Как работает узо трехфазное: Принцип работы трехфазного УЗО

Содержание

Принцип работы трехфазного УЗО

Приветствую Вас, уважаемые читатели сайта elektrik-sam.info.

В одной из предыдущих статей я подробно рассматривал, для чего применяется устройство защитного отключения и как оно работает. Подробно смотрите статью Устройство и принцип работы однофазного УЗО. 

В этой статье речь пойдет об устройстве и принципе работы трехфазного УЗО.

Трёхфазные УЗО работают по такому же принципу, как и однофазные. Внутри они содержат трансформатор тока, первичная обмотка которого образована четырьмя проводами: тремя фазными LA LB LC и нулевым N.

В однофазных УЗО первичная обмотка состоит из двух проводов – фазного и нулевого.

При отсутствии утечки геометрическая сумма токов первичных обмоток трансформатора тока равна нулю, т.е.

IА+IВ+IС+IN=0,

суммарный магнитный поток тоже будет равен нулю, поэтому ток во вторичной обмотке трансформатора тока (обмотке управления) отсутствует.

Предположим, что в фазе LB произошла утечка тока на заземленный корпус электрооборудования.

Геометрическая сумма токов в первичных обмотках не равна нулю (сумма токов в трех фазных проводах не равна току в нулевом проводе). Суммарный магнитный поток, наводимый этими токами в сердечнике трансформатора тока, будет отличен от нуля.

Он будет наводить во вторичной обмотке  управления трансформатора тока ток, который приведет к срабатыванию электромагнитного реле.

Реле, воздействуя на механизм расцепителя УЗО, отключит цепь нагрузки от питающей сети.

Таким образом, принцип работы трехфазного УЗО аналогичен принципу действия однофазного, с небольшими отличиями.

Подробно Принцип работы трехфазного УЗО смотрите в видео


Рекомендую также прочитать:

Автоматические выключатели УЗО дифавтоматы — подробное руководство.

Устройство УЗО и принцип действия.

Конструкция УЗО.

Работа УЗО при обрыве нуля.

Как проверить тип УЗО?

Почему УЗО выбирают на ступень выше?

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Почему в жару срабатывает автоматический выключатель?

Менять ли автоматический выключатель, если его «выбивает»?

Трехфазное УЗО — назначение, устройство, как работает. Принцип работы трехфазного УЗО

УЗО – устройство защитного отключения. Это устройство знакомо многим, но почему-то не все верят в то, что УЗО действительно работает. При этом, никто еще не смог дать конкретного ответа, почему он так думает. Спешу вас заверить: устройство защитного отключения действительно работает, поэтому в целях собственной безопасности и предотвращения несчастных случаев, связанных с поражением электрическим током, такое устройство стоит установить каждому.

Схема подключения УЗО достаточно проста, и с финансовой точки зрения тоже себя оправдывает. Да и экономить на собственной безопасности неправильно. Поэтому еще раз: устройство защитного отключения НЕОБХОДИМО, если вы задумываетесь о своей безопасности и безопасности ваших домочадцев.

Электроэнергия по потребителям распространяется через однофазные либо трехфазные сети. В зависимости от количества фаз в сети, меняются и схемы подключения автоматов (автоматических выключателей) и схемы подключения УЗО.

В данной статье поговорим о подключении устройств защитного отключения именно к трехфазным сетям, рассмотрим схемы правильного подключения, а также узнаем, как работает трехфазное УЗО.

Внимание! Чтобы правильно рассчитать и выбрать аппараты защиты, необходимо соблюдать следующие пункты:

  1. 1. Знать назначение, конструкцию и принцип действия всех компонентов
  2. 2. Разбираться в параметрах и характеристиках
  3. 3. Знать нормативные документы и методику выбора

Понятно, что рядовой обыватель скорее всего с этими вещами не знаком, поэтому будет приглашать мастера. А вот мастеру уже можно задать вопросы, и если он уверенно и правильно расскажет о назначении устройства, схеме его работы, то это хороший мастер. Вот если он не сможет этого сделать – лучше вызовите другого. Большинство несчастных случаев связано именно с некомпетентностью.

Назначение трехфазного УЗО

Итак, для начала разберемся с однофазными и трехфазными сетями. Нужно знать следующее: в обычных квартирах сеть – однофазная, а вот в частных домах – нередко присутствует трехфазная сеть. УЗО, применяемое в однофазной сети, называется двухполюсным. То есть, один контакт подключается к фазе, второй – для подключения нулевого провода. Нетрудно вычислить, что в трехфазной сети будет применяться 4-х полюсное УЗО

: три контакта подключаются к фазам, четвертый, соответственно, ноль

Как мы уже поняли, трехфазные УЗО применяются в трехфазных сетях. Их задача ничем не отличается от устройств, применяемых в однофазной сети: защищать от утечки тока.

Вкратце напомним принцип работы УЗО: определяет и реагирует на разницу тока, проходящего через устройство. При этом, в отличие от УЗО в однофазной сети, трехфазное УЗО можно подключить как и с нулевым проводом, так и без него. Соответственно, при подключении с нулевым проводом задействованы все четыре провода сети, а если подключать без нейтрали, то только три провода, четвертый контакт остается незадействованным.

Теперь познакомимся с номиналами защитных устройств, используемых в трехфазных сетях. Маленький нюанс: одни производители указывают величину тока утечки в миллиамперах, другие в амперах. Четырехполюсные УЗО бывают 10, 30, 100, 300, 500 миллиампер (0.01, 0.03, 0.1, 0.3, 0.5 ампер соответственно).

Важно! Если вы планируете установку УЗО для защиты человека, то номинал устройства защиты не должен превышать 30 миллиампер. Остальные номиналы используются для защиты от возгораний и сохранности потребителей, как правило, устанавливаются на входе щитка.

Обычно к частным домам подводят три фазы мощностью 15 кВт. В этом случае для обеспечения защиты человека от удара током не имеет смысла устанавливать трехфазное УЗО на входе, так как если на одной из фаз произойдет утечка тока, устройство отключит все три фазы. В этом случае имеет смысл устанавливать трехфазное УЗО для отдельных трехфазных потребителей, коими могут быть котлы, электроплиты и другое трехфазное электрооборудование.

Однако не всегда их используют для трехфазных потребителей. Трехфазное УЗО можно использовать не только в трехфазной, но и в однофазной сети и такие устройства часто можно встретить в обычном квартирном щите. Изюминка в том, что используя трехфазное устройство защитного отключения в однофазной сети грамотно распределив нагрузку можно добиться существенной экономии бюджета. У многих профессионалов они пользуются все большей популярностью. 

Но, такие манипуляции должен проводить опытный мастер, иначе, при неравномерном распределении нагрузки получится перекос между фазами (проще – аварийная ситуация). А как собрать такой щит мы рассмотрим в отдельной статье.

Устройство трехфазного УЗО

Теперь подробно поговорим об устройстве трехфазного УЗО. Как уже было сказано, в трехфазной сети имеется три фазных проводника и один нулевой.

Напряжение между любой фазой и нулем – 220 вольт, как положено, а напряжение между фазами – 380 вольт.

Основным компонентом устройства защитного отключения является дифференциальный трансформатор. Это обычный магнитопровод из ферромагнитного материала с обмоткой. Помимо дифференциального трансформатора в УЗО присутствуют следующие компоненты:

  1. 1. Корпус
  2. 2. Силовые контакты (подвижные и неподвижные)
  3. 3. Механизм независимого сцепления
  4. 4. Силовые провода
  5. 5. Реле расцепления
  6. 6. Кнопка “Тест”

Теперь узнаем, что же происходит. Через катушку ЭДС, которая является частью трансформатора устройства защитного отключения проходят все провода трехфазного питания, включая нулевой провод. Так как при нормальном потреблении прибора суммарные токи всех 4-х проводов равны нулю, ЭДС в катушке не возникает.

При возникновении утечки тока по любому из проводов, происходит разбаланс, и, как следствие, сердечник трансформатора намагничивается. Все это приводит к возникновению тока в обмотке трансформатора. Если величина этого тока превышает ток срабатывания УЗО, автоматика отключает питание.

Пояснение работы устройства

Понятное дело, что неподготовленному человеку будет сложно понять принцип работы УЗО, поэтому в качестве примера возьмем обычные батареи водяного отопления. Итак, мы имеем следующее:

  1. 1. Замкнутый контур отопления – наши провода
  2. 2. Вода – ток, протекающий по проводам.

Теперь всем понятно, что пока вода спокойно протекает по трубам, система работает без проблем. Но вдруг в одной из труб контура образовалась дыра.

Понятное дело, что часть воды будет через эту дыру утекать. Получается, в начале замкнутого контура в трубу подали, к примеру, четыре куба воды, а на выходе из контура воды стало только три куба. Так как наша система замкнута (сколько вошло – столько и должно выйти), то эта разница на входе и выходе сигнализирует о том, что в замкнутой системе возникла утечка.

 

По этому же принципу работает и УЗО. Это устройство сравнивает сколько тока ушло и сколько пришло, и если появляется разница, то устройство автоматически отключается.

В однофазной сети УЗО сравнивает токи только в двух проводах, один из которых фазный, а второй – нулевой. Время срабатывания устройства – несколько миллисекунд.

Принцип работы трехфазного УЗО при несимметричной нагрузке

Принцип работы УЗО в трехфазной сети аналогичен его работе в сети, где присутствует одна фаза. Но, если в однофазной сети всего два провода, то в трехфазной – четыре.

К сведению, обычно фазы обозначают латинскими буквами (А, B, C) а нейтраль всегда обозначают буквой N.

Теперь снова повторим: в однофазной сети ток течет в одном направлении по фазному проводу, и по нулевому проводу в другом. Значения токов при нормальной работе – одинаковые. Если вспомнить наш пример с отоплением, то 2 куба вошло и 2 куба вышло. При такой работе во вторичной обмотке трансформатора УЗО ток не возникает.

В трехфазном УЗО геометрическая сумма I1+I2+I3 = 0 (ему геометрическая? — вспомните векторы!) всех четырех проводов равна нулю (при равенстве нагрузки). То есть, как и в однофазной сети, во вторичной обмотке трансформатора ток не возникает.

Но, как только в сети возникает утечка тока, баланс в первичной обмотке будет нарушен, и тогда во вторичной обмотке возникнет ток, который запустит механизм срабатывания УЗО.

Внимательный читатель наверняка обратил внимание на оговорку “при равенстве нагрузки”, и естественно задался вопросом: а что если нагрузка на фазы не будет одинакова? Сработает ли УЗО при возникновении утечки в таком случае?

