Где у лампочки фаза и ноль: Где у лампочки фаза и ноль — Ремонт в квартире
Где в патроне фаза а где ноль?
Где в патроне фаза
- admin
- Стройка и ремонт
- 0
Подключение проводов — фаза и ноль
Подключение кабеля производится в следующей последовательности.
Перво-наперво перед началом работ нужно выяснить, какая из жил в кабеле является фазой. Это главный момент отвечающий за безопасность всей дальнейшей сборки.
Делается это при помощи обыкновенной индикаторной отвертки.
Фаза в патроне должна приходить только на нижнюю центральную часть цоколя, и более никуда.
Контакт для подключения представлен на фото ниже.
Почему это так важно? Дело в том, что в патроне у вас никогда не должна быть под напряжением резьбовая часть. Не многие знают, но выключатель света (одноклавишный, двухклавишный) при отключении разрывают только один из проводников.
Второй, так и продолжает напрямую поступать на патрон.
А теперь представьте, что электрик случайно перепутал фазу с нолем и пустил через выключатель нулевую жилу.
В итоге, в один прекрасный момент, лампочка в люстре может не просто перегореть, а лопнуть с разрушением стеклянной колбы.
Вы отключите свет чтобы ее заменить, и при такой замене, вам по любому придется соприкоснуться с цоколем.
И если на него будет приходить фаза, а не ноль, то вы гарантировано попадете под напряжение.
Есть вообще светильники полностью с металлическим корпусами патронов. Стоит здесь перепутать подключение проводов, и при нештатной ситуации весь светильник целиком окажется под напряжением.
Еще часто можно наблюдать ситуацию, когда при заворачивании лампочки в патрон, она почему то не светится. Причина здесь кроется в отгибании центрального контакта. Он просто не достает до пятачка цоколя.
Чтобы исправить этот дефект, достаточно его подогнуть обратно. Многие делают это неизолированными отвертками, либо ножом.
В результате неаккуратных действий, вы обязательно заденете боковые контакты, а они у вас будут под напряжением.
Как итог — удар током вам обеспечен. Опытные электрики в этом случае советуют вообще не применять отвертки или посторонние инструменты, а воспользоваться самим патроном.
Выкручиваете цилиндрический корпус с резьбой и вставляете его боковой гранью между двух контактных площадок.
Далее краешком цепляете центральный пятачок и отгибаете его к верху. Никаких КЗ при этом вы не создадите, да и сами под напряжение не попадете.
И не важно на стене этот патрон или на потолке. Делается все в обоих случаях аналогично.
Поэтому запомните — нулевой проводник всегда должен приходить только на резьбовую часть цоколя.
Преимущества и недостатки
Достоинства данного патрона:
- простота разборки и сборки
- надежность проверенная временем
- контактные площадки фиксируются винтами
Во-первых, при необходимости (выгорание, оплавление) их можно заменить. Либо просто поджать при ослаблении контактов и нагреве соединения.
Кстати, данные винты нужно подтягивать изначально, еще перед непосредственным подключением проводов. Этим вы продлите срок службы патрона и лампочки в разы.
В 90% случаев лампочка и перестает светить, потому что центральный контакт греется и его площадка в виде пластинки начинает отгибаться, постепенно отходя от цоколя лампы.
Недостатки:
- неудобство подключения к винтовым зажимам
Для обеспечения хорошего контакта, вам придется их выкручивать целиком из своего посадочного места.
При этом если у вас отвертка не марки Wera, с кучей дополнительных «фишек», то этот винтик часто выпадает и закатывается в самые неподходящие места.
Хотя опытные электрики обходятся без полного выкручивания винтов и выгибания аккуратных колечек на медных жилах. Все подключение делается гораздо проще.
Жилы зачищаются немного больше обычного (сантиметра на 2-3), а винты только ослабляются. Далее жилку заводите под шайбу с винтом и делаете оборот строго по направлению закручивания резьбы.
Это необходимо для того, чтобы при затягивании винта, колечко не разогнулось, а наоборот затянулось еще лучше.
После этого все излишки выступающие за болтиком откусываете бокорезами. У вас должно получится некое полукольцо.
Все что остается — это дожать его утконосами до полноценного колечка.
Затягивать такое соединение пока еще нельзя. Оно должно «играть» на своем посадочном месте.
Берете второй провод и проделываете с ним ту же самую процедуру. Только после этого можно затягивать винты до упора. В итоге такого подключения, не нужно ничего откручивать, заранее делать какие-то колечки, угадывая диаметр болтиков.
Все это подгоняется непосредственно на самом патроне. Экономия времени и трудозатрат что называется на лицо.
Единственный минус такого способа — расход провода будет больше на пару сантиметров чем обычно.
Быстрозажимной патрон
На сегодняшний день распространение получили также и пластиковые быстрозажимные патроны.
Они работают по принципу знаменитых зажимов Wago.
Чтобы разобрать такой патрон, необходимо шлицевой отверткой аккуратно отжать защелки с двух сторон.
При снятии крышки вы обнаружите, что внутри вообще нет никаких винтиков, куда можно было бы присоединить провода. Человек далекий от электромонтажных работ сразу и не разберется с такой конструкцией.
Как же его подключать? Делается все очень просто.
Нужно зачищенные концы проводов, засунуть до щелчка в маленькие отверстия. При этом большинство моделей имеют сразу две пары контактов. И соответственно не два, а сразу четыре отверстия.
Они предназначены для удобной сборки лампочек в гирлянды. В одно отверстие вставляете подходящий провод, а в другое — отходящий на следующую лампочку.
Только не вздумайте воткнуть фазу и ноль в соседние отверстия, иначе создадите короткое замыкание!
Внутри таких контактов находятся подпружиненные металлические пластинки, которые и обеспечивают соединение.
Здесь также не забывайте про правильное подключение фазы и ноля.
Провода в таких зажимах держатся достаточно надежно, и даже применив небольшое усилие, вырвать их не получится.
Чтобы его все-таки вытянуть от туда, придется во время тяжения проворачивать жилу по кругу.
Ошибки при подключении патрона лампы к проводам
Научно доказано, что свет, который излучает лампа накаливания считается самыми приближенными к дневному солнечному свету, и является самым безопасными и благоприятными для зрения человека. Многие десятилетия лампа накаливания приятно соседствует с человечеством, дарит тепло и уют нашим домам.
Принцип ее действия основан на преобразовании электрической энергии, подводимой к её нити, в энергию видимых излучений воздействующих на органы зрения человека и создающих у него ощущение света близкого к белому, дневному.
Лампа накаливания состоит из двух основных компонентов, грушевидной стеклянной прозрачной колбы и цоколя.
Стеклянная колба.
Цоколь.
Внутри колбы имеется стеклянная трубка, по которой поднимаются два контактных провода. Эти провода, с помощью пайки соединены с вольфрамовой нитью и предназначены для подвода к ней фазы и нуля.
Под воздействием электрического тока, нить мгновенно нагревается до очень высокой температуры 2600-2700 градусов Цельсия и вызывает привычное нам свечение.
Нить лампы изготавливается из специального металла под названием вольфрам. Данный метал имеет самую высокую в мире температуру плавления 3000 градусов Цельсия, но при этом является очень пластичным. Именно за эти качества его широко применяют при изготовлении ламп освещения, а так же в качестве нагревательных элементов при изготовлении тепловых вентиляторов и различных обогревателей.
Цоколь лампы состоит из двух контактов, один из которых является винтовой резьбой лампы.
На него, по правилам, положено подавать ноль, так как при вворачивании лампочки в патрон имеется вероятность случайного прикосновения пальцами рук винтовой резьбы.
В случае подачи на резьбу цоколя фазы, существенно возрастает вероятность случайного поражения электрическим током. При подсоединении проводов к патрону ноль и фазу довольно часто меняют местами, по незнанию, либо случайно.
Второй контакт предназначен для фазы и расположен в центре цоколя.
Средний срок службы ламп накаливания общего назначения составляет 1000-1200 часов (в зависимости от условий работы). Факторами преждевременного выхода из строя лампы накаливания могут быть: частое включение и выключение лампы, температура окружающей среды, дополнительный нагрев лампы (например, при конструктивном исполнении люстры с плафоном, которым наглухо закрывается лампа накаливания). При продолжительной работе нить под воздействием высокой температуры испаряется, тем самым, уменьшаясь в диаметре и затем перегорает. Чем выше температура нагрева нити накала, тем больше света излучает лампа, но от этого срок службы лампы уменьшается.
Лампы накаливания бывают также и газонаполненными, и вакуумными.
У газонаполненных колба заполнена инертным газом (смесью азота, аргоном или ксеноном). У вакуумных ламп накаливания, из внутреннего объёма колбы удалён воздух. Газонаполненные лампы, при нормальных условиях, имеют светоотдачу большую, чем вакуумные, так как находящийся в колбе под давлением газ препятствует испарению нити накала, что позволяет повысить её рабочую температуру. Недостатком газонаполненных ламп является некоторая дополнительная потеря в них тепла нити накала через конвекцию газа, заполняющего внутренний объём колбы. В целях снижения тепловых потерь газонаполненные лампы заполняют металлотеплопроводниковыми газами, так же изменяют конструкцию нити накала для снижения тепловых потерь. Нити накала ламп выполняют в виде плотной винтообразной (миноспирали) или двойной спирали (биспирали).
Основной недостаток ламп накаливания низкая светоотдача, всего 2-4% энергии превращается в световые излучения, а остальная переходит в тепло излучаемое лампой.
Источник: elektrika-svoimi-rykami.
com
Устройство бытовых электрических сетей
Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.
Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп.
Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.
Патрон подключён, а лампа не горит
Частой причиной того, что лампа не горит, является сильное загибание центрального контакта в патроне. В таком случае цоколь лампы просто не достаёт до патрона. Соответственно фазы нет, лампа не горит и не светит.
Исправить данную проблему поможет отгибание центрального контакта в патроне. Обязательно перед осуществлением данной работы необходимо обесточить патрон. Причём делать это лучше всего не выключателем, а автоматом, через который запитана группа освещения.
Поделиться статьей в социальных сетях
Приборы и инструменты
Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:
- Мультиметр стрелочный или цифровой;
- Индикаторную отвертку или тестер;
- Маркер;
- Пассатижи;
- Нож для зачистки изоляции.

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!
Различные варианты действий
Существует множество способов и вариантов действий, как определить нулевой провод на люстре при выполнении работы по ее подключению к электропроводке в доме. Каждый пользователь, домашний мастер, а тем более – специалист, выбирают для себя, как правило, один из наиболее удобных методов и пользуются им в повседневной жизнедеятельности. Зачастую выбор происходит с учетом наличия или отсутствия тех или иных измерительный (контрольных) приборов. И если у профессионалов-электриков, такого «добра» с собой предостаточно, то у обычного собственника жилья выбор приспособлений (а вместе с ними и методов определения нуля или фазы) будет ограничен.
Стоит рассмотреть кратко все существующие методы, а уж затем каждый пользователь сумеет для себя определить оптимальный вариант.
Правила работы с тестером и мультиметром
Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.
Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «~V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.
Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.
Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!
Визуальный метод определения
Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.
Последовательность визуального осмотра
- Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине.
Проверьте соответствие цветовой маркировки всех проводов. - Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
- К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
- Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.
Какие патроны для ламп бывают
Самое большое распространение на сегодняшний день получили следующие виды патронов для ламп:
- Керамические патроны;
- Карболитовые и самозажимные пластиковые патроны.
Карболитовый патрон черного цвета является самым популярным из всех. Состоит он из трех частей: донышка, корпуса цилиндрической формы, а также, керамического вкладыша с контактами.
При этом наибольшей популярностью пользуются патроны для ламп, которые имеют маркировку Е27 и Е14.
