Генератор для ветряка: Тихоходный генератор для ветрогенератора на постоянных магнитах
Ветрогенератор своими руками для частного дома
«Нам электричество сделать всё сумеет …» — так пели студенты электротехнических ВУЗов середины прошлого века. В этой юмористической «оде» электричеству отведено много фантастики, но сегодня мы можем с уверенностью сказать, что современный человек без электричества просто пропал бы. Если свечи и могли бы нам заменить «лампочку Ильича», то как быть со всем остальным?
К настоящему времени человеком открыты разные способы получения электрического тока:
- гальванические элементы, в которых химическая энергия преобразуется в электрическую;
- термогенераторы, в которых в электричество преобразуется тепловая энергия;
- солнечные батареи, где в электроэнергию преобразуется солнечная энергия.
Каждый из таких источников имеет свои достоинства и недостатки. Однако преимущественное распространение получили генераторы, в которых механическая энергия преобразуется в энергию переменного электрического тока.
Немного истории и теории
Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.
То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором.
В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.
Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.
Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку.
Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.
Чем хорош ветрогенератор
Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.
Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.
Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.
Из чего состоят ветрогенераторы и какие они бывают?
Обязательными элементами такого ветрогенератора на магнитах являются:
1) Мачта, на которой установлены ветровое колесо и генератор. Ее высота выбирается исходя их конкретных природных условий и потребностей человека.
2) Двигатель для ветряка — ветровое колесо с лопастями, которое преобразует движение ветра во вращательное движение вала ротора генератора.
3) Генератор, вырабатывающий переменный электрически ток, величина которого зависит и от параметров статора и ротора генератора, и от скорости вращения ветрового колеса, дающего движение ротору.
Кроме того в состав системы могут входить ряд вспомогательных устройств, обеспечивающих управление работой системы и улучшающие качество получаемого тока: контроллер, аккумуляторные батареи, преобразователи, стабилизаторы.
В зависимости от направления оси вращения различают два типа ветрогенераторов — вертикальные и горизонтальные.
Горизонтальные (пропеллерные) имеют больший КПД, но они более сложны по конструкции, так как включают систему, ориентирующую пропеллер по ветру.
Изготовление таких ветрогенераторов сложнее, а работают они только при достаточно больших скоростях ветра. Кроме того, ветряки с горизонтальной осью вращения требуют достаточно большого пространства, а модели с вертикальной осью вращения значительно компактнее.
Вертикальные ветряки проще по конструкции, дешевле, но их КПД ниже.
Но обратимся к сердцу любого ветряка — электрогенератору переменного тока, ротор которого выполнен на неодимовых магнитах.
Как собрать генератор на магнитах
Собираем ротор
Ротор такого магнитного ветрогенератора конструктивно представляет собой сборку из двух стальных дисков, расположенных параллельно друг другу. Диски жестко скреплены между собой через распорную втулку и установлены на валу, вращение которого обеспечивает турбина ветряка. Можно рекомендовать сделать ротор из автомобильной ступицы в сборе с тормозными дисками. Это надежная и хорошо сбалансированная основа для ротора. Дешевле будет взять б/у ступицу. В этом случае ее необходимо разобрать, тщательно почистить, проверить и смазать подшипники.
Можно диски для ротора изготовить самостоятельно из низкоуглеродистой стали. Конечно, можно взять и другой материал, но следует учесть, что при использовании немагнитного материала эффективность генератора значительно снижается.
По периметру каждого диска располагаются магниты. Какие магниты нужны для ветрогенератора? Можно взять дисковые, прямоугольные, но наилучший эффект дают неодимовые магниты-сектора. Их размер и количество могут быть разными в зависимости от вашей цели и возможностей. Однако число пар полюсов магнитов должно быть четным, причем для однофазного генератора их должно быть столько же, сколько и катушек в статоре, а для трехфазного — четыре или две пары на три катушки. Магниты по периметру диска устанавливаются с чередованием полюсов: N–S–N–S…. Для этого предварительно следует изготовить шаблон, где точно обозначить место каждого магнита.
Размеры дисков ротора рассчитываются, исходя из размеров магнитов и их количества. Толщина диска для ротора должна быть порядка толщины магнита.