Спешу успокоить: УЗО сработает, и вот почему. Возьмем в качестве примера следующие данные:

  1. 1. Фаза А – 10 ампер
  2. 2. Фаза В – 5 ампер
  3. 3. Фаза С – 15 ампер

Для несимметричной нагрузки должно выполняться геометрическое равенство I1+I2+I3=IN. Считаем: 10 + 5 + 15 = 30. Ток в 30 А, это ток который возвращается в сеть по нулевому проводу. То есть, баланс нашего тока равен 30 Ампер.

Во вторичной обмотке – ток равен нулю. То есть, при значении 30 Ампер во вторичной обмотке ток равен нулю и трехфазное УЗО работает в нормальном режиме. Теперь, в случае утечки тока на одной из фаз, равенство нарушится, и баланс не будет равным 30, а значит во вторичной обмотке появится ток. Как только там появляется ток – срабатывает реле устройства, УЗО отключается.

Важно! Если вы устанавливаете УЗО на водонагреватель (бойлер), который работает от напряжения 380 вольт, то обратите внимание на то, по какой схеме в вашем бойлере подключены ТЭНы. Если используется подключение типа “треугольник”, то четырехполюсное УЗО подключается без нулевого провода. При подключении ТЭНов по типу “звезда” следует использовать все четыре провода (три фазы и нулевой провод).

Подводим итоги. Трехфазное УЗО, принцип работы которого мало отличается от использования УЗО в сетях с одной фазой, применяется очень широко, и не является слишком сложным устройством для подключения. Самое главное – будьте осторожны и внимательны.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Трехфазное УЗО: разновидности и принцип работы

Данное электротехническое оборудование применяется в промышленных условиях. Подключение трехфазного УЗО на производстве позволяет предохранить не только поражения электричеством работников, но и служит средством предупреждения пожаров (это основное его предназначение). Обеспечить безопасные условия труда поможет устройство с подходящими характеристиками.

Правильно подобранное по назначению защитное устройство, позволит избежать возникновения ряда аварийных ситуаций.

Разновидности УЗО и его принцип работы

Выпускается 2 типа защитных устройств. Это электромеханическое и электронное оборудование. По принципу действия они идентичные. Основным различием и преимуществом электромеханического прибора является:

  • работа без подачи на прибор электроэнергии;
  • простота, надежность схемы изделия.

Ток утечки при повреждении изоляции и касания оголенного участка вызывает срабатывание защиты – это принцип действия каждого типа прибора.

Устройство с электронной схемой, устанавливается с подведением питания. Основой его работы является в создании импульса на исполняющее реле при утечках.

Но при отключении питания на обслуживаемом участке цепи, прибор не сможет работать, потому что на него не подается ток. Происходят сбои в работе электронного типа узо в трехфазной сети при сильных морозах.

Поэтому используются такие приборы редко, хотя цена их ниже, чем на электромеханические устройство защиты.

Алгоритм одинаковый для работы всех видов приборов

В разных направлениях по проводникам протекают ток фазы и ноль. При этом происходит возбуждение 2 магнитных потоков в сердечнике защитного устройства. Потоки, как бы поддерживают равновесие системы, обеспечивая нулевое значение ЭДС.

При касании человеком оголенного провода, или утечке с нарушенного участка изоляции тока, соответствующему величине срабатывания устройства — прибор размыкает трехфазную цепь. Магнитный поток, возникающий в сердечнике, приводит в действие защелку группы контактов. Так работает каждое защитное устройство.

Каждое трехфазное узо оснащается кнопкой «Тест». Не реже 1 раза в месяц, необходимо проводить проверку исправности прибора. Нажимая на нее, вызываем искусственную утечку тока. Прибор должен среагировать на угрозу. При неисправности, выполняется работа по установке нового прибора.

Что такое УЗО, почему его устанавливают?

Для начинающих электриков, необходимо понимать и знать ответы на эти вопросы, перед выполнением работ:

  1. Автомат защитного отключения и Узо – это 2 разных устройства.
  2. Дифференциальный автомат abb – это автоматическая защита от пика напряжения и устройство защитного отключения в одном корпусе.
  3. Автомат защищает человека и бытовые приборы от критических нагрузок и тока КЗ.
  4. Установка устройства защиты, предохраняет здоровье человека при утечках тока.
  5. При установке гальванического трансформатора после защиты, работа в таких условиях, чревата аварией.
  6. По назначению, устройство работает как заземление, но оно не может его заменить, полностью исключив возможность нанесения ущерба при попадании молнии.
  7. Некоторые устройства, по своим особенностям, не могут работать в цепи с защитным устройством. Опытный электротехник сможет исправить эту ситуацию.
  8. Никакая защита не спасет глупого человека, прогуливавшего уроки физики, если он закоротит собою цепь. Если взяться за провода фазы и земли и ощутить на себе влияние электрического тока – в такой ситуации не сработает ни одна защитная установка. Помните, так делать нельзя!
  9. При преимуществе системы abb продолжается установка всех видов защиты. Происходит это по нескольким причинам, а именно из-за его высокой цены. Еще одна причина – при срабатывании такого устройства необходимо будет определить причину, связанную с отключением.

Главное, о чем нужно помнить – трехфазные устройства защитного отключения применяют для предотвращения пожаров на промышленных объектах. Сила тока для такого оборудования составляет 100 – 300 мА.

Схема работы трехфазного устройства без нулевого провода

Подключение узо для трехфазной сети, для предохранения от утечки тока на синхронном электродвигателе, можно проводить без ноля. При этом соединение обмоток осуществляется по схеме звезда или треугольник без нейтрали. Суммируя показатели токов на фазах, мы видим, что они не могут вызывать включения в работу УЗО, из-за своей небольшой величины.

При возникновении аварийной ситуации, когда происходит утечка на фазах, ток проходит на землю через корпус. При этом возникает движение потока через трансформатор прибора, происходит срабатывание защиты.

Величина напряжения трехфазного тока 380 В, а на однофазном приборе 220. Разница немаленькая. Возможно, ли установить трехфазное узо в однофазную сеть? Если производителем была предусмотрена такая возможность, то да.

Самое главное, чтобы была гарантированна нормальная работа цепи тестов напряжениях, величиной соответствующей принятым нормам. Особенно это правило важно исполнять при установке электронного прибора защиты.

Какой прибор лучше установить и как его подключить?

При установке дифференциального автомата abb, экономится место в щитке и на проводах при разводке. Он предохраняет сразу от нескольких неисправностей. Короткое замыкание и пиковые значения тока (работа автомата отключения сети) и недопущение пожара и поражения током при утечке.

При этом качественный дифавтомат abb, может стоить намного дороже, чем 2 отдельных, качественных прибора (автомат и УЗО).

На трехфазных приборах защиты имеются по 4 клеммы для подводящей группы и идущей к потребителям тока. Поэтому при установке он будет не менее 7 крепежных ячеек в электрическом щитке. Закрепляется прибор с помощью специальных защелок, вставляемых в пазы электрощита.

На подводящие верхние клеммы закрепляем приходящие к щиту кабели. От нижних отводим проводку к оборудованию. Провода в клеммах закрепляются с помощью поджимных винтов. Самое главное — подсоединять провода так чтобы не перепутать фазу и ноль. Это может привести к тяжелым последствиям.

Проверив правильность монтажа, можно произвести пробное включение сети.

Схема подключения узо достаточно проста. С этой работой справится новичок, но лучше использовать при выполнении работ несколькими нашими советами.

Для того чтобы правильно работала система защиты, сразу за защитным автоматом, необходимо подключить УЗО.

Следует всегда помнить о том, что устройство защитного отключения никогда не сможет заменить заземления и наоборот. При этом никакой автомат, служащий для предохранения от токов КЗ, никогда не заменит УЗО и не предохранит человека от последствий утечек тока.

Устройство, со значением свыше 30мА не сможет защитить человека от поражения электротоком. Такой прибор устанавливают для предохранения здания от пожара при утечках тока.

Выбирают защиту согласно следующим характеристикам:

  • Выбор определяется по особенностям прибора. Следует напомнить, что лучшим вариантом является электромеханический тип прибора.
  • Подбор, производят согласно мощности прибора, учитывается время прекращения подачи энергии.
  • Определенный нагрузочный ток требует установки различных устройств.
  • Определитесь, готовы ли вы платить за возможности, которые и не нужны. А еще подумайте – стоит ли переплачивать за имя фирмы производителя.

Большинство все брендовой продукции выпускается на территории Китая. Иногда, заводы производители известной марки, не догадываются о том, что его продукция выпускается на рынок. А весь остальной ассортимент производится в районах мира, с низким уровнем жизни. Но даже здесь можно попасть на некачественный товар.

Провод заземления не должен отходить к заземляющему контуру, за установленным устройством защитного отключения. Он не может располагаться в зоне ответственности УЗО. Поэтому он включается в электрическую цепь обязательно перед защитой.

Следите за правильностью подключения проводов, согласно электрической схеме. Как правило, она находится на одной из поверхностей сторон прибора.

Выполнив все эти требования и правила, вы получаете надежную и безотказную защиту от утечек электрического тока.

назначение, критерии выбора и особенности установки

На чтение 6 мин Просмотров 676 Опубликовано Обновлено

В связи с массовым использованием электрических приборов в быту и на производстве появляется потребность в защите человека от поражения током. Трехфазное УЗО – специальное устройство, реализующее данную функцию. Указанный агрегат необходимо подключать, используя особые схемы, что будет гарантировать эффективность его работы.

Назначение и принцип действия

Трехфазное устройство защитного отключения (УЗО)

3-фазное УЗО предназначено для выравнивания тока, который проходит через фазный и нулевой провод. При отсутствии аварийных ситуаций указанные величины равны. Стабильная работа электрических приборов возможна, поскольку встречные потоки в обмотках компенсируют друг друга. При возникновении аварийных ситуаций устройство защиты производит отключение питания электроприборов. Это наблюдают при нарушении изоляции проводов, что провоцирует утечку заряженных частиц. В результате токи, проходящие по нейтрали и фазному проводу, будут иметь разные значения.

В каждом доме может случиться ситуация, когда электрический ток пробивает на корпус стиральной машины или водонагревателя. Когда потенциал станет перетекать на пол, среагирует 3-х фазный УЗО и отключит питание приборов. Поэтому при использовании данного защитного автомата, можно быть уверенным в своей безопасности.

Подключение УЗО актуально для мощных электроприборов в кухне и в ванной. На их металлическом корпусе собирается конденсат, что в комплексе образует потенциальный проводник электричества.

Хорошо, когда защитное отключение присутствует на розетках, светильниках и маломощных бытовых приборах. При возникновении аварийных ситуаций указанные потребители несут не меньшую опасность для человека.

