Марка 300 бетона: Бетон М300 цена за куб, купить бетон марки 300 класса В22,5 с доставкой в Москве

Содержание

Бетон м300 - характеристики и применение

Бетон М300 – наиболее востребованная и популярная марка материала, который используется в самых разных видах ремонтно-строительных работ: заливка фундамента частных домов, свай, балок, лестниц, заборов и т.д. Благодаря оптимальному соотношению стоимости и технических характеристик, возможности приготовить его самостоятельно, бетон М 300 является наиболее распространенной сегодня маркой.

Основные преимущества смеси:

  • Высокий уровень прочности
  • Стойкость к разнообразным внешним негативным факторам – резкие перепады температур, мороз, жара, что делает бетон 300 пригодным для использования в разнообразных климатических зонах
  • Хорошие показатели стойкости ко влаге
  • Оптимальный уровень теплопроводности
  • Долговечность конструкций и зданий, в сооружении которых использовался бетон 300 марки
  • Огнестойкость – бетон не плавится и не горит
  • Экологичность и полная безопасность для людей – в составе отсутствуют токсичные вещества и вредные добавки
  • Сравнительно невысокая стоимость
  • Возможность улучшения свойств – рецепт бетона М300 допускает введение различных присадок, пластификаторов и т.д.

Характеристики бетона М300

Чтобы понять, чем же так хорош бетон М300, характеристики его стоит разобрать более детально. Именно благодаря показателям прочности, плотности, стойкости к разным воздействиям бетон марки М 300 считается практически универсальным материалом.

Все характеристики устанавливает ГОСТ, как и соотношение компонентов в составе.

Основные свойства бетона М300:

  • Плотность бетона М300 составляет 1.85-2.5 т/м3, что зависит от фракции и типа применяемого щебня. Благодаря данному показателю материал может использоваться для строительства конструкций, постоянно испытывающих силовые нагрузки.
  • Прочность – бетон М300 демонстрирует класс В22-В22.5 (то, какой класс, зависит от рецептуры).
  • Морозостойкость – F150 (количество циклов замораживания/оттаивания, может достигать F200 при добавлении пластификаторов и изменении рецептуры).
  • Влагостойкость – W5-W6 (достаточно высокий показатель для раствора)
  • Подвижность (удобоукладываемость раствора) – П1-П5 (более высокого уровня подвижности удается добиться при введении в состав бетона М300 пластификаторов)
  • Удельный вес бетона М300 – 1800-2500 кг/м3: если раствор готовится на известняке, вес составляет от 1800 до 1900 килограммов, если на граните – от 2000 до 2500. Бетон, показатель удельного веса которого составляет меньше 1800, считается бракованным.

Классы прочности

Марка бетона М300 класс прочности демонстрирует достаточно высокий. Класс является самой важной характеристикой раствора и напрямую влияет на сферу использования смеси, долговечность и надежность конструкции, способность сопротивления разным нагрузкам. При изготовлении бетона обязательно учитываются класс и марка.

Маркировка определяется действующим ГОСТом, марку обозначают большой буквой М и показателем в цифрах, что отображает предельное давление при сжатии, которое может выдержать материал. Марка бетона 300 демонстрирует предел прочности 300 кг/см2.

Прочность на сжатие отображает класс – показатель с большой буквой В и выражается параметр в МПа (мегапаскали). Класс бетона демонстрирует прочностные свойства раствора, базируясь на коэффициенте вариативности смеси – показатель напрямую зависит от соотношения ингредиентов в составе и однородности смеси.

В среднем класс бетона М300 равен В20-В22.5, но может меняться в зависимости от состава. Тяжелый бетон М300 с классом В25 наиболее крепкий и может использоваться в процессе возведения серьезных масштабных объектов. Более прочные бетоны демонстрируют соответствующие классы: цемент М400 – В30, М450 – В35, у легких показатель меньше: М100 – В7, М200 – В15 и т.д.

Области использования

Благодаря своим свойствам бетон М300 применение получил в самых разных сферах. Материал повсеместно используется в частном строительстве, актуален при возведении промышленных конструкций и зданий.

Из раствора делают практически все виды фундамента, отмостки, садовые дорожки, заборы, лестницы, монолитные перекрытия и стены.

Бетон М300 используется: при строительстве дач, коттеджей, зданий малой этажности, гаражей, складов, хозяйственных построек, высоток, дорог, промышленных помещений. Из бетона делают тротуарную плитку и бордюры, железобетонные конструкции, стеновые блоки, столбы и сваи, перегородки и перекрытия. Также актуально применение бетона при кладке стен, заливке теплого пола, штукатурке и т.д.

Свойства

Рецептура бетона М300 предполагает определенные соотношения компонентов, которые напрямую влияют на характеристики материала. Как и большая часть других марок, М300 набирает прочность в пределах 95-98% в течение 28 суток после заливки, полностью показатели проявляются через полгода.

Среди всех свойств бетона основным считается прочность – именно этот показатель влияет на все остальные и может меняться в соответствии с используемыми материалами и их соотношением. Все важные характеристики можно увидеть в таблице.

Основное сырье и наполнители

Состав бетона М300 предполагает использование в замесе цемента соответствующей марки, гравия и щебенки, песка и воды. Все компоненты для разных марок бетона практически одинаковы, отличаются их состав и отдельные характеристики.

Щебенка и гравий – крупнофракционные наполнители

В замесе бетона М300 используют крупные фракции заполнителя для обеспечения однородности консистенции. Заполнители желательно брать с разными параметрами, что поможет избежать большого числа пустот. Допускается введение в состав одного наполнителя, но разных фракций. Если взять мелкий щебень в небольшом объеме, бетон потом может покрыться трещинами.

В состав бетона марки 300 оптимально в качестве крупного заполнителя вводить гранит фракции 5-20 миллиметров (для строительства мостов, дорог), 40 миллиметров (для промышленной сферы), 40-70 миллиметров (габаритные конструкции).

Фракции гранитного щебня:

  • Мелкий – 5-10 миллиметров
  • Средний – 10-40 миллиметров
  • Крупный – 40-70 миллиметров

Для обеспечения наилучшей подвижности раствора мастера советуют брать самый крупный наполнитель. Но тогда и вес удельный бетона М300 будет больше. Что касается пропорции, то она такова: часть цемента 400, 1.9 частей песка, 3.7 частей щебня, 0.5 части воды. При замене гравия гранитным щебнем допускается увеличение объема на 10%.

Особенности выбора

Важно соблюдать не только пропорции бетона марки М300, но и правильно выбирать компоненты.

Состав бетона с крупным наполнителем:

  • Для М300 лучше брать гранитный щебень, для М250 и меньше подойдет гравий
  • Главное отличие гравия от щебня – присутствие в щебне острых граней и шероховатая поверхность, благодаря чему обеспечивается большее сцепление с вяжущим. Немаловажным фактором является и чистота щебня
  • Горный щебень в 2 раза прочнее гравия, поэтому состав бетона марки 300 (тяжелого) должен включать именно его
  • Для повышения прочности берут более крупные фракции, мелкая же щебенка обеспечивает текучесть

Бетон М300 состав предполагает такой, чтобы каждый камень был окружен массой раствора, что гарантирует максимальную жесткость смеси. Если же смеси будет мало, масса получится слабой и пойдет сеткой трещин в будущем.

