Как ноль проверить: Как определить фазу и ноль без приборов

Содержание

Как определить фазу: мультиметром, индикаторной отверткой

Знания, как определить «фазу», необходимы для подключения приемников электрического тока. Существуют несколько методов проверки, но перед их рассмотрением нужно ознакомиться с основными терминами освещаемой темы.

Существует несколько способов найти фазу и ноль в розетке.

Понятия «нуля» и «фазы»

Электрический ток — это упорядоченное движение отрицательно заряженных частиц.

Если электроны перемещаются только в одном направлении, такой ток называют постоянным, если в разных — переменным.

Проводники бывают трех видов:

  1. «Фаза» — рабочий контакт. На него подается напряжение.
  2. «Ноль» («нуль») — проводник, по которому ток протекает обратно к генератору, замыкая цепь.
  3. «Земля» — провод, соединяющий любую точку сети с заземляющим элементом. Он нужен для защиты от удара электрическим током.

Почему важно правильно идентифицировать фазный провод

При подсоединении приборов к сети используют проводник рабочей «фазы». Напряжение подается непосредственно на источник потребления. Ошибкой будет подключение приемника к «нулю», ведь при размыкании цепи (выключении прибора) сеть все равно остается под напряжением. Это хорошо прослеживается, если подсоединить выключатель лампочки к нулевому проводу. В таком случае патрон находится под напряжением постоянно. Это подключение опасное, когда необходимо поменять лампу или сам плафон.

Фазный провод важно правильно идентифицировать.

Способы определения рабочей «фазы» и «нуля» с помощью приборов

Проводник с рабочей «фазой» имеет такое же напряжение, как и в розетке: 220В. Оно необходимо для функционирования бытовых электроприборов. В нулевом проводнике напряжение тока очень слабое. Идентификация проводов осуществляется методом исключения, как только выявляется фазный контакт.

Существуют несколько способов определения «фазы»: по цвету проводов, по буквенной маркировке и с помощью приборов — индикаторной отвертки и мультиметра.

Индикаторная отвертка

Устройство отвертки обеспечивает удобное и безопасное ее использование

Величину напряжения с помощью индикаторной отвертки определить невозможно — она лишь показывает наличие его в проводнике.

Перед проверкой напряжения для безопасности нужно выполнить ряд манипуляций:

  • обесточит сеть;
  • зачистить провода от изолирующего материала;
  • развести концы проводов друг от друга как можно дальше во избежание короткого замыкания;
  • включить ток в сети.
Индикаторная отвертка показывает наличие тока в проводнике.

Сама диагностика проводится очень просто:

  1. Нужно прикоснуться жалом инструмента поочередно к оголенным проводам. Держать при этом отвертку необходимо за ручку большим и средним пальцами. До металлического стержня во время теста дотрагиваться опасно, т. к. по нему проходит ток.
  2. В то же время указательным пальцем нужно нажать на металлический пятачок с торца отвертки. Прикасаясь к контактной площадке, человек выступает как элемент цепи, заземляя ее. При наличии напряжения в проводнике загорится светодиодная лампочка, в ином случае проводник нулевой.

В конструкцию индикаторной отвертки встроен резистор, который ограничивает силу тока до безопасного для человека значения.

При помощи пружины он передает сигнал к лампочке.

Такой метод особенно удобен при проверке розеток, т. к. жало отвертки позволяет быстро добраться до контакта.

Мультиметр

С помощью мультиметра измеряют все характеристики электросети. Соответственно, и наличие напряжения в проводнике он тоже показывает. Кроме того, прибор определяет характер каждого провода — «земли», «нуля» и «фазы». Измерить напряжение возможно на любом участке цепи, будь то щиток, розетка или кабель.

Порядок действий:

  1. Для проверки фазы выставляют на приборе режим «Переменное напряжение». Выбирают максимально допустимый предел: 600-750 В.
  2. Один щуп мультиметра зажимают между пальцами, а другим дотрагиваются до контакта. Незначительные показания вольтажа будут соответствовать «нулю», а цифры, близкие к 220 В, характеризуют «фазу».

Когда электрик при проверке зажимает один щуп пальцами, током его не бьет из-за того, что в мультиметре установлено большое входное внутреннее сопротивление, а токи имеют сотые доли миллиампера.

Из-за внутреннего сопротивления в приборе разные модели могут показывать неодинаковые цифры. Но это не является критичным.

Мультиметр измеряет все характеристики электросети.

Важно не перепутать режимы при тестировании. Если проверяющий случайно выберет «Измерение тока» и прикоснется рукой к одному из щупов во время идентификации, он получит электрический разряд.