Магниты приклеиваются к диску суперклеем, а затем диск заливается эпоксидной смолой. Чтобы избежать ее стекания по внутренней и наружной окружности диска делаются бортики из скотча, пластилина или другого подручного материала. Перед тем, как залить диск эпоксидкой рекомендуем пометить на каждом диске по магниту, полюса которых направлены встречно, чтобы затем не перепутать при сборке. При сборке генератора следует следить за тем, чтобы магниты на дисках ротора располагались точно напротив и были направлены противоположными полюсами друг к другу. Схематический чертеж ротора ветряка с распределением магнитных силовых линий представлен на рис. 1.
Рис. 1
Изготовление статора ветрогенератора
Теперь сформированное магнитное поле нужно преобразовать в электричество. Для этого служит статор — неподвижная обмотка из медного провода, расположенная так, чтобы силовые магнитные линии, образуемые магнитами ротора, при его вращении пересекали провода обмотки.
Статор генератора располагается в зазоре между дисками ротора.
Состоит он из неподвижных плоских катушек без сердечников. В каждой катушке при пересечении силовыми линиями магнитного поля возникает ЭДС индукции, переменная по величине и направлению. Величина напряжения, значит, и эффективность ветрогенератора, зависят от скорости вращения ротора, от количества витков в каждой катушке, от числа самих катушек и диаметра медного провода, используемого для их изготовления.
Генератор может быть однофазным или трехфазным. Первый проще, но второй предпочтительнее по двум причинам. Во-первых, в ветряке с трехфазной схемой генератора отсутствуют вибрации, которыми в нагруженном состоянии грешит однофазный. Кроме того, трехфазный генератор эффективнее однофазного более чем в 1,5 раза.
Расчет числа и параметров катушек для ротора ведется исходя из числа магнитов, их ширины, выбранного соотношения 4/3, или 2/3 и диаметра провода.
Если для обмотки взять тонкий провод, то катушки статора можно намотать с большим количеством витков, напряжение на выходе генератора будет более высоким, но его нагрузочная способность ниже.
При использовании более толстого провода с меньшим сопротивлением в зазоре для статора поместятся обмотки с меньшим числом витков, в результате выходное напряжение будет ниже, но выше нагрузочная способность. Форма катушек определяется формой магнитов, а оптимальной толщиной статора считается величина, равная толщине магнитов. Число витков каждой катушки получается делением общего числа витков обмотки на число катушек, а общее число витков обмотки статора определяется, исходя из ЭДС, величины магнитной индукции, средней скорости вращения ротора.
Намотав катушки, их раскладывают на предварительно подготовленном шаблоне с размеченными секторами, соединяют между собой в зависимости от выбранной схемы. В однофазном варианте все катушки соединяются между собой последовательно. При этом нужно учесть, что токи в соседних катушках будут иметь противоположные направления, поэтому соединяются начало с началом соседней, а конец с концом следующей. Провода от начала первой и конца последней катушек выводятся наружу.
При трехфазном варианте между собой соединяются каждая третья катушка. Провода каждой фазы выводятся наружу и впоследствии соединяются звездой или треугольником. Схемы соединения обмоток генератора представлены на рис. 2.
Рис. 2
Для прочности под катушки и на них кладется стеклоткань, и вся конструкция заливается эпоксидной смолой. После ее застывания сверлятся отверстия для крепежных болтов.
Оба диска ротора устанавливаются на валу с двух сторон от статора на расчетном расстоянии, на передний диск ротора крепится ветроприемное устройство.
Заглянем в будущее
Человеческая мысль не стоит на месте и самые распространенные сегодня горизонтальные ветрогенераторы постепенно уступают свое место вертикальным. Связано это с появлением технологии магнитной левитации, или так называемых ветрогенераторов на магнитной подушке. В такой конструкции лопасти крыльев при малых габаритах максимально используют энергию ветра, то есть КПД тут будет значительно выше.
Первенство в применении этой технологии принадлежит китайцам, но сейчас во многих странах мира инженеры работают над созданием мощных ветрогенераторов с магнитной левитацией, позволяющих осуществить переход к источникам возобновляемой энергии в промышленном масштабе.
Самодельный ветряк с аксиальным генератором на неодимовых магнитах. Часть 1…
Живу я в маленьком городке Харьковской обл. частный дом, небольшой участок.
