Чертежи для фрезерного станка с чпу: Как собрать самодельный фрезерный станок с ЧПУ + Чертежи и схемы!

Содержание

Как собрать самодельный фрезерный станок с ЧПУ + Чертежи и схемы!

Возможно, меня уволят за это!

Я давно хотел разместить серию постов по теме самодельных станков с ЧПУ. Но всегда останавливал тот факт, что Станкофф — станкоторговая компания. Дескать, как же так, мы же должны продавать станки, а не учить людей делать их самостоятельно. Но увидев этот проект я решил плюнуть на все условности и поделиться им с вами.

И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный настольный фрезерный станок с ЧПУ. Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта. 

В этой статье будет достаточно много чертежей, примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

Предисловие от автора

Уже в 12 лет я мечтал построить машину, которая будет способна создавать различные вещи. Машину, которая даст мне возможность изготовить любой предмет домашнего обихода. Спустя два года я наткнулся на словосочетание ЧПУ или если говорить точнее, то на фразу «Фрезерный станок с ЧПУ». После того как я узнал, что есть люди способные сделать такой станок самостоятельно для своих нужд, в своем собственном гараже, я понял, что тоже смогу это сделать. Я должен это сделать! В течение трех месяцев я пытался собрать подходящие детали, но не сдвинулся с места. Поэтому моя одержимость постепенно угасла.

В августе 2013 идея построить фрезерный станок с ЧПУ вновь захватила меня. Я только что окончил бакалавриат университета промышленного дизайна, так что я был вполне уверен в своих возможностях. Теперь я четко понимал разницу между мной сегодняшним и мной пятилетней давности. Я научился работать с металлом, освоил техники работы на ручных металлообрабатывающих станках, но самое главное я научился применять инструменты для разработки.

Я надеюсь, что эта инструкция вдохновит вас на создание своего станка с ЧПУ! 

Шаг 1: Дизайн и CAD модель

Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: токарном и фрезерном.

Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.

Файлы для скачивания «Шаг 1»

Габаритные размеры

Шаг 2: Станина

Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения. 

Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия.  Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.

Несущая рама в сборе

Уголки для защиты направляющих

Файлы для скачивания «Шаг 2»

Чертежи основных элементов станины

Шаг 3: Портал

Подвижной портал — исполнительный орган вашего станка, он перемещается по оси X и несет на себе фрезерный шпиндель и суппорт оси Z. Чем выше портал, тем толще заготовка, которую вы можете обработать. Однако, высокий портал менее устойчив к нагрузкам которые возникают в процессе обработки. Высокие боковые стойки портала выполняют роль рычагов относительно линейных подшипников качения.

Основная задача, которую я планировал решать на своем фрезерном станке с ЧПУ — это обработка алюминиевых деталей. Поскольку максимальная толщина подходящих мне алюминиевых заготовок 60 мм, я решил сделать просвет портала (расстояние от рабочей поверхности до верхней поперечной балки) равным 125 мм.  В SolidWorks все свои измерения я преобразовал в модель и технические чертежи. В связи со сложностью деталей, я обработал их на промышленном обрабатывающем центре с ЧПУ, это дополнительно мне позволило обработать фаски, что было бы весьма затруднительно сделать на ручном фрезерном станке по металлу.

Файлы для скачивания «Шаг 3»

Шаг 4: Суппорт оси Z

В конструкции оси Z я использовал переднюю панель, которая крепится к подшипникам перемещения по оси Y, две пластины для усиления узла, пластину для крепления шагового двигателя и панель для установки фрезерного шпинделя. На передней панели я установил две профильные направляющие по которым будет происходить перемещение шпинделя по оси Z. Обратите внимание на то, что винт оси Z не имеет контропоры внизу.

Файлы для скачивания «Шаг 4»

Шаг 5: Направляющие

Направляющие обеспечивают возможность перемещения во всех направлениях, обеспечивают плавность и точность движений. Любой люфт в одном из направлений может стать причиной неточности в обработке ваших изделий. Я выбрал самый дорогой вариант — профилированные закаленные стальные рельсы. Это позволит конструкции выдерживать высокие нагрузки и обеспечит необходимую мне точность позиционирования. Чтобы обеспечить параллельность направляющих, я использовал специальный индикатор во время их установки. Максимальное отклонение относительно друг друга составило не более 0,01 мм.

Шаг 6: Винты и шкивы

Винты преобразуют вращательное движение от шаговых двигателей в линейное. При проектировании своего станка вы можете выбрать несколько вариантов этого узла: Пара винт-гайка или шарико-винтовая пара (ШВП). Винт-гайка, как правило, больше подвергается силам трения при работе, а также менее точна относительно ШВП. Если вам необходима повышенная точность, то однозначно необходимо остановить свой выбор на ШВП. Но вы должны знать, что ШВП достаточно дорогое удовольствие.

Я все же решил использовать винт-гайку для своего станка. Я выбрал гайки со специальными пластиковыми вставками которые уменьшают трение и исключают люфты.

Необходимо обработать концы винтов в соответствии с чертежами. На концы винтов устанавливаются шкивы

Файлы для скачивания «Шаг 6»

Шаг 7: Рабочая поверхность

Рабочая поверхность — это место на котором вы будете закреплять заготовки для последующей обработки. На профессиональных станках часто используется стол из алюминиевого профиля с Т-пазами. Я решил использовать лист обычной березовой фанеры толщиной 18 мм.

Шаг 8: Электрическая схема

Основными  компонентами электрической схемы являются:

  1. Шаговые двигатели
  2. Драйверы шаговых двигателей
  3. Блок питания
  4. Интерфейсная плата
  5. Персональный компьютер или ноутбук
  6. Кнопка аварийного останова 

Я решил купить готовый набор из 3-х двигателей Nema, 3-х подходящих драйверов, платы коммутации и блока питания на 36 вольт. Также я использовал понижающий трансформатор для преобразования 36 вольт в 5 для питания управляющей цепи. Вы можете использовать любой другой готовый набор или собрать его самостоятельно. Так как мне хотелось быстрее запустить станок, я временно собрал все элементы на доске. Нормальный корпус для системы управления сейчас находится в разработке )).

Электрическая схема станка

Шаг 9: Фрезерный шпиндель

Для своего проекта я использовал фрезерный шпиндель Kress. Если есть необходимость, средства и желание, то вы вполне можете поставить высокочастотный промышленный шпиндель с водяным или воздушным охлаждением. При этом потребуется незначительно изменить электрическую схему и добавить несколько дополнительных компонентов, таких как частотный преобразователь.

Шаг 10: Программное обеспечение

В качестве управляющей системы для своего детища я выбрал MACh4. Это одна из самых популярных программ для фрезерных станков с ЧПУ. Поэтому про ее настройку и эксплуатацию я не буду говорить, вы можете самостоятельно найти огромное количество информации на эту тему в интернете.

Шаг 11: Он ожил! Испытания

Если вы все сделали правильно, то включив станок вы увидите, что он просто работает!

Я уверен, моя история вдохновит вас на создание собственного фрезерного станка с ЧПУ.

Послесловие

Друзья, если вам понравилась история, делитесь ей в социальных сетях и обсуждайте в комментариях. Успехов вам в ваших проектах!

ЧПУ станок 900х600х100 — Чертежи, 3D Модели, Проекты, Фрезерные станки

ЧПУ станок/Сборка/

ЧПУ станок/Сборка/Каретка XZ/

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Опора кабель-канала.dxf

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Опора кабель-канала.jpg

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина большая каретки X-Z.dxf

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина большая каретки X-Z.jpg

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина малая каретки X-Z верхняя.dxf

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина малая каретки X-Z верхняя.jpg

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина малая каретки X-Z нижняя.dxf

ЧПУ станок/Сборка/Каретка XZ/DFX Для плазменной резки/Пластина малая каретки X-Z нижняя.jpg

ЧПУ станок/Сборка/Каретка XZ/Крепление гаек X.m3d

ЧПУ станок/Сборка/Каретка XZ/Опора кабель-канала.m3d

ЧПУ станок/Сборка/Каретка XZ/Пластина каретки ZX большая.m3d

ЧПУ станок/Сборка/Каретка XZ/Пластина каретки ZX малая.m3d

ЧПУ станок/Сборка/Каретка XZ/Рама каретки X.m3d

ЧПУ станок/Сборка/Каретка XZ/Рама каретки Z.m3d

ЧПУ станок/Сборка/Каретка XZ/Чертежи/

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Крепление ходовых гаек X.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Опора кабель-канала.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Пластина большая.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Пластина малая каретки X-Z верхняя.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Пластина малая каретки X-Z нижняя.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Рама каретки X-Z с креплением выключателя X.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Рама каретки X-Z с креплением выключателя Z.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Рама каретки X-Z с отверстием под винт.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи/Рама каретки X-Z.cdw

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Крепление ходовых гаек X.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Опора кабель-канала.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Пластина большая.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Пластина малая каретки X-Z верхняя.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Пластина малая каретки X-Z нижняя.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Рама каретки X-Z с креплением выключателя X.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Рама каретки X-Z с креплением выключателя Z.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Рама каретки X-Z с отверстием под винт.jpg

ЧПУ станок/Сборка/Каретка XZ/Чертежи JPG/Рама каретки X-Z.jpg

ЧПУ станок/Сборка/Каретка XZ.a3d

ЧПУ станок/Сборка/Каретка портала/

ЧПУ станок/Сборка/Каретка портала/DFX/

ЧПУ станок/Сборка/Каретка портала/DFX/Пластина большая каретки портала левая.dxf

ЧПУ станок/Сборка/Каретка портала/DFX/Пластина большая каретки портала правая.dxf

ЧПУ станок/Сборка/Каретка портала/DFX/Пластина малая каретки портала.dxf

ЧПУ станок/Сборка/Каретка портала/Опора кабель-канала Y.m3d

ЧПУ станок/Сборка/Каретка портала/Пластина каретки портала большая.m3d

ЧПУ станок/Сборка/Каретка портала/Пластина каретки портала малая.m3d

ЧПУ станок/Сборка/Каретка портала/Рама каретки портала.m3d

ЧПУ станок/Сборка/Каретка портала/Чертежи/

ЧПУ станок/Сборка/Каретка портала/Чертежи/Опора кабель-канала Y.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Пластина большая с отверстием для выключателя.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Пластина большая.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Пластина каретки портала малая.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Рама каретки портала верхняя с креплением выключателя.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Рама каретки портала верхняя.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Рама каретки портала нижняя с креплением нижней пластины.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи/Рама каретки портала нижняя.cdw

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Опора кабель-канала Y.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Пластина большая каретки портала левая.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Пластина большая каретки портала правая.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Пластина большая с отверстием для выключателя.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Пластина большая.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Пластина каретки портала малая.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Рама каретки портала верхняя с креплением выключателя.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Рама каретки портала верхняя.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Рама каретки портала нижняя с креплением нижней пластины.jpg

ЧПУ станок/Сборка/Каретка портала/Чертежи JPG/Рама каретки портала нижняя.jpg

ЧПУ станок/Сборка/Каретка портала.a3d

ЧПУ станок/Сборка/Общее/

ЧПУ станок/Сборка/Общее/DXF/

ЧПУ станок/Сборка/Общее/DXF/Прижим подшипника Z.dxf

ЧПУ станок/Сборка/Общее/DXF/Прижим подшипника.dxf

ЧПУ станок/Сборка/Общее/Винт.m3d

ЧПУ станок/Сборка/Общее/Вставка фанерная.m3d

ЧПУ станок/Сборка/Общее/Выключатель на опоре.a3d

ЧПУ станок/Сборка/Общее/Выключатель.m3d

ЧПУ станок/Сборка/Общее/Гайка.m3d

ЧПУ станок/Сборка/Общее/Клемма 4.8мм.m3d

ЧПУ станок/Сборка/Общее/Клеммник винтовой.m3d

ЧПУ станок/Сборка/Общее/Крепление выключателя 2.m3d

ЧПУ станок/Сборка/Общее/Магнит 3x5x30.m3d

ЧПУ станок/Сборка/Общее/Мотор с муфтой.a3d

ЧПУ станок/Сборка/Общее/Мотор.m3d

ЧПУ станок/Сборка/Общее/Муфта 2.m3d

ЧПУ станок/Сборка/Общее/Муфта.m3d

ЧПУ станок/Сборка/Общее/Наконечник кабель-канала.m3d

ЧПУ станок/Сборка/Общее/Подшипник.a3d

ЧПУ станок/Сборка/Общее/Подшипники.a3d

ЧПУ станок/Сборка/Общее/Стяжка гаек ходовых.m3d

ЧПУ станок/Сборка/Общее/Чертежи/

ЧПУ станок/Сборка/Общее/Чертежи/Винт.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Вставка фанерная .cdw

ЧПУ станок/Сборка/Общее/Чертежи/Гайка ходовая.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Крепление выключателя.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Магнит.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Прижим подшипника Z.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Прижим подшипника.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Стяжка гаек ходовых.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Шайба.cdw