Мелкий наполнитель – песок

Песок для приготовления бетона М300 не должен содержать глины, пыли, илистых примесей (максимум 3% общего объема). Песок должен быть мелким – крупинок размером больше 10 миллиметров быть не должно, в 5-10 миллиметров – максимум 5% от объема. Объем мелкофракционного песка в растворе уменьшают на 10%. Допускается использование карьерного и речного песка.

От объема песка зависит вязкость бетона, как и от цемента. Для приготовления бетона марки М300 могут использоваться марки цемента М400 и М500. Тут нужно помнить, что итоговый материал прочнее наполнителя быть не может (то есть, из цемента М300 получить бетон М500 не удастся ни при каких пропорциях).

Вода

При приготовлении замеса важны не только пропорции для бетона М300, но и качество составляющих, как уже указывалось выше. Вода должна быть чистой, без примесей, масел, кислот. Лучше брать воду из глубокой скважины или водопровода.

Чем выше водоцементное значение бетона, тем ниже его прочность. В среднем объем воды составляет 40-70% массы цемента – в таком случае смесь будет пластичной, с оптимальным количеством пор. Плотные цементные марки допускают показатель 0.4 (40%), для фундамента обычно берут 0.7 (70%).

Добавки

Добавки в состав бетона можно вводить для улучшения его качеств, тех или иных свойств, характеристик.

Какие бывают добавки:

  • Пластификаторы – для улучшения подвижности.
  • Для улучшения схватывания и твердения (кальциевый хлорид) – обычно берут 0.2-2% на куб.
  • Составы, предполагающие противостояние морозу – кальциевый хлорид, натриевый нитрит улучшают твердение раствора при минусе.
  • Добавки для сокращения затрат на наполнитель – минеральные порошки, шлаки и т.д.

Советы и рекомендации по самостоятельному изготовлению

Многие мастера советуют заказывать бетон на заводе – в таком случае он точно будет соответствовать заявленным параметрам, будет доставлен на объект в нужном объеме в указанное время. В окрестностях Москвы и области, других регионах бетон производит множество компаний. Но если решено было все сделать своими руками, придется предварительно подготовиться.

Инструментарий

Для приготовления смеси понадобятся бетономешалка и различные ручные инструменты. Бетономешалка может быть разного объема (обычно используют на 60-120, реже 150-250 литров), с разным типом конструкции. Емкость выбирают в соответствии с масштабами работ, планируемыми расходами и т.д. Из ручного инструмента для приготовления смеси понадобятся: ведра, мерные емкости, лопата.

Порядок производства:

  • Заливка в бетономешалку трех четвертей всего объема воды, запуск вращения лопастей или барабана.
  • Добавление всего объема цемента.
  • Засыпание в емкость щебня, перемешивание, потом добавление песка.
  • Перемешивание смеси на протяжении 5 минут до получения однородной консистенции и оттенка.
  • Использовать раствор нужно быстро, так как реакция запущена и процесс твердения уже начался.

Бетон М300 – востребованный материал, который стоит сравнительно недорого, подходит для самых разных типов строительства и позволяет обеспечить наилучшие характеристики конструкций, зданий, элементов. Правильный выбор компонентов и соблюдение технологии приготовления позволят гарантировать устойчивые показатели и долговечность монолита.

Бетон М 300, В 22,5

Бетон М 300 В22,5 – это уникальный материал, который используется универсально. Особенностью смеси с данной маркировкой является усредненные характеристики тяжелых и легких разновидностей раствора: это своеобразный компромисс между низкой стоимостью и высоким качеством.

Бетон  М 300 (В 22,5) —применяется в основном для изготовления монолитных фундаментов, в т.ч ленточных, плитных, свайно-ростверковых; бетонных отмосток, дорожек, площадок, лент заборов, лестниц, подпорных стен, малонагруженных плит перекрытий и т.д.

Физико-эксплуатационные свойства

Состав с маркировкой М 300 В22,5 обладает достаточным уровнем прочности, который в случае необходимости можно повысить. В зависимости от условий, в которых планируется эксплуатация изделий или конструкций из бетона данной категории, можно достичь оптимальных показателей. Для этого используются специальные добавки. Стандартный вариант предусматривает следующие показатели:

  • нормативный уровень прочности 295-300 кгс/см²;
  • подвижность в пределах категории П2-П4, в редких случаях – П1-П5;
  • устойчивость к перепадам температур F100-F200;
  • средний показатель водонепроницаемости W6.

Масса раствора может варьироваться в зависимости от компонентов. Это могут быть различные виды щебня, отличающиеся по весу, а также количество воды и наличие добавок. В среднем показатель массы находится в пределах от 1800 до 2200 кг/м³.

Возможность влиять на свойства бетона позволяет использовать его в районах с определенными геологическими особенностями: например, для местности, где уровень залегания грунтовых вод достаточно высок, можно использовать бетон М300 В22,5 с повышенной влагостойкостью.

Бетон М 300 (В22,5) – варианты использования

Раствор может применяться двумя способами:

  • в качестве основы для изготовления бетонных смесей с более высокими характеристиками;
  • как самостоятельный строительный материал.

Относительно невысокая цена бетона М 300 В22,5 позволяет использовать его в коммунальном и частном хозяйстве для оформления территорий, элементов коммуникаций, а также во время строительства:

  • фиксация изгородей, бордюрного камня, заборов;
  • обустройство канализационных колодцев;
  • изготовление лестничных блоков;
  • возведение несущих стен, перегородок, перекрытий.

Чтобы во время перевозки товарного бетона М 300 В22,5 сохранил свойства, фактуру и готовность к использованию, целесообразно заказывать его с доставкой. Для этого может потребоваться аренда специального транспорта.

Прайс-лист от производителя

Приобрести качественный материал с гарантией можно только у изготовителя. Отсутствие посредников существенно снижает стоимость бетона М300 В22,5 и позволяет избежать лишних расходов. Узнать цену бетононасоса, тарифы на транспортные услуги и действующие расценки на раствор данной марки поможет прайс-лист предприятия «Ясака» – лидера по производству первоклассного бетона.

Подробная информация по телефонам

Ялта                  +7 (978) 843-82-22
Севастополь  +7 (978) 727-18-03
Инкерман        +7 (978) 843-52-22
Оползневое    +7 (978) 843-82-00

Бетон М300 - состав, пропорции и характеристики

Бетон М300 – это самая популярная и часто встречающаяся марка с обширной сферой применения. Благодаря плотности данного материала, его используют при кладке дорожного полотна и аэродромных покрытий, мостов, фундаментов и много другого.