Сам я, как говорит сосед, ходячий генератор идей, так как практически всё в своем
хозяйстве сделано своими руками. Ветер хоть и небольшой, но практически постоянно дует, и тем самым соблазняет использовать свою энергию.
После нескольких неудачных попыток с тракторным самовозбуждающимся генератором идея создания ветрогенератора засела в мозгу еще сильнее.
Начал искать и после двух месяцев поисков в интернете, множества скачанных файлов, прочтенных форумов и советов я окончательно определился с постройкой аксиального ветро-генератора на дисковых неодимовых магнитах.
За основу была взята конструкция Бурлака Виктора Афанасьевича с небольшими конструктивными изменениями.
Основной задачей была постройка ветрогенератора своими руками из того материала, который есть, с минимумом затрат.
Для изготовления ротора использовал листовой кусок метала толщиной 20 мм. (что было) с которого по моим чертежам кум выточил и разметил на 12 частей два диска диаметром 150 мм. и неодимовые магнитные диски. Еще один диск под винт который разметил на 6 частей диаметром 170 мм.
Генератор будет на неодимовых магнитах
Купил через Интернет 24 шт. дисковых неодимовых магнита размером 25х8 мм, которые приклеил к дискам, (очень выручила разметка). Осторожно, не подставляете пальцы, неодимовые магниты очень мощные! (Возможно применение в данной схеме магнитных секторов дало бы лучшие результаты. Примечание администрации.)
Перед тем как приклеить неодимовые магниты к стальному диску маркером нанесите на них обозначение полярности, это очень поможет вам избежать ошибок при установке. После размещения неодимовых магнитов (12 шт.
на диск и чередуйте полярность), до половины залил их эпоксидной смолой.
Кликните по картинке что бы посмотреть в полном размере.
Ротор генератора с наклеенными неодимовыми магнитами
Для изготовления статора использовал эмаль-провод ПЭТ-155 диаметром 0,95 мм (купил на частном предприятии Хармедь). Намотал 12 катушек по 55 витков каждая, толщина обмоток получилась 7 мм. Для намотки изготовил несложный разборный каркас. Намотку катушек делал на самодельном намоточном станке (делал ещё во времена застоя).
Затем разместил 12 катушек по шаблону и зафиксировал их положение изолентой на тканевой основе. Выводы катушек распаял последовательно начало с началом, конец с концом. Я использовал 1-фазную схему включения.
Для изготовления формы под заливку катушек эпоксидной смолой склеил две прямоугольные заготовки 4-х мм фанеры. После высыхания получилась прочная 8 мм заготовка. С помощью сверлильного станка и приспособления (балерина) вырезал в фанере отверстие диаметром 200 мм, а из вырезанного диска вырезал центральный диск диаметром 60 мм.
Заранее заготовленные ДСП заготовки прямоугольной формы обтянул плёнкой и по краях закрепил стиплером, затем по разметке разместил вырезанный центр (обтянутый скотчем), а также вырезанную заготовку, обмотанную скотчем.
Форму до половины залил эпоксидной смолой, на дно положил стеклоткань, затем катушки, сверху стеклоткань, долил эпоксидную смолу, немного выждал и сверху сдавил вторым куском ДСП также обтянутым пленкой. После застывания извлёк диск с катушками, обработал, покрасил, просверлил отверстия.
Ступицу, а также основу поворотного узла изготовил с буровой трубы НКТ с внутренним диаметром 63 мм. Были изготовлены гнёзда под 204 подшипник и приварены к трубе. С задней стороны тремя болтами прикручена крышка с прокладкой из маслостойкой резины, с передней стороны прикручена крышка с сальником. Внутрь, между подшипниками, через специальное отверстие залил автомобильное полусинтетическое масло. На вал надел диск с неодимовыми магнитами, причем поскольку паз под шпонку сделать не было возможности на валу сделал углубления на половину диаметра шарика с 202 подшипника т.
е. 3,5 мм, а на дисках высверлил паз 7 мм. сверлом предварительно выточив баночку и запрессовал её в диск. После извлечения баночки в диске получился ровный, красивый паз под шарик.