Зажимать щуп в целях заземления не обязательно пальцами. В некоторых розетках уже установлен заземленный контакт. Металлическая труба отопительной системы тоже может служить для этой цели, и электрики часто ею пользуются.

Определив «фазу» с помощью тестера, вычислить «нуль» и «землю» становится проще.

Если прикоснуться одним щупом к «фазе», а другой к «нулю», то прибор покажет 220 В. А при замыкании «фазы» и «земли» значение будет намного меньшее 220 В.

Альтернативные методы без использования приборов

Если ситуация складывается так, что ни индикаторной отвертки, ни мультиметра нет, а выяснить, какой контакт фазный, необходимо, используют визуальный способ определения контакта.

На кабеле часто встречается буквенное обозначение характеристик проводников. Так, за «фазой» закрепилась буква L, за «нулем» — N, а за «землей» — PE.

Иногда электрики при монтаже дополнительно маркируют фазный провод подвешенной биркой с обозначением. Но более простым решением считается цветовая маркировка проводов. Правильное подключение их (в соответствии со стандартом) впоследствии облегчает работу электрикам, позволяя быстро ориентироваться в проводке.

По цвету провода

Цвета изоляции проводов подбирают таким образом, чтобы они максимально отличались друг от друга:

  1. «Фаза» имеет часто белый, черный или коричневый цвет.
  2. «Нуль» — синий и его оттенки.
  3. «Земля» — желто-зеленый.

Но не всегда нормативы подключения проводников соблюдаются. Потому ради безопасности лучше проверить напряжение в проводах независимо от их визуальной маркировки.

Стандарт маркировки проводов

С помощью контрольной лампы

Этот способ считается самым рискованным, но выручает в ситуации, когда привычных тестеров нет под рукой. Проверяющему нужна лампа, закрученная в патрон, из которого отходят 2 провода. Для безопасного использования такого «прибора» лучше к концам проводов прикрепить щупы, а саму лампу обернуть защитным кожухом.

Одним отводом лампы нужно прикоснуться к металлической трубе (или другому заземляющему элементу), а вторым проверять контакт. Если лампа загорится, то диагностируемый контакт — «фаза».

Определить проводники можно и путем исключения:

  1. Поочередно прикасаются отводами лампы к двум из трех контактов, которые нужно идентифицировать. Если лампа горит, значит, на этот момент задействована пара «фаза» — «нуль».
  2. Чтобы определить фазный и нулевой проводники, одним из отводов тестера дотрагиваются до следующего из проверяемой тройки контакта. Лампочка тухнет при отсоединении от «фазы». Но случится это, только если в сети установлен защитный автомат. При его отсутствии индикатор горит даже в положении «земля» — «нуль».
  3. Для идентификации «земли», если не установлен защитный автомат, следует убрать заземление с кабеля и повторить тест. Теперь на этом проводнике лампа гореть не будет.

Собрать контрольную лампочку в домашних условиях несложно. Для этого понадобятся 2 проводника, соединенные с патроном, и сама лампочка, вкрученная в него.

В целях безопасности лампу лучше использовать неоновую, а на провода электрики рекомендуют закрепить щупы — это обезопасит и облегчит эксплуатацию «контрольки».

Поскольку метод с лампочкой является небезопасным, лучше его избегать.

Контрольная картофелина

Для самого необычного способа определения фазы потребуются 2 провода и картофель. В разрезанный пополам клубень вставляют 2 проводника на максимальном друг от друга расстоянии. Один накидывают на что-то заземленное (трубу отопительной системы), другой — на проверяемый контакт. Спустя 5-10 минут осматривают срез картофелины. Если на нем появилось пятно, то проверяемый проводник — «фаза». Если пятно отсутствует — «нуль».

Полезные советы и общие рекомендации

Работа с электропроводкой требует внимательности и осторожности.

Электрики советуют:

  1. Не полагаться полностью на цветовую дифференциацию проводов или их маркировку, проверять контакты тестерами еще раз. Случаи нарушения норм электромонтажа нередки.
  2. По возможности избегать определения напряжение в проводниках с помощью «контрольки» или картофелины. Такие способы считаются экстремальными, и без опыта работы ими лучше не злоупотреблять.
  3. При эксплуатации мультиметра подробно изучить инструкцию перед применением. Обратить внимание на настройку прибора.

Монтаж проводки по стандартам облегчит дальнейшее подключение приемников и продлит срок службы всей электросети. Кроме того, выполнение необходимых норм по установке сделает потребление электроэнергии комфортным и безопасным.

Что такое фаза в электрике и как ее проверить?