ЧПУ станок/Сборка/Общее/Чертежи/Штанга резьбовая (шпилька) М12.cdw

ЧПУ станок/Сборка/Общее/Чертежи JPG/

ЧПУ станок/Сборка/Общее/Чертежи JPG/Винт.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Вставка фанерная .jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Гайка ходовая Ж.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Гайка ходовая.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Крепление выключателя.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Магнит.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Прижим подшипника Z.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Прижим подшипника.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Стяжка гаек ходовых 2.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Стяжка гаек ходовых.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Шайба.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Шпилька и винт.jpg

ЧПУ станок/Сборка/Общее/Чертежи JPG/Штанга резьбовая (шпилька) М12.jpg

ЧПУ станок/Сборка/Общее/Шайба 20 увеличенная.m3d

ЧПУ станок/Сборка/Общее/Шайба из гайки.m3d

ЧПУ станок/Сборка/Общее/Штанга резьбовая М12.m3d

ЧПУ станок/Сборка/Ось Z/

ЧПУ станок/Сборка/Ось Z/DXF/

ЧПУ станок/Сборка/Ось Z/DXF/Крепление шпинделя нижнее.dxf

ЧПУ станок/Сборка/Ось Z/DXF/Пластина крепления двигателя Z.dxf

ЧПУ станок/Сборка/Ось Z/Крепление дополнительного подшипника Z.m3d

ЧПУ станок/Сборка/Ось Z/Крепление подшипника Z.m3d

ЧПУ станок/Сборка/Ось Z/Крепление шпинделя 600Вт.m3d

ЧПУ станок/Сборка/Ось Z/Крепление шпинделя верхнее.m3d

ЧПУ станок/Сборка/Ось Z/Крепление шпинделя нижнее.m3d

ЧПУ станок/Сборка/Ось Z/Крепление шпинделя.m3d

ЧПУ станок/Сборка/Ось Z/Опора кабель-канала.m3d

ЧПУ станок/Сборка/Ось Z/Пластина крепления двигателя Z.m3d

ЧПУ станок/Сборка/Ось Z/Рельс Z.m3d

ЧПУ станок/Сборка/Ось Z/Уголок крепления пластины мотора Z задний.m3d

ЧПУ станок/Сборка/Ось Z/Уголок крепления пластины мотора Z передний.m3d

ЧПУ станок/Сборка/Ось Z/Чертежи/

ЧПУ станок/Сборка/Ось Z/Чертежи/Крепление подшипника Z.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Крепление радиального подшипника Z.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Крепление шпинделя верхнее.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Крепление шпинделя нижнее.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Опора кабель-канала Z.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Пластина крепления двигателя Z.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Пластина крепления шпинделя.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Рельс Z.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Уголок крепления пластины мотора Z задний.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи/Уголок крепления пластины мотора Z передний.cdw

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Крепление подшипника Z.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Крепление радиального подшипника Z.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Крепление шпинделя верхнее.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Крепление шпинделя нижнее.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Опора кабель-канала Z.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Пластина крепления двигателя Z.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Пластина крепления шпинделя.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Рельс Z.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Уголок крепления пластины мотора Z задний.jpg

ЧПУ станок/Сборка/Ось Z/Чертежи JPG/Уголок крепления пластины мотора Z передний.jpg

ЧПУ станок/Сборка/Ось Z/Шпиндель 600W.m3d

ЧПУ станок/Сборка/Ось Z/Шпиндель.m3d

ЧПУ станок/Сборка/Ось Z.a3d

ЧПУ станок/Сборка/Портал/

ЧПУ станок/Сборка/Портал/DXF/

ЧПУ станок/Сборка/Портал/DXF/Пластина крепления двигателя X.dxf

ЧПУ станок/Сборка/Портал/DXF/Пластина крепления подшипника X внутренняя.dxf

ЧПУ станок/Сборка/Портал/DXF/Пластина крепления подшипника X наружняя.dxf

ЧПУ станок/Сборка/Портал/DXF/Пластина крепления упорного подшипника X.dxf

ЧПУ станок/Сборка/Портал/DXF/Пластина крепления упорного подшипника X.frw

ЧПУ станок/Сборка/Портал/DXF/Пластина нижняя 2.dxf

ЧПУ станок/Сборка/Портал/DXF/Пластина нижняя внутрянняя.dxf

ЧПУ станок/Сборка/Портал/Балка портала.m3d

ЧПУ станок/Сборка/Портал/Жёсткость подшипника X.m3d

ЧПУ станок/Сборка/Портал/Крепление подшипника X 2.m3d

ЧПУ станок/Сборка/Портал/Направляющая кабель-канала.m3d

ЧПУ станок/Сборка/Портал/Опора направляющй кабель-канала.m3d

ЧПУ станок/Сборка/Портал/Пластина крепления двигателя X.m3d

ЧПУ станок/Сборка/Портал/Пластина крепления подшипника X.m3d

ЧПУ станок/Сборка/Портал/Пластина портала нижняя 2.m3d

ЧПУ станок/Сборка/Портал/Пластина портала нижняя.m3d

ЧПУ станок/Сборка/Портал/Стойка портала.m3d

ЧПУ станок/Сборка/Портал/Укосина портала.m3d

ЧПУ станок/Сборка/Портал/Усиление нижней пластины портала.m3d

ЧПУ станок/Сборка/Портал/Чертежи/

ЧПУ станок/Сборка/Портал/Чертежи/Балка портала.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Дополнительная опора подшипника X.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Направляющая кабель-канала X.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Опора направляющей кабель-канала X.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина крепления двигателя X.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина крепления подшипника X внутрянняя.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина крепления подшипника X наружняя.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина крепления упорного подшипника X.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина портала нижняя внешняя.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Пластина портала нижняя внутрянняя.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Соединитель нижних пластин портала.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Стойка портала с креплением проводов.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Стойка портала.cdw

ЧПУ станок/Сборка/Портал/Чертежи/Штанга портала.cdw

ЧПУ станок/Сборка/Портал/Чертежи JPG/

ЧПУ станок/Сборка/Портал/Чертежи JPG/Балка портала.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Дополнительная опора подшипника X.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Направляющая кабель-канала X.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Опора направляющей кабель-канала X.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина крепления двигателя X.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина крепления подшипника X внутрянняя.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина крепления подшипника X наружняя.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина крепления упорного подшипника X.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина портала нижняя внешняя.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Пластина портала нижняя внутрянняя.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Стойка портала с креплением проводов.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Стойка портала.jpg

ЧПУ станок/Сборка/Портал/Чертежи JPG/Штанга портала.jpg

ЧПУ станок/Сборка/Портал/Шпилька М6×100.m3d

ЧПУ станок/Сборка/Портал.a3d

ЧПУ станок/Сборка/Рама/

ЧПУ станок/Сборка/Рама/DXF/

ЧПУ станок/Сборка/Рама/DXF/Крепление двигателя Y.dxf

ЧПУ станок/Сборка/Рама/Балка жёсткости стола.m3d

ЧПУ станок/Сборка/Рама/Балка рамы.m3d

ЧПУ станок/Сборка/Рама/Балка усиления рельс стола.m3d

ЧПУ станок/Сборка/Рама/Борт стола.m3d

ЧПУ станок/Сборка/Рама/Гайка забивная мебельная М6.m3d

ЧПУ станок/Сборка/Рама/Держатель борта стола.m3d

ЧПУ станок/Сборка/Рама/Крепление двигателя Y .m3d

ЧПУ станок/Сборка/Рама/Крепление упора подшипника.m3d

ЧПУ станок/Сборка/Рама/Направляющая кабель-канала.m3d

ЧПУ станок/Сборка/Рама/Ножка.m3d

ЧПУ станок/Сборка/Рама/Опора балки жёсткости стола.m3d

ЧПУ станок/Сборка/Рама/Опора доп. подшипника Y 2.m3d

ЧПУ станок/Сборка/Рама/Опора направляющей кабель-канала.m3d

ЧПУ станок/Сборка/Рама/Опора подшипника Y.m3d

ЧПУ станок/Сборка/Рама/Опора стола.m3d

ЧПУ станок/Сборка/Рама/Рельс рам2ы.m3d

ЧПУ станок/Сборка/Рама/Рельс рамы.m3d

ЧПУ станок/Сборка/Рама/Стол.m3d

ЧПУ станок/Сборка/Рама/Упор подшипника Y.m3d

ЧПУ станок/Сборка/Рама/Чертежи/

ЧПУ станок/Сборка/Рама/Чертежи/Балка крепления опор стола.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Балка рамы с креплением мотора.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Балка рамы.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Борт стола.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Держатель борта стола.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Крепление двигателя Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Крепление упора подшипника.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Направляющая кабель-канала Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Ножка.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора направляющей кабель-канала Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора подшипника Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора радиального подшипника Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора стола с креплением упора подшипника задняя.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора стола с креплением упора подшипника передняя.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Опора стола.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Рельс рамы.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Стол.cdw

ЧПУ станок/Сборка/Рама/Чертежи/Упор подшипника Y.cdw

ЧПУ станок/Сборка/Рама/Чертежи JPG/

ЧПУ станок/Сборка/Рама/Чертежи JPG/Балка крепления опор стола.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Балка рамы с креплением мотора.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Балка рамы.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Борт стола.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Держатель борта стола.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Крепление двигателя Y.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Крепление упора подшипника 2.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Крепление упора подшипника.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Направляющая кабель-канала Y.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Ножка.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора направляющей кабель-канала Y.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора подшипника Y.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора радиального подшипника Y.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора стола с креплением упора подшипника задняя.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора стола с креплением упора подшипника передняя.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Опора стола.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Рельс рамы.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Стол.jpg

ЧПУ станок/Сборка/Рама/Чертежи JPG/Упор подшипника Y.jpg

ЧПУ станок/Сборка/Рама.a3d

ЧПУ станок/Сборка.a3d

ЧПУ станок/Смета.pdf

Чертежи ЧПУ станков

Простой самодельный ЧПУ станок из фанеры
Чертежи ЧПУ станков

Как сделать самодельный ЧПУ станок из фанеры

В последнее время ЧПУ-станки уже не выглядят какой-то диковиной вещью и стали более доступны для приобретения, но цены на готовые образцы еще сильно кусаются, поэтому гораздо выгоднее заняться сборкой ЧПУ фрезера своими руками. Практически все комплектующие для сборки ЧПУ станка можно приобрести на АлиЭкспресс и на ближайшем строительном рынке.

 
Простой самодельный ЧПУ станок
Чертежи ЧПУ станков

Как сделать самодельный ЧПУ станок

Этот самодельный ЧПУ станок изготлвен из металлического профиля, МДФ плит и мебельных напрвляющих. 

В конце статьи вы сможете скачать чертежи станка в формате для бесплатной программы 3D проектирования, а так же исходники для прошивки платы пульта упарвления станком на базе Arduino. В статье рассказывается про изготвление такого ЧПУ станка своими руками и даются ссылки на комплектующие.

 
ЧПУ станок на 3D принтере — чертежи и сборка
Чертежи ЧПУ станков

Чертежи ЧПУ станка который можно напечатать на 3D принтере

Наверное каждый владелец 3D принтера не раз задумывался о том, что: 3D печать — это, конечно, хорошо, но ЧПУ фрезерером сделать тоже вышло бы дешевле. Дерево стоит на порядок меньше чем пластик, а уж если изготовляемой объект можно собрать из плоских деталей, то фанера порезанная на ЧПУ станке и вовсе оказывается чуть ли не бросовым материалом.

В конце этой статьи вы можете скачать чертежи деталей ЧПУ станка и распечатать их на 3D принтере. Так же в статье есть видео сборки и работы этого фрезера.

 
Чертежи ЧПУ станка Альтернатива 2
Чертежи ЧПУ станков

Альтернатива 2 — это ЧПУ фрезер разработанный для обработки металла, в отличии от ЧПУ станка моделиста, Альтернатива вполне справляется не только с алюминием, но и уверенно «грызет» стальные заготовки.

Чертежи ЧПУ станка Альтернатива 2 вы можете скачать по ссылке в конце статьи.

 
Чертежи прочного фанерного ЧПУ станка
Чертежи ЧПУ станков

Чертежи фанерного ЧПУ станка для сборки своими руками

Исходники чертежей этого ЧПУ станка из фанеры растут из не безизвестного «ЧПУ станка Графа», на нашем сайте можно прочитать об этом станке и скачать его чертежи в статье Самодельный ЧПУ станок моделиста.

Но, данные чертежи весьма сильно переработанны в сторону упрощения изготвления станка и увеличения его поперечной прочности. Факически от Графовских чертежей не осталось ни одной детали.

 

 
<< Первая < Предыдущая 1 2 3 4 Следующая > Последняя >>
Страница 1 из 4

Фрезерный станок с ЧПУ своими руками: чертежи, видео, фото

Зная о том, что фрезерный станок с ЧПУ является сложным техническим и электронным устройством, многие умельцы думают, что его просто невозможно изготовить своими руками. Однако такое мнение ошибочно: самостоятельно сделать подобное оборудование можно, но для этого нужно иметь не только его подробный чертеж, но и набор необходимых инструментов и соответствующих комплектующих.