Бетон – это искусственный камень, в состав которого входят вода, цемент, мелкие и крупные заполнители. Трудно представить стройку без этого материала. Существует заблуждение, что данный материал везде одинаков, не имеет разновидностей, одинаков по характеристикам и свойствам. На самом деле это не так. Существует много разновидностей и марок этого изделия, и в каждом конкретном случаем нужно подбирать подходящий тип. Обычно это делают при помощи общепринятого свойства – прочности. Ее обозначают заглавной буквой М и числовым значением. Диапазон марок начинается с М100 и кончается М500.

Состав этого бетона схож с рядом расположенными к нему марками.

Сферы применения:

  • строительство стен,
  • устройство различных типов фундаментов монолитного типа
  • может использоваться для изготовления лестниц, заливки площадок.

Для изготовления М300 применяются различные типы заполнителей:

  • гравийные,
  • известняковые,
  • гранитные.

Для получения смеси этой марки применяют цемент типа М400 или М500.

Чтобы в итоге получить высококачественный продукт, необходимо строго соблюдать технологию вымешивания раствора, применять исключительно доброкачественные наполнители и очень точно придерживаться заданных пропорций всех компонентов.

Многие строители-любители, стремясь сэкономить или из принципа, не приобретают приготовленные бетонные смеси, а изготавливают их самостоятельно. Изготовить данный строительный материал самостоятельно не сложно и не требует специальных навыков.

Во всех растворах цемента объем воды выбирается как половина от количества цемента. Таким образом, порция воды - это 0,5.

Очень важно старательно перемешать вначале раствор цемента, а потом и сам бетон до однородной массы. В этом случае приготовленный продукт будет высококачественным и надежным.

Способы приготовление бетона М300 своими руками

Содержание статьи:

Бетон – это незаменимый в строительстве материал. Но многие до сих пор думают, что бетон – он и в Африке бетон, то есть всегда и везде одинаков. Но это далеко не так. Бетон подразделяется на многочисленные классы и марки за разными показателями. Самый распространенный показатель – это прочность бетона, которая обозначается буквой М и цифровым значением (М150, М200, М300 и т. д.).

Заливка бетоном опалубки

Почему именно М 300

Бетон М300 – это самая распространенная марка бетона с самым широким спектром использования. Плотность бетона М300 позволяет применять его в строительстве дорожных и аэродромных покрытий, мостов, фундаментов, разнообразных ЖБК, гидротехнических конструкций и проч.

Состав бетона М300 ничем особо не отличается от близких к нему марок. Тот же цемент, вода, песок и наполнитель. Для приготовления бетона М300 используются разные виды наполнителей:

  • гравийные,
  • известняковые,
  • гранитные.

Для замеса бетона этой марки используют цемент марок М400 или М500. Для того чтобы получить качественный бетон, нужно придерживаться технологии вымешивания раствора, использовать только качественные наполнители и строго соблюдать пропорции состава.

Самостоятельное приготовление бетона марки М300

Многие строители-любители принципиально не хотят покупать готовые бетонные смеси, так как стремятся все делать сами. Надо сказать, что приготовить бетон М300 своими руками не составляет особого труда.

Пропорции для приготовления бетона М300 такие. Если вы располагаете цементом марки М400, то вам нужно взять: цемент – 1 часть, песок – 1,9 части и щебень – 3,9 части. Пропорции указаны исходя из массы.

Расчет по объему

Если вам удобнее рассчитывать количество материалов по объему, то следует взять 1 часть цемента М400, 1,7 частей песка и 3,2 части щебенки.

Если вы хотите делать бетон из марки цемента М500, то пропорции нужны другие. Для изготовления бетона М300 из цемента марки М500 потребуется: цемента 1 часть, песка 2,4 части и щебня 4,3 части, это идеальный выход для бетона на фундамент под дом.

Пропорции по объему: 1 часть цемента, 2,2 части песка и 3,7 части щебенки.

В любом цементном растворе воды берется половина от количества цемента. То есть воды всегда нужно брать 0,5 части.

В помощь вам, мы предоставим калькулятор для онлайн подсчета, который покажет сколько нужно материала, а на этом основании вы сможете и посчитать, в какую цену вам все обойдется.

Самое главное – это тщательно вымешать сначала цементный раствор, а затем и бетон до состояния полной однородности. Тогда ваш бетон будет качественным и прочным, с правильными пропорциями.

А видео в этой статье продемонстрирует, насколько простым может быть рецепт бетона.

Бетон М300

Профессиональный уровень строительных работ подразумевает не только хорошее знание технологии, а и широкое использование материалов с универсальными характеристиками. В первую очередь это касается бетонных смесей. Зачастую вместо использования на строительной площадке десятка различных марок быстрее и экономически более выгодным будет применение бетона М300, обладающего достаточной прочностью, но не такого дорогого, как тяжелые марки.

Сфера использования трехсотого бетона

Класс прочности бетона М300 определяется, как промежуточное значение между индексами В22,4 и В25, в зависимости от использованных добавок, марки цемента и наполнителя. При желании бетон М300 можно усилить, сделать более плотным и тяжелым, например, для отливки фундаментов, плит основания или перекрытий. Наиболее распространенной сферой применения бетона М300 считается:

  • Возведение объектов малоэтажного строительства на частном подворье;
  • Изготовление железобетонных конструкций промышленного назначения, балок, опор, свай;
  • Дорожное строительство, отливка фундаментов, литых стен и перекрытий в съемную опалубку.

Особенности приготовления и использования бетонов М300

В номенклатуре заводов готовых бетонных смесей именно бетон М300 занимает львиную долю заказов, а значит, при больших заказах его стоимость получается наиболее выгодной. Но при этом одновременно растет количество подделок, даже если производитель или поставщик показывает пачку сертификатов, качество и характеристики бетонного раствора требуют проверки.

Характеристики трехсотого бетона

Основные характеристики М300 можно перечислить в нескольких позициях:

  • Главный показатель – класс прочности, для марки М300 определяется на уровне В22, или 280-295 кг/см2 при одноосном сжатии;
  • Показатель морозостойкости бетонного материала стабильно квалифицируется на уровне F150-200. Это достаточно высокий показатель для бетона, поэтому из М300 можно уверенно изготавливать литые стены;
  • Индекс водонепроницаемости бетонной смеси не более W8-10, даже если в состав бетона М300 добавлены пластификатор и специальные уплотняющие композиции;
  • Максимальная подвижность бетона не превышает индекса П4.

От того, какой именно материал использовался для наполнения бетонного объема, зависит плотность и класс прочности. Чтобы ответить на вопрос,сколько весит куб бетона М300, потребуется учесть два показателя — природу и фракционный состав наполнителя. С гранитным щебнем плотность бетона М300 составляет 2200 кг/м3. Используя базальтовые и железистые породы, можно легко получить 2500 кг/м3. Тогда как при использовании осадочных пород, песчаника, известняка или доломита вес куба бетона составляет 1850-1950 кг.