Данная маркировка патронов указывает на диаметр цоколя. Чем больше цифра на конце, тем больше диаметр. Буква Е говорит о том, что патрон имеет резьбу и относится к винтовой серии патронов. Также бывают патроны для ламп и с буквой G в маркировке, так называемые «штыревые патроны».
Их отличие от обычных патронов в том, что они способны выдерживать небольшие нагрузки. Патроны для ламп серии G выдерживают лишь 4 Ампера. Простыми словами говоря, они не рассчитаны на нагрузку более 0,9 кВт (900 Ватт).
Определение фазы и нуля в двухпроводной сети
Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.
- Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.

- Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
- Отметьте его маркером или цветной изолентой, отключите автоматический выключатель и выполните необходимые подключения.
- При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.
Меры безопасности
Нелишним будет сказать, что никакие другие способы, кроме вышеперечисленных, чтобы научиться как определять нулевой провод на люстре или фазу, применять не рекомендуется. Некоторые «умельцы» предлагают слегка коснуться провода тыльной стороной руки, другие советуют соорудить некое подобие контрольной лампочки из обыкновенного патрона и т.п.
Чтобы сохранить жизнь и здоровье, ни в коем случае не применяйте на практике такие опасные советы.
Определение фазы, нуля и заземляющего провода
Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.
- Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
- Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
- Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему.
Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше. - Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.
Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей.
Не забывайте, что речь идет, прежде всего, о безопасности.
Источник: StroyVopros.net
В данной статье рассмотрим вопрос о том, как найти фазу и ноль при помощи пробника и мультиметра.
При необходимости обслуживания квартирной электрики, в частности замены розеток, выключателей освещения или проведении мелких ремонтных работ, возникает необходимость определения фазы и ноля. Если у человека есть некоторые познания в области основ электротехники, то ему не составит труда найти фазу и ноль. А что делать, если вы не имеете данных навыков? Поиск фазы и ноля не такой сложный процесс, как это может показаться. Рассмотрим несколько способов определения фазы и ноля.
Во-первых, определимся, что такое фаза и ноль. Вся наша энергосистема является трехфазной, в том числе и низковольтные линии, которые питают жилые дома и квартиры. Как правило, напряжение между двумя любыми фазами составляет 380 вольт – это линейное напряжение. Всем известно, что напряжение бытовой сети – 220 вольт.
Как получить это напряжение?
Для этого в электроустановках рабочим напряжением 380 вольт предусмотрен нулевой провод. Если взять одну из фаз и нулевой провод, то между ними будет разность потенциалов в 220 вольт, то есть это фазное напряжение.
Для человека, не имеющего познаний в области электротехники, вышесказанное не очень понятно. Для нас важно знать, что в каждую квартиру или дом приходит одна фаза и один ноль. Подробно, что такое фаза и ноль рассмотрено здесь.
Рассмотрим первый способ определения фазы при помощи пробника (индикаторной отвертки). Более подробно про устройство и принцип действия таких отверток вы можете прочитать здесь — Индикаторы и указатели напряжения в электроустановках до 1000 В.
Итак, у вас есть два провода и вам необходимо определить, какой из них фаза, а какой ноль. Во-первых, необходимо их обесточить путем отключения автоматического выключателя, который питает данную линию электрической проводки.
Затем необходимо зачистить оба провода, то есть снять с него 1-2 см изоляции.
Зачищенные проводники необходимо немного развести, для того, чтобы при подаче напряжения не произошло короткого замыкания в результате их соприкосновения.
Следующий шаг – определение фазного провода. Включаем автомат, посредством которого подается напряжение на проводники. Берем индикаторную отвертку за рукоятку и одним пальцем прикасаемся до металлической части у основания рукоятки.
Помните, что категорически запрещено брать пробник ниже рукоятки, то есть за рабочую часть. Подносим пробник к одному из проводов и прикасаемся к нему рабочей частью. При этом палец остается на металлической части рукоятки.
Если лампочка индикаторной отвертки загорелась, то значит этот провод фазный, то есть фаза. Другой провод соответственно – ноль.
Если при прикосновении к проводу не загорается лампа пробника, то это нулевой провод. Соответственно другой провод – это фаза, проверить это можно прикосновением индикаторной отвертки.
А что делать, если проводка в квартире выполнена тремя проводами? В этом случае у вас есть не только фаза и ноль, но и заземляющий провод.
При помощи пробника можно без труда определить, где из трех проводов находится фаза.
Но как определить где ноль, а где защитный проводник, то есть заземляющий? В данном случае одной индикаторной отверткой не обойтись. Рассмотрим способ определения ноля в трехпроводной бытовой сети.
Определить где ноль, а где защитный (заземляющий проводник), можно при помощи мультиметра. Итак, мы уже определили фазный провод при помощи пробника. Берем мультиметр и включаем его на диапазон измерения переменного напряжения величиной 220 вольт и выше.
Берем два щупа измерительного прибора и прикасаемся одним из них к фазе, а другим к одному из двух оставшихся проводников. Фиксируем значение напряжения, которое показывает мультиметр.
Затем один из щупов оставляем на фазе, а другим прикасаемся к другому проводу и снова фиксируем значение напряжения. При прикосновении одновременно к фазе и к нулю будет показываться значение напряжение бытовой электросети, то есть примерно 220 вольт. Если прикоснуться к фазе и защитному проводнику, то значение напряжения будет несколько меньше предыдущего.
Если у вас нет пробника, то фазу можно найти и мультиметром. Для этого выбираем диапазон измерения переменного напряжения значением выше 220 вольт. К мультиметру подключены два щупа в гнезда «COM» и «V» соответственно.
Берем в руки тот щуп, который включен в гнездо с маркировкой «V» и прикасаемся им к проводникам. Если вы прикоснулись к фазе, то прибор покажет небольшое значение – 8-15 вольт. При прикосновении к нулевому проводу показания прибора останутся на нуле.
Советуем почитать: Что делать, если на обоих разъемах розетки 220 В — фаза?
Источник: electrik.info
Где у лампочки фаза и ноль
Фаза и ноль — что такое, как определить фазу и ноль в электричестве
Далеко не всегда хочется вызывать специалистов при необходимости заменить люстру, повесить бра или дополнительный светильник. Но когда электромонтажными работами занимаешься впервые, так или иначе начинаешь задаваться вопросом, что представляют собой такие понятия как
Разбираться в этих обозначениях необходимо хотя бы для того, чтобы правильно подключить провода. Желательно восполнить пробелы в знаниях об электричестве, при отсутствии опыта в данной сфере, перед началом работ.
Выделяют три обозначения проводов:
- фаза
- ноль
- заземление
Определить, какой кабель в розетке или осветительном приборе к чему относится, можно подручными средствами или по цвету. Под понятием «ноль», как правило, подразумевают «рабочий ноль», «фаза» — «фазные провода», а под «заземлением» — «защитный ноль».
Профессиональные электрики могут различать кабели с первого взгляда. А вот для рядового человека различать данные обозначения немного сложно. Тем более что специальные инструменты, позволяющие определить, где фаза и ноль, имеются далеко не у всех.
В реальности способов распознания проводов не так уж и много.
А безопасных – еще меньше. Поэтому чаще всего определяют кабели по цвету.
Маркировка кабелей по цвету
Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.
Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки.
Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.
Стоит учесть, что:
- если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
- защитный ноль представлен кабелями в желто-зеленой оболочке
-
другие цвета характерны для фазы.
Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.
Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.
Самостоятельное определение фазы и ноля при помощи подручных средств
Специалисты рекомендуют для облегчения определения проводов начинать именно с распознавания фазы. Этот способ можно использовать совместно с предыдущим (по цвету).
Индикаторная отвертка непременно найдется в арсенале каждого домашнего мастера. Она необходима как для проведения комплекса работ по электромонтажу, так и при элементарной замене ламп либо установке осветительных приборов.
Метод до смешного прост. При касании жалом индикаторной отвертки провода определенного цвета, находящегося под напряжением, и одномоментного прикосновения контакта на инструменте, должен загореться индикатор.
Определение при помощи этого метода строится на том, что внутри инструмента располагается лампочка и резистор (сопротивление). Когда электрическая цепь замыкается, загорается сигнал. Именно наличие в индикаторной отвертке сопротивления и позволяет производить процедуру совершенно безопасно для человека, способствуя снижению тока до минимальных значений.
Метод определения фазы и ноля при помощи контрольной лампы
Этот способ подразумевает использование контрольной лампы для определения проводов определенного цвета в трехпроводной сети. Применять данный метод следует с особой осторожностью.
Применение этого метода подразумевает создание контрольной лампы. Для этого в патрон вкручивается обычная лампочка. В клеммах патрона размещаются провода, на концах которых отсутствует изоляция. При отсутствии возможности создать такую конструкцию допустимо использовать традиционную настольную лампу, оснащенную электрической вилкой.
Теперь для определения необходимо поочередно, по цветам присоединять провода.
Стоит отметить, что использование данного метода позволяет определить, присутствует ли среди пары проверяемых проводов фазный. А какой именно из этих двух – фаза, распознать будет непросто. Загорание контрольной лампы означает, что с высокой долей вероятности одни провод – фаза, а другой – ноль.
Отсутствие света говорит о том, что фазный провод среди проверяемых отсутствует. Хотя возможен вариант, что нет именно нуля. Поэтому применение этого метода целесообразно, скорее всего, для определения правильности монтажа и работоспособности проводки.
Определение сопротивления петли фаза-ноль
Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание.
Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.
Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.
Измеряют сопротивление в этом контуре следующими методами:
- падением уровня напряжения в отключенной цепи
- падением уровня напряжения в результате сопротивления возрастающей нагрузки
- использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи
Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.
Фаза на лампочке или на выключателе
Содержание
- 1 Каким проводом запитывается выключатель света?
- 2 Какие цвета должны быть у проводов в электропроводке квартиры
- 3 Суть электричества
- 4 Почему «фаза», а не «ноль»?
- 5 Правильная установка выключателя с заменой проводов, идущих на него и на люстру
- 6 В заключение некоторые нюансы
- 7 Почему именно фазу, а не ноль должен разрывать выключатель света ?
- 8 Как сделать, чтобы выключатель разрывал фазу, а не ноль
Специалист вы или нет, а если решитесь поменять в своем доме электропроводку, даже пусть на участке «коробка – выключатель – лампочка», должны знать элементарные правила ПУЭ (полная расшифровка — «Правила устройства электроустановок», то есть свод нормативов, применяемых к любым электроустановкам и электросетям).
Именно отсюда и можно почерпнуть информацию о том, идет на выключатель ноль или фаза.
Каким проводом запитывается выключатель света?
Несмотря на то что в некоторых квартирах можно обнаружить, что на выключатель приходит «ноль», это отнюдь не нормально. Потому что любой выключатель должен разрывать именно фазу. Если ноль или фаза на выключателе перепутаны, скорее всего, в проводке этой квартиры уже ранее «поковырялся» какой-то горе-умелец либо изначально нулевой провод был запитан не по стандарту.
Какие цвета должны быть у проводов в электропроводке квартиры
Любой проводник, покупаемый для монтажа электропроводки, должен содержать в себе жилу с голубой (синей) оплеткой. Именно ее и рекомендуется использовать в сети как нулевой провод. Если в квартире предусмотрен третий провод – прямое заземление, на него рекомендуется пускать желто-зеленый провод. Все остальные провода (это может быть белый, коричневый, черный и пр.) используются как фазонесущие. Так что на вопрос, фазу или ноль разрывает выключатель, ответ будет однозначный — фазу, причем жила эта будет не голубого (синего) и не зеленого цвета.
Если в вашей квартире провода перепутаны, значит, монтажом электропроводки в ней занимались не профессионалы и, скорее всего, она уже претерпела ремонт.
