Драйвер питания светодиодов: Led драйверы для светодиодов, источники, блоки питания для освещения
Как подобрать драйвер для светодиодов
Расширенный поиск
- Главная
- Удобрения
- GHE
- Удобрения
- Стимуляторы
- BioBizz
- Стимуляторы
- Удобрения
- Hesi
- Стимуляторы
- Удобрения
- Plagron
- Удобрения
- Стимуляторы
- Powder Feeding
- Advanced Nutrients
- Стимуляторы
- Удобрения
- Simplex
- Удобрения Simplex
- Стимуляторы Simplex
- RasTea
- Стимуляторы
- Удобрения
- Etisso
- B.A.C.
- Удобрения
- Стимуляторы
- Maxiclon
- Greenworld
- Прочее
- Защита растений
- Удобрения
- Стимуляторы
- Pokon
- Advanced Hydroponics
- Удобрения
- Стимуляторы
- Valagro
- 50 мл
- GHE
- Освещение
- Фитолампы ДНаТ, ЭСЛ
- Светильники, отражатели
- LED освещение
- ЭПРА, ЭМПРА
- Материалы для монтажа
- Светодиоды и LED матрицы
- Блоки питания (драйверы)
- Аксессуары для светодиодов
- Бактерицидные, УФ лампы
- Светоотражающие материалы
- Вентиляция
- Вентиляторы
- Угольные фильтры
- Для монтажа
- Уголь
- Гидропонные системы
- Гидропонные системы AquaPot
- Гидропонные системы GHE
- Капельный полив
- Системы автополива
- Комплектующие
- AutoPot
- Мини системы
- Почва и субстраты
- Прочие
- Кокосовый субстрат
- Почва
- Минеральная вата
- Керамзит
- Перлит, Вермикулит
- Приборы
- PH-метры
- EC-метры
- TDS-метры
- Растворы, регуляторы PH
- Температура и влажность
- Таймеры и Пускатели
- Системы контроля
- Горшки и емкости
- Умные горшки
- Горшки, контейнеры
- Разное
- CO2
- Весы
- Помпы
- Компрессоры
- Аэраторные камни
- Нейтрализаторы запаха
- Аромамасла, ароматизаторы
- Батарейки
- Дополнительно
- Гроутенты и гроубоксы
- Гроубоксы
- Гроутенты GreenBox
- Гроутенты ProBox
- Secret Jardin
- Hydro Shoot
- Аксессуары
- Dark Room
- Cristal
- Dark Street
- Аксессуары для гроубоксов
- Животноводство
- Птичкам
- Корма
- Оборудование
- Кролям
- Корма
- Оборудование
- Хрюшкам
- Корма
- Оборудование
- Буренкам
- Корма
- Оборудование
- Козочкам
- Корма
- Оборудование
- Разное
- Живность
- Яйцо инкубационное
- Живая птица
- Оборудование
- Маслобойки
- Сепараторы
- Разное
- Зернодробилки
- Птичкам

Драйвер для светодиодов подбирается под необходимую нагрузку, неважно несколько это отдельных светодиодов, подключенных последовательно в одну цепь или это параллельное подключение нескольких таких цепочек. Для примера возьмем светодиод 3 Вт полный спектр, с характеристиками 3.2-3.6 В, 700 мА. К примеру, нам требуется подключить последовательно 10 таких светодиодов. Нам потребуется напряжение светодиода 3.2-3.6 вольта умножить на количество светодиодов: 3.2-3.6В * 10 шт. = 32-36В. Значит, нам нужен блок питания (драйвер) с выходными характеристиками 32-36 В и 700мА. Точно такого драйвера у нас нет, но нам вполне подойдет блок питания из нашего ассортимента «Блок питания 18-34В 650 мА» (к данному блоку можно подключить от 6 до 10 светодиодов), то, что вместо 700мА, драйвер выдает только 650мА, ничего страшного нет, наоборот срок службы светодиодов будет более продолжительный, можно взять даже блок питания с выходной силой тока 600 мА. Напоминаем, что мощные светодиоды для работы требуют охлаждения, обычно для этих целей используют алюминиевые радиаторы.

Мы в социальных сетях
Новости
8 марта — выходной
Уважаемые наши, любимые женщины!
Позвольте поздравить вас с Международным женским днём 8 марта! Желаем всего самого лучшего и доброго в жизни. Будьте здоровы и любимы, оставайтесь самими собой: кокетливыми, весёлыми, умными, красивыми! Вы — лучшие!
График работы:
8 марта — выходной.
С 9 марта – по обычному графику.
График работы на февральские праздники
Уважаемые друзья!
Публикуем график работы нашего интернет магазина на февральские праздники:
23 февраля – выходной
25 февраля – с 11 до 17 часов
26 февраля – выходной
С понедельника работаем по обычному графику.
Желаем Вам хороших выходных!
*Обращаем Ваше внимание, что на телефонные звонки, письма и обратную связь в выходные дни отвечать не будут.
Облако тегов
LED-драйверы MEAN WELL в вопросах и ответах
7 июня 2022
светотехникаMEAN WELLстатьяисточники питанияAC-DCККМLED драйверсветодиодное освещение
Игорь Елисеев (г. Химки)
Что такое LED-драйвер, чем он отличается от стандартного модульного источника питания, и какую роль в производстве LED-драйверов (подсказка: очень большую) играет компания MEAN WELL. Главный компонент современного светодиодного осветительного прибора – и по стоимости, и по значению – LED-драйвер. Один из ведущих мировых производителей LED-драйверов – тайваньская компания MEAN WELL. Поставки продукции MEAN WELL в Россию продолжаются – самое время ответить на часто возникающие по ее поводу вопросы.