Приготовление бетонной смеси трехсотой марки

Универсальные характеристики бетона М300 позволяют использовать его практически «с закрытыми глазами» для 90% вспомогательных конструкций промышленного назначения и 100% любых домашних построек, от колодца до потолочного перекрытия коттеджа. Поэтому нередко бетонный раствор марки М300 готовят своими руками, тем более что оптимальные составы хорошо известны.

Рецептура замеса для бетонных растворов М300 зависит от марки использованного цемента. Например, пропорции бетона М300 при использовании цемента М500 составят на один объем цемента 2,2 меры песка. Для более слабого цемента М400 потребуется 1,95-2 меры песка. Количество наполнителя в обоих случаях остается одинаковым – 3,7 меры.Обязательный компонент замеса – вода добавляется в замес в количестве 0,5 объема цемента.

Если необходимо узнать, сколько цемента на 1 м3 бетона, пропорции замеса будут выглядеть следующим образом. На 350 кг цемента потребуется 850 кг песка и 900 кг щебенки, вода до 200 л. Песок и щебень потребуется предварительно промыть, желательно использовать поверхностно–активные вещества или поливинилацетатные эмульсию, уменьшающую количество пузырьков воздуха.

Для того чтобы получить высокое качество бетонной смеси, потребуется две вещи – соблюдать порядок замешивания и точно соблюдать пропорции. Еще одной причиной, по которой бетонная смесь может не набирать расчетных показателей, может быть плохое вымешивание материалов. Даже если вам потребуется выполнить замешивание не кубометра, а 50-60 л смеси, используйте бетономешалку, которая сделает самую тяжелую часть работы намного быстрее и лучше.

В чашку бетономешалки заливаем половину расчетного количества воды и одновременно добавляем мелкими порциями цемент и песок. В первые минуты вода и цемент находятся в несвязанном виде, и бетон достаточно жидкий. Как только ¾ цемента загружено в бетономешалку, можно выложить всю щебенку и продолжать перемешивание. По мере связывания воды цементом и песком происходит загустевание смеси, поэтому необходимо добавлять воду двумя или тремя порциями.

Практика собственноручного приготовления бетона М300 показывает, что слишком долгое перемешивание также вредно, как и поспешное. Бетонный раствор будет готов к использованию, как только смесь станет однородной и пластичной.

Готовые смеси

Для небольших объемов бетонирования, например, ремонта или отливки формы, можно использовать готовые бетонные смеси М300, широко представленные в огромном ассортименте, как состав для ремонта бетонных поверхностей. Сухая смесь содержит все необходимые компоненты, включая пластификатор и ПАВ. Масса фасовки – 10, 25 и 50 кг. Качество таких смесей зависит от срока и условий хранения. Смесь, которая хранится больше трех месяцев, даже в сухих условиях потеряет 15-20% нормативной прочности.

Заключение

Использование бетона марки М300 позволило значительно упростить процесс возведения малоэтажных построек с помощью самых недорогих и доступных материалов –песка, цемента и наполнителя. Несмотря на приличный возраст технологии, на сегодня реальной альтернативы бетону М300 строительная технология предложить не в состоянии.

Расшифровка маркировки бетона, характеристики бетона

Бетон свойства и характеристики

*** параметр морозостойкости бетона

F морозостойкость — этот параметр обозначает сколько повторных циклов: замораживания и размораживания выдержит готовая смесь без потери его марочной прочности. Обозначается буквой F и измеряется в циклах от F50-1000.В нашем примере М300 имеет морозостойкость F200. Морозостойкость в самой смеси зависит от пористости бетона. Она может быть скорректирована специальными пластификаторами, которые снижают пористость состава и позволяют осуществлять заливку до -30°С. Морозостойкость — это параметр который определяет изностойкость бетона. Морозостойкость также зависит от ингредиентов и показателей их морозостойкости: песка и наполнителя. Зависит напрямую от качества порт ланд цемента, который входит в состав БСГ.

В целом можно сказать, что морозостойкость тяжелых марок бетона М100-М600 колеблется от F100-300 циклов:
• F100 в категориях В7,5-10
• F150 в категориях В12,5—15
• F200 в категориях B20—30
• F300 в категориях В30-45

В тощих бетонах эта цифра обычно составляет F50-F75.
Растворы РКЦ и БСЛ не обладают таким параметром либо он тоже минимален.

Какой стоит сделать вывод о данной характеристики:
— Что бетоны с низкой морозостойкостью в F50-75 стоит использовать во внутренних отделочных работах
— Бетоны с нормальной морозостойкостью F100-150 используют в строительстве в умеренном климате, но всё же, наверное, стоит применять от Ростова и южнее в сторону Сочи
— Бетоны с повышенным значением этого параметра F200-F300 стоит использовать в средней полосе России, например в Москве и Московской области, Сибири, он также подойдет для устройства бассейнов
— Получает от F300 и выше это уже специально приготовленные растворы для конкретных объектов строительства на севере или районах с глубоким промерзанием грунта. Такой бетон обычно производится на заказ.


W водонепроницаемость — характеризует способность БСГ не пропускать влагу, воду сквозь свою пористую структура под давлением.
Выделяют показатель: от W2-W14. В нашем случае у марки М300 этот параметр составляет: W6. Этот параметр, как и подвижность и морозостойкость повышается в заменимости от категории B7.5-B45. Этот параметр не так важен в общем и гражданском строительстве если речь не идёт о гидросооружениях, волнорезах, опорах мостов и других объектах водной и морской сферы.

Марки бетона и пропорции

Строительство фундамента — дело непростое и требует определенных навыков и знаний. Для получения качественного бетона необходимо строго соблюдать технологию, а также придерживаться общих рекомендаций по составу и пропорциям бетона. Чаще всего бетон изготавливают из цемента марок М-400 и М-500 с применением песка, щебня и иногда различных добавок, в том числе противоморозных.

 

 

Расчет пропорций бетона

При расчете пропорций бетона необходимо учитывать множество факторов, например, фракции песка и щебня, их плотность, требуемые качества будущего бетона, а именно морозостойкость, водонепроницаемость, подвижность и другие.

В таблице пропорций бетона приведены усредненные данные. Соотношения между материалами устанавливаются обычно по весу или по объему. При этом вес (объем) цемента принимается за единицу, а количество других составляющих бетона выражается в числе веса или объема цемента.

Например, если на замес требуется 25 кг цемента (Ц), 75кг песка(П), 125кг щебня(Щ), то их соотношение для состава выразится так: 25:75:125=1:3:5 (по весу). Количество воды обычно выражается в частях от веса цемента. Если для приведенного состава бетона требуется 12,5 л воды, то водоцементное отношение (В/Ц) будет выглядеть следующим образом: В/Ц= 12,5:25=0,5. Прочность бетона нарастает в результате взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях.

Взаимодействие цемента с водой прекращается, если бетон высыхает или замерзает раньше времени, что непоправимо ухудшает его строение и свойства. Поэтому бетон нуждается в уходе, создающем нормальные условия твердения, в особенности в начальный период после укладки (до 15-28 суток).