Критерии выбора трехфазного УЗО

Принцип работы всех УЗО в трехфазной сети одинаковый, но данные устройства отличаются конструкцией и эксплуатационными характеристиками. Поэтому при покупке конкретной модели необходимо учитывать много нюансов.

Чувствительность

Главный эксплуатационный параметр УЗО 3 фазы, отображающий период времени, через который сработает защита. Оптимально, когда чувствительность устройства составляет 0,025 с. За это время электрический ток не успеет вызвать остановку сердца у человека.

УЗО может работать с дополнительным источником питания или без него. В первом случае он непосредственно принимает участие в процессе размыкания электрической цепи. Наличие данного механизма повышает стоимость прибора, но и увеличивает его чувствительность.

При отсутствии дополнительного источника питания УЗО срабатывает, реагируя на дифференциал магнитного поля.

Дифференциал тока

Маркировка УЗО

УЗО, предназначенные на 3 фазы, способны регулировать значение дифференциального тока, при котором оно срабатывает. При отсутствии данной функции приборы стандартно реагируют на 5 мА. Такой показатель тока явно указывает на присутствие аварийной ситуации и на потребность в отключении подачи электричества.

Количество клемм

Для трехфазной сети обязательно покупать 4-полюсные УЗО. Они оснащаются 8 клеммами для подсоединения входных и выходных кабелей. Три пары предназначены для подключения рабочей фазы, одна – нуля.

Количество ампер

Чтобы устройство защитного отключения функционировало при любом токе, необходимо выбирать модель, где число ампер существенно выше, чем у автомата.

На рынке присутствуют универсальные модели. Они предоставляют возможность подключения нескольких сетей одновременно. Несмотря на такое преимущество, подобные агрегаты имеют много недостатков. Они менее чувствительны, характеризуются сложной схемой подключения, стоят дороже. Такие модели подойдут для предприятий, но не для частного использования.

Подготовка к подключению

Правильно выполненные подготовительные и монтажные работы обеспечат стабильное функционирование УЗО.

Схемы подключения к трехфазной сети

Схема подключения УЗО к трехфазной сети

При установке УЗО используют следующие рабочие схемы:

  • Полное отключение электроцепи. Один агрегат имеет возможность обесточить всех потребителей электроэнергии при возникновении аварийной ситуации.
  • Частичное отключение приборов. При появлении аварийных ситуаций обесточиваются только некоторые потребители.

Первая схема подключения используется в многоквартирных домах. Монтаж устройства осуществляется около счетчика электроэнергии. Если УЗО сработает, обесточивается целый дом.

При использовании второй схемы защитный механизм устанавливают на отрезке электрической проводки, идущей к конкретной комнате. Поскольку все приборы последовательно подключены к цепи, при срабатывании УЗО только «проблемный» потребитель отключится, а другие продолжат свое функционирование.

Второй вариант схемы может реализовываться иным способом. Точкой монтажа УЗО становится начало последовательного подключения к разводке, что позволяет реализовать селективное срабатывание агрегата на определенные группы потребителей. Также защитный механизм можно установить непосредственно перед выходным устройством.

Необходимость наличия заземления

Подключение УЗО с заземлением и без него

Старые электросети относятся к системе tn-c, где отсутствует нулевой проводник для включения заземления. В этом случае защиту необходимо предусмотреть отдельно для дома или оборудования, что обеспечивает безопасный отвод токов. При отсутствии заземления ставить 4-х полюсный УЗО запрещено.

Правильная схема подключения к электрической сети предусматривает соблюдение следующих правил:

  • Заземляющая жила соединяется только с выходным кабелем. Подключение напрямую УЗО недопустимо.
  • При наличии однофазной сети нельзя использовать четырехполюсное устройство.
  • Подключение к сети типа Б3 запрещено.

Заземляющая жила является отдельным элементом. Отсутствие дополнительных клемм в УЗО на ее подключение только свидетельствует об этом.

Подсоединение устройства защитного отключения

Выполнить монтаж УЗО несложно, владея базовой информацией о работе электрооборудования. К каждому устройству производитель прилагает технический паспорт. В нем указываются рекомендуемые схемы подключения, которые нужно использовать во время установки.

Поиск нулевой фазы

Использование контрольной лампы для поиска нулевой фазы

Определить нулевую фазу очень просто опытным путем. Нужно взять два провода и подсоединить их к концам патрона лампочки. Ее загорание наблюдают, если она подключена к фазе. В остальных случаях ничего не произойдет.

Подключение лампочки к двум фазам одновременно разрешается осуществлять на короткий промежуток времени. Замыкать такую цепь также можно лишь на небольшой период. Иначе существует высокая вероятность срабатывания автоматического выключателя.

Подключение фазы

Если удалось найти ноль, необходимо сразу выполнить его присоединение к соответствующим клеммам. Оставшиеся три провода являются рабочими фазами. Они подсоединяются любым удобным способом, что никак не влияет на функционирование УЗО.

После завершения монтажа необходимо проверить работоспособность системы. Для этого запускается тестер, который входит в стандартную комплектацию прибора.

Подсоединение выходных устройств

Подключение нескольких розеток к одному УЗО происходит только параллельным способом. Чтобы осуществить это, каждую жилу разделяют на нужное количество проводов. Если не придерживаться такой схемы монтажа, прибор не сможет полноценно работать и срабатывать при возникновении аварийных ситуаций.

Ошибки при выполнении монтажа УЗО

Пример неправильного подключения УЗО

Чтобы обеспечить стабильную и безопасную работу электросети, необходимо избегать следующих ошибок:

  • Входные клеммы УЗО подключаются к сети после специального автомата. Прямое присоединение категорически запрещено.
  • Необходимо правильно подключить и не перепутать нулевые и фазные контакты. Для облегчения этой задачи на корпусе устройств присутствуют специальные обозначения.
  • При отсутствии заземляющего проводника категорически запрещено заменять его проводом, накинутым на водопроводную трубу или радиатор.
  • При покупке устройств обращают внимание на их основные рабочие характеристики, величины токов. Если линия рассчитана на 50 А, прибор должен иметь минимум 63 А.

При выполнении монтажа крайне важно соблюдать правила электробезопасности. Перед началом установки УЗО обесточивают сеть. Перед запуском устройства проверяют правильность монтажа элементов системы.

Трехфазное УЗО: назначение и схема подключения

Распределение электроэнергии потребителям может производиться через однофазные или трехфазные сети. Каждая из них отличается своими особенностями и требует специальных схем подключения. Это касается и защитных устройств, которые устанавливаются в любой сети. В первую очередь, это автоматические выключатели, защищающие от коротких замыканий и скачков напряжения, а также другие устройства, в том числе и трехфазное УЗО, устанавливаемое в трехфазных сетях и обеспечивающее защиту людей от токов утечки.

Назначение трехфазного УЗО

Трехфазные устройства защитного отключения, в соответствии со своим названием, применяются в аналогичных электрических сетях. Они обеспечивают защиту электроники и электротехники от возможных внутрисетевых замыканий, предотвращают пожары, которые могут возникнуть при утечке тока.

Принцип работы одинаковый для всей устройств этого типа. Он заключается в определении и реакции УЗО на разницу токовых величин, проходящих через него. Стандартная схема подключения УЗО в трехфазной сети может осуществляться в разных вариантах – с нейтралью и без нее. В первом случае задействуются все четыре провода, а во втором – только три.

Специалисты рекомендуют использовать трехфазные УЗО в электрических сетях с электродвигателем, подключенным по схеме «треугольник». В этом случае обмотка уже не замкнется на корпус. Если же электродвигатель подключается по варианту «звезда», задействуется все четыре полюса, при этом нейтральный провод соединяется с самым центром данной схемы.

Кроме того, схема подключения трехфазного УЗО при определенных условиях может применяться для однофазных сетей. Это особенно актуально при подключении сварочных агрегатов, представляющих собой источники повышенной опасности. В этих случаях возможные токовые утечки имеют большое значение и могут привести к серьезным негативным последствиям.

Параметры защитных устройств существенно отличаются в зависимости от области применения и условий эксплуатации. Они работают с различным номинальным током и напряжением, рассчитаны на разные токи утечки. Например, если срабатывание происходит при токе в 300 мА, такие УЗО используются в электрических сетях со сложной каскадной конструкцией. В жилых помещениях трехфазные УЗО применяются реже, а током срабатывания будет значение в 30 мА.

Как правильно подключить трехфазное УЗО

Трехфазные устройства защитного отключения очень редко используются в квартирах. Они предназначены для частных домов, гаражей и других объектов, где используются трехфазные электрические сети. Установка защитной аппаратуры производится в распределительный щиток. На DIN-рейке УЗО с четырьмя полюсами занимает 4 стандартных модуля. Основной функцией является защита кабелей и проводов от воспламенений и замыканий. Трехфазные устройства рассчитаны на токи срабатывания с очень высоким порогом.

Подключение таких УЗО имеет свои особенности. Перед установкой следует разобраться с цветовыми обозначениями проводов. В соответствии со стандартной маркировкой, нулевой рабочий провод N обозначается голубым цветом, нулевой рабочий и защитный провод PEN – тоже голубым цветом с желто-зелеными полосами на концах. Для нулевого защитного провода РЕ применяется желто-зеленый цвет. Фазные провода А, В и С обозначаются соответственно желтым, зеленым и красным цветами. После того, как определено назначение каждого проводника, можно приступать к решению задачи, как подключить трехфазное УЗО.

Непосредственное подключение выполняется по установленной схеме, в которой могут быть задействованы 3 или 4 полюса. Очень редко используется схема с двумя полюсами. В дальнейшем, исходя из конкретного варианта подключения, в защищенную сеть может устанавливаться не только трехфазное, но и однофазное оборудование.

Чаще всего УЗО трехполюсное используется при эксплуатации электродвигателей. Данный вариант позволяет полностью контролировать возможные утечки тока на корпус. В схеме «треугольник» задействованы только фазные проводники, а нулевой провод не используется. В целом трехфазное УЗО работает точно так же, как и однофазные защитные устройства.

УЗО четырехполюсное

Вариант подключения трехфазного УЗО с тремя полюсами применяется на объектах, где используется напряжение 380В. От трехфазной схемы данный вид подключения отличается количеством задействованных проводов на входе и выходе устройства. Предварительно также следует разобраться в цветовой маркировке и назначении каждого проводника. Отдельно выделяется нулевой или нейтральный провод, подключаемый к отдельной клемме.

Выходящие провода соединяются с распределительной системой. Далее каждая отдельная фаза и нулевой провод могут обеспечить работы одной группы однофазных потребителей. При этом на всех таких линиях устанавливается собственное дополнительное УЗО. Подключение устройств с четырьмя полюсами возможно лишь при наличии системы TN-S с нулевым защитным и рабочим проводником. Во всех других случаях подключение четырехполюсного УЗО категорически запрещается.