Содержание:

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.


Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.


КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.


Фаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Переменное напряжение — три фазы и ноль

Начать стоит с основ — с переменного напряжения и тока, его природы и принципа передачи к конечным потребителям. Тема переменного тока заслуживает отдельного рассмотрения, но для понимания фазы, нуля и земли на бытовом уровне выделим основные моменты.

Мощные генераторы электростанции вырабатывают напряжение в десятки киловольт. Затем через повышающие и понижающие трансформаторы электроэнергия приходит в дома с привычными нам параметрами 220 Вольт 50 Герц. Последний промежуточный элемент между электростанцией и домом — понижающий распределительный трансформатор. Разбираться в особенностях его работы сейчас не будем. Но для понимания, заменим его, все промежуточные трансформации и генератор на электростанции обычным трехфазным генератором на 220 Вольт.

Трехфазный генератор упрощенно состоит из ротора (вращающегося магнита) и трех обмоток статора, смещенных друг относительно друга на 120° (три фазы — отсюда и пошло название фаза, обозначающее вывод начала обмотки). Начала и концы обмоток трехфазного генератора принято обозначать буквами A, B, C и X, Y, Z. Первыми буквами латинского алфавита обозначают начала обмоток, последними — концы. Концы обмоток соединяются звездой в один узел, называемый нейтральной или нулевой точкой. Тот же принцип и в понижающем распределительном трансформаторе — концы обмоток соединяются в нулевой точке, а начала обмоток — это три фазы с линейным напряжением 380 Вольт.

Ротор генератора, вращаясь, создает электродвижущую силу, которая при условии, что цепь замкнута, заставляет свободные электроны в проводах направленно перемещаться от зоны с большим потенциалом (избытком электронов) к зоне с меньшим потенциалом (недостатком электронов). Давайте условно остановим время и рассмотрим что происходит с напряжениями в каждой фазе. Нам известно, что напряжение в розетке между фазой и нулем 220 Вольт. Это действующее значение напряжения, и после перевода в амплитудное получим 312 Вольт. Примем, что это напряжение на выводе A генератора (или трансформатора). Для определения напряжения на двух оставшихся выводах также условно примем, что потребление по трем фазам симметричное. Тогда нулевой провод фактически не нужен, поэтому отсоединим его от генератора (трансформатора) — в жизни эта ситуация называется обрывом (отгоранием) общего нуля. Но ноль у нас никуда не делся. Важно понимать, что ноль — это не просто четвертый провод от трансформатора. Ноль это в первую очередь общая точка соединения трех фазных нагрузок. И ток в идеале не течет от фазы к нулю трансформатора и обратно. Ток течет между тремя фазами если нагрузки симметричные. И лишь когда нагрузки несимметричные (а в реальной жизни так всегда) только часть тока по четвертому проводу возвращается в трансформатор.

Допустив, что нагрузка у нас симметричная, а ноль — точка соединения начал обмоток трансформатора после нагрузок, теперь можно найти напряжения на оставшихся дух фазных выводах и понять суть переменного напряжения. Так как ток течет, точнее движение свободных электронов происходит между тремя фазами, то если напряжение на выводе А 312 Вольт (примем со знаком «+», напряжение на выводе — это разность потенциалов между началом и концом обмотки (нулевой точкой)), то на оставшихся двух выводах B и C должно быть (оно и есть) по -156 Вольт. То есть электроны в цепи начинают движение от области с потенциалом +312 Вольт к областям с потенциалами -156 Вольт. Если помните, мы остановили время и рассмотрели конкретный момент. Отключим остановку времени. Теперь ротор крутится и значения напряжений на выводах изменяются по синусоиде. Электроны все также движутся межу фазами, но периодически изменяют направления.
Завершая краткий экскурс в переменный ток хочется отметить, что говоря о движении электронов, нужно понимать не прохождение огромных расстояний со скоростью света, а скорее миллиметры (сантиметры). Электроны медлительные и они в проводах не перемещаются со скоростью света. Распространение со скоростью света происходит лишь у электрического поля, которое взаимодействует со всеми свободными электронами на любом участке провода.

Фаза, ноль, земля — что это

Рассмотрев кратко основы переменного тока определимся наконец с понятиями фаза, ноль, земля. С фазой, как правило, особых проблем в понимании нет. Все мы знаем, что она под напряжением и трогать ее не следует. Все системы с глухозаземленной нейтралью имеют заземленную нулевую точку в распределительном трансформаторе. Коснувшись фазы мы замыкаем цепь через землю и через тело проходит опасный ток.