Соотношение между классом и марками бетона по прочности

В теплое время года влагу в бетоне сохраняют путем поливки и укрытия. На поверхность свежеуложенного бетона наносят битумную эмульсию или его укрывают полиэтиленовыми и другими пленками. Бетон при нормальных условиях твердения имеет низкую начальную прочность и только через 7 — 14 суток приобретает 60-80% марочной прочности.

Бетон из (ц) цемента М-400, (п) песка и (щ) щебня

Бетон из (ц) цемента М-400, (п) песка и (щ) щебня

 

Области применения бетонов

М-100 (В 7.5) Применяется, в основном, при проведении подготовительных работ перед заливкой монолитных плит и лент фундаментов. Речь идет о так называемой — бетонной подготовке: на песчанную подушку укладывается тонкий слой бетона самой низкой марки, конкретно М-100, и уже потом, после застывания этого слоя, начинают производить арматурные работы. Тощие бетоны указанной марки применяют в дорожном строительстве, в качестве бетонной подушки и для установки бордюрного камня.

М-150 (В 12.5) Применяется в основном при проведении подготовительных работ перед заливкой монолитных плит фундаментов. Также, бетон этой марки может применяться при изготовлении стяжек, полов, фундаментов под небольшие сооружения, бетонировании дорожек и тд.

М-200 (В 15) Применяется в основном при изготовлении бетонных стяжек полое, фундаментов, отмосток, дорожек и т.д. Одна из наиболее часто используемых марок бетона. В индивидуальном строительстве, прочность бетона марки М-200 вполне достаточна для решения большинства строительных задач: ленточные, плитные и свайно-ростверковые фундаменты, изготовление бетонных лестниц, подпорных стен, площадок, дорожек, отмосток и т. д. На заводах ЖБИ и комбинатах ЖБК из бетона этой марки делают фундаментные блоки ФБС, дорожные плиты и т.д.

Значения В/Ц для бетона, замешанного на гравии. Примечание: если вместо гравия применяется щебень, то к найденному значению В/Ц следует прибавить 0.05.

М-250 (В 20) Применяется в основном для изготовления монолитных фундаментов, в т.ч. ленточных, плитных, свайно-ростверковых; бетонных отмосток, дорожек, площадок, лент заборов, лестниц, подпорных стен, малонагруженных плит перекрытий и т. д.  Занимает специфическое промежуточное место между более популярными бетонами марок М-200 и М-300.

М-300 (В 22.5) Применяется в основном для изготовления монолитных фундаментов: ленточных, плитных, свайно-ростверковых; отмосток, дорожек, лент заборов, лестниц, подпорных стен, плит перекрытий, монолитных стен и т.д. Бетон М-300 (В 2Z5) — также наиболее часто заказываемая марка бетона.

М-350 (В 25) В основном применяется для изготовления монолитных фундаментов, свайно-ростверковых ЖБК, плит перекрытий, колонн, ригелей, балок, монолитных стен, чаш бассейнов и иных ответственных конструкций. Наиболее используемый бетон при производстве ЖБИ. В частности, из конструкционного бетона М-350 делают аэродромные дорожные плиты, предназначенные для эксплуатации в условиях экстремальных нагрузок. Многопустотные плиты перекрытия тоже производятся из этой марки бетона. Бетон М-350 — наиболее популярная марка бетона в современном коммерческом строительстве.

М-400 (В 30) В основном применяется для изготовления мостовых конструкций, гидро-технических сооружений, банковских хранилищ, специальных ЖБК и ЖБИ: колонн, ригелей, балок, чаш бассейнов и иных конструкций со спецтребованиями. Бетон М-400 (В 30) — довольно редко используемая марка бетона. Как правило, использование подобного бетона регламентировано специальными требованиями, связанными с условиями дальнейшей эксплуатации железобетонных конструкций, изготовленных из такого бетона. В частном строительстве — практически не применяется по ряду причин:

  • прочность бетона марки М-400 (В 30) значительно выше, нежели может понадобиться в бытовом малоэтажном строительстве;
  • ускоренное время схватывания бетона чревато серьезными проблемами при: доставке на дальние расстояния и нерасторопности строителей, принимающих бетон, которые не успевают его уложить, и как результат — не разбиваемая бетонная глыба на участке;
  • высокая стоимость подобных марок бетона из-за повышенного содержания цемента. Производство бетона М-400 допустимо только на гранитном щебне. Чаще с использованием пластификаторов и иных специальных добавок в бетон.

Цены на готовые цементные и бетонные растворы

М-450 (В 35) В основном применяется для изготовления мостовых конструкций, гидро-технических сооружений, специальных ЖБК, колонн, ригелей, балок, банковских хранилищ, метро, плотин, дамб и иных конструкций со спецтребованиями. В частном строительстве практически не применяется.

М-500 (550) (В 40) Применяется для изготовления мостовых конструкций, гидротехнических сооружений, специальных ЖБК, колонн, ригелей, балок, банковских хранилищ, метро, плотин, дамб и иных конструкций со спецтребованиями. Во всех рецептурах, паспортах и сертификатах обозначается как бетон М-550. В просторечии же за ним укрепилась цифра 500 по неведомым никому причинам. В частном строительстве не применяется.

 

 

 

 

Что бы еще почитать?

Использование предварительно напряженной пряди класса 300 в предварительно напряженных предварительно напряженных бетонных балках

Название: Применение предварительно напряженной пряди класса 300 в предварительно напряженных предварительно напряженных бетонных балках.
Дата публикации: январь-февраль 2017 г.
Объем: 62
Выпуск: 1
Номера страниц: 49-65
Авторы: Дж. Крис Кэрролл, Томас Э. Казинс и Карин Л. Робертс-Воллманн
https: // doi.org / 10.15554 / pcij62.1-01

Щелкните здесь, чтобы просмотреть весь выпуск журнала

Абстрактные

Текущие редакции Спецификаций проектирования мостов AASHTO LRFD Американской ассоциации государственных служащих на дорогах и транспорте и ACI 318-14 основаны на многолетних экспериментальных исследованиях и используют традиционную прядь предварительного напряжения 270 ksi (1860 МПа). Недавние разработки привели к созданию прядей повышенной прочности с пределом прочности на разрыв 300 ksi (2070 МПа).В данной статье представлены результаты экспериментального исследования поведения предварительно напряженных, предварительно напряженных бетонных элементов, содержащих прядей с предварительным напряжением 300 тысяч фунтов на квадратный дюйм. Были изготовлены восемнадцать испытательных образцов с Т-образной балкой, которые использовались для оценки влияния использования прядей с более высокой прочностью на длину переноса и развития, а также на способность к изгибу и пластичность. Результаты 35 передаточных зон и 35 испытаний на изгиб сравниваются с множеством известных влияющих факторов и текущими положениями кодекса по переносной и развернутой длине и номинальной моментной нагрузке.Результаты также оцениваются в отношении прочности на разрыв пряди.

Список литературы

ACI (Американский институт бетона) Комитет 318. 2014. Требования строительных норм для конструкционного бетона (ACI 318-14) и комментарии (ACI 318R-14). Фамингтон-Хиллз, Мичиган: ACI.