Как подключить трехфазное УЗО? Инструкция по подключению 3-х фазного УЗО

УЗО – это коммутационный электротехнический аппарат, служащий для совершения отключения питающей сети, в момент превышения показателей дифференциального тока.

3-х фазное УЗО предназначено для защиты человека от воздействия электрического тока при касании к токоведущим частям системы питания либо при пробое изоляции проводников. Помимо этого оно обеспечивает защиту в случае:


  • смены проводов «нуля» и «земли»;
  • перемены «фазы» и «нуля» и прикосновении к частям, которые не являются токоведущими, но оказавшимся под напряжением;
  • при обрыве «нуля» на линии, в которой установлено УЗО и касании человека.

Устройство трехфазного УЗО

Схема устройства УЗО трехфазного состоит из следующих элементов:

контактов для подключения питающей сети;

кнопки включения УЗО;

кнопки «Тест;

контактов для подключения приемника.

Инструкция по подключению 3 фазного УЗО:

  • Самым главным правилом при подключении устройства защитного отключения, да и собственно любого электротехнического оборудования, является первичное отключение напряжения питающей сети. Снятие нагрузки производится при помощи вводного автоматического выключателя;
  • Затем необходимо убедиться в отсутствии напряжения. Для этого необходимо воспользоваться тестером;
  • Далее производится установка трехфазного устройства защитного отключения на монтажную DIN-рейку. Для этого необходимо зацепить «хвост» расположенный на задней стенке УЗО за один из выступов рейки, затем потянуть его вниз и толкнуть назад.

Теперь УЗО установлено на место своей постоянной дислокации и можно приступать к подключению.

Схема подключения трехфазного УЗО

Подключение трехфазного УЗО осуществляется путем присоединения кабельных линий сети к контактам устройства:

  • при помощи отвертки соответствующего типа ослабить контактные зажимы, обозначенные 2,4,6, N и подключить к ним проводники, идущие от приемников электрической энергии;
  • после этого необходимо таким же образом подключить провода идущие от счетчика к контактам 1,3,5,N;
  • произведение действий в таком порядке регламентировано «правилом подключения от приемника к источнику электроэнергии». Оно помогает избежать ситуаций с непреднамеренной подачей напряжения на линию.

Схема подключения четырехполюсного УЗО в трехфазной сети с использованием нейтрали

Здравствуйте, уважаемые гости сайта заметки электрика.

Продолжаю серию статей о схемах подключения УЗО.

И сегодня мы с Вами разберем детально схему подключения четырехполюсного УЗО в трехфазную сеть с использованием нейтрали.

Данная схема является также самой распространенной схемой подключения УЗО.

Принцип подключения остается таким же, как в однофазную сеть, только вместо двухполюсного УЗО используется четырехполюсное.

Четыре приходящих провода (фазы А, В, С и ноль) подсоединяем к УЗО, согласно схеме подключения.

Схема подключения фазных (А, В, С) и нулевого проводников

Еще раз повторю Вам, что данную схему Вы можете найти либо в техническом паспорте на УЗО, либо на корпусе самого УЗО.

Схемы подключения УЗО, как двухполюсных, так и  четырехполюсных, разных производителей могут отличаться расположением нулевой клеммы, либо слева, либо справа. Подключение фазных проводников роли не играют, необходимо лишь правильно подключить соответствующие входы и выходы.

Схема подключения УЗО. Трехфазная сеть.

Четырехполюсные трехфазные УЗО выпускаются на большие токи утечки, которые служат только для защиты от пожаров электропроводки.

Чтобы выполнить защиту от поражения электрическим током людей, необходимо на отходящих линиях (группах) установить двухполюсные однофазные УЗО с уставкой по току утечки равной 10-30 (мА).

А также не забываем перед каждым УЗО устанавливать автоматический выключатель — для его же защиты.

Схема подключения четырехполюсного трехфазного УЗО

Схема подключения четырехполюсного УЗО в трехфазную сеть. Пример электропроводки квартиры.

Еще хочу заметить, что используя данную схему подключения, мы можем защитить как трехфазную сеть, так и три разных однофазных сети. Но при этом необходимо, чтобы нули каждой отдельной сети были подключены непосредственно к выходной клемме «N» УЗО.

На схеме ниже это все наглядно видно.

Использование четырехполюсного УЗО для разных однофазных сетей

Конечно каждый электромонтер может выполнить электромонтаж в разных исполнениях, но я Вам рекомендую выполнить подключение нулей разных однофазных сетей через нулевую шинку, которая легко устанавливается на DIN-рейке прямо в квартирном щитке.

В завершении статьи о схеме подключения четырехполюсного УЗО в трехфазную сеть с использованием нейтрали, хочется напомнить Вам соблюдать правильное подключение фазных и нулевого проводников, а также соблюдать цветовую маркировку проводов.

P.S. Надеюсь, что данная статья была Вам полезна. С уважением, Дмитрий. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Исследование температурной зависимости образования Louche в абсенте

СКУД Омега. 2021 13 июля; 6 (27): 17674–17679.

Департамент физики, Кливленд Государственный университет, Кливленд, Огайо 44118, США

Автор, ответственный за переписку.

Поступило 28.04.2021 г .; Принято 26 мая 2021 года.

Авторские права © 2021 Авторы. Опубликовано American Химическое общество

Abstract

Абсент со вкусом аниса алкоголь, который обычно подают добавив холодной воды, чтобы образовалась мутная зеленая полоска, похожая на мутно-белый луче узо.Это образование микроэмульсии из-за конкурирующие взаимодействия в масле-спирте-воде Система получила название эффекта узо. Предыдущая работа изучила тройная фазовая диаграмма масло – спирт – вода в узо и лимончелло. Дополнительная работа также характеризует каплю размер и стабильность микроэмульсий в узо, лимончелло и пастис. Однако меньше работы было сделано для изучения влияния температуры. по формированию лоу, несмотря на то, что лоуш традиционно образуется при добавлении ледяной воды.Эта работа демонстрирует, что оба максимальная мутность и доля спирта при максимальной мутности зависят от температуры. Форму лупа можно дополнить логистическая кривая, и полученные параметры подгонки линейны с температурой. Оптические изображения показывают, что повышенная мутность коррелирует с увеличение количества капель в микроэмульсии.

Введение

Абсент — это крепкий ароматизатор со вкусом аниса. дистиллированный алкогольный напиток, классифицируется как бренди, мацерированный с травами.Исторически, этот напиток зеленого цвета ассоциируется с галлюцинациями и безумие, которое привело к тому, что к 1915 году он был запрещен в большинстве стран 1 , причем запреты действовали до 1988 года в европейских странах. Union 2 и 2007 в США. 1 Считалось, что большое количество туйона Содержащееся в масле полыни, придающем абсенту его особый вкус 2 было виновником этих галлюцинаций. Однако недавние исследования показали, что количество туйона (и других возможных виновников галлюциногенов, таких как сурьма) недостаточно высокий, чтобы вызвать галлюцинации, судороги и припадки «абсентеизма», и, следовательно, сила напитка обусловлено только высоким содержанием алкоголя, 3,4 , что может быть достигает 74% (148 доказательств).

Абсент принадлежит к семейству спирты, приправленные эфирными маслами масла, которые включают пастис и узо. Эти спирты обычно пьют добавив в напиток холодной воды , молочного цвета из-за образования опалесцирующего лоскута, который может быть видел в . Это Интересно отметить, что абсент в богемном стиле, рецепт которого содержит только полынь и не содержит всех других эфирных масел, не содержит Louche. Было проведено некоторое исследование 5-8 , чтобы понять физику лоуше, образовавшегося в узо, пастис и лимончелло, потому что эти спирты никогда не были запрещены как был абсент.Результаты этой работы показывают, что опалесцирующий Louche, образованный из каждого из этих напитков, представляет собой микроэмульсию, образованную за счет взаимодействия масло – вода – спирт, с одной фазой (дисперсная фаза), состоящая из микрокапель масло-спирт содержится во второй фазе (непрерывной фазе), состоящей из воды, растворенной в спирте и содержащей оставшуюся фракцию эфирных масел. 8 На достаточно высоком содержание воды, все эфирные масла удаляются из непрерывного фаза. 8 Эта спонтанная микроэмульсия образование в таких системах спирт-масло-вода было называется эффект узо.

Изображения кюветы с подсветкой, показывающие неразбавленный абсент (слева) и лощеный абсент (справа).

При изучении этого эффекта узо изучались спинодаль и бинодаль. линии на фазовой диаграмме. Это было сделано путем превращения масла в спирт и воду. растворы с использованием модельного масла, так что широкий диапазон тройной фазы диаграмму можно изучить. 5,8 В этих бумагах показано что есть обе области на фазовой диаграмме с эффектом узо и область с полным фазовым разделением в зависимости от конкретного расположение границ спинодали и бинодали.Эти исследования также показано, что в эмульсиях имеются капельки разного размера. в зависимости от конкретных масел с узо образующими каплями 1-2 мкм, 5 , в то время как лимончелло образует более мелкие капли ≈100 нм. 8 Это имеет последствия как для вкуса, на который влияет размер капель, так и для стабильность таких микроэмульсий. Эмульсии лимончелло очень стабильны. в течение длительного периода времени из-за небольшого размера капель, 8 , тогда как другие лопатки с большим мкм капли со временем становятся менее стабильными, и капли оседают внутри ≈10 мин для фактического спирта, хотя модельная система стабильна в течение более длительного времени. 7 Совсем недавно, исследования эффекта узо рассмотрели испаряющиеся капли 9 и продемонстрировали, что этот эффект может происходить в мелкие капли из-за испарения воды с поверхности. Другая работа пытается использовать эффект узо для образования наночастиц. 10 Однако мало работы исследовали абсент сам по себе или влияние температуры на образование эмульсии. По традиции использовать ледяной воды для образуют эмульсию, в данной работе исследуется влияние температуры на формирование луш в абсенте.

Результаты и обсуждение

показывает оптическое пропускание смеси абсент-вода (масло-спирт-вода) как функция объемной доли этилового спирта (этанол, EtOH) взято при 20 ° C. Для этой кривой, а также для показанных кривых в воде который был термически уравновешен до температуры измерения, был пипеткой в ​​кювету и раствор тщательно перемешивали. В передаваемая мощность лазера усреднялась за 120 с при 15 Гц при каждом разбавлении. точка. Передаваемая оптическая мощность является мерой мутности раствора: по мере образования эмульсии диспергированные капли рассеивают свет из оптический путь, уменьшающий оптическую передачу.Передаваемая мощность лазера было усреднено по первым четырем точкам данных и затем нормализуется до этого максимального значения. Во время разбавления объем EtOH фракция уменьшается. Чтобы сделать график более интуитивно понятным для чтения, мы перевернули ось x , чтобы перейти с высокого EtOH на слева до низкого EtOH справа, так что разбавление идет слева направо.