Суть электричества
Попытаемся объяснить работу электричества самыми доступными словами. Еще из уроков физики мы знаем, что сама суть электроэнергии такова, что фаза всегда стремится разрядиться на ноль. Именно между несущим электроэнергию и заземляющим потоком и включаются в цепь разного рода приборы. Тогда разрядка происходит в них, заставляя их при этом работать.
В частности, так работает и нить накала или диодная схема в лампе освещения. У нити или у диодной схемы есть свое сопротивление, которое сбалансировано так, что лампы, когда через них замыкается сеть, не перегорают, а начинают светиться. И в сущности без разницы, какой провод подходит на выключатель — ноль или фаза, если к самой лампе с одного контакта подается ноль, а с другого – фаза, она будет работать все равно. На работоспособность прибора это никак не повлияет.
Это нужно лишь в целях безопасности.
Почему «фаза», а не «ноль»?
Мы вплотную подобрались к ответу на вопрос о том, ноль или фаза идет на выключатель и почему. Выключатель размыкает участок сети, в котором работает лампочка. И прерывает он в простых выключателях только один из проводов, который через него пропускается. Второй провод так и остается запитан на лампу напрямую. Если в вашем случае через выключатель пропущен ноль, то напрямую к люстре на постоянку подключена фаза, а это значит, что даже при простой замене лампочки устройство может ударить вас током.
Если же выключатель размыкает фазу, то напрямую к люстре от коробки идет ноль. Это значит, что если выключатель находится в разомкнутом (выключенном) состоянии, к устройству фаза уже не подается, поскольку она прерывается самим выключателем, и замена лампы будет безопасной.
Правильная установка выключателя с заменой проводов, идущих на него и на люстру
Когда разобрались с вопросом, какой провод – «фаза» или «ноль» на выключатель должен приходить, чтобы соответствовать нормам ПУЭ, разберемся, как будет выглядеть правильная схема участка домашней электросети, которая будет обуславливать нормальную работу электроприбора.
Опять же объясним все простыми словами (в целях безопасности все работы, связанные с монтажом или ремонтом электропроводки, должны осуществляться при выключенном центральном автомате в главном щите).
- Для правильного монтажа проводки от ближайшей распределительной коробки у нас должно быть проделано две штробы – одна к выключателю, одна к люстре.
- Как подключить выключатель «фаза — ноль», то есть обычный выключатель? Берем кусок двухжильного провода. Пропускаем его через боковое отверстие коробки, идущее на штробу к выключателю. Также пропускаем кабель через боковое отверстие коробки выключателя.
- Запитываем одну жилу к левой клемме выключателя, другую – к правой. В коробке одна из жил запитывается к фазному проводу. Одна остается пока свободной.
- Что у нас получилось? Теперь ток приходит на выключатель и в замкнутом положении выключателя возвращается назад в коробку. Осталось смонтировать сеть для осветительного прибора.
- Допустим, люстра у нас рассчитана на одну лампу.
Тогда подойдет обычный двухжильный кабель. Пропускаем его через боковое отверстие коробки, ведущее к люстре, заделываем в штробу и подключаем к клеммам люстры. - В коробке уходящий на люстру двухжильный кабель подключаем следующим образом: одну жилу запитываем к возвращающейся свободной жиле – фазе с выключателя, другую запитываем к основному нолю в коробке.
Схема собрана. Теперь, зная какой провод идет на выключатель, «ноль» или «фаза», вы сделали участок сети, обеспечивающий работу осветительного прибора полностью безопасным.
В заключение некоторые нюансы
В своей статье мы ориентировались на простую сеть, не предусматривающую третьего провода – заземления. Также мы отталкивались от того, что у нас простая люстра, рассчитанная на 1 патрон под лампу. Поэтому и выключатель у нас простой – одноклавишный.
В случае с заземлением вы никогда не перепутаете. Просто придется использовать трех- или более жильный кабель и желто-зеленую жилу всегда запитывать к массе, то есть к клемме, идущей на корпус прибора.
А в случае с многоклавишными выключателями придется из коробки на выключатель бросать две или более (в зависимости от того, сколько клавиш в выключателе) жил. То же самое следует делать и с запиткой люстры. Сколько бы от выключателя ни приходило на люстру фаз, ноль в ней всегда будет один, клемма его будет выделена отдельно. Также можно сориентироваться и по проводам. Ноль в приборах всегда будет синим (голубым).
Возможно, именно поэтому довольно часто возникает вопрос, что по правилам должен размыкать выключатель фазу или ноль и почему?
На первую часть этого вопроса, а именно, что должен разрывать выключатель фазу или ноль, есть ответ в ПУЭ, правилах устройства электроустановок, основном документе, который регламентирует правила и нормы электромонтажа.
В, последнем, актуальном на сегодняшний день, 7-ом издании ПУЭ, в пункте 6.6.28, указано следующее:
В трех- или двухпроводных однофазных линиях сетей с заземленной нейтралью могут использоваться однополюсные выключатели, которые должны устанавливаться в цепи фазного провода, или двухполюсные, при этом должна исключаться возможность отключения одного нулевого рабочего проводника без отключения фазного.
Как видите правила прямо говорят, что выключатель света устанавливается в разрыв фазного проводника, а не нулевого и только так, а не иначе нужно выполнять монтаж.
Правильная схема подключения одноклавишного выключателя выглядят так:
Почему именно фазу, а не ноль должен разрывать выключатель света ?На первый взгляд нет никакой разницы обе схемы работают одинаково, ведь и при разрыве нуля выключателем, свет так же погаснет, как и при разрыве фазы.
Чтобы лучше разобраться в этом, давайте, для наглядности, рассмотрим схему подключения выключателя, в которой к нему подведен нулевой проводник (ноль).
Как вы видите, при такой схеме подключения выключателя, на светильнике всегда есть напряжение, это и есть тот главный недостаток, который может вызывать серьезные проблемы и неудобства в работе и обслуживании источников света.
В первую очередь, главная опасность такого способа подключения состоит в том, что вас может «ударить током», например, при замене ламп, когда вы случайно коснётесь токопроводящих контактов.
Кроме того, при нарушении изоляции питающего кабеля или повреждении электрического соединения внутри светильника, фазный проводник может замкнуть на корпус. И тогда, при простом касании люстры или бра, вы сами станете проводником, частью электрической сети, ощутите серьезный электрический разряд, при этом, в определенных условиях, поражение электрическим током может быть даже смертельным.
Это становится особенно актуально потому, что для групп освещения, в том же ПУЭ, разрешено не устанавливать дифференциальную защиту, например, УЗО, поэтому вы узнаете о напряжении на корпусе, лишь когда почувствуете разряд, при этом светильник может быть даже не включен.
Еще одна не такая опасная, но не менее неприятная проблема — это мерцание ламп при выключенном свете. Современные энергоэффективные лампы — энергосберегающие (люминесцентные) или светодиодные, могут реагировать даже на незначительные колебания в электрической сети, даже сверхнизкие токи могут запускать их.
Поэтому, даже при выключенном выключателе света может наблюдаться мерцание таких ламп, а это уменьшает как ресурс ламп, так и просто многих раздражает.
Поэтому, чтобы избежать этих и некоторых других проблем, правильно делать так, чтобы выключатель разрывал именно фазу, а не ноль.
К сожалению, чаще всего, люди задаются вопросом фаза или ноль должна быть в выключателе в случае, когда уже столкнулись с неправильной разводкой проводов, имея ноль в выключателе и все вышеописанные проблемы. Что же делать в таком случае?
Как сделать, чтобы выключатель разрывал фазу, а не ноль
Если у вас неправильно выполнена схема подключения выключателя к светильнику, и размыкается ноль, вместо фазы (Жми, чтобы узнать, как самому определить какой из проводов ноль, а какой фаза). То исправить это можно, лишь изменив подключение в распределительной коробке.
Для этого, вам необходимо найти распределительную коробку, которая чаще всего расположена прямо над выключателем света, на расстоянии 10-30см от потолка.
Согласно правилам электромонтажа, к ней должен быть обеспечен легкий доступ и нередко вы сможете обнаружить её довольно быстро (но, к сожалению, не всегда).
ВНИМАНИЕ! Все работы по изменению схемы подключения выключателя необходимо проводить только на обесточенной сети. Для этого обязательно отключите автоматический выключатель этой группы в электрощите, после чего, убедитесь в отсутствии напряжения в месте монтажа.
Итак, вот так выглядит схема подключения в распределительной коробке, в которой к выключателю подведен ноль, а фаза идёт напрямую к светильнику.
Чаще всего, схема будет именно такая, вводной питающий кабель будет входить в коробку и затем выходить к следующей распредкоробке, поэтому, обычно, заходит именно четыре кабеля:
1.n – Кабель идущий на выключатель (двухжильный для одноклавишного выключателя)
2.n – Вводной электрический кабель (Стандартный трехжильный: фаза, ноль, заземление)
3.n – Кабель идущий к люстре (Трехжильный: фаза, ноль с выключателя, заземление для одноклавишного выключателя)
4.
n – Кабель идущий к следующему выключателю света или розеточным группам (Трехжильный: фаза, ноль, заземление)
Теперь нам нужно поменять эту схему, чтобы выключатель разрывал фазу, а не ноль.
Для этого:
— Провод 1.1 на схеме, идущий на выключатель, подсоединяем к контакту фазных проводов 2.2.+ 4.2
— Провод 1.2 (возвращающийся из выключателя) соединяем с фазным проводом 3.2 который идёт к люстре
— Оставшийся нулевой провод 3.1, идущий к люстре, подключаем к контакту проводников 2.1 + 4.1
Схема замены нулевого проводника в выключателе на фазный, представлена ниже:
Теперь у вас выключатель будет подключен правильно, к нему будет подходить фазный проводник, а не нулевой. Как видите, сделать изменение в схеме подключения, достаточно просто.
Советую прочитать нашу статью, в которой описаны все разрешенные способы соединения проводов в распределительных коробках и выбрать самый удобный для вас при выполнении такого.
На мой взгляд, в бытовых условиях, без использования специализированного инструмента и особых навыков, для соединения проводов групп освещения, удобно применять клеммники WAGO.
UPD: Некоторые советуют просто поменять фазу с нолём местами в электрощите и автоматически в выключателях схема изменится на нужную. Я бы не советовал так делать всем, нужно сперва хорошо проанализировать всю схему электропроводки квартиры, а сделать это довольно непросто, лучше такие серьезные вмешательства без должного опыта и знаний не производить.
Если же у вас остались вопросы, на тему фаза или ноль должны подходить к выключателю, обязательно оставляйте их в комментариях. Кроме того, как всегда приветствуется здоровая критика, личный опыт и любые другие полезные мнения.
Где у лампочки фаза и ноль
Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества.
Да что говорить, иногда сами электрики делают это не правильно. Чем это может обернуться для вас при дальнейшей эксплуатации?
Наибольшее распространение на нашем рынке получили 3 вида патронов:
- карболитовые советского образца
- керамические
- пластиковые самозажимные
Начнем с карболитовых. Данный патрон является разборным и состоит из трех частей:
- цилиндрический корпус с резьбой
- донышко
- керамический вкладыш с контактами
Чаще всего в наших квартирах используются патроны имеющие маркировку:
Значение в цифрах обозначает диаметр цоколя лампы в миллиметрах, которая подходит для этого патрона.
Буковка «E» говорит о том, что он относится к винтовой серии с резьбой Эдисона.
Бывают еще штыревые, серии G и некоторые другие, представленные ниже.
Такие изделия рассчитаны на ток не более 4А. То есть, в сети 220В к ним можно подключить нагрузку до 900Вт.
Подключение кабеля производится в следующей последовательности.
Перво-наперво перед началом работ нужно выяснить, какая из жил в кабеле является фазой. Это главный момент отвечающий за безопасность всей дальнейшей сборки.