Теперь разберемся с нулем. Как выше упоминалось, ноль — это точка соединение трех фаз с нагрузками. Также ноль — это точка соединения концов вторичных обмоток в трансформаторе. А все мы, как правило, под нулем понимаем четвертый провод, который соединяет две нулевые точки. Правильно ли это? Правильно, но нужно для полного понимания разделить все эти участки.

Рассмотрим ноль, как общую точку соединения фазных нагрузок. Почему ноль? Потому что, если нагрузка симметричная, то потенциал в этой точке равен 0 Вольт. И в самом деле, рассчитав разность потенциалов между тремя фазами со значениями напряжений +312, -156, -156 Вольт, получим 0 Вольт.

В реальной жизни все три фазы не могут быть нагружены одинаково. В связи с этим в нулевой точке уже появляется потенциал. А если неравномерность нагрузки значительная, этот потенциал может быть очень большим, а разброс напряжения у потребителей может быть от низких до очень высокими. И чтобы такого не происходило нулевые точки соединяются проводом. А так как нейтраль трансформатора глухозаземлена, то этот четвертый провод не что иное, как PEN проводник. По нему всегда течет ток, который равен геометрической сумме всех фазных токов.

На данном этапе уместно всех предупредить, не слушайте вредные советы многих некомпетентных электриков и никогда не трогайте нулевой (PEN) проводник. Он всегда под напряжением. Чаще под небольшим, но иногда бывает под опасно большим (при обрыве общего нуля). И то, что PEN проводник заземлен, никакой роли не играет. Ноль бьет током, так как PEN проводник имеет свое сопротивление. И чем он длиннее, тем больше сопротивление в удаленной от трансформатора точке. А если есть сопротивление, то будет разность потенциалов с землей, и дотронувшись до нулевого провода, через вас пройдет ток. И здесь не работает очередная глупость о том, что ток течет по пути наименьшего сопротивления. Ток в замкнутой цепи распределяется везде, только его сила обратно пропорциональна сопротивлению.

Завершим тему землей. Если рассматривать распространенную систему TN, то под разговорным названием «земля» нужно понимать защитное зануление. Защитное зануление в электроустановках напряжением до 1 кВ — это преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности. То есть ноль и земля соединены в какой-то точке до разделения. Поэтому как ноль, так и землю без предварительной проверки не нужно трогать.

Варианты определения проводников «фаза»/«ноль»

Итак, наступила, ситуация, когда необходимо, например, подключить новую розетку. Но совершенно не понятно, какой из проводов является фазным, а какой нулевым. Способов быстро решить проблему существует несколько — это можно сделать как с применением специальных приборов, так и без них.

Цветовая окраска проводов, как основной ориентир

Это самый легкий и быстрый способ. Для правильной классификации нуля и фазы следует знать, какой цвет провода к чему относится. Предварительно необходимо будет изучить информацию о том, где четко прописаны действующие стандарты для конкретной страны.

Данный метод весьма актуален в любых новостройках, поскольку сейчас вся электрическая проводка прокладывается специалистами, выполняющими свою работу согласно всем требованиям установленных стандартов. Так, например, в России еще в 2004 году был принят стандарт «IEC60446», в котором четко обозначена процедура разделения кабелей по цветам, а именно:

  • защитным нулем стал обозначаться провод желто-зеленого цвета;
  • рабочим нулем стали называть синий/сине-белый провод;
  • фазу — провода других цветов (например, черного, красного, коричневого и прочие).

Такое обозначение актуально в настоящее время.

Если проводка уже довольна старая или ее прокладкой занимались непрофессиональные специалисты, правильнее будет все же воспользоваться иными методами определения.

Отвертка-индикатор — незаменимое приспособление

Данный инструмент является неотъемлемым прибором в наборе домашнего электрика-умельца. Она применяется как при выполнении электромонтажных работ, так и при установке осветительных приборов в помещении или даже в процессе обыкновенной замены лампочек.

Принцип ее работы заключается в прохождении емкостного тока сквозь корпус отвертки через тело оператора.

Элементы отвертки:

  • корпус, выполненный из диэлектрического материала;
  • наконечник из металла в форме плоской отвертки, который прикладывают к проводам при проверке;
  • неоновый индикатор — лампочка, сигнализирующая о фазовом потенциале;
  • ограничитель тока — резистор, понижающий ток до минимального значения и выполняющий роль защитного механизма: защищает человека от поражения током, а само устройство от выхода из строя;
  • контактная металлическая площадка, создающая замкнутую цепь через человека на землю.