AASHTO (Американская ассоциация государственных служащих автомобильных дорог и транспорта). 2014. Технические условия на проектирование моста AASHTO LRFD. Вашингтон, округ Колумбия: AASHTO.

Дженни, Дж. Р. 1954. «Природа связующего в предварительно напряженном предварительно напряженном бетоне.”ACI Journal 50 (5): 717–736.

Hanson, N. W., and P.H. Kaar. 1959. «Испытания на изгиб предварительно напряженных предварительно напряженных балок». Журнал ACI 55 (1): 783–802.

Каар, П. Х., Р. В. ЛаФрау и М. А. Масс. 1963. «Влияние прочности бетона на длину переноса прядей». Журнал PCI 8 (5): 47–67.

Табатабай Х. и Т. Дж. Диксон. 1993. «История уравнения длины развития прядей с предварительным напряжением». Журнал PCI 38 (6): 64–75.

Бакнер, К.D. 1995. «Обзор длины развития прядей для предварительно растянутых бетонных стержней». Журнал PCI 40 (2): 84–105.

Казинс Т. Э., Д. У. Джонстон и П. Зиа. 1990. «Длина переноса предварительно напряженной пряди с эпоксидным покрытием». Журнал материалов ACI 87 (3): 193–203.

Шахоуи, М. А., М. Исса и Б. Д. Бэтчелор. 1992. «Длина переноса прядей в полномасштабных предварительно напряженных бетонных фермах AASHTO». Журнал PCI 37 (3): 84–96.

Рассел Б. У. и Н. Х. Бернс.1997. «Измерение переносимых длин на предварительно растянутых бетонных элементах». Журнал структурной инженерии 123 (5): 541–549.

Зия П. и Т. Мостафа. 1977 г. «Длина развития предварительных напряжений». Журнал PCI 22 (5): 54–63.

Казинс Т. Э., Д. У. Джонстон и П. Зиа. 1990. «Длина переноса и развития предварительно напряженной пряди с эпоксидным покрытием и без покрытия». Журнал PCI 35 (4): 92–103.

Deatherage, J. H., E. G. Burdette, and C. K. Chew.1994. «Требования к длине разработки и поперечному расстоянию предварительно напряженной пряди для предварительно напряженных бетонных мостовых балок». Журнал PCI 39 (1): 70–83.

Kose, K. M., and W. R. Burkett. 2005. «Формулировка нового уравнения длины развертки для участка предварительного напряжения 0,6 дюйма». Журнал PCI 50 (5): 96–105.

Дженни, Дж. Р. 1963. «Отчет об исследованиях длины передачи напряжения на пряди предварительного напряжения 270 тыс. Фунтов на квадратный дюйм». Журнал PCI 8 (1): 41–45.

Казинс, Т. Э., Л. Х. Фрэнсис, Дж.М. Столлингс, В. Гопу. 1993. «Требования к расстоянию и бетонному покрытию для предварительно напряженных прядей с эпоксидным покрытием на свободных участках». Журнал PCI 38 (5): 76–84.

Mitchell, D., W. D. Cook, A. A. Khan и T. Pham. 1993. «Влияние высокопрочного бетона на длину переноса и развития предварительно напряженной пряди». Журнал PCI 38 (3): 52–66.

Казинс, Т. Э., Дж. М. Столлингс и М. Б. Симмонс. 1994. «Уменьшение расстояния между прядями в предварительно напряженных, предварительно напряженных бетонных элементах.”Структурный журнал ACI 91 (3): 277–286.

О, Б. Х. и Э. С. Ким. 2000. «Реалистичная оценка переносимых длин в предварительно напряженных, предварительно напряженных бетонных элементах». Структурный журнал ACI 97 (6): 821–830.

Петру, М. Ф., Б. Ван, В. С. Джонье, К. Г. Трезос и К. Харрис. 2000. «Чрезмерное проскальзывание конца пряди в предварительно напряженных сваях». Структурный журнал ACI 97 (5): 774–782.

Ван Б., М. Ф. Петру, К. Харрис и А. А. Хусейн. 2002. «Эффекты верхней планки в предварительно напряженных бетонных сваях.”Структурный журнал ACI 99 (2): 208–214.

Барнс Р.В., Дж. В. Гроув и Н. Х. Бернс. 2003. «Экспериментальная оценка факторов, влияющих на длину переноса». Структурный журнал ACI 100 (6): 740–748.

Ван Б., К. Харрис и М. Ф. Петру. 2002. «Передаточная длина прядей в предварительно напряженных бетонных сваях». Структурный журнал ACI 99 (5): 577–585.

Ларсон, К. Х., Р. Дж. Петерман и А. Эсмаили. 2007. «Характеристики сцепления самоуплотняющегося бетона для предварительно напряженных мостовых балок.PCI Journal 52 (4): 44–57.

Петерман Р. Дж. 2007. «Влияние глубины заливки и текучести бетона на соединение прядей». PCI Journal 52 (3): 72–101.

Кэрролл, Дж. К., К. Л. Робертс-Воллманн и Т. Э. Казинс. 2015. «Влияние вертикальной разливки на длину переноса и развертки». Журнал материалов ACI 112 (5): 619–630.

Гросс С. П. и Н. Х. Бернс. 1995. Длина предварительного напряжения 15,2 мм (0,6 дюйма) диаметром 15,2 мм (0,6 дюйма) в бетоне с высокими эксплуатационными характеристиками: результаты испытаний балки Хоблитцеля-Бакнера.Отчет об исследовании 580-2. Остин, Техас: Техасский университет в Центре транспортных исследований Остина.

Подкомитет ASTM C09.60. 2012. Стандартный метод испытаний на осадку гидроцементного бетона. ASTM C143. Вест Коншохокен, Пенсильвания: ASTM International.

Подкомитет ASTM C09.61. 2015. Стандартный метод испытаний на прочность на сжатие цилиндрических образцов бетона. ASTM C39. Вест Коншохокен, Пенсильвания: ASTM International.

Подкомитет ASTM A01.05. 2005 г.Стандартные технические условия на стальную прядь, семипроволку без покрытия для предварительно напряженного бетона. ASTM A416. Вест Коншохокен, Пенсильвания: ASTM International.

Подкомитет ASTM A01.13. 2005. Стандартные методы испытаний и определения для механических испытаний стальных изделий. ASTM A370. Вест Коншохокен, Пенсильвания: ASTM International.

Лофлин, Б. Дж. 2008. «Связующие и материальные свойства прядей предварительного напряжения марок 270 и 300, в области гражданского строительства и защиты окружающей среды». Магистерская диссертация, Политехнический институт Вирджинии и Государственный университет.https://theses.lib.vt.edu/theses/available/etd-06302008 073338 / unrestricted / LoflinThesis.pdf.

Подкомитет ASTM E28.04. 2002. Стандартные методы испытаний на релаксацию напряжений для материалов и конструкций. ASTM E328. Вест Коншохокен, Пенсильвания: ASTM International.