Светодиод в качестве светоизлучающего элемента превосходит по совокупности характеристик все существующие в мире источники искусственного света. Он отличается более высокой светоотдачей (что можно также охарактеризовать как экономичность или энергоэффективность), долговечен (срок службы современных осветительных светодиодов измеряется десятками, а то и сотнями тысяч часов), безынерционен (то есть способен менять свою яркость практически мгновенно, с задержкой в единицы наносекунд после изменения питающего тока), компактен (имеет размеры порядка нескольких миллиметров), отличается хорошим качеством света (то есть обладает высоким индексом цветопередачи и непрерывным спектром излучения) и не имеет проблем с утилизацией (состоит из экологически чистых материалов).
Но чтобы на базе светодиодов создать осветительный прибор, предназначенный для подключения к сети переменного тока, требуется специализированный источник питания, известный под названием LED-драйвер, где LED – Light-Emitting Diode (светоизлучающий диод).
С одной стороны, данный прибор должен обеспечить подключенным светодиодам электропитание надлежащего качества и с заданными характеристиками, а с другой – соответствовать множеству нормативов и стандартов, касающихся электроприборов, предназначенных для подключения к электрической сети общего назначения. Кроме того, в ряде случаев данный прибор должен обладать еще и возможностью внешнего управления – локально или удаленно посредством аналоговых и цифровых интерфейсов.
По сути, LED-драйвер является главным компонентом светодиодного осветительного прибора, полностью отвечающим за его функционирование и электротехнические характеристики. Помимо этого, именно драйвер, являясь наиболее уязвимым элементом системы, в наибольшей мере отвечает за надежность светодиодного светильника в целом.
Разработчикам осветительных приборов на базе светодиодов необходимо иметь четкое представление о том, какие характеристики LED-драйвера жизненно необходимы в том или ином конкретном случае, а какими можно пренебречь. Этого представления зачастую недостает тем разработчикам светодиодных светильников, которые раньше имели дело только с традиционными источниками света. Отсутствие необходимых знаний не позволяет им создавать полноценные осветительные приборы на базе светодиодов, оптимизированные как по стоимости, так и по техническим характеристикам.
Цель данной статьи – ликвидировать этот пробел в знаниях, ответить на ряд вопросов, связанных с характеристиками и устройством современных светодиодных светильников и их комплектующих – осветительных светодиодов и LED-драйверов. Попутно читатель получит представление о продукции одного из ведущих производителей светодиодных драйверов, ветерана данной отрасли, который занимается этой темой с начала века, буквально с момента появления на рынке первых промышленных образцов осветительных светодиодов – тайваньской компании MEAN WELL.
Особенности и характеристики этого вида продукции – светодиодных драйверов – обусловлены прежде всего спецификой прибора, для управления которым они были созданы – осветительного светодиода. Поэтому, прежде чем перейти к рассмотрению свойств LED-драйверов, необходимо ознакомиться с устройством и набором характеристик этого источника света.
Как устроен осветительный светодиод и каковы его основные характеристики?
Основное назначение осветительного светодиода – создавать излучение белого цвета, подобное солнечному свету. Как известно, видимый солнечный свет, воспринимаемый человеческим глазом – это непрерывный спектр электромагнитных излучений в диапазоне длин волн примерно от 380 до 780 нм. Но кристалл светодиода способен создавать излучение только в очень узкой области спектра, практически монохромное. Чтобы расширить спектр излучения применяют специальные материалы – люминофоры, способные индуцировать вторичное излучение различных длин волн за счет энергии фотонов, испускаемых кристаллом светодиода. В простейшем случае используют кристалл InGaN, излучающий в синей части спектра, и люминофор, продуцирующий желтый цвет. Смесь этих двух цветов (синего и желтого) воспринимается человеческим глазом как белый цвет. Схема такого светодиода представлена на рисунке 1, а его характерный спектр излучения – на рисунке 2.
Рис. 1. Схема простейшего светодиода белого свечения
Рис. 2. Характерный спектр излучения простейшего светодиода белого свечения
На практике, чтобы получить более равномерный спектр, применяют сложные смеси люминофоров. При этом возможны два варианта продуцирования синей части спектра – использовать собственное излучение кристалла (как в рассмотренном выше случае) или создавать его с помощью люминофора. Второй случай более предпочтителен, так как позволяет получать наиболее приближенный к естественному (солнечному) спектр излучения. Кроме того, в этом случае применяется кристалл, интенсивно излучающий в ультрафиолетовой области, что позволяет существенно повысить общую эффективность светодиода.
Что касается электрических характеристик светодиода, то они в значительной мере схожи с параметрами обычного полупроводникового диода, отличаясь по большей части лишь количественными показателями. Типовая вольт-амперная характеристика (ВАХ) осветительного светодиода показана на рисунке 3, а на рисунке 4 представлены ВАХ при различных температурах p-n-перехода кристалла (Tj). Типовые световые характеристики осветительного светодиода, а именно зависимости яркости свечения от протекающего тока и от температуры перехода представлены соответственно на рисунках 5 и 6.
Рис. 3. Типовая вольт-амперная характеристика осветительного светодиода
Рис. 4. Типовые вольт-амперные характеристики осветительного светодиода в зависимости от температуры
Рис. 5. Типовая зависимость яркости осветительного светодиода от величины прямого тока
Рис. 6. Типовая зависимость яркости осветительного светодиода от температуры
Можно ли использовать стандартный источник питания в качестве светодиодного драйвера?
Важнейшей характеристикой осветительного светодиода является производимое им количество света (проще говоря, яркость). А эта величина, в свою очередь, напрямую связана с током через светодиод (см. рисунок 5). Но при подключении светодиода (или цепочки светодиодов) непосредственно к источнику постоянного напряжения (коим является стандартный источник питания) невозможно гарантировать постоянство или хотя бы заданную величину тока. На то есть три причины.