Методика работы настолько проста, что справиться с ней может любой человек, даже новичок. Работает индикаторная отвертка следующим образом. При прикосновении наконечником к фазному контакту (цветному проводу) происходит замыкание электрической цепи — неоновая лампа должна загореться. То есть, поступает «сообщение» о наличии сопротивления, следовательно, данный кабель является фазой. В то же время ни на заземлении, ни на нуле, она загораться не должна. Если это происходит, можно с уверенностью говорить о том, что в схеме подключения электропроводки есть ошибки.

Работа с отверткой-индикатором в светлое время суток потребует некоторой внимательности — днем свечение лампы плохо заметно, поэтому придется приглядываться.

При работе с подобными приспособлениями нужно быть крайне осторожным — нельзя дотрагиваться до оголенных участков проводников и выводов индикатора, находящихся под напряжением.

На заметку! Профессиональные электрики пользуются более дорогими многофункциональными индикаторами, свечением которых управляет схема на транзисторах, питающаяся от встроенных аккумуляторов напряжением в 3 В. Еще одним их характерным отличием от простых аналогов является отсутствие контактной площадки, к которой нужно прикасаться при выполнении замеров.

Устройства, помимо своего прямого назначения — проверки фазового провода — выполняют и ряд других вспомогательных задач: определение полярности источников постоянного напряжения, места обрыва электроцепи и так далее.

Мультиметр — надежный помощник

Чтобы вычислить фазу, используя тестер, его необходимо переключить в режим «вольтметр» и мерить напряжение между всеми парными выводами кабелей. Соединение щупов с защитным нулем и заземлением должно показывать отсутствие напряжения. Напряжение между фазой и любым другим проводов должно составлять 220 В.

Способы определения проводов:

Так, в первом случае вольтметр отклоняется от нулевой отметки в цепи «ноль/фаза». На другом рисунке он показывает отсутствие напряжения между нулем и землей. И на третьем, вольтметр между фазой и землей показывает «0 В» поскольку проводник еще не подсоединен к земле. Третий случай — это скорее исключение из правил. Такое возможно, например, в случаях, когда старые кабеля здания находится на этапе реконструкции. В нормальной работающей системе электропроводки вольтметр тоже должен показывать 220 В.

Использование лампы накаливания

Перед началом работы необходимо будет собрать приспособление для тестирования. Оно будет состоять из обыкновенной лампочки, патрона и проводов. Лампа вкручивается в патрон, а к клеммам патрона крепятся проводники. Один из проводов необходимо будет заземлить, например, подсоединить к батарее отопления.

Сущность метода заключается в поочередном прикладывании второго (свободного) проводника ко всем тестируемым жилам. Если лампочка вспыхнет — найден фазный провод.

Метод позволяет установить приблизительно наличие фазного кабеля среди остальных. Сигнал лампы точно сигнализирует о том, что среди этих проводников какой-то фазовый, а какой-то нулевой. Если же лампа не горит, значит среди кабелей нет фазного. Но может случиться, что нет как раз именно нулевого.

Поэтому в большей степени данный метод целесообразен для определения работоспособности электрической проводки и правильности монтажа.

В чем отличие фазного проводника от нулевого?

Назначение фазного кабеля – подача электрической энергии к нужному месту. Если говорить о трехфазной электросети, то в ней на единственный нулевой провод (нейтральный) приходится три токоподающих. Это обусловлено тем, что поток электронов в цепи такого типа имеет фазовый сдвиг, равный 120 градусам, и наличия в ней одного нейтрального кабеля вполне достаточно. Разность потенциалов на фазном проводе составляет 220В, в то время как нулевой, как и заземляющий, не находится под напряжением. На паре фазных проводников значение напряжения составляет 380 В.

Линейные кабели предназначены для соединения нагрузочной фазы с генераторной. Назначение нейтрального провода (рабочего нуля) заключается в соединении нулей нагрузки и генератора. От генератора поток электронов перемещается к нагрузке по линейным проводникам, а его обратное движение происходит по нулевым кабелям.

Нулевой провод, как было сказано выше, не находится под напряжением. Этот проводник выполняет защитную функцию.

Назначение нулевого провода заключается в создании цепочки с низким показателем сопротивления, чтобы в случае короткого замыкания величины тока хватило для немедленного срабатывания устройства аварийного отключения.

Таким образом, за повреждением установки последует ее быстрое отключение от общей сети.

В современной проводке оболочка нейтрального проводника бывает синей или голубой. В старых схемах рабочий нулевой провод (нейтраль) совмещен с защитным. Такой кабель имеет покрытие желто-зеленого цвета.