Разведение абсента при 20 ° C. Ось x переворачивается так, чтобы разбавление проходило слева направо (высокое содержание EtOH) (низкий EtOH).Переход определяется как начало, когда переданный мощность уменьшилась на 13,5% и завершается, когда мощность падает ниже 25%. Область разбавления определяется как когда передаваемая мощность начинает увеличиваться после минимального значения.

Разбавление абсента при температуре от 15 до 30 ° C.

Кривая 20 ° C, показанная на рисунке, показывает общую форму и особенности всех температуры, которые мы измерили. Переходы оптической передачи плавно от максимума (1) слева до ≈0 справа при добавляется вода.Это уменьшение пропускания соответствует образованию лоуша. Оптическая передача изменяется плавно, без прерываний. скачки, во время разведения. Полученную кривую лучше всего описать разделив его на четыре разных раздела. Изначально решение ясно, и вся мощность лазерного луча передается, как показано в (слева). Мы определяем переход, чтобы начать, когда мощность упала на 13,5% (= e –2 ) (что также соответствует когда раствор можно определить на глаз как непонятный).в переходной области мутность раствора медленно увеличивается (пропускание уменьшается), пока весь раствор не станет мутным при завершении переходной области; см. (справа). Считаем решение неудачным. когда передаваемая мощность падает ниже 25% (передаваемая мощность самого слабого лупа, который мы измерили, а также точку, в которой раствор кажется недовольным на глаз). Продолжая добавлять воду после оптического передача достигает минимального значения приводит к передаваемому оптическому увеличение мощности.Взятые в целом, и исследуя формирование Louche в лимончелло, 8 наша передача данные свидетельствуют о том, что при добавлении воды образуется микроэмульсия, состоящая из дисперсной капельной фазы, богатой нефтью, в непрерывном потоке EtOH – вода фаза. По мере добавления воды мутность увеличивается по мере того, как Обогащенная маслом фаза выпадает в осадок, образуя микрокапли. Ведь богатые нефтью фаза выпала, дальнейшее добавление воды служит только для разбавить дисперсную фазу, что приведет к увеличению оптического пропускания.

Следует отметить, что гомогенизация при добавлении объема вода необходима. Когда мы не гомогенизировали, мы видели шипы и провалы в трансмиссии, которые можно отнести к микроэмульсии, напоминающие локализованные перистые облака, которые дрейфовали в и из лазерный путь. Это привело к значительному шуму в данные и отсутствие воспроизводимости, которое было устранено путем гомогенизации.

Для изучения влияния температуры на формирование лоскутов в абсенте мы исследовали пять температур в диапазоне от 30 ° C (красная звездочка) до 15 ° C (фиолетовый кружок), а кривые разбавления могут быть замеченным в.Во всех случаях лазерное излучение начиналось с 7 × 10 –2 Вт. Это было нормализовано к 1 путем усреднения по первым четырем измерениям. точки. Измерения не проводились ниже 15 ° C, потому что при более низких температуры, мешал конденсат на внешней стороне стакана с домкратом с лазерной передачей и предотвращенными оптическими измерениями. Как замечено для разбавления 20 ° C изменение мутности раствора во время растворение плавное при всех температурах, а оптическое пропускание почти постоянна примерно до 0.5 Объемная доля EtOH. После в этот момент передача плавно уменьшается до минимума на 0,30–0,34 достигается объемная доля спирта и мутность раствора максимально. Однако температура раствора явно влияет на лупа в (1) максимальная мутность лупы, (2) фракция спирта в точке минимального пропускания, и (3) ширина переходный регион.

Как показано на, максимальная мутность явно нарушена. по температуре. Переданный мощность лазера для образца 30 ° C составляет 25% и снижается до 7% при 25 ° C и до 0.3% при 15 ° C. Таким образом, луш более мутный. при более низких температурах. Также мы видим, что расположение (объемная доля алкоголь) на минимальной передаче переключается в зависимости от температуры. Этот легче всего увидеть на вставке, где данные представлены в логарифмической шкале. В минимум для каждой кривой обведен квадратом, и мы можем видеть из это то, что не только минимальная передаваемая мощность уменьшается с при понижении температуры, но и объемная доля EtOH при этом минимально увеличивается при понижении температуры от 30% при 30 ° C до 34% при 15 ° C.Наконец, ширина переходной области увеличивается с повышением температуры. Это, пожалуй, проще всего видно на наклоне кривой, когда она проходит через переход с более крутым уклоном на 15 ° C и более пологий наклон для перехода 30 ° C. Мы можем количественно оценить это путем аппроксимации кривой процесс люфта.

Эти данные свидетельствуют о наличии значительных тепловое воздействие на образование микроэмульсии в абсенте. Для того, чтобы количественно оценить лаж обработать получше, мы рассмотрели точки кривой в ясном / переходном / лоуше регионов (без учета точек данных в области разбавления).Эти точки демонстрируют S-образную форму логистической функции. (Примечание: форма s отображается назад, потому что ось x график был перевернут, поэтому разведение идет слева направо.) данные были подогнаны с использованием 2-параметрической логистической функции вида

Числитель равен 1, потому что максимальная мощность, как определено к среднее значение первых четырех точек данных было нормализовано к 1. кривая имеет два подгоночных параметра: x 0 и k , которые являются точкой перегиба кривой и максимальным наклон кривой соответственно. R 2 значений подгонки, которые описывают остатки или ошибку подходят, находятся между 0,994 и 0,999 для каждой из кривых, а форма подгонок, которые обозначены пунктирными линиями в a, хорошо согласуются с данными. Решительный значения параметров подгонки, x 0 и k для каждой температуры, показаны на b в виде точек красного квадрата и синего треугольника, соответственно. Планки погрешностей в этих точках равны погрешности. каждого из подходов.Объемная доля EtOH для максимальной мутности также отображается в виде зеленых кружков с полосой погрешности 0,02, что равна размеру шага разбавления. Появляются все эти параметры соответствия иметь линейную зависимость от температуры, как видно из пунктирные линии, которые соответствуют линейной посадке по методу OLS. Значение соответствия для объемной доли спирта R 2 незначительно низкий при R 2 = 0,875, чего и следовало ожидать учитывая влияние размера шага разбавления (и больших полос погрешностей).Тем не менее, линейная аппроксимация параметров логистической подгонки превосходна. с R 2 значений и R k 2 = 0,995, предполагая что существует четкая линейная зависимость от температуры для этих параметров.

(а) График нормированной передаваемая мощность и объем фракция алкоголя для очков до максимальной лоскутной и подогнанной с логистической кривой. (б) Графики параметров в логистической кривая vs температура.

Микроэмульсия представляет собой спонтанно образовавшуюся дисперсию капель внутри непрерывная фаза. Подгонка логистических функций к трансмиссии данные могли соответствовать изменению количества капель в микроэмульсии, размер капель в микроэмульсии или и то, и другое. Мы использовали оптические микроскопия для изучения размера и числовой плотности капель в микроэмульсия. Изображения с оптической микроскопии, показанные на рис. температуры и три различных разведения. В верхнем ряду показано разведение слева (40% EtOH) направо (26% EtOH) на 22.5 ° C и дно ряд находится при повышенной температуре 33 ° C. (Примечание: изображение не включен для 40% EtOH при 33 ° C, потому что не было видно никаких капель в этом образце.) Как видно из изображений, размер капли приблизительно постоянна на всех изображениях диаметром 1 ± 0,1 мкм, когда мы исследуем капли, которые находятся в фокальной плоскости для каждого изображения. Из-за постоянного броуновского движения капель и малое количество капель при некоторых разведениях затрудняет чтобы получить статистически значимое количество капель в фокусе в одно изображение, но размер капли 1 мкм соответствует с размерами, измеренными для узо. 5 Есть может быть небольшое изменение размера в зависимости от температуры, как это было в узо, но это выходит за рамки разрешающей способности этой установки для оптического изображения. Однако плотность капель сильно меняется как с температурой, так и с температурой. и концентрация EtOH. Увеличивается количество капель и плотность при понижении концентрации спирта, а также при понижении температура. Оба они соответствуют увеличению мутности. при измерении в трансмиссии, предполагая, что увеличение мутности соответствует большему количеству капель в ложе.

Брайтфилд изображения оптической микроскопии, полученные на двух разных температуры (22,5 и 33 ° C) и трех различных разбавлений (26, 30 и 40% EtOH). Масштабная линейка = 10 мкм. Жидкости были термически уравновешивают перед смешиванием. Размер капли примерно монодисперсный. и постоянный диаметр = 1 мкм, а плотность капель сильно уменьшается как с повышением температуры, так и с увеличением концентрации EtOH. Примечание: при 40% EtOH и 33 ° C масляных капель не наблюдалось.

Наконец, стоит отметить, что приведенный выше анализ с помутнением предполагает, что нет воздействий, зависящих от длины волны, таких как изменения в размере капли, влияющем на наши измерения.Хотя вышеупомянутый оптический изображения микроскопии показывают, что нет большого размера изменения, он не может устранить небольшие изменения размера капли. Узо как известно, имеет небольшие изменения в размере с температурой от 1,99 до 1,21 мкм при повышении температуры от 25 до 50 ° С. Таким образом, чтобы подтвердить, что данные, полученные с помощью лазера, носят описательный характер. системы мы использовали УФ – видимую спектроскопию образца при комнатной температуре. Результаты как трансмиссии, так и рассеяние под углом 90 ° показано на.Обе кривые нормализованы до 100%. используя сканирование базовой линии источника галогена с пустой кюветой. На графике пропускания мы видим, что чистый абсент имеет две характеристики: адсорбции при 414 и 650 нм. Поскольку в образце происходит ласкание, количество света, передаваемого на всех длинах волн, уменьшается. Этот соответствует увеличению рассеяния, как это видно на соседний график с широким пиком между 450 и 850 нм с максимум на 580 нм. Вместе эти данные предполагают, что длина волны 532 нм лазер с длиной волны, использованный выше для характеристики образца, является хорошим выбором потому что это далеко от характерных пиков абсента и около позиции с наибольшим падением передачи.

УФ – видимая спектроскопия люфта в пропускании (а) и Рассеяние на 90 ° (б). Обе кривые нормализованы до 100%. используя сканирование базовой линии источника галогена с пустой кюветой.