Далее закрепил статор тремя латунными шпильками, вставил промежуточное кольцо с расчетом чтобы статор не затирало и надел второй диск с неодимовыми магнитами (магниты на дисках должны иметь противоположную полярность, т.е. притягиваться) Здесь очень осторожно с пальцами!
Изготовление турбины и мачты ветрогенератора
Винт изготовил с канализационной трубы диаметром 160 мм.
Кстати неплохой получается винт. Поэтому принципу изготовлена последняя турбина из алюминиевой трубы 1,3 м. (смотрите выше)
Разметил трубу, болгаркой вырезал заготовки, по концах стянул болтами и електро-рубанком обработал пакет. Затем раскрутил пакет и каждую лопасть обработал отдельно, подгоняя вес на электронных весах.
Защита от ураганного ветра выполнена по классической зарубежной схеме, т.
е. ось вращения смещена от центра. Вот ссылка на сайт www.otherpower.com/otherpower_wind.html
Желающие узнать больше здесь найдут все интересующие вопросы, причем совершенно бесплатно! Мне этот сайт помог очень здорово особенно с чертежами хвоста. Вот пример чертежей с этого сайта.
Свой хвост ветряка я подгонял методом подпиливания.
Вся конструкция насажена на два 206 подшипника, которые закреплены на оси с внутренним отверстием под кабель и приваренной к двухдюймовой трубе. Подшипники плотно входят в корпус ветроустановки, что позволяет без каких либо усилий и люфтов свободно поворачиваться конструкции. Кабель проходит внутри мачты к диодному мосту (выше смотрите чертежи).
на фото первоначальный вариант
Для изготовления ветро-головки, не учитывая двух месяцев поиска решений, ушло полтора месяца, сейчас у нас февраль месяц, снег и холод похоже за всю зиму, поэтому основных испытаний еще не проводил, но даже на этом расстоянии от земли автомобильная лампочка 21 ватт перегорела.
Видео можно просмотреть здесь:
Продолжение статьи здесь
Все статьи
Как работает ветряная турбина — текстовая версия
Сила ветра
Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии. На этой странице представлена текстовая версия интерактивной анимации: Как работает ветряная турбина.
Как работает ветряная турбина Ветряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление.
Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют уменьшить физически размер генератора. Этот перевод аэродинамической силы во вращение генератора создает электричество.
Ветряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте. На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. На ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.
Передача инфекции
Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.
Трансформеры
Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (тем самым уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач. Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.
Подстанция
Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению. Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.
Изготовленная из трубчатой стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.
Направление ветра
Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные — в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.
Флюгер
Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.
Анемометр
Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.
Лезвия
Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.
Наземная турбина с редуктором Трансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.
Гондола
Гондола находится на вершине башни и содержит редуктор, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.
Система рыскания
Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.
Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.
Система подачи
Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора.
Центр
Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.
Коробка передач
Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.
Ротор
Лопасти и ступица вместе образуют ротор турбины.
Тихоходный вал
Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.
Подшипник главного вала
Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.
Высокоскоростной вал
Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.
Генератор
Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.
Контроллер
Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.
Тормоз
Турбинные тормоза не похожи на автомобильные тормоза.
Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.
Турбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.
Морской флюгер и анемометр с прямым приводом
Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.
Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.
Система рыскания с прямым приводом
Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.
Лопасти генератора с прямым приводом
Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую же длину, как футбольное поле!
Система шага с прямым приводом
Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора.
Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.
Концентратор прямого привода
Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.
Ротор с прямым приводом
Лопасти и ступица вместе образуют ротор турбины.
Генератор с прямым приводом
Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.
Контроллер прямого привода
Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.
Тормоз с прямым приводом
Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.
Подшипник ротора прямого привода
Подшипник ротора поддерживает основной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.
Узнайте больше об энергии ветра
Как работают ветряные турбины?
Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.
Учить больше
Основы ветроэнергетики
Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.
Учить больше
History of U.S. Wind Energy
На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…
Учить больше
Сколько мощности составляет 1 гигаватт?
Дата, которую большинство любителей кино знает наизусть, 21 октября 2015 года — это день, когда Марти МакФлай и Док Браун путешествуют в «Назад в будущее, часть 2».
Учить больше
Как работают ветряные турбины?