Во-первых, при производстве светодиодов невозможно добиться полной идентичности их параметров. Даже у светодиодов одной и той же партии, произведенных в одном технологическом процессе, наблюдается разброс электрических характеристик. Поэтому при одном и том же питающем напряжении токи через отдельные светодиоды в общем случае будут различными.
Во-вторых, выходное напряжение источника питания, хоть и стабилизированное, может колебаться в определенных пределах (как правило, в районе единиц процентов). Но даже незначительное изменение напряжения на светодиоде приводит к куда более существенному изменению величины тока через него. Как демонстрирует график на рисунке 3, при изменении напряжения на 2,5% ток светодиода меняется на 16%.
В-третьих, вольт-амперные характеристики светодиода сильно зависят от температуры. Судя по графикам на рисунке 4, при изменении температуры перехода в пределах от 40 до 100°C и при фиксированном значении напряжения на светодиоде ток через него будет меняться в очень широких пределах – примерно в три раза.
Исходя из этого, можно сделать вывод, что с помощью напряжения невозможно полностью контролировать состояние светодиода. Единственный надежный способ управления светодиодом – регулировать непосредственно величину питающего тока. Именно поэтому стандартные источники питания со стабилизацией выходного напряжения не подходят для этой цели, а все светодиодные драйверы построены по схеме источника тока (рисунок 7). Если все же необходимо подключить светодиоды к источнику напряжения, то в этом случае нужно последовательно с цепочкой светодиодов включать токоограничительный резистор (рисунок 8) или стабилизатор тока (рисунок 9). Первый вариант отличается низкой стоимостью и простотой решения, а также позволяет регулировать ток (а, следовательно, и яркость) светодиодов за счет изменения выходного напряжения источника. Второй вариант немного дороже и сложнее, но обеспечивает высокую стабильность тока через светодиоды. В обоих случаях снижается КПД системы за счет потерь на дополнительных элементах схемы.
Рис. 7. Подключение светодиодов к источнику тока
Рис. 8. Подключение светодиодов к источнику напряжения с помощью токоограничительного резистора
Рис. 9. Подключение светодиодов к источнику напряжения с использованием стабилизатора тока
Чем отличаются режимы работы CV, CC и CP источников питания MEAN WELL?
Принято считать, что источник питания может быть только одного из двух типов – либо источником напряжения, либо источником тока. У источников питания компании MEAN WELL все немного по-другому. Во-первых, в линейке продукции этой компании часто встречаются приборы с совмещенным функционалом (например, способные в одних случаях выполнять роль источника напряжения, а в других – источника тока). Во-вторых, компания производит уникальный тип источников питания, который можно определить как источник мощности (обладающий способностью стабилизировать именно мощность нагрузки, а не ток или напряжение по отдельности). В зависимости от того, какой из выходных параметров стабилизируется, источник питания MEAN WELL может функционировать в одном из трех режимов: CV (Constant Voltage) – режим стабилизации напряжения, CC (Constant Current) – режим стабилизации тока или CP (Constant Power) – режим стабилизации мощности нагрузки.
Режим CV не имеет каких-либо особенностей. В этом режиме прибор функционирует как любой другой стандартный источник питания со стабилизированным выходным напряжением. Как отмечалось выше, подобные источники напряжения непригодны для питания светодиодов. Однако MEAN WELL позиционирует некоторые из таких приборов как LED-драйверы (например, семейства APV и LPV). Если внимательно ознакомиться с технической документацией на эти источники питания, то выясняется, что они предназначены для подключения готовых устройств на базе светодиодов (типа светодиодных лент или лампочек), питающихся от источников постоянного напряжения и уже имеющих в своем составе простые светодиодные драйверы (к примеру, как на рисунках 8 и 9).
Источники питания, работающие в режиме CC – это стандартные светодиодные драйверы, выходной ток которых стабилизируется на заданном уровне, а выходное напряжение определяется подключенной нагрузкой. Причем нагрузка должна быть подобрана таким образом, чтобы напряжение на выходе укладывалось в определенные границы. Верхняя граница рабочего диапазона выходных напряжений обычно определяется, исходя из максимальной мощности (то есть равна значению максимально допустимой мощности в ваттах деленной на рабочий ток в амперах). А значение нижней границы диапазона обычно равно половине этой величины (напряжения верхней границы). В технической документации этот параметр – диапазон выходных напряжений в режиме CC – именуется Constant Current Region. Так как нагрузкой светодиодного драйвера служит цепочка светодиодов, то прежде всего надо определить по вольт-амперным характеристикам (таким, как на рисунке 4) диапазон напряжений светодиода на заданном токе в диапазоне рабочих температур. После этого можно подобрать количество светодиодов в цепочке так, чтобы суммарное напряжение гарантированно укладывалось в диапазон выходных напряжений драйвера. Если напряжение на нагрузке выйдет за границы этого диапазона, то это приведет к срабатыванию защиты.
Достаточно часто в номенклатуре MEAN WELL встречаются комбинированные источники питания, совмещающие функции источника стабилизированного напряжения и светодиодного драйвера. Логика работы таких приборов заключается в следующем – когда выходной ток источника питания ниже заданной величины, равной выходному току светодиодного драйвера, прибор работает в режиме CV, а при достижении этой величины – переходит в режим CC. На рисунке 10 представлена выходная характеристика прибора данного типа (CV + CC), а именно ELG-75-48 – источника питания мощностью 75 Вт, который может функционировать в режиме источника напряжения на 48 В или как светодиодный драйвер на 1600 мА с Constant Current Region 24…48 В.
Рис. 10. Выходная характеристика источника питания ELG-75-48
Пока выходной ток не превышает 1600 мА, прибор работает как источник стабилизированного напряжения на 48 В (зона CV). А как только ток на выходе становится равным 1600 мА, прибор превращается в источник стабилизированного тока (зона CC). При этом напряжение на выходе становится равным напряжению на цепочке светодиодов. Если это напряжение будет ниже 24 В, сработает схема защиты.