Делается это при помощи обыкновенной индикаторной отвертки.
Контакт для подключения представлен на фото ниже.
Почему это так важно? Дело в том, что в патроне у вас никогда не должна быть под напряжением резьбовая часть. Не многие знают, но выключатель света (одноклавишный, двухклавишный) при отключении разрывают только один из проводников.
Второй, так и продолжает напрямую поступать на патрон. А теперь представьте, что электрик случайно перепутал фазу с нолем и пустил через выключатель нулевую жилу.
В итоге, в один прекрасный момент, лампочка в люстре может не просто перегореть, а лопнуть с разрушением стеклянной колбы.
Вы отключите свет чтобы ее заменить, и при такой замене, вам по любому придется соприкоснуться с цоколем.
Есть вообще светильники полностью с металлическим корпусами патронов.
Стоит здесь перепутать подключение проводов, и при нештатной ситуации весь светильник целиком окажется под напряжением.
Еще часто можно наблюдать ситуацию, когда при заворачивании лампочки в патрон, она почему то не светится. Причина здесь кроется в отгибании центрального контакта. Он просто не достает до пятачка цоколя.
Чтобы исправить этот дефект, достаточно его подогнуть обратно. Многие делают это неизолированными отвертками, либо ножом.
В результате неаккуратных действий, вы обязательно заденете боковые контакты, а они у вас будут под напряжением.
Как итог — удар током вам обеспечен. Опытные электрики в этом случае советуют вообще не применять отвертки или посторонние инструменты, а воспользоваться самим патроном.
Выкручиваете цилиндрический корпус с резьбой и вставляете его боковой гранью между двух контактных площадок.
Далее краешком цепляете центральный пятачок и отгибаете его к верху. Никаких КЗ при этом вы не создадите, да и сами под напряжение не попадете.
И не важно на стене этот патрон или на потолке. Делается все в обоих случаях аналогично.
Поэтому запомните — нулевой проводник всегда должен приходить только на резьбовую часть цоколя.
У многих возникает вопрос, а куда подключать провод заземления, если у вас 3 провода в кабеле? Ведь на вкладыше с контактами больше нет свободных разъемов.
Данный третий провод, должен подключаться к корпусу самого светильника. Обычно на люстре или бра, всегда есть заводское место, куда и должна подсоединяться «земля».
Поэтому непосредственно в сам патрон, третий провод не заводится. При зачистке кабеля всегда делайте этот проводник желто-зеленого цвета большей длины, как минимум в два раза.
Хотя надо сделать замечание, что на некоторых видах керамических цоколей, есть подобные разъемы.
Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества.
Да что говорить, иногда сами электрики делают это не правильно.
Чем это может обернуться для вас при дальнейшей эксплуатации?
Наибольшее распространение на нашем рынке получили 3 вида патронов:
- карболитовые советского образца
- керамические
- пластиковые самозажимные
Начнем с карболитовых. Данный патрон является разборным и состоит из трех частей:
- цилиндрический корпус с резьбой
- донышко
- керамический вкладыш с контактами
Чаще всего в наших квартирах используются патроны имеющие маркировку:
Значение в цифрах обозначает диаметр цоколя лампы в миллиметрах, которая подходит для этого патрона.
Буковка «E» говорит о том, что он относится к винтовой серии с резьбой Эдисона.
Бывают еще штыревые, серии G и некоторые другие, представленные ниже.
Такие изделия рассчитаны на ток не более 4А. То есть, в сети 220В к ним можно подключить нагрузку до 900Вт.
Подключение кабеля производится в следующей последовательности.
Перво-наперво перед началом работ нужно выяснить, какая из жил в кабеле является фазой.
Это главный момент отвечающий за безопасность всей дальнейшей сборки.
Делается это при помощи обыкновенной индикаторной отвертки.
Контакт для подключения представлен на фото ниже.
Почему это так важно? Дело в том, что в патроне у вас никогда не должна быть под напряжением резьбовая часть. Не многие знают, но выключатель света (одноклавишный, двухклавишный) при отключении разрывают только один из проводников.
Второй, так и продолжает напрямую поступать на патрон. А теперь представьте, что электрик случайно перепутал фазу с нолем и пустил через выключатель нулевую жилу.
В итоге, в один прекрасный момент, лампочка в люстре может не просто перегореть, а лопнуть с разрушением стеклянной колбы.
Вы отключите свет чтобы ее заменить, и при такой замене, вам по любому придется соприкоснуться с цоколем.
Есть вообще светильники полностью с металлическим корпусами патронов. Стоит здесь перепутать подключение проводов, и при нештатной ситуации весь светильник целиком окажется под напряжением.
Еще часто можно наблюдать ситуацию, когда при заворачивании лампочки в патрон, она почему то не светится. Причина здесь кроется в отгибании центрального контакта. Он просто не достает до пятачка цоколя.
Чтобы исправить этот дефект, достаточно его подогнуть обратно. Многие делают это неизолированными отвертками, либо ножом.
В результате неаккуратных действий, вы обязательно заденете боковые контакты, а они у вас будут под напряжением.
Как итог — удар током вам обеспечен. Опытные электрики в этом случае советуют вообще не применять отвертки или посторонние инструменты, а воспользоваться самим патроном.
Выкручиваете цилиндрический корпус с резьбой и вставляете его боковой гранью между двух контактных площадок.
Далее краешком цепляете центральный пятачок и отгибаете его к верху. Никаких КЗ при этом вы не создадите, да и сами под напряжение не попадете.
И не важно на стене этот патрон или на потолке. Делается все в обоих случаях аналогично.
Поэтому запомните — нулевой проводник всегда должен приходить только на резьбовую часть цоколя.
У многих возникает вопрос, а куда подключать провод заземления, если у вас 3 провода в кабеле? Ведь на вкладыше с контактами больше нет свободных разъемов.
Данный третий провод, должен подключаться к корпусу самого светильника. Обычно на люстре или бра, всегда есть заводское место, куда и должна подсоединяться «земля».
Поэтому непосредственно в сам патрон, третий провод не заводится. При зачистке кабеля всегда делайте этот проводник желто-зеленого цвета большей длины, как минимум в два раза.
Хотя надо сделать замечание, что на некоторых видах керамических цоколей, есть подобные разъемы.
Автор Не я задал вопрос в разделе Естественные науки
Куда в патроне лампе цеплять ноль и фазу? Почему? и получил лучший ответ
Ответ от 125aaa[гуру]
Фазу- на центральный контакт. Во избежание случайного прикосновения. Например, если колба лампы лопнет и придётся выкручивать её за цоколь. Или просто начнёшь патрон не глядя руками от дурости хватать.
Ну и выключатель естественно должен разрывать фазу.
Фаза на выключатель или ноль: что подключить на разрыв
В современных домах невозможно обойтись без электрического освещения и для каждого светильника необходимо установить выключатель. Это устройство разрывает один из проводов, идущих к источнику света.
Для работы выключателя и лампы не имеет значения, какой из проводов будет отключаться, однако все грамотные электромонтёры подводят к нему только фазный провод. В этой статье рассказывается, какое имеет значение, на выключатель идет ноль или фаза.
Почему выключенная люстра может ударить током
Пользуются электрическим освещением все, большинство людей меняют лампы самостоятельно, но не все знают, что даже выключенный светильник может ударить электрическим током. Это происходит из-за неправильного подключения при монтаже электропроводки, замене вводного кабеля и электросчётчика или после ремонта соединений в переходной коробке.
Следствием этих действий является подвод к выключателю нейтрального (нулевого) провода, при этом происходит следующее:
- Во включенном положении выключателя на одном из проводов, подходящих к лампе, индикатор напряжения укажет на фазу. Второй провод будет нейтральным.
- В отключенном состоянии на обоих проводах присутствует фаза. Лампа при этом гореть не будет, на всех проводах в светильнике будет напряжение.
Такая ситуация опасна для здоровья или жизни человека — в случае нарушения изоляции или прикосновения к оголённым проводам, лампе или внутренним частям патрона можно получить удар электрическим током. Поэтому важно, что подаётся на выключатель — фаза или ноль.
При подаче на выключатель фазы ситуация меняется на противоположную. В отключенном состоянии на обоих проводах светильника фаза отсутствует, лампа гореть не будет. Процесс ремонта или замены лампочки при этом является более безопасным.
На выключатель фаза или ноль: правила ПУЭ
О том, фаза или ноль на выключатель что правильно указывает не только здравый смысл и логика, но и Правила Устройств Электроустановок в последнем 7 издании. Подключение к выключателю нулевого провода противоречит нормам этого документа, указанным в п.6.6.28.
Согласно этим правилам однополюсный выключатель света должен разрывать фазный провод, нейтраль отключается только при установке двухполюсного выключателя. Монтаж вместо одного двухполюсного выключателя двух однополюсных так же запрещён из-за возможного отключения только одного нейтрального проводника.
Почему выключатель должен разрывать фазу, а не ноль
Кроме требований ПУЭ есть ещё несколько причин для подключения к выключателю фазного провода.
Безопасность во время замены ламп
Основной причиной для подачи фазы на выключатель является повышение безопасности людей. Если через коммутационный прибор проходит нулевой провод, то даже в выключенном положении светильник остаётся под напряжением и при его ремонте возможны следующие ситуации:
- Во время выкручивания лопнула колба лампы накаливания или газоразрядная трубка в энергосберегающей.
В этом случае есть опасность прикосновения к остаткам нитей накала, при неправильном подключении остающимися под напряжением. - Нарушена изоляция между проводами внутри светильника и металлическим корпусом. До тех пор, пока к прибору никто не дотрагивается, не имеет значения, выключатель разрывает фазу или ноль, особенно если это потолочная люстра. К этим источникам света человек прикасается только в выключенном состоянии для замены лампы или вытирания пыли. Если через выключатель проходит нулевой провод и нарушена изоляция, то человек, выполняющий эти работы, оказывается под напряжением. Это опасно для здоровья или даже жизни, особенно при отсутствии в схеме УЗО или дифавтомата.
| Важно! Если неизвестно, какой провод подходит к выключателю, все работы по замене ламп и ремонту светильников следует производить с отключением автоматического выключателя. |
Мигание (свечение) ламп
Если для ламп накаливания существует только два состояния — включено и выключено, то для энергосберегающих и светодиодных источников света есть третье — периодические вспышки при отключенном выключателе.
Одна из причин этого явления связана с особенностями конструкции таких ламп.
Питание этих приборов осуществляется при помощи встроенной электронной платы, на которой кроме других элементов находится диодный мост и фильтрующий конденсатор.
Если выключатель разрывает нейтральный проводник, то из-за того, что один из проводов, питающих лампу, находится под напряжением, возможен следующий процесс:
- 1. через второй провод из-за нарушения изоляции или большой длины протекает ток утечки;
- 2. этого тока не хватит для работы светильника, но достаточно для постепенного, в течение нескольких секунд, заряда конденсатора;
- 3. после заряда ёмкости до напряжения, необходимого для работы электронной схемы, лампа кратковременно включается;
- 4. происходит разряд конденсатора и процесс начинается заново.
Важно! Кроме неправильного подключения возможны и другие причины вспышек, например наличие подсветки в выключателе.![]() |
Как определить, ноль или фаза на выключателе
При ремонте электропроводки и в некоторых других случаях необходимо проверить, на выключатель идет ноль или фаза. Это делается в следующей последовательности:
- 1. Отключить питание линии. Открыть крышку выключателя или извлечь его из монтажной коробки так, чтобы была возможность измерить напряжение на контактах.
- 2. Подать питание в сеть. Отключить выключатель.
- 3. Проверить наличие напряжения на обоих выводах устройства. Фаза должна быть только на одном из контактов.