Выводы

В данной статье исследуется влияние температуры на пласт микроэмульсии через эффект узо, исследуя (помутнение) абсента, разбавленного водой при разной температуре. Мы видим явный эффект за счет температуры. Смеси более теплой температуры образуют менее мутную лозу и требуют большего разбавления (меньшего объема фракция спирта), в то время как разведения в холодной воде образуют более мутный с меньшим количеством воды.Кроме того, этот переход может быть дополнен логистической кривой, а также параметры подгонки точки перегиба и максимального наклона следуйте линейной зависимости. Наконец, мы показываем, что это увеличение по мутности соответствует увеличению количества капель образуя микроэмульсию. В конечном итоге это понимание температуры влияние на образование эмульсии в этих маслах-спиртах-водах. смеси могут помочь нам использовать эффект узо для образования наночастиц.

Материалы и методы

В качестве абсента был выбран абсент Lucid Absinthe от Винокурня Combier, Сомюр, Франция.Lucid — один из традиционных дистиллированных абсентов. из Гранд Полынь ( Artemisia absinthium ). Рецепт фирменный, также включает зеленый анис и сладкое. фенхель для создания раствора, содержащего 62% спирта по объему (124 доказательства), остальное — вода, масло полыни и другие масла и ароматизаторы. Пока мы знаем концентрацию этанола (из доказательства), и при увеличении приблизительное количество воды (так как масло очень небольшой объем), мы точно не знаем, какие эфирные масла присутствуют в нашем экспериментальном образце или в каком количестве.Мы можем только предоставить оценка нефтяной фракции, которая, как мы определила, меньше 0,1% объемной доли на основе центрифугирования лощеного абсента. Поскольку точный состав масла неизвестен, мы не можем самостоятельно изменить количество эфирного масла в образце. Это означает, что мы можем изменяйте относительную концентрацию масла только путем добавления воды или чистого спирт этиловый. Во многих исследованиях алкогольных напитков использовались модельные системы с одно эфирное масло, вода и спирт, например эфирное масло лимона масло, используемое Chiappisi и Grillo 8 Это не сработает в этом случае по двум причинам.Во-первых, коммерчески доступный масло полыни содержит неопределенное количество воды и спирта или других неуказанные дополнительные ингредиенты. Но что еще более важно, он ранее Было показано, что абсент в богемском стиле только с маслом полыни и мало аниса совсем не лауче. По этой причине мы использовали настоящий абсент, а не модельная система. Однако было продемонстрировано по Chiappisi and Grillo 8 , что сформированный реальным лимончелло и образованный модельной системой с лимонное масло, вода и алкоголь, по сути, одно и то же, что предполагает что дополнительные масла, травы и ароматизаторы повлияют на мелкие детали, но не общие тенденции, наблюдаемые в формировании микроэмульсия.

В этой статье мы разбавили абсент воды. Добавленная вода был произведен методом обратного осмоса (Milli-Q) и определен в терминах электрического сопротивления (18,6 МОм / см). Все жидкости были выданы с использованием калиброванных пипеток Gilson Pipetman и ThermoScientific.

Мы исследовали фазовый переход оптически и макроскопически с помощью измерение нерассеянного прохождения лазерного света через образец. Смесь абсента и воды перед надуванием представляет собой прозрачную непрерывная фаза, пропускающая большую часть лазерного света.В Жидкая микроэмульсия очень мутная, рассеивая большую часть свет. Каждый образец освещался зеленым непрерывным лазером мощностью 10 мВт (Crystalaser CL532-010-L) с заявленной стабильностью выходной мощности 0,5% в течение 24 часов. Лазерный луч прервался перед попаданием в образец с помощью LaserProbe. Измельчитель CTX-515 с питанием от регулируемой модели 3002A компании Electro Industries Источник питания постоянного тока для улучшения измерения отношения сигнал / шум. Сам образец помещался в реакционный стакан на 50 мл с рубашкой (Kontes, теперь часть Kimble Chase Life Science and Research Products, LLC) используется для поддержания и контроля температуры образца.Переданный лазер свет регистрировался головкой радиометра РСП-590, входной зрачок пироэлектрической головки был достаточно мал, чтобы отбрасывать рассеянные свет. Затем измеренный уровень мощности был дискретизирован в цифровом виде с использованием Модуль сбора данных NI (номер детали 154424C-03L). Изображение стакан с регулируемой температурой можно увидеть на. Ярлыки (a, d) выделяют выход и вход для трубки, которая соединяет стакан с водой чиллер (удален для наглядности). Стакан с рубашкой имеет медную вставку. (c) оба держат стакан на месте, чтобы он не сдвигался. во время измерения и содержит выемку для приема латунных басов который держит кювету.Кювета (b) видна в центре. стакана с некоторой жидкостью внутри него. Винт удерживает кювету надежно на месте и позволяет аккуратно выровнять кювету так, чтобы одно лицо перпендикулярно падающему лазерному лучу. Как только кювета загружается в химический стакан, добавляется вода, чтобы заполнить полость. Этот максимизирует передачу тепла от стакана с рубашкой к кювете это происходит как через латунный держатель в основании, так и через воду ванна по бокам кюветы. Температурная стабильность установки была проверено проводным датчиком термопары типа К, считанным Digisense термопарный измеритель типа J / K, помещенный в кювету, заполненную водой.Измерения показывают, что термическая стабильность внутри стакана с рубашкой полость выдерживалась в пределах 0,5 ° C от температуры водяной бани, и уравновешивания ≈16 мин при температуре было достаточно чтобы полость соответствовала температуре ванны.

Держатель образца. Эта фотография показывает детали нашего держателя образца, показан выход трубопровода для жидкости из стакана с рубашкой (а), частично заполненный кювета (b), основание держателя (c) и линия подачи жидкости в стакан с рубашкой (г).

Были проведены измерения разбавления следующим образом: Экспериментальная установка сначала давали уравновеситься до желаемой температуры в течение 30 мин.Абсент переносили пипеткой в ​​кювету и давали уравновеситься. в течение следующих 10 мин. Жидкость, добавляемая к образцу, была предварительно охлаждена. (или предварительно нагретый) в небольшой камере выдержки на водяной бане и добавляется к образцу постепенно с помощью микропипетки. После добавления жидкости, образец был перемешан путем аспирации и распределения нескольких раз с микропипеткой. Мы обнаружили, что смешивание необходимо для гомогенизировать образец; пассивной диффузии было недостаточно. Интенсивность данные для каждой точки были получены в течение 120 с при 15 Гц и усреднены по этот раз.Если в это время был дрейф, точка была повторно запущена. Крышка кюветы предотвращала испарение во время экспериментов.

УФ-видимая спектроскопия была снята с использованием галогенного источника света. и спектрометр StellarNet Black C-SR-50. Было выполнено базовое сканирование источника галогена и пустой кюветы, и все кривые были нормированы относительно этой базовой линии. Записанные кривые усреднены по 10 сканирование со временем интеграции 100 мс.

Параллельно изображения лущеные образцы были получены при комнатной температуре и при повышенной температуре с использованием ступенчатого нагревателя.Изображения были получены с использованием объектива микроскопа 100 × NA 1,47 (Leica) и 30 кадров в секунду датчик изображения (Flea, Point Gray Research) с использованием стандартного светлого поля освещение. Вода и абсент стояли на разогретой сцене в температура изображения, объединенная для формирования лупы, а затем отображаемая в закрытых держателях образцов на нагретой ступени, чтобы свести к минимуму испарение.

Благодарности

Авторы благодарят CSU Офис исследований для финансовой поддержки через Летний курс бакалавриата Премия за исследования и номер NSF REU 1659541.Мы также благодарим К. Вирта для интересных разговоров.

Примечания

Авторы заявляют, что нет конкурирующий финансовый интерес.

Список литературы

  • Риттер С. К. Абсент Мифы, наконец, развеяны. Chem. Англ. Новости 2008, 86, 42–43. 10.1021 / cen-v086n018.p042. [CrossRef] [Google Scholar]
  • Lachenmeier D. W .; Walch S. G .; Padosch S. A .; Крёнер Л. У. Абсент-А Рассмотрение. Крит. Rev. Food Sci. Nutr. 2006, 46, 365–377. 10.1080 / 104086

    957322. [PubMed] [CrossRef] [Google Scholar]
  • Lachenmeier D.W .; Натан-Майстер Д .; Breaux T. A .; Сониус Э.-М .; Schoeberl K .; Кубалла Т. Химический состав винтажного пребана Абсент с Специальная ссылка на туйон, фенхон, пинокамфон, метанол, медь, и концентрации сурьмы. J. Agric. Еда Chem. 2008, 56, 3073–3081. 10.1021 / jf703568f. [PubMed] [CrossRef] [Google Scholar]
  • Lachenmeier D. W .; Натан-Майстер Д .; Breaux T. A .; Кубалла Т. Долгосрочная стабильность туйона, фенхона и пинокамфона в винтажном пребанском абсенте. J. Agric.Food Chem. 2009, 57, 2782–2785. 10.1021 / jf803975m. [PubMed] [CrossRef] [Google Scholar]
  • Витале С. А .; Кац Дж. Л. Дисперсии жидких капель Образуется однородной жидкостью – жидкостью. Нуклеация: «Эффект Узо». Langmuir 2003, 19, 4105–4110. 10.1021 / la026842o. [CrossRef] [Google Scholar]
  • Ситникова Н.Л .; Sprik R .; Wegdam G .; Эйзер Э. Спонтанно образуется транс-анетол / вода / спирт Эмульсии: механизм образования и устойчивость. Langmuir 2005, 21, 7083–7089. 10.1021 / la046816l.[PubMed] [CrossRef] [Google Scholar]
  • Грилло И. Малоугловой Исследование рассеяния нейтронов всемирно известной эмульсии: Le Pastis. Colloids Surf., А 2003, 225, 153–160. 10.1016 / s0927-7757 (03) 00331-5. [CrossRef] [Google Scholar]
  • Chiappisi L .; Грилло И. Заглядывая в Лимончелло: Структура итальянского Ликер, обнаруженный с помощью малоуглового рассеяния нейтронов. САУ Омега 2018, 3, 15407–15415. 10.1021 / acsomega.8b01858. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
  • Tan H.; Diddens C .; Lv P .; Kuerten J. G. M .; Чжан X .; Лозе Д. Запускается испарением зарождение микрокапель и четыре фазы жизни испаряющейся капли Узо. Proc. Natl. Акад. Sci. СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ. 2016, 113, 8642–8647. 10.1073 / pnas.1602260113. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]
  • Aschenbrenner E .; Блей К .; Койнов К .; Маковски М .; Kappl M .; Landfester K .; Вайс К. К. Использование полимерного эффекта Узо для Получение наночастиц на основе полисахаридов. Langmuir 2013, 29, 8845–8855.10.1021 / la4017867. [PubMed] [CrossRef] [Google Scholar]

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Наблюдайте за «эффектом узо» под микроскопом

Если вы когда-либо готовили абсент, поливая водой кубик сахара, подвешенный над ликером, вы, вероятно, замечали нечто, называемое «эффектом узо». Это молочная эмульсия (причудливый способ сказать смесь двух обычно несмешиваемых веществ), которая получается в результате добавления воды в ликеры со вкусом аниса, такие как абсент, самбука или узо, популярные в Греции напитки перед ужином.