Хилл, А. Т. 2006. «Свойства материалов прядей предварительного напряжения класса 300 и 270 и их влияние на конструкцию мостов». Магистерская диссертация, Политехнический институт Вирджинии и Государственный университет. https: // тезисы.lib.vt.edu/theses/available/etd-04062006-094819/unrestricted/AaronHillThesis.pdf.

Логан, Д. Р. 1997. «Критерии приемки для качества сцепления пряди для предварительно напряженного предварительно напряженного бетона». Журнал PCI 42 (2): 52–90.

Рамирес, Дж. А. и Б. В. Рассел. 2008. Перенос, разработка и длина стыка для прядей / армирования в высокопрочном бетоне. Отчет 603. Вашингтон, округ Колумбия: Национальный совместный исследовательский проект по автомагистралям.

Рассел, Б.W., and N.H. Burns. 1993. Руководство по проектированию для переноса, развития и снятия сцепления с семью проволочными прядями большого диаметра в предварительно напряженных бетонных фермах. Отчет об исследовании 1210-5F. Остин, Техас: Техасский университет в Центре транспортных исследований Остина.

Казинс Т. Э., Д. У. Джонстон и П. Зиа. 1990. «Разработка длины стренги предварительного напряжения с эпоксидным покрытием». Журнал материалов ACI 87 (4): 309–318.

Все, что нужно знать о прочности бетона

Бетон многие считают прочным и долговечным материалом, и это справедливо.Но есть разные способы оценки прочности бетона.

Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов. Мы также демонстрируем разницу в прочности между традиционным бетоном и новой инновационной технологией бетона - бетоном со сверхвысокими характеристиками (UHPC).

Терминология: Прочностные свойства бетона и почему они важны

Прочность бетона на сжатие

Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси. Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона в специальной машине, предназначенной для измерения этого типа прочности.Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли конкретная бетонная смесь соответствовать потребностям конкретной работы.

Бетон, фунт / кв. Дюйм

фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие. Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже.Но эти более прочные бетоны также более долговечны, то есть служат дольше.

Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм. Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для дорожного покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм.Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi. Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно проводить уже через три дня.

Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

Прочность бетона на разрыв

Прочность на растяжение - это способность бетона противостоять разрушению или растрескиванию при растяжении.Это влияет на размер трещин в бетонных конструкциях и степень их возникновения. Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, такими как сталь.

Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы.Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

Прочность бетона на изгиб

Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв. Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе.Другими словами, это способность бетона противостоять изгибу.

Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб - C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный.По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

Дополнительные факторы

Прочие факторы, влияющие на прочность бетона, включают:

Соотношение вода / цемент (Вт / см)

Относится к соотношению воды и цемента в бетонной смеси. Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

Дозирование

Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

Смешивание

Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

Методы отверждения

Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при выдерживании бетона при очень низких или высоких температурах.

Неопровержимые факты: традиционный бетон против UHPC

Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.

UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

Вот более подробное сравнение UHPC с традиционным бетоном:

  • Прочность на растяжение —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
  • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на квадратный дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
  • Прочность на сжатие —Усовершенствованная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

После всего 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

Другие преимущества UHPC включают:

  • Устойчивость к замерзанию / оттаиванию —Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
  • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
  • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
  • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
  • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
  • Более легкий —Несмотря на то, что UHPC прочнее, требуется меньше материала, поэтому торцевая конструкция легче, что снижает требования к опоре и опоре.

Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог страны. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует снижению затрат на срок службы.

Идеально подходят для UHPC:

При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

Бетонные инновации, такие как UHPC, превосходят традиционный бетон во всех областях прочности, что делает его разумным выбором для любых бетонных проектов.Уменьшение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

Фотография предоставлена ​​Peter Buitelaar Консультационная компания и дизайн FDN в Эйндховене, Нидерланды.

Расчет прочности бетона (300/20) с суперпластификатором


Всемирный конгресс и выставка строительства и стальных конструкций

16-18 ноября 2015 г. Дубай, ОАЭ

Тарик Умар и Сэм Крис Вамузири

Университет А 'Шаркия, Оман

Постеры-тезисы принимаются : J Civil Environ Eng

Аннотация :

Добавки используются в бетоне для получения определенных свойств, улучшающих характеристики бетона.В этом исследовании бетон определенной марки (300/20) с суперпластификатором (Ha Be) был выбран для повышения надежности на использование добавки при бетонировании. Во вводной части исследования обсуждаются свойства суперпластификатора, а позже обсуждаются технические данные Ha Be и результаты различных испытаний на бетоне. Первоначально материалы / ингредиенты бетона (300/20), а поправка на влажность сделана на 1 см. Для подготовки выбрано шесть проектных партий. всего 36 кубиков стандартного размера (150 мм х 150 мм 150 мм).Чтобы узнать работоспособность, спад был проведен в шесть этапы, т. е. начальные, через 30, 45, 60, 75 и 90 минут. Исследование показывает, что бетон с использование этого специального суперпластификатора (Ha Be) обеспечивает желаемую удобоукладываемость (величина осадки 150 + 25 мм) за 60 минут, и это пришли к выводу, что такие суперпластификаторы рекомендуются там, где транспортировка бетона требует 60 минут. Поскольку бетон получить значительную силу за семь дней, а оставшаяся сила - на 28-й день, поэтому 18 кубиков были раздавлены в возраст 7 дней, а остальные 18 были раздавлены в возрасте 28 дней.Эта сила, особенно сила 28-го дня (среднее значение = 53 МПа) было сопоставлено с требуемым (46 МПа) и признано удовлетворительным. Плотность всех 36 кубов также были рассчитаны на двух этапах для сравнения с требуемой плотностью (2400 кг / м3). Обе рассчитанные плотности через 7 дней для 18 кубиков и через 28 дней для 18 кубиков было выполнено сравнение и было признано удовлетворительным. В итоге делается вывод, что при наличии суперпластификатор необходим для получения определенных свойств, его можно использовать уверенно, так как он не влияет на прочность при все.Хотя исследования сосредоточены только на прочности до 28 дней, необходимо также изучить поведение бетона при на более поздних стадиях, чтобы увидеть, есть ли какие-либо неблагоприятные последствия для бетона из-за использования суперпластификатора.

Биография :

Электронная почта: [адрес электронной почты защищен]

Так же просто, как 1-2-3 | Журнал Concrete Construction

Плоская лопата с цементом, две полные лопаты с песком, три полные лопаты для камня, достаточно воды, чтобы сделать ее работоспособной, и вуаля - магия, вокруг которой вращается бетонная профессия.Бетонная формула моего дедушки 1-2-3, переданная мне примерно в 12 лет, была моим введением в мир высоких технологий бетона. Пятьдесят лет спустя в большинстве монолитных проектов используются некоторые вариации этого сочетания.