Обработка дюралевой заготовки на самодельном настольном фрезерном станке

Решившись на изготовление самодельного фрезерного станка с ЧПУ, имейте в виду, что на это может уйти значительное количество времени. Кроме того, потребуются определенные финансовые затраты. Однако не побоявшись таких трудностей и правильно подойдя к решению всех вопросов, можно стать обладателем доступного по стоимости, эффективного и производительного оборудования, позволяющего выполнять обработку заготовок из различных материалов с высокой степенью точности.

Чтобы сделать фрезерный станок, оснащенный системой ЧПУ, можно воспользоваться двумя вариантами: купить готовый набор, из специально подобранных элементов которого и собирается такое оборудование, либо найти все комплектующие и своими руками собрать устройство, полностью удовлетворяющее всем вашим требованиям.

Инструкция по сборке самодельного фрезерного станка с ЧПУ

Ниже на фото можно увидеть сделанный собственными руками фрезерный станок с ЧПУ, к которому прилагается подробная инструкция по изготовлению и сборке с указанием используемых материалов и комплектующих, точными «выкройками» деталей станка и приблизительными затратами. Единственный минус — инструкция на английском языке, но разобраться в подробных чертежах вполне можно и без знания языка.

Скачать бесплатно инструкцию по изготовлению станка: Самодельный фрезерный станок с ЧПУ

Фрезерный станок с ЧПУ собран и готов к работе. Ниже несколько иллюстраций из инструкции по сборке данного станка

Подготовительные работы

Если вы решили, что будете конструировать станок с ЧПУ своими руками, не используя готового набора, то первое, что вам необходимо будет сделать, — это остановить свой выбор на принципиальной схеме, по которой будет работать такое мини-оборудование.

Схема фрезерного станка с ЧПУ

За основу фрезерного оборудования с ЧПУ можно взять старый сверлильный станок, в котором рабочая головка со сверлом заменяется на фрезерную. Самое сложное, что придется конструировать в таком оборудовании, — это механизм, обеспечивающий передвижение инструмента в трех независимых плоскостях. Этот механизм можно собрать на основе кареток от неработающего принтера, он обеспечит перемещение инструмента в двух плоскостях.

К устройству, собранному по такой принципиальной схеме, легко подключить программное управление. Однако его основной недостаток заключается в том, что обрабатывать на таком станке с ЧПУ можно будет только заготовки из пластика, древесины и тонкого листового металла. Объясняется это тем, что каретки от старого принтера, которые будут обеспечивать перемещение режущего инструмента, не обладают достаточной степенью жесткости.

Облегченный вариант фрезерного станка с ЧПУ для работы с мягкими материалами

Чтобы ваш самодельный станок с ЧПУ был способен выполнять полноценные фрезерные операции с заготовками из различных материалов, за перемещение рабочего инструмента должен отвечать достаточно мощный шаговый двигатель. Совершенно не обязательно искать двигатель именно шагового типа, его можно изготовить из обычного электромотора, подвергнув последний небольшой доработке.

Применение шагового двигателя в вашем фрезерном станке даст возможность избежать использования винтовой передачи, а функциональные возможности и характеристики самодельного оборудования от этого не станут хуже. Если же вы все-таки решите использовать для своего мини-станка каретки от принтера, то желательно подобрать их от более крупногабаритной модели печатного устройства. Для передачи усилия на вал фрезерного оборудования лучше применять не обычные, а зубчатые ремни, которые не будут проскальзывать на шкивах.

Узел ременной передачи

Одним из наиболее важных узлов любого подобного станка является механизм фрезера. Именно его изготовлению необходимо уделить особое внимание. Чтобы правильно сделать такой механизм, вам потребуются подробные чертежи, которым необходимо будет строго следовать.

Чертежи фрезерного станка с ЧПУ

Чертеж №1 (вид сбоку)

Чертеж №2 (вид сзади)

Чертеж №3 (вид сверху)

Приступаем к сборке оборудования

Основой самодельного фрезерного оборудования с ЧПУ может стать балка прямоугольного сечения, которую надо надежно зафиксировать на направляющих.

Несущая конструкция станка должна обладать высокой жесткостью, при ее монтаже лучше не использовать сварных соединений, а соединять все элементы нужно только при помощи винтов.

Узел скрепления деталей рамы станка посредством болтового соединения

Объясняется это требование тем, что сварные швы очень плохо переносят вибрационные нагрузки, которым в обязательном порядке будет подвергаться несущая конструкция оборудования. Такие нагрузки в итоге приведут к тому, что рама станка начнет разрушаться со временем, и в ней произойдут изменения в геометрических размерах, что скажется на точности настройки оборудования и его работоспособности.

Сварные швы при монтаже рамы самодельного фрезерного станка часто провоцируют развитие люфта в его узлах, а также прогиб направляющих, образующийся при серьезных нагрузках.

Установка вертикальных стоек

Во фрезерном станке, который вы будете собирать своими руками, должен быть предусмотрен механизм, обеспечивающий перемещение рабочего инструмента в вертикальном направлении. Лучше всего использовать для этого винтовую передачу, вращение на которую будет передаваться при помощи зубчатого ремня.

Важная деталь фрезерного станка – его вертикальная ось, которую для самодельного устройства можно изготовить из алюминиевой плиты. Очень важно, чтобы размеры этой оси были точно подогнаны под габариты собираемого устройства. Если в вашем распоряжении есть муфельная печь, то изготовить вертикальную ось станка можно своими руками, отлив ее из алюминия по размерам, указанным в готовом чертеже.

Узел верхней каретки, размещенный на поперечных направляющих

После того как все комплектующие вашего самодельного фрезерного станка подготовлены, можно приступать к его сборке. Начинается данный процесс с монтажа двух шаговых электродвигателей, которые крепятся на корпус оборудования за его вертикальной осью. Один из таких электродвигателей будет отвечать за перемещение фрезерной головки в горизонтальной плоскости, а второй — за перемещение головки, соответственно, в вертикальной. После этого монтируются остальные узлы и агрегаты самодельного оборудования.

Финальная стадия сборки станка

Вращение на все узлы самодельного оборудования с ЧПУ должно передаваться только посредством ременных передач. Прежде чем подключать к собранному станку систему программного управления, следует проверить его работоспособность в ручном режиме и сразу устранить все выявленные недостатки в его работе.

Посмотреть процесс сборки фрезерного станка своими руками можно на видео, которое несложно найти в интернете.

Шаговые двигатели

В конструкции любого фрезерного станка, оснащенного ЧПУ, обязательно присутствуют шаговые двигатели, которые обеспечивают перемещение инструмента в трех плоскостях: 3D. При конструировании самодельного станка для этой цели можно использовать электромоторы, установленные в матричном принтере. Большинство старых моделей матричных печатных устройств оснащались электродвигателями, обладающими достаточно высокой мощностью. Кроме шаговых электродвигателей из старого принтера стоит взять прочные стальные стержни, которые также можно использовать в конструкции вашего самодельного станка.

Закрепление шагового двигателя на верхней каретке

Чтобы своими руками сделать фрезерный станок с ЧПУ, вам потребуются три шаговых двигателя. Поскольку в матричном принтере их всего два, необходимо будет найти и разобрать еще одно старое печатное устройство.

Окажется большим плюсом, если найденные вами двигатели будут иметь пять проводов управления: это позволит значительно увеличить функциональность вашего будущего мини-станка. Важно также выяснить следующие параметры найденных вами шаговых электродвигателей: на сколько градусов осуществляется поворот за один шаг, каково напряжение питания, а также значение сопротивления обмотки.

Для подключения каждого шагового двигателя понадобится отдельный контроллер

Конструкция привода самодельного фрезерного станка с ЧПУ собирается из гайки и шпильки, размеры которых следует предварительно подобрать по чертежу вашего оборудования. Для фиксации вала электродвигателя и для его присоединения к шпильке удобно использовать толстую резиновую обмотку от электрического кабеля. Такие элементы вашего станка с ЧПУ, как фиксаторы, можно изготовить в виде нейлоновой втулки, в которую вставлен винт. Для того чтобы сделать такие несложные конструктивные элементы, вам понадобятся обычный напильник и дрель.

Электронная начинка оборудования

Управлять вашим станком с ЧПУ, сделанным своими руками, будет программное обеспечение, а его необходимо правильно подобрать. Выбирая такое обеспечение (его можно написать и самостоятельно), важно обращать внимание на то, чтобы оно было работоспособным и позволяло станку реализовывать все свои функциональные возможности. Такое ПО должно содержать драйверы для контроллеров, которые будут установлены на ваш фрезерный мини-станок.

В самодельном станке с ЧПУ обязательным является порт LPT, через который электронная система управления и подключается к станку. Очень важно, чтобы такое подключение осуществлялось через установленные шаговые электродвигатели.

Схема подключения униполярных шаговых электродвигателей для 3-х координатного станка с ЧПУ (нажмите для увеличения)

Выбирая электронные комплектующие для своего станка, сделанного своими руками, важно обращать внимание на их качество, так как именно от этого будет зависеть точность технологических операций, которые на нем будут выполняться. После установки и подключения всех электронных компонентов системы ЧПУ нужно выполнить загрузку необходимого программного обеспечения и драйверов. Только после этого следуют пробный запуск станка, проверка правильности его работы под управлением загруженных программ, выявление недостатков и их оперативное устранение.

Все вышеописанные действия и перечисленные комплектующие подходят для изготовления своими руками фрезерного станка не только координатно-расточной группы, но и ряда других типов. На таком оборудовании можно выполнять обработку деталей со сложной конфигурацией, так как рабочий орган станка может перемещаться в трех плоскостях: 3d.

Ваше желание своими руками собрать такой станок, управляемый системой ЧПУ, должно быть подкреплено наличием определенных навыков и подробных чертежей. Очень желательно также посмотреть ряд тематических обучающих видео, некоторые из которых представлены в данной статье.

Фрезерный станок с чпу своими руками, самодельный чпу, чертежи

Зная о том, что фрезерный станок с ЧПУ считается усложненным техническим и электронным оборудованием, многие мастера думают, что его просто нельзя сделать своими руками.

Однако это мнение не соответствует действительности: своими руками сделать такое устройство можно, но для этого необходимо иметь не только его полный чертеж, но и набор определенных инструментов и подходящих комплектующих.

ЧПУ станок своими руками (чертежи)

Решившись на создание самодельного специального станка с ЧПУ, помните, что на это может уйти много времени. Помимо этого, понадобится много денег.

Чтобы изготовить фрезерный станок, который оснащается системой ЧПУ, можно воспользоваться 2 способами: приобрести готовый набор из специально выбранных деталей, из которых и собирается такое оборудование, либо отыскать все комплектующие и самостоятельно собрать устройство, полностью подходящее всем вашим требованиям.

Подготовка к работе

Если вы запланировали изготовить станок с ЧПУ самостоятельно, не применяя готового набора, то первое, что вам нужно будет сделать, — это остановиться на специальной схеме, по которой будет работать такое мини-устройство.

  • За основание фрезерного оборудования можно взять ненужный сверлильный станок, в котором рабочая головка со сверлом поменяется на фрезерную. Самое трудное, что придется создавать в таком оборудовании, — это механизм, который обеспечит передвижение приспособления в трех разных плоскостях. Этот механизм можно изготовить на основании кареток от старого принтера, он обеспечит перемещение приспособления в двух плоскостях.
  • К устройству, сделанному по этой принципиальной схеме, просто подключить программное управление. Однако его главный минус заключается в том, что обрабатывать на этом станке с ЧПУ можно будет лишь изделия из пластика, древесины или небольшого листового металла. Таким образом происходит, потому что каретки от ненужного принтера, которые будут производить перемещение режущего приспособления, не обладают нужной степенью жесткости.
  • Чтобы ваше самодельное устройство было способно выполнять важные фрезерные действия с заготовками из разных материалов, за перемещение рабочего приспособления должен отвечать очень мощный специальный двигатель. Не нужно пытаться найти двигатель именно шагового вида, его можно сделать из простого электромотора, подвергнув небольшой доработке.
  • Использование шагового двигателя в вашем оборудовании даст возможность избежать применения винтовой передачи, а остальные возможности и характеристики самодельного инструмента от этого не будут хуже. Если же вы все-таки захотите применить для своего мини-устройства каретки от принтера, то стоит подобрать их от более большой модели печатного устройства.
  • Для передачи усилия на вал фрезерного станка лучше брать не простые, а зубчатые ремни, которые не смогут проскальзывать на шкивах. Одним из главных узлов любого похожего станка считается механизм фрезера. Именно его созданию нужно уделить много внимания. Чтобы качественно изготовить такой механизм, вам понадобятся подробные чертежи, которым придется строго следовать.

Сборка оборудования

Основанием собранного фрезерного оборудования может стать балка прямоугольного типа, которую надо крепко фиксировать на направляющих.

Несущая конструкция оборудования должна обладать большой жесткостью. При ее монтаже лучше не применять сварных соединений, а присоединять все детали лишь с помощью винтов.