Рис. 11. Выходная характеристика источника питания XLG-75-H
Для сравнения рассмотрим характеристики источника питания XLG-75-H, который имеет близкие по значению параметры (мощность 75 Вт, выходной ток до 2100 мА, диапазон выходных напряжений 27…56 В), но отличается тем, что работает в режиме CP. Выходная характеристика этого прибора представлена на рисунке 11, где синяя заштрихованная область обозначает рабочую зону. В отличие от предыдущей модели, где выходной ток имел фиксированное значение независимо от напряжения, здесь при уменьшении напряжения на выходе ток увеличивается (и наоборот – при увеличении напряжения ток уменьшается) для того, чтобы поддерживать выходную мощность примерно на одном уровне. При этом выходной ток не должен превышать максимального значения (в данном случае 2100 мА). Значение выходной мощности регулируется встроенным потенциометром (точнее сказать – регулируется значение выходного тока, а границы выходного напряжения при этом не изменяются). Например, если задать минимальное значение выходного тока, то выходная характеристика будет совпадать с левой границей рабочей зоны от точки со значениями 650 мА 56 В, до точки 1300 мА 27 В, при этом мощность на данном промежутке будет поддерживаться в районе 35,1…36,4 Вт.
Светодиодный драйвер, функционирующий в режиме постоянной мощности (CP), будет весьма полезен в тех случаях, когда требуется поддерживать яркость светодиодов на заданном уровне в широком диапазоне температур. Стандартный светодиодный драйвер, стабилизирующий выходной ток на заданном уровне, не способен решить эту задачу. Проблема в том, что, как следует из графика на рисунке 6, яркость светодиода снижается с повышением температуры, и для компенсации этого снижения требуется увеличивать значение тока через светодиод. В то же время, как показано на рисунке 4, напряжение на светодиоде с увеличением температуры снижается. В этом случае драйвер, работающий в режиме постоянной мощности, обнаружит снижение напряжения на выходе и увеличит выходной ток (синяя линия на графике), компенсируя таким образом снижение яркости свечения светодиодов. Такой драйвер отлично подходит для систем уличного освещения и для любых других приложений, где требуется поддерживать уровень освещенности на заданном уровне в широком диапазоне температур.
Какие режимы работы поддерживают светодиодные драйверы MEAN WELL?
Серии | Режим работы |
---|---|
ELG-75, ELG-100, ELG-150, ELG-200, ELG-240, ELG-300 | CV + CC |
ELG-75-C, ELG-100-C, ELG-150-C, ELGT-150-C, ELG-200-C, ELG-240-C | CC |
ELGC-300 | CP |
HLG-40H, HLG-60H, HLG-80H, HLG-100H, HLG-120H, HLG-150H, HLG-185H, HLG-240H, HLG-320H, HLG-480H, HLG-600H | CV + CC |
HLG-60H-C, HLG-80H-C, HLG-120H-C, HLG-185H-C, HLG-240H-C, HLG-320H-C, HLG-480H-C | CC |
XLG-20 | CC |
XLG-25, XLG-50, XLG-75, XLG-100, XLG-150, XLG-200, XLG-240, XLG-320 | CP |
LDH-25, LDH-45(DA), LDH-65 | CC |
LDD-L, LDD-H, LDD-H-DA, NLDD-H, LDDS-H | CC |
SLD-50, SLD-80 | CV + CC |
LCM-25-IoT, LCM-40-IoT, LCM-60-IoT | CC |
APC-8, APC-12, APC-16, APC-25, APC-35, APC-8E, APC-12E, APC-16E | CC |
APV-8, APV-12, APV-16, APV-25, APV-35, APV-8E, APV-12E, APV-16E | CV |
LPHC-18, LPC-20, LPC-35, LPC-60, LPC-100, LPC-150 | CC |
LPL-18, LPH-18, LPV-20, LPV-35, LPV-60, LPV-100, LPVL-150, LPV-150 | CV |
LPF-16, LPF-25, LPF-40, LPF-60, LPF-90 | CV + CC |
LPF-16D, LPF-25D, LPF-40D, LPF-60D, LPF-90D | CC |
Какие методы димминга поддерживают светодиодные драйверы MEAN WELL?
Термин димминг (от английского dimming – затемнение) относится к процессу регулирования силы света осветительного прибора. Компания MEAN WELL традиционно использует практически во всех своих светодиодных драйверах три метода димминга: постоянным напряжением 0…10 В, сигналом PWM (Pulse-Width Modulation – широтно-импульсная модуляция, ШИМ) или с помощью переменного резистора. Для этого у светодиодных драйверов предусмотрена пара контактов DIM+ и DIM-, к которым подключается управляющее напряжение или переменный резистор. Так как эти контакты используются для всех трех методов димминга, MEAN WELL именует эту схему “3 in 1” (три в одном). Во всех трех методах наблюдается линейная зависимость выходного тока от напряжения на контактах DIM+ и DIM- (рисунок 12), от коэффициента заполнения ШИМ-сигнала амплитудой 10 В (рисунок 13) или от сопротивления переменного резистора (рисунок 14). Номинал переменного резистора в килоомах рассчитывается по формуле 100/N, где N – количество одновременно регулируемых драйверов.
Рис. 12. Метод димминга светодиодного драйвера постоянным напряжением 0…10 В
Рис. 13. Метод димминга светодиодного драйвера PWM сигналом
Рис. 14. Метод димминга светодиодного драйвера с помощью внешнего переменного резистора
Что такое фликер и что означает термин “Flicker Free”?