В зависимости от назначения электропередающей линии она может иметь:

  • Глухозаземленный нейтральный кабель.
  • Изолированный нулевой провод.
  • Эффективно-заземленный ноль.

Первый тип линий все чаще используется при обустройстве современных жилых зданий.

Чтобы такая сеть функционировала правильно, энергия для нее вырабатывается трехфазными генераторами и доставляется также по трем фазным проводникам, находящимся под высоким напряжением. Рабочий ноль, являющийся по счету четвертым проводом, подается от этой же генераторной установки.

Наглядно про разницу между фазой и нолем на видео:

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Профессиональные электромонтеры используют в своей работе более дорогие светодиодные индикаторы с двумя встроенными элементами питания, но простенькое устройство китайского производства вполне доступно любому человеку и должно иметься у каждого хозяина дома.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Фаза и ноль в современной розетке

В устройствах современного типа есть три провода. Фаза бывает любого цвета. Помимо фазы и нуля имеется еще один провод (защитный нулевой). Цвет этого проводника — зеленый или желтый.

Через фазу подается напряжение. Ноль используется для защитного зануления. Третий провод нужен как дополнительная защита — для забора лишнего тока во время замыкания. Ток перенаправляется в землю или в обратную сторону — к источнику электричества.

Обратите внимание! Не имеет практического значения, справа или слева расположены фаза и ноль. Однако чаще всего фаза расположена слева, а ноль — справа.

Перепутать фазу и ноль

На заре электрификации подключение светильника было простым процессом. Очень часто вся конструкция представляла собой патрон со встроенным выключателем, а иногда ещё и с розеткой.

Сейчас люстра может быть сложной конструкцией, неправильное подключение которой может привести к срабатыванию защиты или некорректной работе ламп. Ситуацию осложняет то, что провода в кабеле разные – нулевой, фазный и заземляющим.


подключение пятирожковой люстры

Если заземление присоединяется к корпусу светильника, то с оставшимися проводниками вопрос более сложный, поэтому при выполнении этих работ важно знать, что будет, если перепутать фазу и ноль при подключении люстры

Разница между нулем и землей

Последствия неправильной коммутации нулевого и заземляющего проводников могут быть разными:

  1. Неправильная работа приборов учета электроэнергии в меньшую или большую сторону. Соответственно в первом случае, когда компания-поставщик найдет ошибку, может быть начислен огромный штраф.
  2. Некорректная работа устройств защитного отключения и дифференциальных автоматов: при существенных перепадах напряжения будет постоянно перегорать бытовая техника.
  3. Отсутствие защиты человека от поражения током. Более того, неправильная схема может стать основной причиной удара.

Предыдущая

РазноеУЗИП — устройство защиты от импульсных перенапряжений

Следующая

РазноеВакуумный выключатель: устройство и принцип работы + нюансы выбора и подключения

Как проверить наличие null в JavaScript | by Dr. Derek Austin 🥳

Из-за исторической ошибки

typeof null в JavaScript возвращает «объект» — так как же проверить null ? Фото Бена Херши на Unsplash

«Значение null представляет собой преднамеренное отсутствие какого-либо значения объекта. Это одно из примитивных значений JavaScript». — MDN Docs

Примитив JavaScript типа null представляет намеренное отсутствие значения — обычно он устанавливается специально, чтобы указать, что переменная была объявлена, но еще не получила никакого значения.

Это отличает null от аналогичного примитивного значения undefined , которое является непреднамеренным отсутствием какого-либо значения объекта.

Это потому, что переменная, которая была объявлена, но не получила никакого значения, имеет значение undefined , а не null .

К сожалению, typeof возвращает "объект" при вызове с нулевым значением из-за исторической ошибки в JavaScript, которая никогда не будет исправлена.

Это означает, что проверка на null не может быть выполнена с использованием typeof .

Фото Юджина Тригубы на Unsplash null означает знать, что null оценивается как false в условных выражениях или при принуждении к логическому значению :

Конечно, это не различает null из других ложных значений.

Далее я исследую использование операторов равенства == или === для проверки на нуль.

Photo by Nicholas Ruggeri on Unsplash

«Несмотря на то, что null является [falsy], оно не считается примерно равным любому другому ложному значению в JavaScript. На самом деле, единственные значения, которым приблизительно равны null , — это undefined и само себя». — Джош Клэнтон в A Drip of JavaScript

Один из способов проверить null в JavaScript — проверить, приблизительно ли значение равно null , используя оператор двойного равенства == :

Как показано выше, null лишь приблизительно равно себя и undefined , а не к другим показанным ложным значениям.