Во фрезерном оборудовании, которое вы будете собирать самостоятельно, должен быть предусмотрен механизм, который обеспечит перемещение рабочего приспособления в вертикальном направлении. Лучше всего взять для него винтовую передачу, вращение на которую будет передаваться с помощью зубчатого ремня.

Основная часть станка

Важная часть такого станка — его вертикальная ось, которую для самодельного прибора можно сделать из алюминиевой плиты. Помните, чтобы размеры такой оси были точно подобраны под габариты создаваемого устройства.

  • Если у вас есть муфельная печь, то сделать вертикальную ось устройства можно своими руками, отливая ее из алюминия по размерам, которые будут указаны в готовом чертеже. Когда все комплектующие нашего будущего фрезерного оборудования подготовлены, можно переходить к его сборке. Начинается этот процесс с монтажа 2 шаговых электрических двигателей, которые закрепляются на корпус станка за его вертикальной осью.
  • Один из таких электрических двигателей будет отвечать за перемещение специальной головки в горизонтальной части, а второй — за перемещение головки, именно, в вертикальной части. Потом монтируются другие узлы и агрегаты самодельного оборудования.
  • Вращение на все узлы собранного оборудования с ЧПУ должно передаваться лишь посредством ременных передач. Прежде чем подключать к самодельному оборудованию систему программного управления, стоит проверить его работоспособность в ручном режиме и сразу убрать все выявленные проблемы в его работе.

ЧПУ станок своими руками: чертежи и схемы

Считается, что ЧПУ станок сложен в изготовлении, кроме технических составляющих, он имеет электронное устройство, установить которое в состоянии только специалист. Вопреки этому мнению, возможность собрать ЧПУ станок своими руками велика, если заранее подготовить необходимые чертежи, схемы и комплектующие материалы.

Проведение подготовительных работ

При проектировании ЧПУ своими руками в домашних условиях необходимо определиться, по какой схеме он будет работать.

Часто в качестве основы будущего аппарата берут использованный сверлильный станок.

Сверлильный станок может быть использован как основа для ЧПУ станка

В нем потребуется замена рабочей головки на фрезерную.

Наибольшее затруднение при проектировании ЧПУ станка своими руками вызывает создание устройства, при помощи которого рабочий инструмент перемещается в трех плоскостях.

Частично решить задачу помогут каретки, взятые из обычного принтера. Инструмент сможет двигаться в обеих плоскостях. Выбирать каретки для ЧПУ станка лучше из того принтера, который имеет большие габариты.

Подобная схема позволяет в дальнейшем подключать к станку управление. Минус в том, что фрезерный станок с ЧПУ работает только с деревянными, пластиковыми изделиями, изделиями из тонкого металла. Это связано с тем, что каретки принтера не имеют нужной жесткости.

Внимание необходимо уделить двигателю будущего агрегата. Его роль сводится к передвижению рабочего инструмента. От этого зависит качество работы и возможность выполнения фрезерных операций.

Удачным вариантом для самодельного ЧПУ фрезера является шаговый двигатель.

Шаговый двигатель

Альтернативой такому двигателю является электромотор, предварительно усовершенствованный и подогнанный под стандарты аппарата.

Любой фрезерный станок по дереву, использующий шаговый двигатель, позволяет не использовать винтовую передачу, это никак не влияет на возможности такого ЧПУ по дереву. Рекомендуется использовать для фрезерования на таком агрегате ремни зубчатого типа. В отличие от стандартных ремней они не проскальзывают на шкивах.

Требуется правильно спроектировать фрезер будущего станка, для этого понадобятся подробные чертежи.

Материалы и инструменты, необходимые для сборки

Общий набор материалов для станка с ЧПУ включает в себя:

  • шпиндель;
  • кабель длиной 14–19 м;
  • фрезы, обрабатывающие дерево;
  • патрон для фрезы;
  • преобразователь частот, имеющий одинаковую мощность со шпинделем;
  • подшипники;
  • плата для управления;
  • водяная помпа;
  • охлаждающий шланг;
  • три двигателя шагового типа для трех осей перемещения конструкции;
  • болты;
  • защитный кабель;
  • шурупы;
  • фанера, ДСП, плита из дерева или металлическая конструкция на выбор в качестве корпуса будущего аппарата;
  • муфта мягкого типа.

Муфта мягкого типа

Рекомендуется при изготовлении устройства с ЧПУ по дереву своими руками использовать шпиндель с охлаждающей жидкостью. Это позволит не отключать его каждые 10 минут для остужения. Для работы подойдет самодельный станок с ЧПУ, мощность его составляет не меньше 1,2 кВт. Оптимальным вариантом станет устройство мощностью 2 кВт.

Набор инструментов, требующийся для изготовления агрегата, включает в себя:

  • молотки;
  • изоленту;
  • сборочные ключи;
  • клей;
  • отвертку;
  • паяльник, герметик;
  • болгарку, ее часто заменяют на ножовку;
  • пассатижи, агрегат для сварки, токарный станок, ножницы, плоскогубцы.

Простой ЧПУ станок своими руками

Порядок действий при сборке станка

Самодельный ЧПУ фрезерный станок собирается по схеме:

  • изготовление чертежей и схем устройства с указанием системы электрооборудования;
  • покупка материалов, содержащих в себе будущий самодельный ЧПУ станок;
  • установка станины, на ней будут крепиться двигатели, рабочая поверхность, портал, шпиндель;
  • установка портала;
  • установка оси Z;
  • фиксация рабочей поверхности;
  • установка шпинделя;
  • установка водоохлаждающей системы;
  • установка электросистемы;
  • подключение платы, с ее помощью осуществляется управление аппаратом;
  • настройка программного обеспечения;
  • стартовый пуск агрегата.

В качестве основы для станины берется материал, сделанный из алюминия.

Станину нужно делать с алюминия

Профили из этого металла выбирают с сечением 41*81 мм с толщиной пластин 11 мм. Сам корпус станины соединяют при помощи алюминиевых уголков.

От установки портала будет зависеть, какой толщины изделие сможет обработать станок ЧПУ. Особенно если он, сделанный своими руками. Чем выше портал, тем более толстое изделие он сможет обработать. Важно не установить его слишком высоко, так как такая конструкция будет менее прочной и надежной. Портал движется по оси Х и несет шпиндель на себе.

В качестве материала для рабочей поверхности агрегата применяют профиль из алюминия. Часто берут профиль, имеющий Т-пазы. Для домашнего использования принимают фанеру, ее толщина составляет не менее 17 мм.

После того как каркас устройства будет готов, приступают к установке шпинделя. Важно устанавливать его вертикально, так как в дальнейшем потребуется его регулировка, это проводится для фиксации требуемого угла.

Для установки электросистемы необходимо присутствие таких компонентов:

  • блок питания;
  • компьютер;
  • шаговый двигатель;
  • плата;
  • кнопка остановки;
  • драйверы двигателя.

Драйвер шагового двигателя

Для работы системы требуется порт LPT. Помимо этого, устанавливается программа, управляющая работой аппарата и позволяющая отвечать на вопрос, как сделать ту или иную операцию. Управление подключается через двигатели к самому фрезерному станку.

После того как электроника будет установлена на станок, потребуется загрузка драйверов и необходимых для работы программ.

Распространенные ошибки при сборке

Часто встречающейся ошибкой при сборке станка с числовым программным управлением является отсутствие чертежа, но по нему и проводится сборка. В результате этого возникают упущения в проектировании и установке конструкций аппарата.

Часто неправильная работа станка связана с неверно подобранными частотником и шпинделем.

Для корректной работы станка необходимо правильно подбирать шпиндель

Во многих случаях шаговые двигатели не получают должного питания, поэтому для них необходимо выбирать специальный отдельный блок питания.

Необходимо учитывать то, что правильно установленная электросхема и программное обеспечение позволяет выполнять на устройстве многочисленные операции разного уровня сложности. Станок ЧПУ своими руками выполнить под силу мастеру среднего звена, конструкция агрегата имеет ряд особенностей, но с помощью чертежей собрать детали несложно.

С ЧПУ, своими руками составленным, работать легко, необходимо изучить информативную базу, провести ряд тренировочных работ и проанализировать состояние агрегата и детали. Не стоит торопиться, дергать движущиеся детали или вскрывать ЧПУ.

Видео по теме: ЧПУ станок своими руками

Фрезерный станок с ЧПУ по дереву своими руками: чертежи

Содержание статьи:

Для изготовления объемного рисунка на деревянной поверхности применяются заводские фрезерные станки с ЧПУ по дереву. Сделать аналогичную мини-модель своими руками в домашних условиях сложно, но возможно при детальном изучении конструкции. Для этого необходимо разобраться со спецификой, правильно подобрать комплектующие и выполнить их настройку.

Принцип работы фрезерного станка

Оборудование для фрезерной обработки с ЧПУ

Современное деревообрабатывающее оборудование с блоком числового программного управления предназначено для формирования сложного рисунка по дереву. В конструкции должна присутствовать механическая электронная часть. В комплексе они позволят максимально автоматизировать процесс работы.

Для изготовления настольного мини-фрезерного станка по дереву своими руками следует ознакомиться с основными компонентами. Режущим элементом является фреза, которая устанавливается в шпиндель, расположенный на валу электродвигателя. Эта конструкция крепится на станину. Она может перемещаться по двум осям координат – x; y. Для фиксации заготовки необходимо сделать опорный столик.

Электронный блок управления соединяется с пошаговыми двигателями. Они обеспечивают смещение каретки относительно детали. По такой технологии можно сделать 3D рисунки на деревянной поверхности.

Последовательность работы мини-оборудования с ЧПУ, который можно изготовить своими руками.

  1. Написание программы, согласно которой будет выполнена последовательность перемещений режущей части. Для этого лучше всего использовать специальные программные комплексы, предназначенные для адаптации в самодельных моделях.
  2. Установка заготовки на стол.
  3. Вывод программы в ЧПУ.
  4. Включение оборудования, контроль за выполнением автоматических действий.

Для достижения максимальной автоматизации работы в 3D режиме потребуется правильно составить схему и выбрать соответствующие комплектующие. Специалисты рекомендуют изучить заводские модели, прежде чем сделать мини-фрезерный станок своими руками.

Для создания сложных рисунков и узоров на деревянной поверхности понадобится несколько видов фрез. Некоторые из них можно сделать самостоятельно, но для тонкой работы следует приобрести заводские.

Схема самодельного фрезерного станка с числовым управлением

Схема фрезерного станка с ЧПУ

Самым сложным этапом является выбор оптимальной схемы изготовления. Она зависит от габаритов заготовки и степени ее обработки. Для домашнего использования желательно изготовить настольный мини-фрезерный станок с ЧПУ, сделанный своими руками, который будет иметь оптимальное число функций.

Конструкция трансмиссии

Оптимальным вариантом является изготовление двух кареток, которые будут двигаться по осям координат x; y. В качестве основания лучше всего использовать стальные шлифованные прутки. На них будут монтироваться каретки. Для создания трансмиссии необходимы шаговые электродвигатели и винты с подшипниками качения.

Для максимальной автоматизации процесса в конструкции мини-фрезерного станка с ЧПУ по дереву, сделанного своими руками, необходимо детально продумать электронную часть. Условно она состоит из следующих компонентов:

  • блок питания. Необходим для подачи электроэнергии на шаговые электродвигатели и микросхему контроллера. Зачастую используют модель 12в 3А;
  • контроллер. Он предназначен для подачи команд на электродвигатели. Для работы мини-фрезерного станка ЧПУ, изготовленного своими руками, достаточно простой схемы для контроля функционирования трех двигателей;
  • драйвер. Также является элементом регулирования работы подвижной части конструкции.

Для управления рекомендуется использовать стандартные программные комплексы. Одним из них является KCam. Он имеет достаточно гибкую структуру для адаптации практически к любому контроллеру.

Схема контроллера на микросхемах 555TM7

Преимуществом этого комплекса является возможность импортирования исполняемых файлов самых распространенных форматов.  С помощью специального приложения можно составить трехмерный чертеж детали для предварительного анализа. Шаговые двигатели будут работать с определенной частотой хода. Но для этого следует внести технические параметры в программу управления.

Во время составления программы рекомендуется сделать несколько отдельных блоков. Каждый из них будет предназначен для фрезерования, рисования, сверления или гравировки. Это позволит избежать холостых перемещений фрезы.

Выбор комплектующих для фрезерного станка с ЧПУ

Оборудование для фрезерной обработки из алюминиевой рамы

Следующим этапом является выбор компонентов для сборки самодельного оборудования. Оптимальным вариантом является использование подручных средств. В качестве основы для настольных моделей 3D станка можно использовать дерево, алюминий или оргстекло.

Для правильной работы всего комплекса необходимо разработать конструкцию суппортов. Во время их движения не должно возникать колебаний, это может привести к неточному фрезерованию. Поэтому перед сборкой все компоненты проверяются на совместимость друг с другом.