Понятие фликер (от английского flicker – мерцание) применительно к искусственным источникам освещения означает (согласно ГОСТ 13109-97) субъективное восприятие человеком колебаний светового потока – мерцаний, вызванных колебаниями напряжения в питающей электрической сети. Попросту говоря, фликером называется мигание света, которое оказывает какое-либо влияние на человеческий организм. Известно, что большинство людей не замечает миганий света, если частота этих колебаний превышает 60 … 80 Гц. Однако установлено, что даже невидимые глазом пульсации света частотой до 300 Гц отражаются на работе головного мозга и могут привести к серьезным нарушениям в его деятельности. Колебания света частотой выше 300 Гц, как показали эксперименты, не оказывают заметного влияния на человека и воспринимаются организмом как постоянный, немигающий свет. В связи с этим, действующие стандарты и нормативы, связанные с освещением, нормируют коэффициент пульсаций светового потока только для тех случаев, когда частота этих колебаний не превышает 300 Гц. Что касается светодиодных драйверов MEAN WELL, то они надежно защищены от проникновения на выход частоты питающей сети (50 Гц) и ее гармоник за счет совершенной схемы преобразования и хорошей стабилизации, внутренняя частота преобразования заведомо больше 300 Гц, а рекомендуемая частота диммирования PWM-сигналом находится в пределах от 300 Гц до 3 кГц. В любом случае, амплитуда пульсаций на выходе (неважно, тока или напряжения), как правило, не достигает и одного процента, что укладывается в любые, самые жесткие нормативы. Таким образом, все светодиодные драйверы MEAN WELL попадают под категорию «Flicker Free», что дословно означает «свободные от фликера».
Что такое PFC, с какой целью используется и где применяется?
Аббревиатура PFC расшифровывается как Power Factor Correction (коррекция коэффициента мощности, ККМ). Чтобы понять, что это за устройство и для чего оно нужно, необходимо прежде всего детально разобраться с понятием коэффициента мощности.
Начнем с того, что этот коэффициент вычисляется для электронных устройств, подключаемых к сети переменного тока. Он представляет собой безразмерную величину и определяется как отношение активной мощности к полной мощности, потребляемой из сети. Активная мощность – это полезная энергия, то реальное количество мощности, которое потребляется электроприбором. А полная мощность – это сколько в действительности расходует сеть. На практике можно получить эти величины, если измерить по отдельности ток, напряжение и мощность. Измеренная мощность – это и будет та самая активная мощность. А полную мощность можно получить, перемножив измеренные значения тока и напряжения. В идеальном случае, при чисто резистивной нагрузке, коэффициент мощности будет равен единице. Это когда ток в цепи имеет форму синусоиды и при этом совпадает по фазе с напряжением в сети. Но во входной цепи источника питания без ККМ форма тока, мягко говоря, будет слишком далека от идеала (см. рисунок 15). Соответственно, коэффициент мощности в этом случае будет намного меньше единицы.
Рис. 15. Осциллограммы напряжения (желтая кривая) и тока (синяя) во входной цепи источника питания без ККМ
Приборы с низким коэффициентом мощности создают дополнительную нагрузку на сеть и способствуют бесполезному расходованию энергии, так как избыточная мощность, которая не идет в нагрузку, просто рассеивается в виде тепловой энергии, нагревая провода в сети. Поэтому действующие нормы и правила запрещают использование мощных электроприборов с низким коэффициентом мощности без ККМ. Что касается области освещения, то здесь допускается использование осветительных приборов без ККМ, но только мощностью не более 25 Вт. Соответственно, это правило касается и светодиодных драйверов. Задача корректора коэффициента мощности состоит в том, чтобы приблизить форму потребляемого тока к синусоиде, синфазной с входным напряжением. На рисунке 16 представлены кривые тока и напряжения во входной цепи источника питания после применения корректора коэффициента мощности.
Рис. 16. Осциллограммы напряжения (желтая кривая) и тока (синяя) во входной цепи источника питания с ККМ
“Cold Start” или “Environment Adaptive Function” в момент первого включения?
Термин Cold Start (холодный пуск) применительно к источникам питания в общем случае обозначает момент первого включения, когда температура всех компонентов равна температуре окружающей среды, и все конденсаторы в схеме разряжены. То есть, слово Cold (холодный) в данном контексте используется в смысле противопоставления «горячему» (то есть, рабочему) состоянию. Именно так трактует данный термин MEAN WELL, и единственное упоминание о нем, встречающееся в технической документации, связано с понятием Inrush Current (пусковой ток), обозначающим бросок входного тока в момент включения, вызванный зарядом конденсаторов во входных цепях.
Но иногда данный термин в трактовке других производителей светодиодных драйверов обозначает нечто иное, хотя и связанное с моментом включения. В их понимании Cold Start обозначает запуск именно светодиодного драйвера (только его, а не какого-либо иного источника питания) и буквально на холоде (при очень низкой температуре). Это связано с тем, что у светодиодов при понижении температуры повышается напряжение (см. рисунок 4). Поэтому при пуске на холоде необходимо временно повышать напряжение на выходе драйвера.
Но у MEAN WELL в серии HLG-C реализовано точно такое же решение, только оно имеет другое название – Environment Adaptive Function, то есть функция приспособления к условиям окружающей среды. Выходная характеристика драйвера HLG-C представлена на рисунке 17. Когда напряжение на цепочке светодиодов превышает максимальное выходное напряжение (до 120% от максимума), включается механизм адаптации, который понижает выходной ток с тем, чтобы выходная мощность не вышла за допустимые пределы. Когда светодиоды войдут в рабочий режим (то есть прогреются до рабочей температуры), рабочая точка сместится в зону CC, и драйвер продолжит функционировать уже в штатном режиме. Того же эффекта можно добиться с использованием драйвера в режиме CP, как было описано выше.