Офис технологий ветроэнергетики
Ветряные турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветряные турбины используют ветер для производства электроэнергии. Ветер вращает пропеллерные лопасти турбины вокруг ротора, который вращает генератор, вырабатывающий электричество.
Исследуйте ветряную турбину
Чтобы увидеть, как работает ветряная турбина, нажмите на изображение для демонстрации.
Типы ветряных турбин >
Размеры ветряных турбин >
Узнать больше >
Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных явлений:
- Солнце неравномерно нагревает атмосферу
- Неровности земная поверхность
- Вращение Земли.
Характер и скорость ветрового потока сильно различаются по всей территории Соединенных Штатов и зависят от водоемов, растительности и различий в рельефе.
Люди используют этот поток ветра или энергию движения для многих целей: парусный спорт, запуск воздушного змея и даже производство электроэнергии.
Термины «энергия ветра» и «энергия ветра» описывают процесс, посредством которого ветер используется для выработки механической энергии или электричества. Эта механическая энергия может использоваться для определенных задач (таких как измельчение зерна или откачка воды), или генератор может преобразовывать эту механическую энергию в электричество.
Ветряная турбина преобразует энергию ветра в электричество, используя аэродинамическую силу лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют уменьшить физически размер генератора.
Этот перевод аэродинамической силы во вращение генератора создает электричество.
Типы ветряных турбин
Большинство ветряных турбин подразделяются на два основных типа:
Турбины с горизонтальной осью
Деннис Шредер | NREL 25897
Ветряные турбины с горизонтальной осью — это то, что многие люди представляют себе, когда думают о ветряных турбинах.
Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина вращается в верхней части башни, поэтому лопасти обращены к ветру.
Турбины с вертикальной осью
Майк ван Бавел | 42795
Ветряные турбины с вертикальной осью бывают нескольких разновидностей, в том числе модель Дарье в стиле взбивалки, названная в честь французского изобретателя.
Эти турбины всенаправленные, то есть их не нужно направлять на ветер для работы.
Ветряные турбины могут быть построены на суше или на море в больших водоемах, таких как океаны и озера.
Министерство энергетики США в настоящее время финансирует проекты , чтобы облегчить развертывание морской ветроэнергетики в водах США.
Применение ветряных турбин
Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:
Наземный ветер
WINDExchange
Мощность наземных ветряных турбин варьируется от 100 киловатт до нескольких мегаватт.
Большие ветряные турбины более рентабельны и сгруппированы в ветряные электростанции, которые обеспечивают большую мощность в электросети.
Морской ветер
Деннис Шредер | NREL 40484
Морские ветряные турбины, как правило, массивны и выше Статуи Свободы.
У них нет таких проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.
Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.
Распределенный ветер
Когда ветряные турбины любого размера устанавливаются на «потребительской» стороне электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, они называются «распределенным ветром».
Примус Ветроэнергетика | 44231
Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных, а также небольших коммерческих и промышленных целях.
Небольшие турбины можно использовать в гибридных энергетических системах с другими распределенными энергоресурсами, например, в микросетях, питаемых от дизельных генераторов, батарей и фотогальваники.
Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.
Узнайте больше о распределенном ветре из Distributed Wind Animation или прочитайте о том, что делает Управление технологий ветроэнергетики для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и общественных ветровых проектов.
Узнать больше
Заинтересованы в энергии ветра? Справочник по малому ветру помогает домовладельцам, владельцам ранчо и малому бизнесу решить, подходит ли им энергия ветра.
Дополнительные ресурсы по энергии ветра можно найти на WINDExchange, где есть планы уроков, веб-сайты и видео для учащихся K-12, а также информация о проекте «Ветер для школ» и университетском конкурсе ветра.
Энергия 101: Производство чистой электроэнергии из ветра
Видео URL
youtube.com/embed/EYYHfMCw-FI?autoplay=0&start=0&rel=0″>В этом видеоролике рассказывается об основных принципах работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество. См. текстовую версию.
Министерство энергетики США
History of U.S. Wind Energy
На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня…
Учить больше
10 фактов о ветроэнергетике, которых вы не знали
Освежите свои знания о ветре! Получите подробную информацию о нескольких менее известных фактах об энергии ветра.
Учить больше
Кто использует распределенный ветер?
Существует множество различных типов клиентов распределенного ветра.