- 4. Включить выключатель и проверить наличие фазы на выводах. На обоих контактах индикатор должен показывать одинаковый результат.
Если индикатор показывает фазу, то выключатель подключен правильно, при её отсутствии и горящей лампе к выключателю подходит нейтральный провод.
Важно! Проверка должна производиться при наличии в патроне исправной лампы.![]() |
Причины неправильного подключения
Если монтаж электропроводки и подключение её к сети были выполнены правильно, то ко всем выключателям будет подведена фаза. Наличие нуля указывает на ошибки при выполнении электромонтажных работ:
- Неправильное соединение проводов в монтажной коробке. Встречается при несоблюдении цветовой маркировки проводов или в проводке, выполненной в советское время алюминиевым проводом (лапшой).
- Перепутанные провода после замены электросчётчика или вводного кабеля. Подключение прибора учёта должно производиться с учётом нулевого и фазного проводов. После работ на клеммнике устройства инспектор электрокомпании проверяет соответствие подключения и может потребовать изменить полярность.
Что делать, если подключение неправильное
При неправильном подключении ошибку необходимо исправить. Сделать это можно двумя способами — в распределительной коробке и на подключении к электросчётчику.
Как изменить полярность на вводе в квартиру или частный дом
До производства этого переключения необходимо проверить все выключатели, что они размыкают — фазу или ноль.
Если неправильно подключены все выключатели, то проще всего изменить подключение после прибора учёта. Есть несколько вариантов выполнения этой работы:
- Изменение полярности подключения кабеля на клеммнике электросчётчика. Из-за того, что при этом будет нарушена пломба, выполнять такую работу допускается только по согласованию с электрокомпанией. Это целесообразно делать при наличии электрощитка старого типа с пробочными предохранителями.
- Переключение полярности проводов, отходящих от вводного автомата, расположенного после прибора учёта. Удобно выполнять в современных щитках с модульными автоматами.
| Совет! Изменение полярности ДО ввода в дом или квартиру не производится. Это нарушает правильность подключения электросчётчика. |
Как поменять местами ноль и фазу в выключателе
Если неправильно подключён только один выключатель, то переключение необходимо производить в переходной (распаечной) коробке.
Чаще всего она находится на расстоянии 10-20см от потолка, непосредственно над одним из выключателей или розеток, установленных в данном помещении.
В санузлах блочных или панельных домов, в которых выключатели света находятся на перегородках между ванной и туалетом, коробка находится на противоположной стене или в коридоре.
| Важно! Все работы по изменению схемы соединения проводов производятся после отключения питания и проверки отсутствия напряжения. |
В самом простом случае в распределительную коробку приходят четыре двухжильных провода:
- подходящая линия;
- отходящая линия;
- подключение выключателя;
- питание светильника.
Они соединены между собой при помощи трёх скруток или клемм:
- Фаза (3 провода в скрутке). Подходящая линия, отходящая линия, подключение выключателя.
- Нейтраль или ноль (3 провода в скрутке). Подходящая линия, отходящая линия, питание светильника.

- Скрутка из 2 проводов. Соединение выключателя и светильника.
При необходимости изменить подключение выключателя, нужно поменять местами провода, отходящие к выключателю и лампе от нулевого и фазных проводов. Скрутка из двух проводов, соединяющая выключатель и светильник, остаётся без изменений вне зависимости от того, на выключатель идет ноль или фаза.
После повторного соединения проводов их следует заизолировать, закрыть крышку коробки, подать питание в сеть и проверить работу освещения и подвод к выключателю фазного провода.
Переключение проводов в коробке, в которой подключен двухклавишный выключатель или розетки производится аналогичным образом. Основная сложность при этом — определить, какие именно провода соответствуют необходимым электроприборам.
Для этого необходимо учесть количество проводов в скрутке, направление, в котором кабель выходит из коробки, а в сложных случаях придётся использовать пробник или тестер.
Похожие материалы на сайте:
- Как проверить исправность выключателя
- Как на схемах обозначаются выключатели
- Схема подключения 3-х клавишного выключателя
Как определить фазу и ноль индикаторной отверткой
Как определить фазу и ноль индикаторной отверткой знает каждый электрик, но не всегда есть возможность пригласить специалиста, если в доме нет электричества. В этом случае первичную диагностику можно провести самостоятельно, ведь фазовый пробник – очень простое устройство, не требующее специальных знаний для его использования.
Содержание
- Как работает индикаторная отвертка
- Принцип работы простейшей, пассивной индикаторной отвертки
- Как работают более сложные, активные индикаторные отвертки
- Что может показать индикаторная отвертка
- Нюансы использования индикаторной отвертки
Как работает индикаторная отвертка
Чтобы понять, как пользоваться индикаторной отверткой, нужно хотя бы в общих чертах представлять ее устройство.
Простейшее устройство состоит из следующих компонентов:
- Наконечник отвертки. Часть устройства, соприкасающаяся с проводами или контактами, которую необходимо проверить на наличие напряжения.
- Резистор. Это проводящая часть, которая пропускает электрический ток, но снижает его значение. Сопротивление резистора подбирается под конкретное напряжение, на которое рассчитана индикаторная отвертка. Если прибор рассчитан на индикацию напряжения 220 вольт, то лезть с ним в высоковольтный трансформатор не стоит.
- Индикатор. Электрический ток не виден глазу, поэтому о его наличии или отсутствии можно судить исключительно по косвенным признакам, одним из которых является свечение лампочки.
- Весна. Является проводником между индикатором и контактной пластиной. При этом он зажимает лампочку внутри корпуса устройства.
- Контактная пластина. Он удерживает все детали внутри устройства, одновременно являясь контактом, после прикосновения к которому замыкается электрическая цепь, питающая световой индикатор.

- Изоляция. По наконечнику индикаторной отвертки протекает ток напряжением 220 вольт, если он присутствует в проверяемой сети. Во избежание поражения электрическим током корпус устройства и его жало практически по всей длине покрыты диэлектриком. Часто это прозрачный пластик желтоватого оттенка, сквозь который хорошо видно устройство индикаторной отвертки.
Обыкновенная индикаторная отвертка является одноразовым устройством — если она сломается, то использованное устройство можно будет только выбросить.
Принцип работы простейшей, пассивной индикаторной отвертки
Чтобы убедиться в наличии или отсутствии напряжения в электрической сети, необходимо понаблюдать за лампой индикаторной отвертки, и коснуться ее жалом токоведущих контактов розетки. При этом один из пальцев руки должен касаться контактной пластины.
Для того, чтобы лампа загорелась, на один ее контакт нужно подвести фразу, а на другой ноль. Если на контакте розетки есть фазное напряжение, то оно идет через резистор на разъем лампочки.
Тело человека играет роль нулевого провода, так как обладает достаточной электрической емкостью и сопротивлением. Когда на один конец лампы приходит фаза, и палец касается контактной пластины, цепь замыкается и лампа начинает светиться. Таким образом, прикоснувшись вилкой отвертки к контактам розетки, можно найти фазу и ноль.
Недостатком такого устройства является наличие резистора, а слабым местом является индикаторная лампа. Первый не позволяет обнаружить наличие напряжения менее 60 Вольт, и лампа может перегореть, если по каким-то причинам напряжение в сети выше номинального. Также вероятен пробой фазы на землю — все включено, а розетки не работают (если заземление выполнено правильно). Однако такие случаи являются очень редкими исключениями из общего правила, и в основном индикаторная отвертка хорошо справляется со своей задачей.
Как работают более сложные отвертки с активным индикатором
В простейших индикаторных отвертках используется контактный метод измерения, то есть для определения наличия напряжения необходимо обязательно прикоснуться жалом к проводнику.
Это достаточно удобно, но не решает большинства проблем, с которыми сталкиваются электрики при поиске неисправностей в электрических сетях.
инструкция по эксплуатации индикаторной отвертки (нажмите для увеличения)
Более совершенная модель индикаторных отверток может работать бесконтактным способом – они реагируют на электромагнитное поле, возникающее в любом проводнике при протекании по нему электрического тока. Устройство таких карт намного сложнее — у них уже своя схема и отдельное питание. Большинство из них оснащены звуковой индикацией. В отдельную категорию входят индикаторные отвертки с ЖК-экраном — такие модели могут даже показать, какое напряжение есть в измеряемой сети.
Принцип действия очень прост — у отвертки есть катушка и при попадании ее в поле вокруг проводника в ней возникает электрический ток, отчего светится индикаторная лампа и звучит зуммер. Это свойство бесконтактных индикаторных отверток позволяет находить обрывы проводки даже через стену — без такого приспособления пришлось бы полностью снимать обои и сбивать штукатурку везде, где проложен провод.
Перед использованием отвертки с индикатором с возможностью бесконтактного определения наличия напряжения надо не забыть включить их питание — чтобы не садилась батарейка, у них есть выключатель.
Как пользоваться, как пользоваться такой индикаторной отверткой, вы можете узнать, посмотрев эту короткую видео-инструкцию:
Помимо индикаторных отверток существуют и другие виды индикаторов напряжения, о которых вы можете узнать, прочитав эту статью.
Что может показать индикаторная отвертка
Определение любых неисправностей в электросети индикатором напряжения имеет смысл только в том случае, если в квартире нет света, но в других по подъезду точно есть электричество. То же самое относится и к частным домам – первым делом нужно выяснить, есть ли у соседей электричество.
Если проблема все-таки в вашей квартире, то чаще всего индикаторная отвертка показывает два диаметрально противоположных результата:
- Нет фазы ни на одном из контактов розетки.
Причин этому может быть множество, и большинство из них требуют профессионального вмешательства. Самостоятельно можно только определить, не перегорела ли вилка (чаще вместо нее устанавливается «автомат» — устройство автоматического отключения при превышении номинальных значений тока в цепи). Для этого нужно найти возле счетчика штекеры и проверить тестером, есть ли напряжение на контактах до и после него. Если пробка сгорела, то ее необходимо заменить, а если есть автомат, то ее можно было выбить — у нее есть рычаг, который в рабочем положении повернут вверх (если устройство установлено правильно). - На всех контактах розеток есть фаза. Почти со стопроцентной гарантией это означает, что нулевой провод возле счетчика перегорел. Если у вас нет навыка электромонтажных работ, то для решения проблемы необходимо пригласить электрика.
Нюансы использования индикаторной отвертки
Чтобы понять, как правильно пользоваться индикаторной отверткой, нужно всегда помнить о недостатках этого устройства:
- Первое и самое главное правило – всегда и везде, прежде чем найти фазу и ноль, необходимо проверить работоспособность прибора.
Понятно, что если неисправна индикаторная отвертка, то в лучшем случае неисправность будет просто неправильно определена, а в худшем можно получить удар током. - Щуп указывает на наличие или отсутствие напряжения на определенной поверхности проводника. Если на разъемах розетки отсутствует ток, это не значит, что дело не в подходящем к нему проводе — контакте или самом проводе мог сгореть. Поэтому все участки цепи должны быть проверены.
- Индикация также возникает при меньшем напряжении, чем должно быть в сети. Это значит, что если контакт возле счетчика частично подгорел и все равно пропускает 50-100 вольт, то индикаторная отвертка покажет наличие напряжения, а электроприборы работать не будут.
- При определенных обстоятельствах отвертка может реагировать на так называемые токи срабатывания, показывая наличие напряжения там, где его нет.
- Если тестер фаз показывает, что в сети сейчас нет напряжения, это не значит, что оно не может появиться там в ближайшие несколько минут.
Если вам необходимо разобрать розетку, то в обязательном порядке перед этим необходимо отключить вводной автомат или выкрутить заглушки.