Рис. 17. Выходная характеристика светодиодного драйвера серии HLG-C
Что такое Smart Timer Dimming?
Smart Timer Dimming – это программируемая функция автоматического управления яркостью светодиодного светильника. Эта функция особенно полезна, когда нет возможности управлять светодиодным драйвером извне, посредством цифровых или аналоговых интерфейсов. В этом случае можно задать определенный профиль управления, и драйвер будет автоматически управлять светильником, устанавливая заданную яркость в зависимости от времени суток. Стандартно предлагаются три профиля управления – для помещений, для тоннелей и для уличного освещения. Помимо этого, предусмотрена функция компенсации снижения яркости свечения светодиодов в результате их деградации в течение жизненного цикла. Также предусмотрена возможность настраивать плавный переход яркости от одного уровня к другому, задавая время этого перехода. Настройка (программирование) драйвера осуществляется с помощью программатора SDP-001 и персонального компьютера с установленной системой Windows. Схема подключения представлена на рисунке 18. Функцию Smart Timer Dimming поддерживают светодиодные драйверы серий ELG, ELG-C, HLG и HLG-C.
Рис. 18. Схема программирования светодиодного драйвера с функцией Smart Timer Diming
Какие светодиодные драйверы MEAN WELL поддерживают протоколы DALI и KNX?
Аббревиатура DALI расшифровывается как Digital Addressable Lighting Interface (цифровой адресуемый интерфейс освещения). Исторически это первый цифровой интерфейс, предназначенный для организации сети осветительных приборов. Благодаря возможности адресации можно управлять как индивидуально каждым прибором, так и группой в целом.
Интерфейс управления DALI – двунаправленный, что позволяет не только передавать команды (включение/выключение, регулировка яркости), но и получать информацию о статусах приборов в сети. Интерфейс DALI поддерживают следующие серии драйверов: ELG, ELG-C, LDD-DA, LCM-DA и LCM-U-DA.
Интерфейс KNX появился сравнительно недавно и предназначен прежде всего для работы в системе «умного дома» с возможностью управления широким спектром устройств, в том числе освещением. В ассортименте светодиодных драйверов MEAN WELL данный протокол поддерживает только одна серия со стабилизированным выходным током – LCM-KN, содержащая к тому же всего две модели – на 40 и 60 Вт.
Почему MEAN WELL?
MEAN WELL – один из ведущих мировых производителей источников питания, выпускающий широчайший ассортимент продукции (более 10000 моделей) для всех возможных областей применения. История компании насчитывает уже 40 лет, в течении которых MEAN WELL непрерывно улучшал свои компетенции в области преобразования электрической энергии, благодаря чему добился значительных успехов в этой сфере. Особое внимание всегда уделялось качеству выпускаемой продукции. В производстве используются только высококачественные материалы и компоненты, а выпускаемая продукция регулярно подвергается испытаниям в собственных тестовых лабораториях компании. Благодаря этому MEAN WELL приобрел заслуженную репутацию производителя источников питания высочайшего качества и надежности. Недаром гарантия на его продукцию нередко составляет 5, а в ряде случаев и 7 лет. Наряду с этим, источники питания MEAN WELL отличаются относительно невысокой стоимостью по сравнению с аналогичной продукцией конкурентов. В связи с этим продукция компании пользуется огромным спросом во всем мире, в том числе и в России, куда источники питания MEAN WELL поставляются уже более 20 лет.
•••
Понимание светодиодных драйверов от LEDSupply
Драйверы светодиодов могут быть запутанной частью светодиодной технологии. Существует так много разных типов и вариаций, что иногда это может показаться немного ошеломляющим. Вот почему я хотел написать краткий пост с объяснением разновидностей, их различий и вещей, на которые следует обращать внимание при выборе драйвера (драйверов) светодиодов для освещения.
Что такое светодиодный драйвер, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть схемы светодиодов, и работа без нее приведет к сбою системы.
Использование одного из них очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое требуется светоизлучающему диоду, чтобы проводить электричество и загораться. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока не сгорит, это также известно как тепловой разгон. Драйвер светодиода представляет собой автономный источник питания с выходами, соответствующими электрическим характеристикам светодиода(ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток светодиода.
На что обратить внимание перед выбором драйвера светодиодов
- Какие типы светодиодов используются и сколько?
- Узнайте прямое напряжение, рекомендуемый управляющий ток и т. д.
- Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
- Здесь мы сравним постоянный ток и постоянное напряжение.
- Какой тип питания будет использоваться? (постоянный ток, переменный ток, батареи и т. д.)
- Работа от сети переменного тока? Посмотрите, какую пользу вам принесет драйвер переменного тока!
- Каковы ограничения по размеру?
- Работаете в ограниченном пространстве? Не так много напряжения для работы?
- Каковы основные цели приложения?
- Размер, стоимость, эффективность, производительность и т.
д.
- Размер, стоимость, эффективность, производительность и т.
- Требуются какие-либо специальные функции?
- Диммирование, пульсация, микропроцессорное управление и т. д.
Во-первых, вы должны знать…
Существует два основных типа драйверов: те, которые используют входную мощность постоянного тока низкого напряжения (обычно 5-36 В постоянного тока), и те, которые используют входную мощность переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, использующие питание переменного тока высокого напряжения, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиодов с низким напряжением постоянного тока. Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуется использовать низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов диммирования и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилых или коммерческих помещений, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.
Второе, что вы должны знать
Во-вторых, вам нужно знать управляющий ток, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для работы света. Важно знать характеристики вашего светодиода, чтобы вы знали рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным теплом. Наконец, полезно знать, что вы ищете в своем приложении для освещения. Например, если вы хотите диммировать, вам нужно выбрать драйвер с возможностью диммирования.
Немного о диммировании
Диммирование светодиодов зависит от того, какую мощность вы используете; поэтому я рассмотрю варианты затемнения как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.