Рекомендации по выбору комплектующих для мини-фрезерного станка с ЧПУ, которые можно сделать своими руками:

  • направляющие. Используются стальные шлифованные прутки диаметром 12 мм. Длина для оси x составляет 200 мм, для y — 90 мм;
  • суппорт. Оптимальным вариантом является текстолит. Обычный размер площадки — 25*100*45 мм;
  • шаговые двигатели. Специалисты рекомендуют использовать модели от принтера 24в, 5А. В отличие от приводов дисковода они имеют большую мощность;
  • блок фиксации фрезы. Его также можно сделать из текстолита. Конфигурация напрямую зависит от имеющегося инструмента.

Блок питания лучше всего собрать заводской. При самостоятельном изготовлении возможны ошибки, которые впоследствии отразятся на работе всего оборудования.

Для пайки платы контроллера рекомендуется использовать резисторы и конденсаторы в SMD корпусах. Это позволит уменьшить габариты, оптимизировать внутреннее пространство в конструкции.

Порядок изготовления фрезерного станка с ЧПУ

Фрезерный станок из оргстекла

После выбора всех компонентов можно сделать настольный мини фрезерный станок с ЧПУ по дереву самостоятельно своими руками. Предварительно еще раз проверяются все элементы, выполняется контроль их размеров и качества.

Для фиксации элементов оборудования необходимо использовать специальные крепежные детали. Их конфигурация и форма зависят от выбранной схемы.

Порядок действий по сборке настольного мини оборудования с ЧПУ по дереву с функцией 3D обработки.

  1. Монтаж направляющих суппорта, их фиксация на боковых частях конструкции. Эти блоки еще не устанавливаются на основание.
  2. Притирка суппортов. Их необходимо двигать по направляющим до тех пор, пока не получится плавный ход.
  3. Затяжка болтов для фиксации суппортов.
  4. Крепление компонентов на основание оборудования.
  5. Монтаж ходовых винтов вместе с муфтами.
  6. Установка ходовых двигателей. Они крепятся к винтам муфт.

Электронная часть располагается в отдельном блоке. Это способствует уменьшению вероятности сбоя в работе во время функционирования фрезера. Также важным моментом является выбор рабочей поверхности для установки оборудования. Она должна быть ровная, так как в конструкции не предусмотрены болты регулировки уровня.

После этого можно приступать к пробным испытаниям. Сначала рекомендуется задать несложную программу фрезерования по дереву. Во время работы необходимо сверять каждый проход фрезы — глубину и ширину обработки, в особенности это касается 3D режима.

В видеоматериале показан пример как собрать большой фрезерный станок с ЧПУ, изготовленный своими руками:

Примеры чертежей и самодельных конструкций

Как подготовить технический чертеж для обработки с ЧПУ

Введение

Современные системы обработки с ЧПУ могут интерпретировать геометрию детали непосредственно из файла 3D CAD. Технические чертежи не являются обязательными для запроса предложения, но они по-прежнему очень важны и широко используются в промышленности, поскольку они улучшают обмен техническими требованиями между проектировщиком / инженером и машинистом.

В этой статье мы рассмотрим, когда и почему вы должны включать технический чертеж в свой заказ с ЧПУ, мы разберем анатомию чертежа и дадим вам базовые и расширенные советы и рекомендации по его рисованию.

Хорошо продуманный технический чертеж с размерами показан на изображении ниже. К концу этой статьи вы узнаете, как ее читать и как правильно приготовить самостоятельно.

Щелкните здесь, чтобы загрузить версию этого технического чертежа в высоком разрешении, и здесь, чтобы загрузить файл САПР.

Наша онлайн-служба ЧПУ принимает технические чертежи для обозначения резьбы

Загрузите свои рисунки

Почему технические чертежи по-прежнему важны?

Если ваша модель 3D CAD включает в себя:

, к заказу необходимо приложить технический чертеж.
  1. Резьба (внутренняя или внешняя)

  2. Элементы с допусками , превышающими стандарт

  3. Отдельные поверхности с особыми требованиями к отделке (шероховатость поверхности и т. Д.)

Эти требования нельзя передать в файле 3D CAD.

Даже если ваш проект не включает вышеперечисленное, обычно рекомендуется сопровождать файл 3D CAD чертежом при размещении заказа на ЧПУ. Обычно файл 3D CAD используется для программирования станка с ЧПУ, а чертеж используется в качестве справочного материала на протяжении всего процесса обработки. Большинство поставщиков услуг ЧПУ также могут изготавливать детали непосредственно из технического чертежа, и они часто предпочитают их файлам 3D CAD, потому что:

  • Они обучены быстро интерпретировать геометрию детали из 2D-чертежа
  • Легче определить основные размеры, функции и важные особенности детали
  • Себестоимость изготовления детали проще оценить

Существует множество различных стандартов и передовых методов составления технических чертежей.Неважно, какие методы вы используете для черчения своего технического чертежа, если все технические требования четко изложены.

Pro Tip : На примере чертежа в этой статье модель полностью обмерена. Это рекомендуется, но не обязательно, поскольку основные размеры детали передаются в файле 3D CAD. Чтобы сэкономить время, вы можете аннотировать на своем техническом чертеже только самые важные элементы, которые вы хотите измерить, и потоки.

Технический чертеж не требуется, чтобы получить мгновенное предложение ЧПУ.

Загрузите свои файлы САПР

Анатомия технического чертежа

Типовой технический чертеж состоит из следующих частей:

  • Основная надпись
  • Изометрический / графический вид детали
  • Основные орфографические виды детали
  • Разрез или подробный вид
  • Примечания к производителю

Основная надпись

Основная надпись содержит основную информацию о детали, такую ​​как название детали, материал, требования к отделке и цвету, имя дизайнера и компании.Важно заполнить эту основную информацию, так как они информируют производителя о функциях детали.

Основная надпись также содержит другую техническую информацию, такую ​​как масштаб чертежа, стандарт, используемый для определения размеров и допусков.

Другой элемент, который обычно присутствует в основной надписи или рядом с ней в угловой проекции. Угловая проекция определяет способ расположения видов на чертеже. Как правило, чертежи, составленные с использованием стандартов ASME (США, Австралия), используют проекцию под третьим углом и стандарты ISO / DIN (Европа), как и на чертеже в этом примере, используют проекцию под первым углом .

Иллюстрированный (изометрический) вид

Рекомендуется добавить к чертежу один или несколько графических 3D-видов детали, так как это упрощает понимание чертежа с первого взгляда.

Для этих целей используются изометрические виды

, так как они сочетают в себе иллюзию глубины с неискаженным представлением геометрии деталей (вертикальные линии остаются вертикальными, а горизонтальные линии рисуются под углом 30 o ).

Основные орфографические виды

Большая часть информации о геометрии детали передается в основных ортогональных видах.

Это двухмерных изображений трехмерного объекта, представляющих точную форму детали, если смотреть с внешней стороны ограничивающей рамки по одной стороне за раз. Таким образом рисуются только края деталей, чтобы обеспечить более четкое представление размеров и элементов.

Для большинства деталей достаточно двух или трех ортогональных проекций, чтобы точно описать всю геометрию.

Виды в разрезе

Виды сечений можно использовать для отображения внутренних деталей детали.Линия разреза на основном ортогональном виде показывает, где деталь имеет поперечное сечение, а штриховка на виде сечения указывает области, где был удален материал.

Технические чертежи могут иметь несколько разрезов с двумя буквами, соединяющими каждую линию разреза с каждым разрезом (например, A-A, B-B и т. Д.). Стрелки линии разреза указывают направление, в котором вы смотрите.

Обычно разрезы размещаются на одной линии с ортогональным видом, но они также могут быть размещены в другом месте на чертеже, если места недостаточно.Деталь можно разрезать по всей ширине (как в примере выше), по половине ширины или под углом.

Примечание: Края скрытых внутренних элементов также могут быть представлены ортогонально с помощью пунктирных линий, но виды сечений добавляют большей ясности.

Подробные виды

Детальные виды используются для выделения сложных или трудных для измерения областей основного ортогонального вида.

Обычно они имеют круглую форму (размещено смещение во избежание путаницы) и помечены одной буквой, которая связывает подробный вид с основным чертежом (например, A, B и т. Д.).

Детальные виды могут быть размещены в любом месте чертежа и могут использовать масштаб, отличный от остального чертежа, при условии, что это четко указано (как в примере).

Примечания к производителю

Примечания для производителя могут быть добавлены к техническому чертежу для передачи дополнительной информации, которая не была включена в технический чертеж.

Например, инструкции по разрушению (удалению заусенцев) всех острых кромок, определенные общие требования к чистоте поверхности и ссылка на файл САПР или на другой компонент, с которым взаимодействует деталь на чертеже, могут быть добавлены в примечания к вашему техническому чертежу. .

Иногда вместо текста используются символы. Например, шероховатость поверхности обычно обозначается символом.

Примечание: Если только одна поверхность требует определенной шероховатости поверхности, то она должна быть помечена на чертеже, а не в примечаниях. Стандартная шероховатость поверхности деталей, обработанных на втулках, составляет Ra 3,2 мкм (125 мкдюймов). Также доступны покрытия с шероховатостью поверхности Ra 1,6 мкм (64 мкм) и 0,8 мкм (32 мкм).

Подготовка технического чертежа за 7 шагов

Вот краткое изложение шагов, которые вы должны выполнить при составлении технического чертежа:

Шаг 1. Определите наиболее важные виды и разместите соответствующий орфографический объект в центре чертежа, оставив между ними достаточно места для добавления размеров.

Шаг 2. Если ваша деталь имеет внутренние элементы или сложные и трудно поддающиеся измерению области, рассмотрите возможность добавления соответственно видов сечений или подробных видов.

Шаг 3. Добавьте вспомогательные линии на все виды. Вспомогательные линии включают осевые линии (для определения плоскостей или осей симметрии), указатели центра и образцы указателей центра (для определения местоположения центра отверстий или круговых массивов).

Шаг 4. Добавьте размеры к вашему чертежу, начиная с наиболее важных размеров (дополнительные советы по этому поводу приведены в следующем разделе).

Шаг 5. Укажите расположение, размер и длину всех ниток.

Шаг 6. Добавьте допуски к элементам, для которых требуется более высокая точность, чем стандартный допуск (в ступицах это ± 0,125 мм или ± 0,005 дюйма).

Шаг 7. Заполните основную надпись и убедитесь, что вся соответствующая информация и требования выходят за рамки стандартных практик (обработка поверхности, удаление заусенцев и т. Д.) упоминаются в примечаниях.

Когда ваш рисунок будет готов, экспортируйте его в виде файла PDF и прикрепите его к вашему заказу.

Теперь, когда вы знакомы с базовой структурой технического чертежа, давайте углубимся в особенности добавления размеров, аннотаций и допусков.

Интересует цена на станки с ЧПУ?

Загрузите свои детали

Советы по добавлению размеров, допусков и аннотаций

Добавление критических размеров

Полноразмерный основной ортогональный вид

Если к вашей детали прилагается файл 3D CAD, размеры, которые вы добавляете на технический чертеж, проверяются производителем.Тем не менее, рекомендуется установить размеры всех важных элементов на ваших чертежах, чтобы избежать ошибок.

Вот несколько советов, которые помогут вам определить размеры ваших моделей:

  1. Начните с размещения габаритных размеров детали.
  2. Затем добавьте размеры, которые наиболее важны для функциональных целей . Например, расстояние между двумя отверстиями на приведенном в качестве примера чертеже является наиболее важным.
  3. Затем добавьте размеры к другим элементам.Хорошей практикой является размещение всех размеров, начиная с одной и той же базовой линии (также известной как базовая линия), как показано в примере.
  4. Размеры должны быть размещены на виде , который наиболее четко описывает элемент . Например, размеры резьбовых отверстий не включены в этот вид, поскольку они более четко описаны на подробном виде A.
  5. Для повторяющихся элементов добавьте размеры только к одному из них, указав общее количество элементов, повторяющихся на текущем виде.В этом примере два одинаковых отверстия с цековкой указаны с помощью 2x в выноске.

Дополнительную информацию о добавлении размеров к чертежу можно найти в этой статье MIT.

Выноски отверстий

Виды разрезов и деталей с обозначениями отверстий

Отверстия — это обычная деталь в деталях, обработанных на станках с ЧПУ. Обычно они обрабатываются сверлом, если они имеют стандартные размеры.

Часто они также включают второстепенные элементы, такие как зенковки (⌴) и зенковки (⌵).Рекомендуется добавлять выноску вместо размеров каждого отдельного элемента.

В приведенном ниже примере выноска определяет два одинаковых сквозных отверстия с цековкой. Символ глубины (↧) можно использовать вместо добавления к чертежу дополнительных размеров.

Пример типичной выноски отверстия

Добавление потоков

Если ваши детали содержат резьбы , то это должно быть , четко обозначенное на техническом чертеже.Резьбы можно определить, просто указав стандартный размер резьбы (например, M4) вместо размера диаметра.

Рекомендуемый способ определения резьбы — использование выноски , поскольку выноски добавляют ясности чертежу и позволяют определять пилотные отверстия и резьбу с разной длиной.

В этом случае первая операция должна определять размеры пилотного отверстия (соответствующий диаметр можно найти в стандартных таблицах), а вторая операция — размер (и допуск) резьбы.