Еще одно видео, 6-минутное видео с рассказом о применении различных видов индикаторных отверток:
В итоге пользоваться индикаторной отверткой очень просто, но надо помнить, что ее показания это только половина «диагноза» — если нет четкого понимания почему она показывает наличие или отсутствие напряжения, то она лучше обратиться к электрику. Также следует учитывать, что несмотря на название, индикаторная отвертка не предназначена для откручивания болтов, поэтому обладает соответствующей прочностью.
rms — Использование лампы накаливания 110 В переменного тока при 220 В переменного тока с последовательным диодом
Редактировать 2 — 18 января 2022 г.:
Резюме: Я продолжаю верить трансформатору или балласту 3 — 9009 другим предложено — является наиболее рекомендуемым подходом к Сохранить срок службы лампы.
Диод и триак-диммер снижают среднеквадратичное напряжение, , но не являются наиболее подходящими для продления срока службы по причинам, изложенным ниже.
Я потратил время на изучение ламп накаливания и изложил свои взгляды, но почему-то проголосовали против, что-то я не совсем понимаю причину (причины) этого, поскольку никаких комментариев или критики не было. . Возможно, мое предложение не использовать диммер на основе симистора было неясным, поэтому вот несколько причин не использовать — или очень осторожно использовать такие диммеры для снижения среднеквадратичного значения для лампы накаливания.
Лампа накаливания может показывать мгновенные колебания температуры до 20%, что также отражается в люменах или MSCP (Максимальная мощность сферической свечи). Чтобы избежать этого колебания яркости или «мерцания», частота должна быть намного выше 60 Гц. В статье частоты упоминаются как 400 Гц, где 60 Гц и 1000 Гц проиллюстрированы здесь: Мощность 12 (отношение напряжений)
и Мощность 3,5 (отношение люменов) , как показано здесь:
\$
\frac{Life_1}{Life_0} = [{\frac{Volt_0}{Volt_1}}]^{12} \$ ; и \$ \frac{Life_1}{Life_0} = [{\frac{Lumen_0}{Lumen_1}}]^{3,5}
\$ , Экспоненты и Отношения выделены цветом — см.
рисунок.
Ссылки на статьи отмечены внутри каждой картинки, а полные коэффициенты мощности были размещены, поскольку могут быть интересны кому-то еще.
Поскольку регулируемое симистором напряжение ведет себя как ШИМ-управление на частоте 120 Гц, а мгновенное напряжение отражается как мгновенное более высокое значение MSCP, срок службы будет значительно короче, даже если воспринимаемая средняя световая мощность такая же. Так, тот же МСЦН будет иметь +10% к мгновенному МСЦН и будет снижать срок службы на 70% — очевидно, с использованием приведенных выше смоделированных и протестированных данных.
Я просто говорю, что диммера здесь недостаточно , это отличный способ понизить свет правильно рассчитанных ламп. Но, для дорогой (и специальной) лампы накаливания для жизни накала важно более ровное и синусоидальное напряжение. Симисторный диммер, имитирующий средний световой поток, может подойти для обычной лампы или, когда допустим более красный цвет, и, кроме того, он намного компактнее трансформатора.
Но диммер просто ослабит сокращение срока службы нити накала, которое продолжает сокращаться, если регулировка затемнения выполняется для той же воспринимаемой цветовой температуры.
Если я ошибаюсь, поделитесь своими выводами и комментариями, и мы все будем признательны за дополнительную информацию.
Редактировать 1: В другом сообщении предлагалось использовать балласт/индуктор для ограничения тока. Если вы знаете правильный ток при номинальном напряжении и найдете балласт, совместимый с ним, это тоже хорошая (и гладкая) идея.
Оригинал:
О рабочем напряжении лампы :
Большинство ламп накаливания имеют тепловую постоянную времени, которая больше, чем один линейный цикл: 1/60 с, но они «чувствуют» и реагируют на мгновенный ток — так как некоторые нити накаливания издают акустический шум, когда они управляются симисторными диммерами, при определенных уровнях диммирования. . Сопротивление холодной нити обычно составляет 10% от раскаленно-горячей.
Ответ/сообщение Тони предоставили симуляцию, с которой можно было поиграть. Таким образом, кажется, что мгновенный ток может варьироваться от 100% (при номинальном напряжении) до 150% ~ 1000% в зависимости от того, управляется ли полуволна, диммер или во время пускового тока.
Вывод таков: даже если средний ток (за 1 секунду) является номинальным и представляет тот же уровень яркости , нить накала лампы будет пропускать более высокий пиковый ток в полуволновом переменном токе, чем если бы нить накала работают при совершенной синусоидальной переменном токе .
Поскольку эта лампа особенная и дорогая (~200 долларов США), я бы предпочел обеспечить наиболее плавное напряжение накала, Я бы не использовал диммер (триак), так как его мгновенное напряжение все равно было бы выше номинального. Итак, Предлагаю использовать автотрансформатор , причем не слишком габаритный, так как пусковой/пусковой ток лампы накаливания будет дополнительно ограничиваться сопротивлением обмотки трансформатора.
Это ограничение пускового тока может уберечь лампу от перегорания нити накала при включении, как это часто бывает.
Объездной путь около 110 В/220 В : Если вы находитесь в стране, где дома могут питаться от 3-фазной системы, например, в Бразилии, «110 В» на самом деле будет 220/(кв. 3) = 127 В переменного тока. , в то время как «220V» на самом деле 220Vac.rms. В США «110 В» в настоящее время составляет 120 В переменного тока (среднеквадратичное значение), а напряжение «220 В» на самом деле составляет 240 В, обеспечиваемое обмоткой трансформатора с расщепленной фазой, как показано здесь.
напряжение — Почему нас не бьет током нулевой провод и как он может вести себя так?
\$\начало группы\$
Я прочитал несколько статей и посмотрел видео об однофазном и трехфазном переменном токе. Позже я узнал, что для большинства бытовых приборов нам нужна 1 фаза переменного тока.
Потом я узнал о проводах под напряжением и нейтрали.
В нескольких статьях говорится, что нейтральный провод (синий) имеет нулевой потенциал. И провод под напряжением (красный) имеет высокий потенциал. Нейтральный провод должен возвращать ток обратно к источнику.
(Я также читал о заземляющем проводе. Это было то, что привело меня к этому вопросу, но я спрошу об этом позже)
Все эти вещи вызвали у меня 3 сомнения на данный момент.
Если нейтральный провод возвращает ток, такой же, какой был в действующем/красном проводе, то почему он не бьет током?
Будет ли разница, если вы подключите лампочку двумя разными способами, как показано на рисунке? (Я предположил, что таким образом соединен блаб. Имеется две точки по 9).0125 , один на вход и один на выход)
Если ток меняет свое направление много раз в секунду, это означает, что ток должен продолжать течь от красного к синему, от синего к красному и непрерывно. Как вообще возможно протекать ток по синему/нейтральному проводу? Откуда может идти ток в синем проводе? С Земли?
Хорошо, это может показаться слишком широким, но я считаю, что они очень связаны, но у меня есть отдельные сомнения, так как я не полностью понимаю концепцию.
PS: Приветствуется простой и не очень научный язык 🙂
- напряжение
- ток
- переменный ток
- фаза
\$\конечная группа\$
1
\$\начало группы\$
Нейтральный провод имеет потенциал 0 В по сравнению с землей с очень низким сопротивлением. Это означает, что большие токи могут протекать по нейтральному проводу без появления заметного напряжения на нейтральном проводе (закон Ома: U = R*I). Без какого-либо напряжения на нейтральном проводе вас не может ударить током (большой ток может протекать только через нейтральный провод из-за его низкого сопротивления. Ваше тело имеет довольно высокое сопротивление и нуждается в значительном напряжении, чтобы ток протекал).
Ваша первая картинка — правильный способ подключения лампочки. Провод под напряжением подает высокое напряжение (110 В или 230 В) и ток, нейтральный провод потребляет ток.
На втором рисунке оба вывода лампочки подключены к одному и тому же потенциалу — оба к напряжению. Без разности потенциалов между клеммами через лампочку не будет протекать ток (опять же: U = R*I или I = U/R). В то же время вы соединяете провод под напряжением с нейтральным проводом без нагрузки между ними — это создаст короткое замыкание и очень большой ток. Будем надеяться, что в этом случае сработает автоматический выключатель 😉Как я писал выше, нейтральный провод имеет потенциал 0В и отводит ток обратно к генератору (или фактически к следующему трансформатору). Не имеет значения, является ли текущее напряжение положительным или отрицательным. Вы правы, полярность быстро меняется либо с 50 Гц, либо с 60 Гц (в зависимости от того, где вы живете). Меняется только направление тока. В случае положительного напряжения у вас есть положительный ток, а в случае отрицательного напряжения у вас есть отрицательный ток (знак минус означает, что ток течет в другом направлении).

Редактировать: См. рисунок ниже. Нейтральный провод находится на 0 В, что представлено черной горизонтальной линией посередине. Текущее напряжение следует кривой синусоиды и является попеременно положительным и отрицательным. При положительном потенциале потенциал на 90 124 выше 90 125, чем у нейтрального, но когда потенциал отрицательный, он фактически на 90 124 ниже 90 125, чем 0 В. Ток всегда течет от высокого потенциала к отрицательному, поэтому, когда меняется полярность провода под напряжением, меняется и направление тока.
Изображение с сайта Learn.sparkfun.com
\$\конечная группа\$
10
Твой ответ
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Обязательно, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
Почему мне не нужно сопротивление при проверке цепи лампочки на макетной плате?
Спросил
Изменено 2 года, 3 месяца назад
Просмотрено 5к раз
\$\начало группы\$
Я делаю несколько симуляций в Tinkercad и пробую разные схемы для включения лампочки.
Почему светодиоду нужно некоторое сопротивление, а лампочке — нет?
Я использую только макетную плату и батарею 9В.
- схема
\$\конечная группа\$
7
\$\начало группы\$
Для светодиодов небольшое увеличение напряжения приведет к значительному увеличению тока.
Таким образом, очень сложно получить правильное напряжение, чтобы поддерживать светодиод с нужной яркостью. Если вы позволите напряжению стать немного выше, это может привести к повреждению светодиода.
Еще больше усложняет задачу то, что по мере нагревания светодиода увеличивается и ток. Естественно, когда вы включите его, он будет нагреваться. В результате очень сложно управлять светодиодом напряжением. Обычно необходимо использовать некоторую форму ограничения тока. Это не обязательно должен быть резистор, но это, вероятно, самый простой способ сделать это.
Светодиодные лампы имеют встроенную схему, которая решает все эти проблемы.
Старомодные лампы накаливания (в том числе галогенные) бывают разные. Светящаяся часть сделана из тонкой вольфрамовой проволоки, которая светится, когда нагревается. Провод имеет сопротивление, которое автоматически ограничивает ток. Это сопротивление также является причиной его нагрева. И, вишенка на торте, сопротивление увеличивается с температурой, поэтому лампы накаливания действительно стабильны при питании от источника напряжения.
\$\конечная группа\$
4
\$\начало группы\$
«Проблема» светодиода (и каждого диода) в том, что он имеет не постоянное (статическое, омическое), а «динамическое» сопротивление, уменьшающееся при увеличении напряжения на диоде. Таким образом, по закону Ома и напряжение, и сопротивление изменяются, но в противоположных направлениях — I = Vinc/Rdec. В результате ток через диод сильно возрастает… и если приложенное напряжение значительно выше (9V здесь), чем пороговое напряжение диода (обычно 2 В для светодиода), ток и, соответственно, мощность станут недопустимо высокими. Для решения проблемы последовательно подключаем резистор. Работа этой сети визуализирована на рис. 1.
Рис. 1. Светодиод в виде динамического резистора, стабилизирующего напряжение
При включении питания напряжение (входное) VIN увеличивается от нуля до максимума .