Диммирование постоянным током
Низковольтные драйверы постоянного тока можно легко диммировать двумя различными способами. Самым простым решением для диммирования для них является использование потенциометра. Это дает полный диапазон диммирования от 0 до 100%.
Потенциометр на 20 кОм Обычно рекомендуется, когда в вашей цепи есть только один драйвер, но если есть несколько драйверов, регулируемых одним потенциометром, значение потенциометра можно найти из – кОм/Н – где К – значение ваш потенциометр, а N — количество драйверов, которые вы используете. У нас есть проводные BuckPucks, которые поставляются с потенциометром поворотной ручки 5K для затемнения, но у нас также есть этот потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock. Просто подключите заземляющий провод диммирования к центральному контакту, а диммирующий провод — к одной или другой стороне (выбор стороны просто определяет, в какую сторону вы повернете ручку, чтобы сделать ее тусклой).
Второй вариант диммирования — использовать настенный диммер 0–10 В, например, A019 Low Voltage Dimming Control. Это лучший способ диммирования, если у вас несколько устройств, так как диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммирующие провода прямо к входу драйвера, и все готово.
Затемнение по переменному току
Для драйверов переменного тока с высоким напряжением имеется несколько вариантов затемнения, в зависимости от вашего драйвера. Многие драйверы переменного тока работают с диммированием 0-10 В, как мы рассмотрели выше. Мы также предлагаем драйверы светодиодов Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими диммерами с передним и задним фронтом. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.
Сколько светодиодов можно запустить с драйвером?
Максимальное количество светодиодов, которое можно подключить к одному драйверу, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется 2 вольта для питания внутренней схемы. Например, при использовании драйвера BuckPuck Wired 1000 мА с входным напряжением 24 вольта максимальное выходное напряжение составит 22 вольта.
Что мне нужно для Силы?
Это приводит нас к тому, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы примем во внимание служебное напряжение схемы драйвера. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы будем использовать проводной BuckPuck 1000 мА, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.
В или + (В f x LED n ) = В в
Где:
В или В o 9010x o 9010x 9010x драйверы = напряжение постоянного тока для драйверов или 4, если вы используете драйвер AC LuxDrive
В f = прямое напряжение светодиодов, которые вы хотите запитать
LED n = количество светодиодов, которые вы хотите запитать 3
в = Входное напряжение драйвера Спецификации продукта со страницы продукта Cree XPG2Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводной BuckPuck, указанный выше, то V в должен быть основан на напряжении не менее 20 В постоянного тока. по следующему расчету.
2 + (3,0 x 6) = 20
Это определяет минимальное входное напряжение, которое необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания 20 В постоянного тока, вы, вероятно, будете использовать блоки питания 24 В постоянного тока для работы этих светодиодов.
Теперь это поможет нам убедиться, что напряжение работает, но чтобы найти правильный источник питания, нам также нужно найти мощность всей светодиодной цепи. Расчет мощности светодиодов:
В f x Ток привода (в амперах)
Используя 6 светодиодов XPG2 сверху, мы можем найти наши ватты.
3,0 В x 1 А = 3 Вт на светодиод
Общая мощность схемы = 6 x 3 = 18 Вт
При расчете подходящей мощности источника питания для вашего проекта важно учитывать 20% «подушку» к вашему расчету мощности. Добавление этой 20-процентной подушки предотвратит перегрузку источника питания. Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному выходу из строя блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего приведенного выше примера нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.
Что делать, если у меня недостаточно напряжения?
Использование повышающего драйвера светодиодов (FlexBlock) Драйверы светодиодов FlexBlock являются повышающими драйверами, что означает, что они могут выдавать более высокое напряжение, чем то, которое на них подается. Это позволяет подключать больше светодиодов с помощью одного драйвера светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно увеличить мощность светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которые вы можете подключить с помощью одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и различаться по входному напряжению. В режиме Buck-Boost (стандартный) FlexBlock может работать со светодиодными нагрузками, которые выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме находится по формуле:
48 В постоянного тока – В в
Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы можем работать с 700 мА FlexBlock? Ваше максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы увидим, что этот драйвер может питать 12 светодиодов. В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока всего от 10 В постоянного тока. Таким образом, если бы вы были в режиме Boost-Only, вы могли бы включить до 16 светодиодов (48/2,9). Здесь мы подробно рассмотрим использование повышающего драйвера FlexBlock для питания ваших светодиодов.
Проверка мощности драйверов с входом переменного тока высокой мощности
Теперь драйверы с входом переменного тока выделяют определенное количество ватт для работы, поэтому вам нужно найти мощность ваших светодиодов. Вы можете сделать это, используя следующую формулу:
[Vf x ток (в амперах)] x LEDn = мощность
Таким образом, если мы попытаемся запитать те же 6 светодиодов Cree XPG2 при 700 мА, ваша мощность будет…
[2,9 x 0,7] x 6 = 12,18
Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong мощностью 15 Вт.
ПРИМЕЧАНИЕ. При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), вам потребуется соединить не менее 6 таких светодиодов последовательно для работы с этим конкретным драйвером.
Инструменты для понимания и поиска правильного светодиодного драйвера
Итак, теперь вы должны иметь довольно хорошее представление о том, что такое светодиодный драйвер и на что вам нужно обратить внимание при выборе драйвера с источником питания, достаточным для вашей приложение. Я знаю, что еще будут вопросы, и для этого вы можете связаться с нами по телефону (802) 728-6031 или по электронной почте [email protected].
У нас также есть этот инструмент выбора драйвера, который помогает рассчитать, какой драйвер будет лучше всего, введя характеристики вашей схемы.