Важно: Всегда добавляйте «косметическую» нить к файлам 3D CAD вместо «смоделированной» нити.

Задание допусков

Допуски, определенные с использованием различных форматов на основном ортогональном виде

Допуски определяют диапазон допустимых значений для определенного размера детали. Допуски рассказывают «историю» о функции детали и особенно важны для функций, которые мешают работе других компонентов.

Допуски бывают разных различных форматов и могут применяться к любому размеру на чертеже (как линейному, так и угловому).

Самыми простыми допусками являются двусторонние допуски , которые симметричны относительно базового размера (например, ± 0,1 мм). Также существуют односторонние допуски (с разными верхним и нижним пределом) и допуски натяга , которые определены в технической таблице (например, 6H).

Примечание: Допуски требуются на техническом чертеже только тогда, когда они должны превышать стандартное значение.Когда вы размещаете заказ на концентраторы, стандартный допуск составляет ± 0,125 мм (или ± 0,005 дюйма).

Более продвинутый способ определения допуска — GD&T (Геометрические размеры и допуски) . Допуск плоскостности (⏥) был определен в приведенном выше примере. Вот краткое введение в GD&T:

Определение геометрических размеров и допусков (GD&T)

Пример детали с размерами с помощью GD&T

Систему для определения геометрических размеров и допусков (GD&T).Используя GD&T, можно определить общие более низкие допуски, при этом соблюдая основные требования к конструкции, улучшая качество и снижая затраты.

В приведенном выше примере истинное положение (⌖) использовалось для определения допуска этого шаблона отверстий. Другие общие геометрические допуски включают плоскостность (⏥) и концентричность ().

Подробное описание того, как можно применить GD&T к своим проектам, выходит за рамки данной статьи, поскольку это очень сложная тема. Отличное введение в тему можно найти здесь.

Мы дадим вам базовые знания, необходимые для их чтения, на случай, если вы когда-нибудь встретите их на рисунке. Вот пример:

Эта выноска определяет восемь отверстий с номинальным диаметром 10 мм и допуском на их диаметр ± 0,1 мм. Это означает, что независимо от того, где вы измеряете этот диаметр, результат измерения должен находиться в диапазоне от 9,9 до 10,1 мм.

Допуск истинного положения определяет положение центра отверстия по отношению к трем основным ребрам базовой линии (опорной точке) детали.Это означает, что центральная ось отверстия всегда должна находиться в пределах идеального цилиндра, центр которого находится в месте, определяемом теоретически точными размерами на чертеже, и диаметром, равным 0,1 мм.

Практически это означает, что центр отверстия не смещается от своего расчетного местоположения, что гарантирует совместимость детали с остальной частью сборки.

На концентраторах мы поощряем добавление GD&T к вашим деталям, но рекомендуется использовать их только для критических сборок и на более поздних этапах процесса проектирования (например, во время полномасштабного производства), поскольку они предъявляют более высокие метрологические требования. , увеличивая стоимость разового прототипа.

Правила

  • Технический чертеж необходим, если ваша деталь содержит резьбы , допуски или отделку на определенных поверхностях.
  • Рекомендуется полностью задать размеры на техническом чертеже, чтобы избежать ошибок.
  • Чтобы сэкономить время, вы можете измерить только те характеристики, которые должен измерять поставщик услуг обработки с ЧПУ.

Что нужно знать при подготовке модели САПР для фрезерования с ЧПУ

Фрезерование с ЧПУ — один из самых популярных вариантов изготовления прототипов и деталей, требующих резки или сверления.Технология использует вращающийся цилиндрический режущий инструмент для вырезания или сверления конструкции из металла или пластика. По сравнению с традиционными технологиями производства, фрезерование с ЧПУ предлагает такие преимущества, как высокая скорость производства, большая точность и автоматическое охлаждение деталей.

Но прежде чем дизайнер сможет воплотить свой проект в жизнь на станке с ЧПУ, сначала необходимо создать эскиз модели в программном обеспечении CAD / CAM. Есть ряд шагов, которые вы должны предпринять при проектировании объекта для фрезерования с ЧПУ, вот некоторые из наиболее важных вещей, которые вам нужно знать.

Подготовка CAD-моделей для фрезерования с ЧПУ

В большинстве случаев первый шаг процесса фрезерования с ЧПУ начинается с программного обеспечения CAD, в котором вы создаете модель, которую хотите создать. Когда дизайн будет завершен, вам нужно будет преобразовать изображение в формат файла DXF или DWG. Отсюда чертеж будет импортирован в программное обеспечение CAM / CNC, где он будет преобразован в G-код, язык программирования, который управляет фрезерным станком с ЧПУ и направляет его.

Есть несколько методов, которые можно использовать при разработке моделей для фрезерования с ЧПУ. Например, вы можете взять изображение и обвести его вручную с помощью векторных траекторий . Для этого вы обведите силуэт и основные элементы изображения, которые затем можно сохранить как файл DXF и импортировать в программу CAM.

Другой метод, который вы можете использовать, — это автоматическое преобразование изображений . Это включает сканирование вашего эскиза, сохранение его в виде файла PDF и преобразование изображения в файл DXF.Отсюда просто импортируйте векторный файл DXF в программу CAM / CNC для генерации необходимого G-кода.

Звучит достаточно просто, правда? Что ж, есть еще другие важные факторы, которые следует учитывать при подготовке чертежа САПР для фрезерования с ЧПУ. Хотя большинство программ CAM выполнят подготовку за вас, вам все равно придется ввести определенные настройки и перепроверить различные аспекты модели, прежде чем экспортировать ее в DXF.

Как оптимизировать конструкции для фрезерования с ЧПУ

Существует множество способов оптимизировать конструкцию для подготовки ее к производству, и эти факторы часто определяют, насколько успешным будет результат.Вот несколько советов, которые следует учитывать при подготовке проекта для фрезерования с ЧПУ.

Правильная реализация выемок, кромок, стенок и отверстий- Каким бы универсальным ни был станок с ЧПУ, каждый производственный инструмент имеет свои ограничения. Поэтому очень важно, чтобы сложные участки вашей модели САПР были полностью оптимизированы для производства.

При разработке модели для фрезерования с ЧПУ вам всегда захочется утомиться глубиной и диаметром любых полостей.По большей части концевые фрезы ограничены по длине резания, они способны резать только в три-четыре раза больше их диаметра. Ограничив глубину полости до четырехкратного диаметра инструмента, вы можете добиться первоклассных результатов.

Если в вашей конструкции есть внутренние кромки и углы, необходимо также учитывать диаметр режущего инструмента. Если вы хотите получить высококачественную отделку поверхности, вы можете увеличить радиусы углов выше рекомендованного примерно на 1 мм.С другой стороны, если ваша 3D-модель имеет внутренние углы, расположенные под углом 90 градусов, добавьте в конструкцию поднутрение Т-образной кости.

Вы также должны быть осторожны при уменьшении толщины стенок вашей модели, так как это может снизить жесткость материала, создать вибрацию и снизить общее качество отделки поверхности. Для конструкций, которые вы собираетесь изготовить из металла, поддерживайте толщину стенок около 0,8 мм или выше. Если вы планируете использовать пластик, оставьте толщину 1.5 мм или выше.

И последнее, но не менее важное: создание отверстий в чертежах САПР также потребует тщательного планирования, особенно с учетом диаметра и глубины сверла стандартного размера. Для отверстий, требующих жестких допусков, можно использовать развертки и расточные инструменты. При интеграции резьбы в модель сохраняйте размер как минимум выше M2, желательно около отметки M6 или выше для достижения наилучших результатов.

Как интегрировать текст — Планируете ли вы вписать номер детали, описание или логотип на свою деталь? Вот несколько советов, которые следует учитывать при создании дизайна с текстом.Во-первых, текст, вставленный в модель САПР, должен иметь расстояние не менее 0,5 мм между каждым отдельным символом. Весь текст также должен быть утоплен, с использованием четких и кратких шрифтов, таких как Arial, Sans-Serif, Verdana и т. Д.

Избавьтесь от перекрывающейся геометрии — Чтобы убедиться, что процесс фрезерования на ЧПУ пройдет гладко, вам следует проверьте свою модель, чтобы исключить любые перекрывающиеся векторы. Почему это так важно? Что ж, когда в дизайне векторы наложены друг на друга, станок с ЧПУ будет перемещаться вперед и назад по одной и той же области.Чтобы оптимизировать модель, удалите все повторяющиеся копии объектов, объедините все перекрывающиеся линии и объедините различные части дизайна при правильном выравнивании.

Размещение геометрии на одном слое — Помимо устранения дублирования в дизайне, вы также захотите очистить свой чертеж САПР перед его импортом в программное обеспечение CAM. Для этого вы можете уменьшить свои векторные линии до минимально возможного количества узлов, прежде чем качество дизайна будет скомпрометировано.Кроме того, убедитесь, что вы экспортируете только необходимые части вашей модели при преобразовании в файл DXF.

Определите масштаб вашего векторного изображения — Другой способ оптимизации процесса ЧПУ, о котором некоторые могут забыть, — это масштабирование вашего векторного изображения. Scan2Cad, компания, которая создает программное обеспечение для векторизации моделей САПР в файлы формата DXF и DWG, предлагает придерживаться системной единицы измерения в миллиметрах, а также точности или допуска около 0,5 микрон.

Заключение

Если вы последуете этим советам и усовершенствуете свой дизайн для фрезерования с ЧПУ, качество конечной детали вырастет в геометрической прогрессии.

Воспользовавшись услугами 3ERP по фрезерованию с ЧПУ, вы сможете увидеть свою конструкцию, изготовленную на профессиональных станках. Оснащенные 3-, 4- и 5-осевыми обрабатывающими центрами с ЧПУ и опытным персоналом, мы поможем вам разобраться со всеми техническими аспектами процесса. Тем не менее, использование этих советов для оптимизации вашего чертежа САПР поможет вам в разработке фрезерного станка с ЧПУ, что приведет к созданию деталей и прототипов с невероятной точностью и высококачественной обработкой поверхности.

Как сделать отличный инженерный чертеж Понятно производители

До появления ЧПУ машинисты изготавливали детали исключительно на основе двухмерных чертежей.С тех пор мы прошли долгий путь, и теперь чертеж гораздо менее важен для процесса резки материала благодаря точному 3D-моделированию и программам CAM. Тем не менее, чертежи по-прежнему являются отличным способом обозначить особые требования, такие как жесткие допуски на критически важные элементы.

Из этого туториала Вы узнаете, как создать отличный инженерный чертеж, который будет понятен Fictiv и любому машинисту, с которым вы работаете. Для целей этого руководства мы используем Solidworks, но этот процесс можно легко воспроизвести в других программах для инженерного рисования.

1. Откройте файл чертежа Fictiv.

Мы предоставили чертеж Solidworks, который вы можете использовать в качестве основы для создания чертежа с ЧПУ.

2. Виды чертежа компоновки

Во-первых, нам нужно разложить виды чертежа. Простые части могут быть полностью представлены двумя или тремя видами, в то время как более сложные части, как правило, требуют большего. Демонстрационная часть корпуса для этого руководства потребует трех видов и вида в разрезе, который представляет собой вид детали, как если бы она была вырезана, чтобы показать ее внутренние особенности.Добавьте эти виды чертежа к базовому чертежу, щелкнув «Вид модели» на вкладке «Макет вида» и выбрав свою модель.

Важно правильно масштабировать виды, чтобы вокруг них было достаточно места для заметок и размеров; изменение размеров видов позже, после того, как размеры были размещены, может быть трудным и раздражающим.

Solidworks автоматически добавляет метки центра к отверстиям, поэтому, если ваше программное обеспечение не делает этого, вам следует добавить их. Это просто соглашение, показывающее производителю или любому, кто читает чертеж, где находятся отверстия.

Эталонные виды — хороший элемент, который можно добавить в пользу производителя; один или два изометрических изображения могут помочь им по-настоящему увидеть, что они придумывают.

3. Позиционное нанесение размеров

Этот процесс значительно упростился теперь, когда большая часть геометрической информации содержится в твердотельной модели. Здесь мы хотим уловить важнейшие аспекты.

Это размеры, которые должны быть правильными, обычно потому, что здесь деталь взаимодействует с другой деталью.Образцы отверстий — хороший тому пример; например, на внешних четырех углах части демонстрационного корпуса. Этот шаблон отверстий показывает, как деталь будет крепиться к основанию, и поэтому должен совпадать с отверстиями в соединительной детали.

Здесь вам нужно обратить внимание как на допуск, который вы хотите, так и на допуск, который вы на самом деле вызываете. Мы включили общие инструкции по допуску в основную надпись.

Допуск определяется значащими цифрами основного размера.

Например, расстояние между внешними отверстиями было спроектировано равным 114,3 мм. Если вы назовете размер как «114», общий допуск будет означать, что отсутствие десятичных разрядов (X) составляет ± 2,5 мм.