На графическом изображении его ВАХ (включая сопротивление R) смещается вправо (транслируется). В то же время диод начинает уменьшать свое статическое сопротивление RST, поэтому его ВАХ поворачивается против часовой стрелки. В результате рабочая точка А смещается вверх по вертикальной части ВАХ диода. Колебания тока значительны, а падение напряжения VD (VF) на диоде не меняется — дифференциальное сопротивление диода равно нулю.
Лампа накаливания также не обладает постоянным сопротивлением. Однако, в отличие от светодиода, его динамическое сопротивление увеличивается при увеличении напряжения, приложенного к лампе. Теперь по закону Ома и напряжение, и сопротивление изменяются, но в одном направлении — I = Vinc/Rinc. В результате ток и, соответственно, мощность будут увеличиваться медленнее… и не станут неприемлемо высокими.
\$\конечная группа\$
5
\$\начало группы\$
Когда вы говорите лампочка Я так понимаю, вы имеете в виду лампу накаливания? Если это так, то у 9-вольтовой батареи недостаточно заряда, чтобы повредить нить накала, которая обычно изготавливается из углерода, вольфрама или титана.
Двумя требованиями к нити накала являются высокое удельное сопротивление и высокая температура плавления, что является одной из необходимых характеристик, чтобы заставить ее светиться и излучать свет. Можно даже сказать, собственный «резистор»…
\$\конечная группа\$
5
\$\начало группы\$
Почему мне не нужно сопротивление при проверке цепи лампочки на макетной плате?
Лампочка представляет собой чистое сопротивление — она пропускает ток и нагревается, и нагревается так, что светится и излучает свет. По своей сути это неэффективный метод преобразования электричества в свет. У него есть номинальная мощность и напряжение, поэтому вы подаете правильное напряжение и получаете потребляемую мощность 10 Вт, 20 Вт, 40 Вт и т. д. и много тепла.
Светодиод также излучает свет, и его мощность может быть в пять-десять раз выше, чем у обычной лампочки — это одно из его главных преимуществ.
График отсюда.
Почему светодиоду нужно некоторое сопротивление, а лампочке — нет?
Недостатком светодиода является то, что он имеет ограничения по напряжению питания, а это требует осторожности при подаче на него напряжения. Конечно, светодиод может поставляться со встроенным резистором, который позволяет использовать его при том же напряжении, что и лампочка, но это упускает смысл использования светодиода для эффективного производства световой мощности.
Итак, если вам не нужен высокоэффективный источник света, используйте светодиод с последовательным резистором. Если вы полагаетесь на энергоэффективность светодиода (потому что вам это нужно), то управляйте им осторожно, эффективно и рационально.
\$\конечная группа\$
5
\$\начало группы\$
Дополнить имеющиеся ответы пояснением с практического сайта:
Лампочка обычно изготавливается под конкретное напряжение , а затем подключили к источнику напряжения .
С другой стороны, светодиод чувствителен к току . Кривая напряжение/ток различается не только по цвету, но и по производственным допускам. К тому же он очень крутой, поэтому небольшое перенапряжение вызовет огромный ток и тут же его разрушит.
Обычно светодиоды питаются от источника постоянного тока. В простых схемах это эмулируется последовательным резистором, который ограничивает ток. Его необходимо выбрать таким образом, чтобы ток оставался в пределах спецификации даже для светодиодов с особенно низким падением напряжения или с уменьшением сопротивления, которое может произойти при изменении температуры.
Таким образом, светодиод с падением напряжения V , изменяющимся от 3,2 до 3,4 В, не может надежно питаться от источника 3,5 В с использованием последовательного резистора, поскольку ток будет сильно варьироваться в пределах допустимого диапазона падения напряжения V . При использовании источника питания 9 В на резисторе возникает достаточно большое падение напряжения, чтобы стабилизировать его, даже при использовании УФ-светодиодов с высоким падением напряжения V , например, УФ-светодиод, достигающий 4,4 В , падение напряжения (падение напряжения V увеличивается).
примерно обратно пропорциональна длине волны излучаемого света).
Однако, как уже отмечалось, почти во всех промышленных приложениях, использующих мощные светодиоды (а не только в качестве светодиодов состояния), они управляются током.
\$\конечная группа\$
4
\$\начало группы\$
И лампочка, и светодиод являются нелинейными элементами, и они по-разному нелинейны. (см. здесь: http://physicsexperiments.eu/2097/light-bulb-current-voltage-characteristic и здесь https://www.electronics-tutorials.ws/diode/diode_8.html для графиков I/V.)
В частности, сопротивление диода быстро падает при увеличении напряжения или тока, а сопротивление нити накаливания немного возрастает.
Для стабильной работы (т.к. небольшое изменение любого параметра не приведет к большому и возможно вредному изменению какого-либо другого параметра) светодиод должен питаться более или менее постоянным током, а лампочка должна питаться постоянным напряжением .
Не то чтобы вы не могли сделать наоборот.
Вы можете идеально питать светодиод с его 3,09 +/- 1% вольт (3,09 являются типичным примером для синего или белого светодиода, и точное число также зависит от температуры светодиода), чтобы поддерживать светоотдачу в +/- — 50% лимиты. Для одного и того же светодиода 3,5 вольта мгновенно повреждают, а 2,8 вольта вообще не светят. Не сделка, не так ли?
Лампочка при использовании с источником тока вместо источника напряжения более щадящая. Он начнется довольно медленно (скажем, 1-3 с для мощных ламп) и будет становиться все ярче и ярче по мере старения, что приводит к гораздо более быстрому старению.
Резистор для светодиода — это просто источник тока. Вы также можете использовать другой (более или менее постоянный) источник тока, который явно не включает резистор. Мощные светодиоды используются со встроенным импульсным источником тока. Вы также можете использовать одну батарейку CR2032 в качестве источника тока без каких-либо других элементов — она будет питать 5-миллиметровый светодиод в течение дня или двух с током 4-10 мА.
\$\конечная группа\$
Твой ответ
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Обязательно, но не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
Коммерческие электрические системы: что такое трехфазное питание?
Термины, которые следует знать
- Переменный ток (AC): Ток, который периодически и непрерывно меняет направление и величину.
- Постоянный ток (DC): Ток, который не меняет направление, но поддерживает один и тот же устойчивый поток.
- Однофазный: Цепь, питаемая одним переменным током.
- Трехфазный/3-фазный: система электропроводки, состоящая из четырех проводов и используемая в промышленных и коммерческих целях. Эта система подходит для установок, требующих больших двигателей. Он состоит из трех горячих проводов и одного провода заземления. Напряжение в каждом горячем проводе не совпадает по фазе с другими на одну треть периода, как если бы оно создавалось тремя разными генераторами.
- Цикл: Одно полное повторение синусоидального узора, создаваемого оборотом на 360º.
- Закон Ома: Этот закон гласит, что ток, протекающий в цепи, прямо пропорционален приложенной разности потенциалов и обратно пропорционален сопротивлению в цепи.

Закон Ома
Для лучшего понимания принципов электричества полезно понимать закон Ома и умение рассчитывать различные характеристики электрических цепей в его рамках. Георг Ом (1789 г.– 1854) был немецким математиком и физиком, который определил, что удвоение электрического напряжения удваивает силу тока, а если удвоить сопротивление, сила тока уменьшится вдвое.
Понимание электрического потока похоже на понимание течения воды в трубе. Давление воды представляет собой напряжение в трубе, ток представляет собой количество воды, протекающей по трубе, а сопротивление равно размеру трубы. Чем шире труба, тем больше воды будет течь, потому что воде легче течь по широкой трубе, чем по узкой. Если бы труба была узкой, она оказывала бы большее сопротивление потоку воды. Если давление воды увеличится, то и расход в той же трубе увеличится. Узкая труба обеспечит больший расход воды при высоком давлении, чем при низком.
Три величины, относящиеся к закону Ома
| Количество | Символ | Блок | Условное обозначение |
| Текущий | я | ампер | А |
| Напряжение | Э или В | вольт | В |
| Сопротивление | Р | Ом | Ом |
Треугольник закона Ома
Этот треугольник можно использовать для расчета закона Ома и определения значений в цепи.
Следовательно, если известны две величины, можно вычислить третью.
V = I x R I = V / R R = V / I
Это математическое уравнение показывает, что при удвоении напряжения в цепи ток также удваивается. Однако, если сопротивление увеличить вдвое, ток упадет вдвое. Это отношение измеряется в единицах Ом.
Переменный ток и постоянный ток
Переменный ток может непрерывно менять направление, а постоянный или постоянный ток — нет. Переменный ток также может быть легко повышен (увеличен) или понижен (уменьшен) по напряжению. Крупные линии электропередач, распределяющие электроэнергию по всей стране, используют высоковольтный переменный ток, потому что он может быстро перемещаться по проводу с минимальным током или потерями. Мощность постоянного тока движется только в одном направлении и поддерживает одинаковое напряжение на протяжении всего пути. Только за счет рассеяния напряжение будет уменьшаться. А 9-вольтовая батарея будет уменьшать мощность с течением времени.
Вентилятор, лампочка или двигатель могут работать от сети переменного тока. Электричество, питающее это устройство, течет по проводам очень быстро и так же быстро меняет направление. Незаметная для человеческого глаза лампочка может загораться и гаснуть до 60 раз в секунду. Наоборот, батарея в сотовом телефоне использует питание постоянного тока. Кабель для зарядки должен быть подключен к трансформатору, который преобразует мощность переменного тока в мощность постоянного тока, а кабель для зарядки обеспечивает постоянное напряжение постоянного тока для устройства.
Цикл
При использовании переменного тока (AC) мощность в цепи принимает форму синусоиды, при этом за период времени кривая представлена на 360°. Электрический ток периодически меняет направление как по величине, так и по направлению. Во время положительного цикла пик подачи во время положительного цикла составляет 90°, а во время отрицательного цикла — при 270°. Ток совершает полный цикл 60 раз в секунду.
Поскольку напряжение в одной фазе то растет, то падает, постоянная мощность не может подаваться на нагрузку.
Напряжение в цепи 240 вольт в два раза больше, чем в цепи 120 вольт; это все еще одна законченная однофазная цепь, а не двухфазная цепь.
Однофазная система подает переменный ток, меняющий полярность 60 раз в секунду. Трехфазная система имеет три таких тока. Если считается, что последовательность одного цикла охватывает 360º, трехфазная система содержит три таких цикла (на 120º не совпадают по фазе друг с другом). Представьте, что каждая фаза начинается на графике ровно через 120° после предыдущей фазы.
Однофазное питание
Большинство бытовых электросетей представляют собой однофазные системы на 120/240 вольт. Чтобы обеспечить 120 вольт, есть один горячий или положительный провод, один нейтральный провод и один провод заземления. С другой стороны, есть два горячих или положительных провода, один нейтральный провод и один провод заземления для создания 240 вольт.
Трехфазное питание
Трехфазное (трехфазное) питание в здании состоит из трех силовых проводов. Каждый из трех силовых проводов не совпадает по фазе друг с другом на 120°. Следовательно, при трехфазном питании в течение одного цикла на 360° каждая фаза достигла бы пикового значения напряжения дважды (точно так же, как и однофазная), но мощность никогда не падает до нуля, поскольку происходят три одновременных цикла. Этот устойчивый поток мощности обеспечивает возможность работы с более высокими нагрузками, что делает трехфазное питание подходящим для промышленных и коммерческих приложений.
Идея трехфазной цепи устранит мерцание лампочки, потому что в цикле никогда не бывает момента, когда напряжение падает. В результате по этой фазе будет передаваться в три раза больше мощности, чем по однофазной сети всего с одним дополнительным проводом. Трехфазное питание в основном используется в системах, которым требуется больше энергии для запуска или тяжелых нагрузках, которые в противном случае могут привести к выходу из строя однофазных цепей.