Благодаря уникальным свойствам эмульгированного узо и других ликеров, приправленных анисом, группа исследователей из отдела физики жидкости Университета Твенте в Нидерландах решила изучить, как они испаряются.Результаты их расследования можно увидеть в приведенном выше видео и в недавней статье, опубликованной в журнале The Proceedings of National Academy of Sciences .

Согласно теории группы, существует четыре основных фазы жизненного цикла испаряющейся капли узо, состоящей из воды, этанола и анисового масла. На первом этапе капля остается прозрачной, а этанол испаряется. На втором этапе микрокапли анисового масла начинают быстро смешиваться с остальной частью капли — это и есть эффект узо в действии.На третьем этапе весь этанол испарился, и вы можете увидеть каплю воды, сидящую на кольце анисового масла. Наконец, вода испаряется, и остается небольшая капля анисового масла.

Испарение чистых частиц и жидкостей с дисперсными частицами широко изучается в последние два десятилетия, хотя исследования, проводимые Университетом Твенте, являются уникальными в этой области. Это связано с тем, что в нем используются три разные жидкости, которые имеют разную летучесть и взаимную растворимость (температура, необходимая для смешивания двух жидкостей).Проще говоря, способ испарения капли узо намного сложнее, чем простая смесь двух жидкостей. Кроме того, у нас возникает ощущение, что исследователи хотели задокументировать это, потому что это выглядит круто… что так и есть.

Работа голландской команды является важным вкладом в научное понимание того, как испаряются жидкости, что может быть использовано в различных областях, от медицинской диагностики до печати светодиодных ламп.

Эффект узо под увеличительным стеклом — ScienceDaily

Налейте немного воды в стакан с узо или пастис, и напиток изменится с прозрачного до молочного: это хорошо известный «эффект узо».Но что произойдет, если вы просто поместите каплю узо на поверхность и подождете? Ученые из группы Физики жидкостей Университета Твенте изучили происходящие явления, они различают четыре «жизненные фазы» капли, продолжительностью не более четверти часа. Результаты опубликованы в Трудах Национальной академии наук США (PNAS) от 14 июля.

Узо — прозрачный алкогольный напиток, состоящий из воды, спирта и анисового масла. Растворимость масла зависит от водно-спиртового отношения.Добавление воды в жидкость снижает растворимость масла. Масло начинает формировать наноразмерные капли (зародышеобразование), которые, в свою очередь, образуют более крупные микрокапли, рассеивающие свет. В этот момент жидкость имеет хорошо известный молочный вид.

Быстрое движение

Просто поместив каплю узо на гидрофобную поверхность, это явление также можно изучить. Сначала капля прозрачная. Но спирт, будучи самым летучим компонентом, начинает испаряться первым, оставляя в капле относительно больше воды.Предпочтительно спирт испаряется на краю капли: именно там и возникает эффект узо. Внутри всей капли начнется быстрое движение. Эта конвекция вызвана различиями в поверхностном натяжении. «Эффект Марангони» можно также наблюдать, когда «слезы» портвейна образуются внутри бокала. Вызванный быстрым движением, эффект узо, начавшийся на ободке, будет распространяться по всей капле. До тех пор, как и ожидалось, форма капли остается сферической.

Снова прозрачный

Это заметно меняется, когда масло начинает двигаться к ободу и показывает угол между сферой и поверхностью: капли вместе образуют кольцо (за счет слияния) на внешней стороне капли. Спустя время весь спирт испарился, и жидкость снова стала прозрачной. Вода тем временем тоже испаряется, заставляя кольцо расти к центру капли, оставляя только каплю анисового масла в конце.Эти четыре фазы проходят в течение четверти часа при комнатной температуре.

Первые три фазы, включающие всю сложную физику внутри капли, не занимают много времени: в течение двух минут спирт испаряется, начинается быстрое движение, а также изменение формы, вызванное масляным кольцом. Остальное испарение до тех пор, пока не останется лишь крошечная капля анисового масла, занимает около двенадцати минут.

Жидкостно-жидкостная экстракция

Используя механизмы разделения, происходящие в тройной смеси, такой как узо, можно найти наилучшие условия для извлечения одного из компонентов, например: экстракция жидкость-жидкость.Это может применяться, например, в медицинской диагностике. Кроме того, процесс испарения можно контролировать, создавая поверхности с различными гидрофобными свойствами. Исследование также влияет на такие методы, как струйная печать и 3D-печать с использованием сложных жидкостей.

Кроме того, результаты дают новое понимание поведения жидкостей, используемых в энергетических технологиях и катализаторах. Группа специалистов по физике жидкостей профессора Детлефа Лозе принимает участие в голландском национальном проекте Multiscale Catalytic Energy Conversion (MCEC).

Группа является частью Института нанотехнологий MESA + Университета Твенте. Исследование было проведено в сотрудничестве с коллегами из Технологического университета Эйндховена.

История Источник:

Материалы предоставлены University of Twente . Примечание. Содержимое можно редактировать по стилю и длине.

Наличие фазы Узо с чередованием липо / гидрофильных сополимеров в воде

Выбор пар мономеров, обеспечивающий близкие к нулю отношения реакционной способности, является эффективной стратегией для индукции спонтанной сополимеризации в чередующейся последовательности.Кроме того, конструкция мономера и индивидуальная настройка взаимодействий растворитель-мономер открывают путь к функциональным сополимерам, демонстрирующим молекулярную самосборку, имеющую отношение к их регулярной амфипатической структуре. В этой работе мы показываем, что дизайн сомономеров с адекватной реакционной способностью и взаимодействиями может быть использован для управления самосборкой сополимера в мезоскопическом масштабе. Мы исследуем спонтанное образование наночастиц в результате взаимодействия растворитель / нерастворитель, используя так называемый «эффект узо». Таким образом, была построена диаграмма узо для определения рабочего окна для самосборки в водных суспензиях чередующихся сополимеров, состоящих из звеньев винилфенола и малеимида, несущих длинные алкильные боковые группы (C 12 H 25 или C 18 H 37 ).Также были проведены исследования для учета влияния боковых липофильных подвесных единиц на размер и структуру наноагрегатов, образующихся при однократном добавлении воды. Определение характеристик структуры с помощью методов светорассеяния (DLS и SLS), малоуглового рассеяния нейтронов (SANS) и просвечивающей электронной микроскопии (крио-ПЭМ и ПЭМ) подтвердило самосборку цепочек сополимера в наночастицы (диапазон размеров: 60–300 нм) , размер которых зависит от липофильности чередующихся сополимеров, сродства растворителя к воде и диффузии растворителя в воде.В целом, мы представляем здесь спонтанный эффект узо как простой метод получения стабильных чередующихся наночастиц сополимера в воде без добавления стабилизаторов.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова?

(PDF) Дисперсии жидких капель, образованные гомогенной жидко-жидкой нуклеацией: «Эффект Узо»

раствор самопроизвольно разделится на две фазы,

состав каждой из которых будет находиться на бинодальной кривой

.Перенасыщение раствора — это (приблизительно)

отношение фактической концентрации растворенного вещества к концентрации растворенного вещества

на бинодали.

Эффект узо возникает, когда растворы быстро вводятся

в метастабильную область за счет добавления воды

. Если растворимость некоторых абсолютов

уменьшается быстрее, чем линейно с увеличением концентрации воды

, раствор может стать перенасыщенным этими компонентами

.Если пересыщение велико, ядра

образуются спонтанно из-за небольших локальных колебаний концентрации растворенных молекул

. Этот процесс известен как

гомогенного зародыша. Ядра имеют величину, превышающую

и

средней концентрации растворенного вещества; таким образом, их образование

вызывает адплецию растворенного вещества в области каждого ядра. В результате

дальнейшее зародышеобразование происходит только в еще истощенных областях

, насколько это возможно, от существующих ядер. Нуклеация

заканчивается, когда не остается областей с высоким пересыщением

.Конечным результатом этого процесса (который происходит

в миллисекундном или более быстром масштабе времени) является относительно равномерная дисперсия

очень малых капель жидкости, взвешенных в непрерывной жидкой фазе

. Дальнейший рост

капель происходит почти полностью за счет созревания Оствальда,

при этом растворяются мельчайшие капли, так как концентрация

упала ниже концентрации насыщения

для капель их размера, а более крупные растут, поскольку их

концентрация насыщения меньше.Этот процесс

происходит очень медленно (секунды и дольше), поскольку чистые скорости растворения

очень малы и скорости диффузии

, молекулы становятся небольшими по мере того, как капли становятся меньше

и, следовательно, дальше друг от друга.

Следует подчеркнуть, что эффект узо не является спинодальным

распадом. Если систему, которая изначально находится в области диаграммы с одной фазой

, быстро ввести внутрь спинодальной кривой

путем изменения ее состава, однофазный раствор

быстро разделится на две фазы.Внутри спинодали

система неустойчива к длинноволновым флуктуациям концентрации

. Флукции с наибольшей длиной волны —

быстро растут по амплитуде, 1 приводя к появлению больших

капель, которые, кажется, внезапно выскакивают из раствора

(в миллисекундном масштабе). Двухжидкостная экстракция

процессов, основанных на спинодальном разложении, названных com-

разделением фаз, индуцированным положением 2 (CIPS) и разделением фаз, индуцированным температурой

(TIPS), недавно было предложено

.

Эффект узо и процессы CIPS имеют разные полезные применения. В процессе CIPS спинодальный состав de-

вызывает чрезвычайно быстрое образование больших

капель. Эти большие капли очень быстро поднимаются или падают в растворе

; таким образом, объемная непрерывная вторая фаза

быстро образуется. 4 Процесс CIPS полезен, когда требуется быстрое разделение фаз без образования эмульсии

, как при жидкостно-жидкостной экстракции.Эффект узо обусловлен гомогенным зародышеобразованием, поэтому первоначально созданные

капли чрезвычайно малы. Поскольку начальная скорость зародышеобразования

чрезвычайно велика, образуются некоторые капли

, дальнейший рост которых происходит очень медленно. В результате эффект узо

полезен, когда нужно создать долгоживущие капли размером

микрон без использования механического перемешивания

.

