конструкции и щели вокруг дверей и окон. На эту цифру влияют ветер и перепады давления между внешней и внутренней частью дома, которые заставляют воздух перемещаться внутри дома, тем самым вызывая потери тепла, когда этот воздух выходит из комнаты. Формула: Объем помещения x Дельта T x Обмен воздуха в час x 0,018. В нашем примере мы предположим, что высота комнаты составляет 25 x 15 x 8 футов. Это дает нам объем комнаты 3000 кубических футов. Подставляя это в формулу, мы видим: 3000 x 28 x 4 x 0,018 = 6048 BTUH.

6. Расчет суммарных теплопотерь

Суммарные теплопотери стен определяются суммированием теплопотерь стен, окон, дверей и потолка: (стены) 321,44 + (окна) 273 + (двери) 147 + (потолки) 5 565 = (Общие тепловые потери стены) 6 306,44 БТЕ·ч.

Общие потери тепла получаются путем прибавления к этой цифре потерь тепла при инфильтрации воздуха:

6 306,44 + 6 048 = 12 354,44 БТЕ в час потерь, которые должны быть обеспечены системой отопления для поддержания внутренней температуры 68 градусов.

Всегда работайте с опытным специалистом

Компании, специализирующиеся на энергетическом моделировании или энергетическом аудите, имеют опытных технических специалистов, которые используют новейшие технологии для выявления точек потери тепла, а также проникновения воздуха и влаги. Выявление этих областей часто невозможно с помощью визуального осмотра, поскольку они скрыты под полом, за стенами и над потолком. Именно поэтому настоятельно рекомендуется обратиться в профессиональную компанию для проведения проверки.

Используйте теплый пол для эффективного обогрева дома

Нет ничего более удобного, чем теплый пол, когда зимой ноги касаются холодных ног, а электрический теплый пол — это идеальная система для дополнительного обогрева помещения или всего дома.