Примеры включают двигатели и компрессоры в крупных коммерческих кондиционерах и приводные двигатели в механических системах.
3-фазная сеть: преимущества и недостатки
Преимущества:
- Более высокая плотность мощности, чем у однофазных цепей с той же силой тока
- Сохраняет размер провода и снижает затраты
- Легче балансировать нагрузки
- Минимизация гармонических токов
- Отсутствие необходимости в больших нейтральных проводах
Недостатки:
- Более высокое напряжение требует большей изоляции двигателей
- Не справляется с перегрузкой
- Требуется третий провод
Как определить, является ли система 3-фазной
Определение того, является ли система 3-фазной, можно начать со считывания паспортной таблички и паспортной таблички панели. Обычно он находится где-то в тупике (не маркировка распределения или схемы, а штамп дизайна панели). На этой этикетке должны быть указаны размер панели, напряжение, количество проводов в сети и, как правило, дата изготовления панели.
Ниже приведены примеры информации, собранной с паспортной таблички на панели.
Указанная информация включает:
- Торговая марка: Gould
- Сила тока: 100-амперная панель
- Напряжение: 120/208
- Фаза: 3-фазная, четырехпроводная
- Дата изготовления: 7 февраля 1980 г.
Информация отмечена:
- Марка: Square D
- Сила тока: 100-амперная панель
- Напряжение: 480Y/277
- Фаза: 3-фазная, четырехпроводная
- Дата изготовления: 7 марта 2019 г.
ПРИМЕЧАНИЕ. Другой способ определить, является ли система трехфазной, заключается в осмотре автоматических выключателей. Система является трехфазной, если есть выключатели, достаточно большие, чтобы охватить три полюса.
Если инспектор решит снять глухую переднюю часть панели, обнаружится проводка и цепи. Изучение внутренней части даст возможность увидеть, есть ли три положительные или линейные шины, а также нейтральная и заземляющая шины.
Однофазная панель будет иметь только две линейные или положительные шины. Обратите внимание, что ComSOP не требует, чтобы инспектор удалял мертвый фронт.
Заключение
Большинство коммерческих клиентов не понимают разницы между однофазными и трехфазными системами электропитания. Вместо этого они поймут, соответствует ли текущая электрическая система в здании их потребностям. Обновление электрических систем или добавление новых систем там, где старой недостаточно, может быть дорогостоящим и проблематичным.
Инспекция коммерческой недвижимости, в соответствии с ComSOP, исключает проверочную нагрузку и расчеты системы и вместо этого фокусируется на проверке и определении номинальной и рабочей силы тока, в дополнение к описанию того, что присутствует во время проверки. Эта информация поможет клиенту принять решение о предмете собственности. Поэтому инспекторам важно понимать разницу между однофазным и трехфазным питанием, чтобы лучше представлять и документировать систему в своем отчете об инспекции.
Автор статьи: Роб Клаус, CMI ®
Дополнительные ресурсы для инспекторов коммерческой недвижимости:
- Об электроснабжении коммерческих зданий
- Как проверить коммерческую электрическую панель
- Безопасные зазоры для рабочего и выделенного пространства электрооборудования
7 фактов, которые необходимо знать о нейтральном проводе в трехфазной цепи
Если вы обучаете учеников-электриков или являетесь профессионалом в области электротехники, вы наверняка слышали термины «нейтральный провод», «нейтральный проводник» или «нейтральный ток» при обсуждении трехфазных цепей. В этом блоге я расскажу о 7 фактах, которые вам нужно знать или объяснить своим ученикам о нейтральном проводе в трехфазной цепи. Этот список ни в коем случае не является исчерпывающим, но охватывает некоторые из наиболее важных аспектов.
Давайте разберемся с основами
Трехфазная система имеет три ответвления, по одному на каждую фазу.
Если это трехфазное питание или трансформатор, эти три ветви будут обмотками генератора переменного тока или трансформатора.
Сторона нагрузки может иметь больше вариаций, например, если система представляет собой сбалансированную электрическую нагрузку, то три ветви будут каждой фазой нагрузки, например обмотки двигателя. А если система представляет собой несбалансированную электрическую нагрузку, на каждую фазу может приходиться несколько нагрузок.
Существуют разные способы обозначения фаз, и наиболее популярными способами в Австралии являются A, B и C или U, V и W. Каждая из этих фаз имеет два конца, и они пронумерованы метками, например, концы фазы U являются U1 и U2
Звезда шоу
Вы можете подключить 3-фазные системы двумя способами – звездой и треугольником. В этом посте мы обсудим только соединение по схеме «звезда», потому что для соединения по схеме «треугольник» не требуется нейтральный провод.
Соединение звездой — это когда одна сторона каждой фазы соединена в звезду, а другая сторона соединяется с линиями.
Стороны в точке звезды должны быть согласованы; то есть все они должны быть 2 или 1, но никогда не смешиваться.
Изображение клеммной колодки двигателя и цепи обмотки.
Хорошо. Давайте проясним 7 фактов
Факт 1: Вы получаете два напряжения от 3-фазной сети из-за нейтрального провода
В Австралии наиболее распространенными 3-фазными напряжениями питания являются 400 В и 230 В. Возможно, вы также видели 415 В/240 В, это другой способ сказать то же самое. 400 В — это линейное напряжение, а 230 В — фазное.
Эта установка эффективна, поскольку позволяет подключить трехфазную нагрузку таким образом, чтобы каждая фаза имела напряжение 230 В или 400 В, или подключить однофазную нагрузку, для которой требуется 230 В на одну фазу и нейтраль
Если бы не было нейтрального провода, был бы возможен только первый сценарий. Еще один момент, который следует помнить, это то, что линейные и фазные токи в системах, соединенных звездой, одинаковы.
Факт 2: Нейтральный провод не требуется для сбалансированных нагрузок
Сбалансированные нагрузки — это трехфазные электрические нагрузки, такие как трехфазный двигатель или трехфазный водонагреватель.
Эти нагрузки спроектированы таким образом, что каждая фаза имеет одинаковое сопротивление или импеданс, поэтому, если они имеют одинаковое напряжение на каждой фазе, ток также будет одинаковым.
Сбалансированная система удовлетворяет следующим критериям
- Ток в каждой линии одинаков и
- Коэффициент мощности постоянен, что означает, что фазовый угол каждого тока соответствует их фазным напряжениям
В однофазных , нагрузки нейтральный провод обеспечивает обратный путь для тока, а в сбалансированных трехфазных нагрузках, поскольку они удовлетворяют вышеуказанным критериям, токи входят и возвращаются через линии, создавая 0 А несимметричного тока. Таким образом, нет необходимости в нейтральном проводе.
3-фазная сбалансированная нагрузка, соединенная звездой, с нейтральюФакт 3: Ток в нейтральном проводе представляет собой векторную сумму всех линейных токов
В сбалансированной системе, когда все токи и их коэффициенты мощности одинаковы, векторная сумма всех линейных токов равна 0 А.
Вот почему в симметричной системе нет необходимости в нейтральном проводе. Математический расчет может быть довольно сложным, поэтому я расскажу об этом в другом посте, а здесь я покажу вам графический метод или векторный метод.
Допустим, токи равны
IA = 5 А, IB = 5 А и IC = 5 А, а коэффициент мощности электрической нагрузки равен 1, что означает, что фазовые углы равны 0, 120 А и 240 А соответственно.
Воспроизвести видео
Что происходит с током нейтрали, когда линейные токи различны или имеют разный фазовый угол? Как вы понимаете, это будет не 0 А, поэтому давайте найдем ток нейтрали для следующего примера
IA = 727 мА при 0 градусах
IB = 727 мА при отставании 120 градусов A
IC = 1,927 A при отставании 240 градусов A
Воспроизвести видео
Поскольку ток нейтрали возвращается к источнику питания, направление вектора будет противоположным. Это означает, что нам нужно измерить фазовый угол в обратном направлении.
Факт 4: Нейтральный провод проводит ток симметрии при несбалансированных нагрузках
Нагрузка, которая не потребляет одинаковый ток в каждой линии или имеет разный фазовый угол тока, считается несимметричной электрической нагрузкой. Обычно это происходит во всех трехфазных установках, потому что в установке может быть несколько однофазных и трехфазных нагрузок, и вы не можете контролировать, какая линия потребляет ток одновременно. В этих случаях токи не уравновешиваются, и остается некоторый остаток. Это небалансный ток, и одно из назначений нейтрального провода — доставить его к источнику питания.
Воспроизвести видео
Без нулевого провода в системе возникают всевозможные нестабильности, такие как нестабильное напряжение, неожиданные токи и даже опасность поражения электрическим током.
Факт 5: Обрыв нейтрального провода изменяет фазные напряжения, когда электрическая нагрузка не сбалансирована к точке звезды снабжения.
Если нейтральный провод оборван или отсоединен, несимметричный ток не может вернуться в сеть через точку звезды, но должен вернуться. Таким образом, этот ток возвращается к источнику питания по линиям.В идеале точка звезды должна быть на 0 В, и это тот случай, когда нейтральный провод цел, но когда он сломан и из-за того, что токи вынуждены возвращаться по линиям, эта точка смещается к другому напряжению.
Воспроизвести видео
Поскольку точка звезды больше не находится на уровне 0 В, фазные напряжения на нагрузке изменяются, поскольку линейные напряжения от источника питания остаются на том же уровне, что и раньше. Например, если одна точка цепи находится на 12 В, а другая на 0 В, то разница напряжений составляет 12 В, но что, если вторая точка была на 4 В? Теперь разница напряжений будет 8В вместо 12В.
Факт 6: Обрыв нейтрального провода изменяет линейные токи при несбалансированных нагрузках
Ток не может существовать без напряжения, и, как следует из закона Ома, при изменении напряжения ток изменяется вместе с ним и пропорционально ему.
Как упоминалось в предыдущем разделе, обрыв нейтрали влияет на фазные напряжения, и это также влияет на фазные токи. Поскольку линейный и фазный токи в системах, соединенных звездой, одинаковы, токи в линиях также изменяются.
Изменение напряжения и силы тока вызывает изменение электрической мощности, что является причиной того, что нагрузки работают неожиданным образом. В некоторых случаях это может привести к снижению напряжения или перенапряжению; в любом случае, это плохо для электрической нагрузки и для системы.
3-фазная несимметричная цепь с подключенной нейтралью 3-фазная несимметричная цепь со звездой и обрывом нейтралиФакт 7: Непредвиденное напряжение в точке обрыва нейтрального провода
При обрыве нейтрального провода напряжение в точке звезды не равно 0 В, а имеет другое значение. Возможно, мы никогда не узнаем, каким может быть это напряжение, потому что оно будет зависеть от подключенных нагрузок в то время, а это означает, что это напряжение может быть близко к 0 В или намного выше.
Чем выше это напряжение, тем выше риск поражения электрическим током человека или животного, завершающего разорванный путь, а это может быть очень опасно.
Заключение
Вот и все, 7 фактов, которые вам нужно знать о нейтральном проводе в трехфазной цепи. Как упоминалось ранее, этот список не является исчерпывающим, и вам может понадобиться знать больше, но это хорошее начало.
Я надеюсь, что этот пост поможет вам или вашим ученикам получить некоторые идеи или освежить в памяти то, что вы, возможно, узнали в прошлом. Пожалуйста, добавляйте свои мысли и другие факты, которые я не перечислил здесь, в комментариях.
Спасибо, что заглянули на
Поделиться этим сообщением
Поделиться на facebook
Поделиться на linkedin
Поделиться на Twitter
Поделиться по электронной почте
Об авторе
Husnen Rupani
Я помогаю организациям по обучению электротехнике повышать вовлеченность учащихся, разрабатывая инновационное учебное оборудование.