Это может быть полезно для проверки отсутствия значения — null и undefined оба указывают на отсутствие значения, поэтому они приблизительно равны (они имеют одно и то же значение, хотя и относятся к разным типам).

Таким образом, при программировании для проверки наличия у переменной какого-либо значения перед попыткой ее обработки вы можете использовать == null для проверки null или undefined .

Photo by David Becker on Unsplash

Чтобы убедиться, что у нас есть ровно нулевых значения , за исключением любых неопределенных значений , с помощью тройного равенства === оператор сделает свое дело:

Как правило, это хорошо. идея поймать как ноль так и неопределенные значения , так как оба представляют отсутствие значения.

Это означает, что проверка на null является одним из немногих случаев в JavaScript, когда рекомендуется использовать == , в то время как в противном случае обычно рекомендуется === .

Photo by Dan Meyers on Unsplash

Некоторые JavaScript-программисты предпочитают, чтобы все было явно для ясности, и в этом нет ничего плохого.

Действительно, линтер кода JSLint явно запрещает == для предотвращения случайных ошибок в результате приведения типов.

Другой популярный линтер кода, ESLint, имеет похожее, но более настраиваемое поведение при использовании == по сравнению с === .

Это означает, что если вы (или ваш линтер) имеете привычку всегда использовать оператор строгого равенства === , то вы можете проверить, строго ли значение равно null ИЛИ ( || ) вместо этого строго равно undefined использования == :

Это более подробно, чем == оператор, но каждый, кто читает ваш код, будет ясно знать, что проверяются как null , так и undefined .

Photo by Cassie Boca on Unsplash

«Один из способов, которым эта ошибка [‘null is not a object’] может возникнуть в реальном примере, — это если вы попытаетесь использовать элемент DOM в своем JavaScript до того, как элемент будет загружен. Это потому, что DOM API возвращает null для пустых ссылок на объекты». — Rollbar в топ-10 ошибок JavaScript

Эта ошибка типа (« null не является объектом») может возникнуть, если элементы DOM не были созданы перед загрузкой скрипта, например, если скрипт выше, чем HTML на странице, который интерпретируется сверху- до дна.

Решением будет использование прослушивателя событий, который уведомит нас, когда страница будет готова, а затем запустит скрипт.

Но, тем не менее, было бы разумно проверить, является ли элемент DOM нулевым , прежде чем пытаться получить к нему доступ.

Photo by Denys Nevozhai on Unsplash

«К счастью, поскольку null на самом деле не объект, это единственный «объект», который является ложным значением, а пустые объекты — правдивы». — Кейси Моррис в Daily JS

Другой метод проверки null основан на том факте, что null является ложным, но пустые объекты являются истинными, поэтому null — единственный ложный объект.

Это удобно проверить с помощью логического НЕ ! оператор:

Использование typeof может быть полезным трюком, потому что, если переменная не объявлена, то попытка сослаться на нее вызовет ReferenceError .

Но тип необъявленного значения равен undefined , поэтому использование типа может быть хорошим способом проверки null , undefined и необъявленных переменных.

Photo by Dylan Freedom on Unsplash

Функция ES6 Object.is() отличается от strict === и потерять == операторов равенства в том, как он проверяет NaN и отрицательный ноль -0 .

Для null поведение Object.is() такое же, как === :

Это означает, что вам нужно будет явно проверить как null , так и undefined , если вы используете Object. is() , который является вспомогательным методом, проверяющим изменения состояния под капотом в React.

Фото Патрика Хендри на Unsplash

Проверка на нуль — обычная задача, которую рано или поздно приходится выполнять каждому разработчику JavaScript.

Ключевое слово typeof возвращает "объект" вместо null , так что это означает, что требуется немного больше усилий.

Можно проводить сравнения: null === null для строгой проверки на null или null == undefined для свободной проверки либо на null, либо на undefined.

Значение null ложно, но пустые объекты правдивы, поэтому typeof maybeNull === "object" && !maybeNull — это простой способ проверить, что значение не равно null .

Наконец, чтобы проверить, было ли объявлено значение и присвоено ли ему значение, которое не является ни null , ни undefined , используйте typeof :

Теперь идите и проверьте null с уверенностью!