Это означает, что допустимое расстояние между отверстиями составляет от 116,5 до 111,5 мм, что, вероятно, не сработает, если мы взаимодействуем с другой деталью! Нам нужен жесткий допуск на этот размер, поэтому мы будем использовать размер с одним десятичным знаком (.X), который составляет ± 0,25 мм.Точно так же мы будем использовать размер с одним десятичным знаком для шаблона внутренних отверстий.

Pro Подсказка: Обратите внимание, что идентичные размеры не нужно называть, а просто ставить «2X» перед вызываемым размером.

Для этой конкретной детали существует более низкий допуск по высоте, поскольку нет требований к ее размеру. Мы добавляем размер в центральный вид без десятичных знаков, что дает нам допуск ± 2,5 мм.

На виде снизу я назвал толщину стенки равной 6.35, за которым следует «TYP», что означает типичный. По сути, это означает, что все одинаковые толщины стенок могут быть вызваны только одним размером, что делает чертеж намного чище.

Pro Совет: Использование заглавных букв на чертеже упрощает чтение и понимание.

4. Обозначения отверстий

После определения положений отверстий и других критических размеров нам необходимо определить диаметры отверстий, глубину и соответствующие допуски. Также сюда может быть включено нарезание резьбы, которое производитель должен выполнить, например, в верхней части демонстрационного корпуса есть четыре резьбовых отверстия # 6-32.

Обратите внимание, что если у вас есть только резьбовые отверстия для обозначения, вы можете пропустить рисунок с помощью Fictiv и просто использовать наш инструмент автоматического определения резьбы.

Идентичные отверстия не нужно называть, но их можно исправить, поместив «4X» перед обозначенным размером. Здесь мы используем резьбу UNC, потому что метчики и крепеж, как правило, более доступны в США.

Сквозные отверстия — это отверстия, которые полностью проходят через деталь, тогда как глухие отверстия имеют заданную глубину, обозначенную символом ↧.Аналогичным образом обозначается глубина отверстий с потайной головкой, которой предшествует символ ⌴. Четыре внешних отверстия на демонстрационном корпусе — хороший пример того, как следует обозначать потайное отверстие. Четыре внутренних отверстия являются отверстиями с резьбой, и их конкретная резьба должна быть обозначена здесь, # 6-32.

5. Примечания к поверхности

Вы также можете использовать чертеж, чтобы проинструктировать вашего производителя о любых конкретных инструкциях по поверхности. Это соответствует скорости, которую оператор ЧПУ будет использовать для резки определенной поверхности, а также типу концевой фрезы.

В общем, 64RMS — хорошее число для гладкой обработки, но вы можете немного почувствовать траектории инструмента. Я бы порекомендовал 32RMS или ниже для любых поверхностей сопряжения с уплотнительным кольцом или любой поверхности, которая должна быть действительно гладкой.

Ниже приведен пример компаратора шероховатости поверхности, показывающий разницу в нескольких вариантах качества поверхности.

Как и в случае с другими допусками, чем жестче допуск (более гладкая поверхность), тем больше вам придется заплатить за это.Я добавил покрытие 64RMS к основной надписи, но мы хотим, чтобы верхняя поверхность демонстрационного корпуса была более гладкой, поэтому мы добавим примечание.

6. Примечания к производству

Верхний левый угол чертежа используется для дополнительных примечаний для производителя, которые могут включать инструкции по нанесению покрытий или маркировку деталей. В этом руководстве мы добавим примечание о разрыве всех краев, а также несколько других полезных основных примечаний.

7. Экспорт в PDF

Поздравляем! Вы закончили чертеж детали с ЧПУ.Последний шаг — экспорт чертежа в формате PDF. В Solidworks это так же просто, как перейти в «Файл» → «Сохранить как» и выбрать PDF в качестве «Тип файла».

Готовы заказать детали с ЧПУ с жесткими допусками? Fictiv с радостью примет ваши технические чертежи и требования к допускам для конкретных элементов. Мы можем обрабатывать изделия с допусками до +/- 0,0002 и можем предоставить услуги по отделке, установке оборудования и контролю качества. Узнайте больше о наших комплексных услугах по обработке с ЧПУ или создайте бесплатную учетную запись, чтобы мгновенно получить расценки!

Подготовка файла САПР для обработки с ЧПУ

Поскольку обработка с ЧПУ — это процесс, управляемый компьютером, детали, обработанные ЧПУ, следует проектировать на компьютере с использованием программного обеспечения автоматизированного проектирования (САПР).Инженеры используют программное обеспечение САПР для создания трехмерных проектов с высокой степенью детализации, иногда используя функции топологической оптимизации или надстройки моделирования, чтобы создать наилучшую возможную версию своего проекта.

Но это только начало пути файла от дизайна к физической части.

Перед тем, как цифровой дизайн будет отправлен на станок с ЧПУ, его необходимо преобразовать из среды САПР в формат, распознаваемый станком с ЧПУ — такой, который сообщает станку, что ему нужно делать , а не только то, что должна делать деталь выглядит как.Различные производственные процессы распознают разные форматы, и файл, читаемый станком с ЧПУ, может отличаться от файла, распознаваемого, например, 3D-принтером или лазерным резаком.

В этом разделе базы знаний RapidDirect объясняется, как файлы САПР должны быть подготовлены для обработки с ЧПУ, что позволяет быстро и точно получать расценки до производства и, после этого, разрешить производственный процесс.

Создание обрабатываемой конструкции с помощью CAD

Существует несколько способов создания конструкции детали с помощью программного обеспечения САПР.

Один из методов, описанный в разделе «Как проектировать детали для обработки с ЧПУ», — это создание проекта с нуля, ввод геометрических данных в программное обеспечение САПР для создания формы или сети форм.

Но есть и другие способы создать файл САПР для обработки с ЧПУ.

Некоторые программные платформы САПР могут распознавать 2D-изображения (в таких форматах, как PDF) и преобразовывать их в файлы 3D-дизайна. Это идеально подходит для реверс-инжиниринга, поскольку позволяет инженерам создавать чертежи из объектов, а не делать это наоборот.Другие платформы позволяют пользователю отслеживать изображение с помощью векторных траекторий, вручную определяя характеристики 2D-изображения для преобразования его в 3D-файл. Для этого также можно использовать 3D-сканер .

Преобразование САПР в формат ЧПУ

САПР используется для создания трехмерных проектов, но станок с ЧПУ не воспринимает эти трехмерные конструкции как серию форм и размеров. Из-за этого 3D-дизайн необходимо преобразовать в формат, специфичный для машины-получателя, который сообщает машине, как и когда ей нужно перемещать, вращать, вырезать и т. Д.

Наиболее распространенным форматом файлов для обработки с ЧПУ является STEP, который стандартизирован и используется на станках разных производителей. Другие форматы включают 3DM, DWG, DXF, IGES, IPT, SAT, SLDPRT и X_T, в то время как такие форматы, как OBJ, STL и 3MF, обычно используются для процессов аддитивного производства.

Большинство платформ САПР позволяют экспортировать файлы в формате STEP, а также есть бесплатные онлайн-сервисы для быстрого преобразования.

Поставщики услуг по производству и прототипированию, такие как RapidDirect, также могут выполнить преобразование за вас, но имейте в виду, что вам понадобится файл в формате обработки с ЧПУ, чтобы мгновенно получить онлайн-смету для вашего заказа.

Технические чертежи для обработки с ЧПУ

Хотя файлы STEP сообщают станку с ЧПУ, что он должен делать, также важно предоставить технический чертеж для людей, управляющих станком.

В то время как цифровой файл содержит все формы и размеры, технический чертеж содержит информацию, которую машинистам необходимо знать для правильной обработки заказа.

Эта информация может включать:

  • Критические характеристики / размеры детали
  • Допуски
  • Указание резьбы
  • Параметры отделки
  • Строительные линии

Технический чертеж не используется изолированно, но показывает производство Персонал должен учитывать то, на что им нужно обратить внимание при изготовлении и проверке обработанной детали, с указанием участков, которые должны соответствовать жестким допускам по механическим или другим причинам.

Как правило, технические чертежи предлагают несколько основных видов детали, включая поперечные сечения для невидимых элементов, и содержат специальные примечания для производителя, которые невозможно передать на машинном языке.

Отправка файла

При использовании производственной службы по запросу, такой как RapidDirect, файл IGES или STEP может быть загружен на веб-платформу, где может быть сгенерировано предложение, которое указывает ориентировочную цену проекта обработки.

Затем могут быть представлены технические чертежи для облегчения процесса обработки.

Основы обработки чертежей с ЧПУ

В сегодняшнюю эпоху моделей САПР и программирования САПР можно предположить, что мы вышли за рамки тех времен, когда распечатка деталей и чертежи с ЧПУ были обычным явлением в производстве. В конце концов, есть много информации, которую можно извлечь из 3D-модели, так что в распечатках больше нет необходимости, верно?

Неправильно! Хотя трехмерное проектирование является благом для отрасли и является ценным инструментом как для инженеров, так и для механиков, ценность подробных чертежей с ЧПУ нельзя недооценивать.Ниже мы обсудим несколько советов по созданию тщательного чертежа и то, как его можно использовать, чтобы сэкономить время и избежать головной боли в производственном процессе.

Обеспечить различные виды

Ясность — ключ к успеху. При разработке чертежа инженеры должны включать несколько видов, которые выделяют ключевые функции / компоненты детали и избегают ненужных «догадок» со стороны любого, кто пытается интерпретировать геометрию детали.

Аксонометрические виды

Это должно быть чистое представление готовой детали.Обычно он наклонен таким образом, чтобы продемонстрировать как можно больше деталей детали. Этот вид обычно изображается без размеров, чтобы не отвлекать от общего представления детали.

Ортогональная проекция

Изготовителю важно понимать ориентацию детали в связи с размерной геометрией. Ортографические проекции предлагают такое представление, как если бы вы смотрели прямо на деталь с разных ракурсов (сверху / спереди / снизу / справа / слева).Обычно они отображаются на отпечатке с поворотом на 90 градусов. Это важные элементы любого чертежа с ЧПУ, поскольку они предоставляют большой объем информации и помогают ограничить неопределенность при обработке детали.

Виды в разрезе

Для более подробных функций вид в разрезе может быть полезным инструментом для включения дополнительных размеров детали или для представления внутренней геометрии, которая может быть недоступна для просмотра в ортогональных проекциях. Сечения также можно использовать для увеличения масштаба конкретного элемента, для которого могут потребоваться дополнительные инженерные детали (допуски, обработка поверхности, уникальная геометрия и т. Д.).)

Ясные допуски и размеры

Правильно подобранный принт — это красота. Он предоставляет изготовителю всю необходимую информацию для обработки детали без посторонних данных, которые могут спутать чертеж и привести к путанице.

С другой стороны, деталь с превышением допусков или отсутствующими размерами приведет к задержкам производства и ненужным пересылкам между машинистами и инженерами для устранения несоответствий или пропусков в их чертежах.Понимание важности допусков и размеров при печати с ЧПУ имеет решающее значение для обеспечения успеха при производстве компонента.

Знайте свои допуски

Допуски важны при определении размеров детали, но они могут мешать настолько, насколько могут помочь. Жесткие допуски могут иметь решающее значение для определенных деталей, но если они не нужны, не требуйте их. Это поможет ограничить дополнительное время / затраты, связанные с обработкой и проверкой данного элемента.

Также следует избегать складывания допусков. Это относится к сценариям, в которых ряд связанных функций могут сами соответствовать требуемым размерам, но будут выпадать из спецификации при совместном разложении. Допуски также следует указывать только на тех элементах, которые имеют решающее значение для работы детали. Для других, менее важных размеров, общий индикатор допуска может отображаться в другом месте на отпечатке.

Обеспечьте четкие размеры

Определите, что важно и что можно измерить, и избегайте всего остального.Ограничивая ненужные размеры, вы можете выделить ключевые компоненты детали без ущерба для общей четкости печати. Это также помогает производителям понять элементы детали, которые будут наиболее важны для ее функционирования.

Также важно учитывать, что можно и что нельзя измерить в полевых условиях. Хотя рабочее пространство 3D CAD предоставляет инженерам безграничные возможности для определения размеров своей работы, обработка и проверка этих элементов в полевых условиях может оказаться гораздо более сложной (а иногда и невозможной).Абстрактные и произвольные размеры затруднят работу даже самого сложного контрольно-измерительного оборудования, поэтому всегда разумно проявлять благоразумие при выборе размеров для механического чертежа.

Оставить подробные записи

Технические заметки могут быть невероятно полезны для обеспечения того, чтобы деталь была изготовлена ​​именно так, как задумано. Сюда могут входить сведения о чистоте поверхности, удалении заусенцев / очистке, вторичных процессах, сертификации материалов и т. Д. Любые прочие требования, которые ожидаются от готовой детали, могут и должны быть включены.Это поможет улучшить качество производства и обеспечит удовлетворение конечным продуктом всех сторон.