Если для вашего приложения требуется нестандартный размер и мощность, свяжитесь с LEDdynamics. Их подразделение LUXdrive быстро спроектирует и изготовит индивидуальные светодиодные драйверы прямо здесь, в Соединенных Штатах.
Спасибо за внимание, и я надеюсь, что этот пост поможет всем тем, кто интересуется, что такое светодиодные драйверы.
Драйверы для светодиодов | Источник питания светодиодов
Зачем моим светодиодным лампам нужен драйвер?
Драйверы для светодиодов, или блоки питания для светодиодов, обеспечивают светодиодные лампочки электроэнергией, необходимой им для функционирования и наилучшей работы, так же, как балласт для люминесцентных ламп и трансформатор для низковольтных ламп. В отличие от большинства ламп, которые работают от переменного тока более высокого напряжения, светодиоды работают от постоянного тока низкого напряжения. Из-за этого светодиодам нужны драйверы для преобразования этого переменного тока в постоянный ток и поддержания напряжения, протекающего через светодиодную цепь, на номинальном уровне, который требуется для светодиода.
Когда мне нужен светодиодный драйвер?
Некоторые светодиодные лампочки, например, предназначенные для замены бытовых ламп, уже содержат внутренний драйвер и не требуют внешнего драйвера. Светодиоды, для которых обычно требуется внешний драйвер, включают ленточный свет, освещение бухты, светодиодные панели и трофферы, а также некоторые виды ландшафтного освещения. Проверьте лист технических характеристик вашего освещения или светильника, чтобы узнать, требуется ли для него внешний драйвер. Обычно ваш светодиод уже поставляется с драйвером как часть сборки, или в спецификации будет указано, какой тип драйвера вам нужно приобрести. Вам также может потребоваться приобрести сменный драйвер светодиода, если похоже, что светодиод выходит из строя до истечения номинального срока службы. Когда светодиодный светильник или светодиодная трубка преждевременно выходят из строя, это часто происходит по вине водителя. Несмотря на то, что нет никаких визуальных признаков неисправности драйвера, замена драйвера светодиода может избавить вас от хлопот и затрат на ненужную замену совершенно хороших светодиодных ламп. К сожалению, внутренние драйверы не могут быть заменены, поэтому, если ваш домашний светодиод рано выйдет из строя, вам придется приобрести совершенно новую лампочку.
Признаки необходимости замены драйвера светодиодов
Поскольку драйверы светодиодов часто имеют более короткий срок службы, чем светодиодная матрица или устройство, с которым они сопряжены, перед заменой ламп необходимо проверить наличие признаков неисправности драйвера. Обычно неисправный драйвер светодиода просто прекращает передачу мощности, но неисправный драйвер может просто не регулировать мощность должным образом. Два основных признака того, что ваши водители не справляются с овердрайвом и недостатком. Перегрузка — это когда драйвер посылает через светодиоды больше энергии, чем они могут выдержать. Это может привести к перегреву или преждевременному выходу из строя светодиодной матрицы. Недостаток — наоборот. Драйвер посылает меньше энергии на светодиодные фонари, что приводит к снижению качества света и выходной мощности. Эффективность светодиодного драйвера сильно снижается из-за теплового повреждения, если температура окружающей среды превышает максимальную рабочую температуру, на которую рассчитан драйвер. Поэтому обязательно проверьте, с чем может справиться ваш драйвер.
Типы драйверов светодиодов
Существует два основных типа драйверов светодиодов: постоянный ток и постоянное напряжение. Каждый тип предназначен для работы со светодиодами с различными электрическими требованиями. Если вы заменяете драйвер, убедитесь, что входные и выходные параметры старого драйвера максимально точно соответствуют требованиям при выборе нового драйвера светодиодов.
Драйверы постоянного тока для светодиодов
Драйверы постоянного тока предназначены для светодиодных ламп, требующих фиксированного выходного тока и диапазона выходных напряжений. Этот тип драйвера будет иметь один указанный выходной ток, обозначенный в амперах, и диапазон напряжений, которые будут варьироваться в зависимости от номинальной мощности светодиода. Использование более высокой силы тока сделает светодиод ярче; однако в конечном итоге это приведет к перегрузке светодиода, что приведет к сокращению срока службы и преждевременному выходу из строя. Поскольку драйверы постоянного тока поддерживают постоянную яркость, они часто используются для вывесок, подсветки и коммерческих светодиодных дисплеев.
Драйверы постоянного напряжения для светодиодов
С другой стороны, драйверы постоянного напряжения предназначены для светодиодов, которым требуется фиксированное выходное напряжение с максимальным выходным током. Светодиодные фонари, работающие с драйвером постоянного напряжения, требуют постоянного выходного напряжения, обычно 12 В постоянного тока или 24 В постоянного тока. Этот тип драйвера получает стандартное напряжение около 120-277 вольт в виде напряжения переменного тока (VAC), которое драйвер преобразует в низкое напряжение постоянного тока (VDC). Эти драйверы будут поддерживать постоянное напряжение, пока ток остается ниже максимального номинального значения силы тока. Применения с постоянным напряжением включают в себя освещение под шкафами, освещение под лестницей, полосовые светильники и канатные светильники.
Наш ассортимент драйверов для светодиодов также включает в себя драйверы для светодиодов переменного тока, предназначенные для светодиодов, которым требуется входное напряжение переменного тока, программируемые драйверы для светодиодов, драйверы для светодиодов с регулируемой яркостью и драйверы, одобренные для использования вне помещений. При выборе правильного драйвера светодиодов для вашего приложения проверьте, работает ли он на постоянном токе или на постоянном напряжении, чтобы не повредить светодиоды. Если у вас есть вопросы о том, какой тип сменного светодиодного драйвера вам нужен, не стесняйтесь обращаться в нашу службу поддержки клиентов по телефону 1-800-624-4488.