Фото Пака Патрика на Unsplash
  • Константин Блохин убирает «загрязнение нулевой проверки» на freeCodeCamp:

Как избежать загрязнения проверки нулями в JavaScript: используйте Options

от Константина Блохина Как избежать загрязнения проверки нулями в JavaScript: используйте Options Помойте свой код…

www. freecodecamp.org

  • Кейси Моррис мнения о null и undefined на DailyJS:

Rant.js — undefined vs null

Имеет ли это значение? Оба они являются ложными значениями, которые ведут себя одинаково, не правда ли, это немного глупо? Я так не думаю.

medium.com

  • Абинав Силан объясняет, почему null >= 0 — это true на Camp Vanilla:

Спецификация Javascript

blog.campvanilla.com

  • У Kiro Risk есть статья о null и typeof в JavaScript Refined:

Null и typeof

Демистификация typeof null, раз и навсегда

javascriptrefined.io

  • Первый совет автора Hackernoon Юрия Рамоса показывает, как проверить наличие null или undefined в одной строке с помощью let variable2 = variable1 || '' :

12 хороших приемов стенографии JavaScript

Обновление 1: из-за большого количества противоречивых комментариев (например, статья понравилась или ненавистна) я просто хочу прояснить, что стенография…

hackernoon. com

  • Алекс Эллис глубоко изучил, почему typeof null прослушивается в его блоге:

typeof null: исследование классической ошибки JavaScript

В своем последнем посте я рассмотрел некоторые приведения JavaScript и выяснил, почему 0

<= null оценивается как истина. Для этого поста я бы…

alexanderell.is

Photo by Toby Christopher on Unsplash

Значения SQL NULL — IS NULL и IS NOT NULL

❮ Предыдущая Далее ❯


Что такое значение NULL?

Поле со значением NULL является полем без значения.

Если поле в таблице является необязательным, можно вставить новую запись или обновить запись, не добавляя значение в это поле. Тогда поле будет сохраняется со значением NULL.

Примечание: Значение NULL отличается от нулевого значения или поля, которое содержит пробелы. Поле со значением NULL — это поле, оставленное пустым. при создании записи!


Как проверить значения NULL?

Невозможно проверить значения NULL с помощью операторов сравнения, таких как =, < или <>.

Нам придется использовать IS NULL и IS NOT NULL вместо операторов.

IS NULL Синтаксис

SELECT имена_столбцов
FROM имя_таблицы
ГДЕ имя_столбца IS NULL;

IS NOT NULL Синтаксис

SELECT имена_столбцов
FROM имя_таблицы
ГДЕ имя_столбца IS NOT NULL;


Демонстрационная база данных

Ниже приведена выборка из таблицы «Клиенты» в образце «Борей» база данных:

Идентификатор клиента ИмяКлиента Контактное имя Адрес Город Почтовый индекс Страна
1 Альфред Футтеркисте Мария Андерс ул. Обере 57 Берлин 12209
Германия
2 Ана Трухильо Emparedados y helados Ана Трухильо Авда. Конститусьон 2222 Мексика Д.Ф. 05021 Мексика
3 Антонио Морено Такерия Антонио Морено Матадерос 2312 Мексика Д.Ф. 05023 Мексика
4 Вокруг рога Томас Харди Ганноверская площадь, 120 Лондон ВА1 1ДП Великобритания
5 Берглундс снабжение Кристина Берглунд Бергувсвеген 8 Лулео С-958 22 Швеция


Оператор IS NULL

Оператор IS NULL используется для проверки пустых значений (значений NULL).

Следующий SQL перечисляет всех клиентов со значением NULL в поле «Адрес»:

Пример

SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address НУЛЕВОЙ;

Попробуйте сами »

Совет: Всегда используйте IS NULL для поиска значений NULL.


Оператор IS NOT NULL

Оператор IS NOT NULL используется для проверки непустых значений (NOT NULL ценности).

Следующий SQL перечисляет всех клиентов со значением в поле «Адрес»:

Пример

ВЫБЕРИТЕ имя клиента, имя контакта, адрес
ОТ клиентов
ГДЕ Адрес НЕ НУЛЬ;

Попробуйте сами »


Проверьте себя с помощью упражнений

Упражнение:

Выберите все записи из списка Customers , где столбец PostalCode пуст.

ВЫБЕРИТЕ * ИЗ клиентов
КУДА ;
 

Запустить Упражнение

❮ Предыдущий Следующий ❯


ПИКЕР ЦВЕТА



Лучшие учебные пособия
Учебное пособие по HTML
Учебное пособие по CSS
Учебное пособие по JavaScript
Учебное пособие
Учебное пособие по SQL
Учебное пособие по Python
Учебное пособие по W3.CSS
Учебное пособие по Bootstrap
Учебное пособие по PHP
Учебное пособие по Java
Учебное пособие по C++
Учебное пособие по jQuery Top 5s

900 Справочник по HTML
Справочник по CSS
Справочник по JavaScript
Справочник по SQL
Справочник по Python
Справочник по W3.