Также следует отметить, что дисперсии масло в воде

, аналогичные интересующим в данном исследовании,

ранее изучались под заголовками спонтанной эмульсии

и образования микроэмульсии, 5-12, но это не те же явления, что и

. эффект узо.Когда две несмешивающиеся жидкие фазы

приводятся в контакт, иногда наблюдается, что маленькие капельки одного компонента

спонтанно образуются вблизи границы раздела в одной или

обеих непрерывных фазах. Было высказано предположение, что

медленная диффузия одного раствора в другой приводит к

«скручиванию» определенного нерастворимого компонента, который затем

агрегируется в капли.5,12 Объяснение1,2 образования микроэмульсии

состоит в том, что это происходит, когда концентрация

такова, что межфазное натяжение между

двумя (подлежащими формированию) фазами чрезвычайно мало (<10 дин /

см).Тогда энтропия смешения достаточно велика, чтобы сделать систему с разделением фаз

стабильной. В обычных растворах

энтропия смешения совершенно незначительна.

В обоих случаях капельные дисперсии образуются

медленно из контакта двух смешивающихся непрерывных жидких фаз

. С другой стороны, эффект узо представляет собой очень быстрый процесс

, который дает дисперсии капель без контакта

с двумя объемными несмешивающимися жидкими фазами.

Насколько известно авторам, было только две публикации

, которые анализировали или использовали эффект узо

. Рушак и Миллер экспериментально и теоретически исследовали систему этанол-толуол-вода, 7 в

— эффект узо и области спинодального разложения.

McCrackenand Datyner13 описал новый метод «истинной эмульсионной полимеризации

», при котором вода добавляется к раствору стирол-метанол

.Затем микронные капли стирола

полимеризовали с образованием латекса из маленьких шариков полистирола

. Эта «настоящая эмульсия» — еще один пример эффекта узо. Полимеризация капель

, образованных эффектом узо, может оказаться полезной для

ряда практических применений, таких как полимерные шарики

для микрокапсулирования фармацевтических препаратов или для производства

частиц индикатора14,15 для скорости перемещения частиц —

метрических исследования.

3. Детали эксперимента

В этой работе в качестве третьего компонента всегда используется вода.

Раствор абсолют / растворитель становится все более перенасыщенным

по мере добавления все большего и большего количества воды; Капли образуются, когда пересыщение растворенного вещества

становится достаточно высоким (см. рис.

1). Во избежание путаницы, термин «соотношение» будет использоваться, когда

относится к концентрации органического растворенного вещества в растворителе

перед добавлением воды, а «массовый процент» будет использоваться

для концентрации растворителя в двухфазной дисперсии после

добавление воды.

Было использовано несколько различных нерастворимых в воде органических веществ для получения

эффекта узо: дивинилбензол (ДВБ), N, N-диметиланилин,

фтортолуол, фторстирол и бензиловый спирт. Использовали три различных смешиваемых с водой растворителя

для масла: этанол, ДМСО,

(1) Владимирова, Н .; Малаголи, А .; Mauri, R. Chem. Англ. Sci. 2000,

55, 6109-6118.

(2) Gupta, R .; Mauri, R .; Shinnar, R. Ind. Eng. Chem. Res. 1996,35,

2360-2368.

(3) Ullmann, A .; Ludmer, Z .; Shinnar, R. AIChE J. 1995,41, 488-

500.

(4) Ostrovskii, M. V .; Barenbaum, R.K .; Абрамзон, А.А. Коллоидн.

З. 1970,32, 565-572.

(5) Benton, W. J .; Miller, C.A .; Fort, T. J. Dispersion Sci. Technol.

1982,3,1-44.

(6) Davies, J. T .; Хейдон, Д. А. На втором международном конгрессе

SurfaceActivity; Academic Press: New York, 1957; Vol. 1. С. 417-425.

(7) Рущак, К.J .; Miller, C.A. Ind. Eng. Chem. Fundam. 1972,11,

534-540.

(8) Holt, S. L. J. Dispersion Sci. Technol. 1980,1, 423-464.

(9) Иранлое, Т. А.; Пильпель, Н .; Гровс, М. J.J. DispersionSci. Technol.

1983,4, 109-121.

(10) Minehan, W. T .; Мессинг, Г. Л. Прибой коллоидов. 1992,63, 181-

187.

(11) Островский, М.В .; Good, R.J. J. Dispersion Sci. Technol. 1986,

7,95-125.

(12) Groves, M. J. Chem. Ind.1978, 417-423.

(13) McCracken, J. R .; Datyner, A.J. Appl. Polym. Sci. 1974,18,

3365-3372.

(14) Fu, T .; Shekarriz, R .; Katz, J .; Хуанг, Т. T.J. Fluid Mech.1993,

269,79-106.

(15) Dong, R .; Chu, S .; Katz, J. J. Fluids Eng. 1992, 114, 393-403.

4106 Langmuir, Vol. 19, No. 10, 2003 Vitale and Katz

Узо: увеличение экспорта стимулирует производство

Узо — самый известный из греческих спиртных напитков, сочетающий уникальные травы Средиземноморья с традиционным процессом, насчитывающим тысячи лет.После того, как его попробовали, его особый вкус редко забывается. Узо может быть самым общительным напитком из когда-либо рожденных; Это напиток греческого образа жизни!

Узо — это алкогольный напиток с анисом, который традиционно и исключительно производится в Греции. 25 октября 2006 года Греция получила право маркировать узо как исключительно греческий продукт. Европейский Союз теперь признает узо как продукт PDO, что запрещает производителям за пределами Греции использовать это название.
Разница между узо и другими спиртными напитками со вкусом аниса заключается в способе его приготовления: обычно в напитках «Средиземноморье анис » ароматные семена погружают в воду, а затем добавляют в спиртовой раствор.Однако для приготовления узо ароматизаторы естественным образом получают путем дистилляции семян вместе с водой и спиртовым раствором.

Согласно греческому закону о производстве узо, всемирно известный напиток должен производиться путем дистилляции 96-процентного спирта-ректификата сельскохозяйственного происхождения и семян аниса или, возможно, фенхеля. Алкоголь, ароматизированный дистилляцией, должен составлять не менее 20 процентов крепости узо.
Помимо аниса, иногда используются другие ароматизаторы, такие как звездчатый анис, фенхель, мастика, кардамон, кориандр, гвоздика, мята и корица.И хотя качество, разнообразие и особая смесь этих ингредиентов отличает одно узо от другого, именно размер, форма и материал котлов, качество спирта, различные методы экстракции, а также скорость дистилляции определяют качество и аромат каждой марки узо.

Производство узо — это традиционный процесс, который начинается с дистилляции в медных кубах ручной работы. Смесь спирта, семян и других ароматических веществ оставляют на определенное время, от одного до трех дней — это начальная фаза, на которой травы выделяют свой вкус и аромат.Затем смесь дистиллируется при равномерной температуре, в то время как вкусы и ароматы развиваются внутри перегонного куба. Первая перегонка называется предварительной перегонкой, но полные вкусы и ароматы узо развиваются в сердце, средней части процесса. Затем сердце снова медленно перегоняется, и, наконец, эссенция хранится в больших резервуарах для осаждения. Эта фаза созревания называется «адолото», и именно в этот момент ингредиенты окончательно связываются. Перед розливом узо в бутылки его смешивают с чистой родниковой водой для достижения необходимого уровня алкоголя (от 37.5 и 48 процентов).
Когда в узо прозрачного цвета добавляют воду или лед, он становится молочно-белым и выделяет больше своих ароматов; Это происходит потому, что анетол, эфирное масло аниса, растворяется в спирте, но не в воде. Разбавление спирта приводит к его разделению, образуя эмульсию отчетливого цвета, похожего на молоко.

История узо начинается где-то в конце 11-го -го века в Малой Азии, в то время входившей в состав Византийской империи. Космополитические греческие купцы и морские пехотинцы того времени освоили у арабских и османских создателей спиртных напитков искусство создания напитков со вкусом аниса и унесли эти знания с собой на Эгейские острова, начиная с Митилини, а затем из Македонии и Фессалии.Большинство историков сходятся во мнении, что название «узо» происходит от турецкого слова «üzüm», что означает «виноград» и «виноградный сок». Согласно другому распространенному мнению, термин «узо» родился в Тирнавосе, в Фессалии, от находчивого греческого торговца, который вывозил свою продукцию в Марсель в деревянных ящиках с надписью «uso Marsiglia» («для использования в Марселе»).
После 1922 года и окончания греко-турецкой войны, которая привела к обмену населением, особенно из Анатолии, производство узо было доставлено в Грецию через остров Митилини (а также с других островов Эгейского моря, таких как Хиос, Самос и Икария). , но в меньшем масштабе) и Македонии.Митилини утверждает, что является создателем напитка и остается основным производителем, но в настоящее время спирт производится по всей Греции.

Узо — особо крепкий напиток; Это тоже приобретенный вкус, но его можно быстро освоить. Его лучше всего подавать с кислым, пикантным и острым мезе (закуски, поданные в небольших блюдах или греческие закуски), всегда в зависимости от личного вкуса и места, где вы переживаете этот «ритуал узо». В прибрежных районах предпочитают рыбу и морепродукты, например жареные или маринованные анчоусы, скумбрию, сардины и т. Д., тогда как в греческих горах подают колбасы, соленые огурцы, сыр и т. д. Однако самый классический мезе состоит из оливок, хлеба, сыра, помидора и огурца.
Узо всегда лучше подавать с водой, чем простой: одна часть узо и две части воды. Вода придает узо правильный вкус, усиливает его аромат и помогает достичь лучшей гастрономической гармонии с мезе. Следует избегать кубиков льда — они «притупляют» вкус и изменяют послевкусие напитка. Правильный способ пить узо — смешать его с ледяной водой.
Фирменное узо вкусно и совершенно безопасно. При умеренном употреблении и с правильным количеством мезе узо может стать изысканным переживанием, связанным с солнцем, морем и радостью жизни!

Каждая этикетка на каждой бутылке узо указывает местонахождение конкретного ликеро-водочного завода, а также процесс дистилляции, которого придерживается производитель.
Когда на этикетке указано «100% дистиллированное узо», это означает, что данный конкретный продукт представляет собой чистое узо, смешанное с чистой родниковой водой в соответствии с вышеупомянутым процессом.Эти виды узо считаются чрезвычайно ароматными и самого высокого качества.
Если на этикетке ничего конкретного не указано, это признак того, что бутылка содержит не менее 20% чистого дистиллированного узо. Остальные 80 процентов напитка состоят из алкоголя, воды, ароматизаторов, в основном анетола (анисовая камфора), а иногда и сахара. Следовательно, это узо является побочным продуктом смешанных ингредиентов.