Как сделать чертеж САПР для обрабатывающего производства с ЧПУ

Обработка с ЧПУ — это широко используемый термин в секторе машиностроения и промышленного производства. Обработка с ЧПУ — это метод или процесс, используемый в промышленности для управления станками с помощью компьютеров для производства различных деталей машин. ЧПУ расшифровывается как компьютерное числовое управление.Управление различными типами инструментов осуществляется с помощью станка с ЧПУ, включая фрезерные, токарные и шлифовальные станки. Станок с ЧПУ на самом деле представляет собой комбинацию таких станков, как токарный и фрезерный, и управляется с помощью кодирования, которое программируется с помощью компьютеров для производства различных деталей.

Если вы хотите, чтобы деталь производилась с помощью производственного процесса с ЧПУ, вам следует знать несколько терминов. Существуют различные методы обработки с ЧПУ, и они имеют определенные преимущества, и для точного выполнения работы вы должны знать, как эти методы работают?

Что такое чертежи САПР?

чертежей САПР создаются с помощью различного программного обеспечения на компьютере.Эти рисунки создаются в 2D и 3D. САПР означает автоматизированное проектирование. Чертежи САПР создаются с точностью в программном обеспечении для последующего использования. Эти чертежи используются для анализа и обработки на станках с ЧПУ. Существует различное программное обеспечение для создания проектов САПР, и почти все программы позволяют создавать точные модели для производства ЧПУ.

Что такое G-код?

Уже упоминалось, что станок с ЧПУ использует специальную кодировку для производства деталей. Этот код, который обычно используют станки с ЧПУ, называется G-кодом.Этот код содержит инструкции для станка по работе под определенными углами в течение определенного времени, повторяющиеся циклы, координаты и скорость вращения используемого инструмента. Эти чертежи или файлы САПР могут использоваться станками с ЧПУ для создания деталей, но перед этим для преобразования этих трехмерных чертежей в G-код необходимо программное обеспечение CAM, которое могло бы преобразовывать различные параметры чертежа для генерации G-кода. CAM означает автоматизированное производство. Теперь этот G-код является инструкцией для компьютера, управляющего различными инструментами, для создания желаемых деталей.Этот код работает небольшими частями. Каждая строка кода содержит информацию о детали, которая должна быть сгенерирована из блока сырья. Станок с ЧПУ работает в трех измерениях. Теперь, если вам нужно, чтобы деталь была изготовлена ​​именно так, как вы хотите, вы должны предоставить для этого трехмерный чертеж.

Как выполняется кодирование? и как это работает?

Станки с ЧПУ

также можно кодировать вручную, но при этом может быть ошибка. Поскольку код содержит много информации и работает с использованием одной инструкции за раз, поэтому, если что-то интерпретируется неправильно, это может испортить всю геометрию той части, которую вы хотите.Например, у вас есть блок, и вы хотите создать в нем несколько отверстий, обрезать края под определенными углами и полностью удалить некоторые части под определенным углом. Теперь соответственно будет сгенерирован G-код в другой комбинации чисел, и этот код будет указывать машине двигаться под определенными длинами и углами. Если во время этого процесса будет сделана небольшая ошибка и набор углов, которые вы хотите использовать на более длинной стороне детали, поменяется местами с набором углов на более короткой стороне детали, тогда вся геометрия детали будет нарушена.Для предотвращения подобных ошибок используются 3D рисунки.

Как создавать 3D-чертежи? И их преимущество

3D-чертежа создаются в программном обеспечении. Разное программное обеспечение для 3D-дизайна имеет другой пользовательский интерфейс и команды для создания дизайна. Чаще всего сначала выбираются длина, ширина и их размеры для создания 2D-проекта детали, а затем путем выдавливания его до определенной толщины создается 3D-дизайн. Теперь для внесения разных изменений в дизайн выполняются разные операции.Создание любого рисунка отверстий в детали и удаление материала под некоторым углом можно выполнить в программном обеспечении, чтобы получить именно ту деталь, которую вы хотите. Теперь для создания этой детали с помощью обработки с ЧПУ программное обеспечение CAM используется для генерации G-кода для инструктирования станков с ЧПУ. Существует различное программное обеспечение CAD / CAM, такое как Autodesk, которое используется для создания 3D-дизайна и последующего преобразования его в G-код. После правильного сохранения файла G-кода теперь точная деталь будет создана в процессе обработки с ЧПУ с использованием именно этого кода.

Хотя трехмерное проектирование занимает некоторое время, в зависимости от его сложности, этот процесс легко справится с этим процессом. Итак, чтобы получить именно то, что вы хотите, создайте 3D-дизайн. Убедитесь, что 3D-дизайн является именно таким, каким вы хотите, и затем произведите его точно с помощью обработки с ЧПУ.

Creatingway концентрируется на обрабатывающем производстве с ЧПУ , механической обработке прототипов , мелкосерийном производстве , металлообработке, и услугах отделки деталей , предоставляет вам лучшую поддержку и услуги. спросите нас один спросите сейчас .

Если у вас возникнут вопросы или запрос предложений по технологии обработки металлов и пластмасс, а также по индивидуальной обработке, свяжитесь с нами по телефону

.

Позвоните + 86-0 (755) -89492523 или отправьте нам запрос

Добро пожаловать к нам в гости, по любым вопросам проектирования и обработки металлов и пластмасс, мы здесь, чтобы поддержать вас. Адрес электронной почты службы поддержки:

: [email protected]

бесплатных файлов DXF и шаблонов ЧПУ, которые вы можете вырезать сегодня [100-е]

Информация о файле DXF

Что такое файл DXF?

файлов DXF (файлы с расширением.dxf) представляют собой тип файла ЧПУ, который называется векторными файлами САПР. Векторные файлы САПР содержат такие объекты, как:

  • Строки
  • Полигоны
  • Круги
  • Дуги
  • Кривые Безье
  • Текст

DXF означает формат обмена чертежами. Формат обмена чертежами был создан Autodesk для программного обеспечения AutoCAD CAD. Первоначально он был представлен в AutoCAD 1.0 в декабре 1982 года, поэтому существует уже давно.

Большинство программ CAD и CAM открывают, создают и редактируют файлы DXF.Импорт файла DXF в программу САПР с последующим его экспортом — лучший способ преобразовать файлы DXF в другой формат файла чертежа САПР. Многие программы для рисования, такие как Adobe Illustrator и CorelDraw, также открывают, редактируют и сохраняют файлы DXF, так что это еще одна возможность. Для художественной работы может быть проще программа для рисования. Для создания механических компонентов лучше использовать САПР.

Для начала мы предлагаем эту коллекцию бесплатных файлов DXF.

Зачем мне нужны бесплатные файлы DXF?

Как уже упоминалось, файлы DXF действуют как шаблоны ЧПУ, которые указывают вашему станку, где резать.Создавая декоративные и художественные проекты с ЧПУ, можно получить массу удовольствия. Такие проекты не требуют большой точности и имеют размер от 2 до 2 1 / 2D, поэтому их легко выполнить с помощью фрезерного станка с ЧПУ, лазера, гидроабразивной резки или резака для винила. Иногда мы добавляем рисунок в качестве декоративного элемента поверх прецизионной обработанной детали, как, например, гравировка на угловом калибре ленточной пилы:

Часто самое сложное в подобных проектах — это работа над художественными работами. Это штриховая графика, которую относительно просто преобразовать в CAD, а затем в CAM и, наконец, в g-код.Но получить приличный штриховой рисунок для начала может быть непросто. Специально для нехудожников.

С помощью этой страницы я делаю штриховые рисунки достойного качества, доступными бесплатно для специалистов с ЧПУ, чтобы вы могли иметь отличные шаблоны ЧПУ для своих проектов.

Как видите, мы делим файлы на такие категории, как «Животные», «Праздник» и «Транспортные средства». У меня есть БОЛЬШАЯ библиотека бесплатных файлов dxf, которые вы сможете скачать выше. У меня еще нет почти всех, но я буду постоянно добавлять на страницу, пока они все не будут доступны.

Ниже вы также найдете информацию о том, как максимально эффективно использовать бесплатные файлы dxf, поэтому обязательно ознакомьтесь со статьей ниже об оптимизации вашего CAM для файлов резки DXF.

У меня большие планы на эту страницу, так что следите за обновлениями. Если вы еще не подписались на нашу рассылку новостей по электронной почте, подключитесь прямо ниже, чтобы не пропустить новые события.

Оптимизация вашего CAM для файлов резки DXF

Чтобы обеспечить вам отличный опыт работы с нашими бесплатными файлами DXF, мы хотели бы поделиться с вами некоторой информацией, которая поможет вам добиться успеха с нашими файлами DXF.

Первое, что вы захотите сделать после загрузки файла Free DXF, — это распаковать файл с помощью программы для извлечения файлов. После того, как вы разархивируете папку с файлами, вы увидите два доступных файла. Один из ваших распакованных файлов будет иметь расширение .dxf, а другой — .jpg (файлы .dxf предназначены для вырезания файлов .jpg и предназначены только для просмотра).

Вы будете в первую очередь сосредоточены на импорте или открытии файла DXF в программе на базе CAM или CAD. Если вы пытаетесь отредактировать проектную работу, вы можете использовать такую ​​программу, как Corel Draw или Adobe Illustrator, чтобы быстро внести изменения в существующий файл DXF.

Я знаю много людей, которые плохо знакомы с отраслью ЧПУ, которые хотели бы попробовать Inkscape, но у меня не было большого успеха с импортом и открытием моих файлов DXF в этой конкретной программе. Я считаю, что это связано с тем, как Inkscape был разработан на основе более старых версий формата файлов DXF.

Если вы импортируете файл DXF или открываете его в своем программном обеспечении CAM, обязательно отключите функцию инструмента коррекции. Если вы не можете полностью отключить функцию смещения, вам нужно уменьшить значение смещения до минимума (.001 ″). Эта функция также может называться «Компенсация инструмента».

Причина в том, что вы хотите, чтобы разрез проходил прямо по средней линии векторов в этих файлах. Все остальное может привести к плохим результатам или ошибкам, которые не позволят вашему CAM-пакету создать g-cdoe.

Вот пример того, как выглядит файл DXF, когда он импортируется без каких-либо смещений:

Так выглядит файл DXF со средним смещением:

Обратите внимание, что нет большой видимой разницы, однако это среднее смещение создало более 100 нежелательных пересечений в геометрии.

Так выглядит файл DXF с большим смещением:

Разница разительная и настораживающая. Не дайте себя обмануть, увидев что-то подобное, очевидно, что проблема связана с неправильным смещением траектории инструмента.

Если ваша CAM-система обнаруживает перекрывающиеся линии или выдает вам коды ошибок, основной причиной этого является то, что ваша функция автоматического смещения включена, и ваша CAM-система буквально перерисовывает проектную работу, чтобы учесть ненужное смещение.Если вы импортируете файл DXF и видите тысячи маленьких линий очень близко друг к другу, то параметры импорта могут быть неправильно настроены для линий и дуг, тогда как они должны быть установлены для полилиний.

Как только вы сможете импортировать файл DXF в программу CAM, вы заметите, что большинство наших файлов DXF с ЧПУ содержат два изображения с одинаковым дизайном.

Например, вот файл Camaro DXF:

.

Если вы увеличите масштаб импортированного файла DXF, вы увидите, что один дизайн включает отдельные линии, как вы видите в этом примере (отдельные линии называются траекториями открытого разреза).

Если вы увеличите масштаб другого изображения, включенного в импортированный файл DXF, вы увидите, что оно не содержит ни одной строки. (В этой конструкции все пути резки называются закрытыми путями резки):

Теперь, когда вы знакомы с некоторыми основами импорта файла DXF, вы захотите удалить версию дизайна с закрытым или открытым путем. Как правило, все системы резки с ЧПУ на основе плазменной резки и маршрутизатора будут использовать версию проекта с открытым контуром резки (если вы используете систему резки с ЧПУ на основе плазменной резки или маршрутизатора, вы можете удалить версию файла DXF с закрытым путем). сохранить файл под отдельным именем, чтобы не потерять доступ к обеим версиям дизайна.

Теперь, если вы работаете с системой резки с ЧПУ на основе лазера или гидроабразивной резки, вы захотите использовать версию конструкции с замкнутой траекторией резки. (Если вы используете систему лазерной или гидроабразивной резки, вы можете удалить версию дизайна файла DXF с открытой траекторией резки). Не забудьте сохранить файл под отдельным именем, чтобы не потерять доступ к обеим версиям дизайна.

Если вы планируете резать наши файлы DXF с помощью системы плазменной резки с ЧПУ, рекомендуется использовать систему плазменной резки, способную резать при токе 40 ампер или ниже.Расходные детали для тонких наконечников на ток от 20 до 40 А дадут результаты от отличных до очень хороших. Сила тока напрямую зависит от ширины резки плазменного потока.

Для получения наилучших результатов обязательно сделайте несколько тестовых разрезов по прямой линии, чтобы минимизировать ширину разреза в материале, который вы будете разрезать. Расстояние отвала, скорость резки и давление воздуха — все это влияет на ширину резки и качество резки. Все системы плазменной резки уникальны, и единственный верный способ получить действительно потрясающие результаты — это метод проб и ошибок.Потратив немного времени и практики, вы уменьшите ширину реза и улучшите качество реза, что приведет к достижению высокой детализации и минимальной очистке.