В возрасте 30 минут ярд 4-дюймового бетона 1-2-3 обычно будет содержать около 6½ мешков цемента, 1850 фунтов камня, 1220 фунтов песка и 300 фунтов (36 галлонов) воды. Через 28 дней его 0,49 в / ц обеспечат прочность на сжатие 4500 фунтов на квадратный дюйм.Несмотря на то, что он немного прекрасен и имеет несколько зазоров, он будет перекачиваться, если вам это нужно, и будет работать примерно так же, как большинство одобренных инженерами смесей для плит.

Если традиционная формула 1-2-3 кажется слишком простой, чтобы передаваться по наследству, то как мой внук может узнать о тайнах проектирования и производства бетонных смесей? Простое изображение по-прежнему может быть лучшей отправной точкой. Представьте себе 6-дюймовую плиту без воздухововлекающих добавок, в которой ингредиенты уплотнены в отдельные слои, сложенные в соответствии с их плотностью.Насколько глубоким будет каждый слой и где он будет располагаться в стопке?

Цемент, по сути, образует 11/16-дюймовый слой внизу. Затем будет слой камня толщиной 2½ дюйма, слой песка толщиной 1 5/8 дюйма, слой воды толщиной 1 1/16 дюйма и верхний слой воздуха толщиной 1/8 дюйма. Потому что воображаемые слои, присущие большинству современных напольных покрытий, будут иметь примерно одинаковую глубину:

Правило № 7a: В типичной 6-дюймовой плите без воздухововлекающих добавок более 1 1 / 4 дюймов глубины плиты составляют вода и воздух.

Кроме того, поскольку теоретическое соотношение воды и цемента, необходимое для гидратации цемента, составляет всего около 0,30, или только около трех пятых от общего содержания воды, выводится следующее:

Правило № 7b: В типичной 6-дюймовой плите без воздухововлечения более 3 / 4 дюйма глубины плиты - это вода и воздух, которые не служат надежной цели, кроме сделать смесь работоспособной.

Поскольку объединенные жидкости (цемент плюс водная паста и воздух) только примерно на две трети плотности твердых тел - пока бетон остается пластичным, - камни и песок имеют тенденцию опускаться, заставляя излишки жидкости стекать в сторону поверхность.Эта естественная сегрегация проявляется в быстром движении, когда бетон оседает и пузырится в ответ на вибрацию. Чтобы избежать разбавления цементного клея на поверхности, всю сточную воду необходимо удалить (обычно путем испарения) перед тем, как приступить к отделке. Однако, поскольку объем плиты должен уменьшаться при потере этих жидкостей, и такому уменьшению способствуют только начальные проходы теркой и теркой, очевидно, что:

Правило № 7c: Все плиты сжимаются.

Именно этот факт сделал старый допуск по толщине плиты ACI + 3/8 дюйма,-дюйма настолько нереалистичным, потому что каждая хорошо отбитая плита неизбежно должна быть тоньше, чем ее номинальная толщина.

Наклон, который регулярно возникает на стыках строительных конструкций, часто ошибочно приписывается скручиванию, в первую очередь является результатом этого явления. Чтобы избежать разбрызгивания бетона, обычно необходимого для восстановления опускающихся краев до высоты формы:

Правило № 7d: установите подкладку на конец линейки, идущей по кромке формы. 1 / 32 дюйма на каждый дюйм глубины плиты и намеренно ударьте по бетону по краям выше формы.

Сдвиньте края, чтобы втянуть пасту обратно в пол, и пандусы исчезнут.

Allen Face - изобретатель системы чисел F, системы F-min, щупа, F-метра, D-метра и разравнивающей рейки. Он также является членом ACI и давним членом комитетов ACI 302, 360 и 117.

силы

силы Прочность

Хотя соотношение вода / цементный материал важный фактор, влияющий на прочность бетона, заполнителя свойства нельзя игнорировать.Суммарная прочность обычно не является коэффициент, кроме легкого и высокопрочного бетона. Однако совокупный характеристики, отличные от прочности, такие как размер, форма, текстура поверхности, классификация и минералогия, как известно, влияют на прочность бетона по-разному. градусов.

Размер:

Максимальный размер крупнозернистого заполнителя заданного минералогического состава может иметь два противоположных эффекта на прочность обычного бетона.С такое же содержание и консистенция цемента, бетонные смеси, содержащие больше частицы заполнителя требуют меньше воды для перемешивания, чем частицы, содержащие более мелкие совокупный. Напротив, более крупные агрегаты имеют тенденцию образовывать более слабый переход. зоны, содержащие больше микротрещин. Следовательно, результат этих двух Противодействующие эффекты при использовании крупных заполнителей незначительны.

Для получения высокопрочного бетона обычно проводится крупнозернистый заполнитель. до максимального размера 19 мм, но требуется дополнительный цемент для дополнительных площадь поверхности.Мелкодисперсный заполнитель обычно может содержать меньше проходящего материала. Сито 300 и 150 мкм из-за более высокого содержания цемента. Пропорционально, количество мелкого заполнителя также должно быть несколько меньше используемого для бетона нормальной прочности.

Форма:

Форма относится к геометрическим характеристикам, таким как круглая, угловая, удлиненные, чешуйчатые и т. д. агрегатные частицы кубической или сферической формы по форме и правильному минеральному составу идеальны для максимального увеличения бетона сила.Следует избегать использования плоских и удлиненных частиц заполнителя. или, по крайней мере, ограничивается минимум 15 процентами. Эти формы дальше описано в Таблице (1) ниже.

Таблица (1), Классификация формы агрегата, Mindess

Классификация Описание Примеры
округлый

Нерегулярный

Угловой

Слоистый

Удлиненный

Слоистые и продолговатые

Полностью изношен водой или полностью сформированный

по истощению

Естественно неправильной формы или частично сформированной

потертости и закругленные края

Обладает четко очерченными краями, сформированными на

пересечение примерно плоских граней

Материал небольшой толщины

относительно двух других размеров

Материал, обычно угловой, в котором

Длина

значительно больше, чем у

два других размера

Материал, имеющий значительно большую длину

больше по ширине, а по ширине

значительно больше толщины

Галька речная или прибрежная;

пустыня, побережье и

песок, принесенный ветром

Гравий прочий; песок или выкопанный

кремень

Щебень всех типов;

осыпь; дробленый шлак

Камень слоистый

-

-
Текстура поверхности:

Бетонные смеси, содержащие грубый текстурированный или измельченный заполнитель, могут показать несколько более высокую прочность в раннем возрасте, чем соответствующий бетон содержащий гладкий или естественно выветрившийся агрегат аналогичного минералогического состава.Более прочная физическая связь между заполнителем и гидратированным цементом Предполагается, что за это отвечает paste. В более позднем возрасте влияние текстуры поверхности заполнителя по прочности может снизиться. Также с учитывая содержание цемента, обычно требуется больше воды для перемешивания, чтобы получить желаемая удобоукладываемость в бетонной смеси, содержащей заполнители с грубой текстурой. Различные характеристики текстуры поверхности и примеры приведены в таблице. (2).

Таблица (2) Классификация агрегатной текстуры

Группа Текстура поверхности Характеристики Примеры
1 2 3 4 5 6 Стеклянный

гладкий

Гранулированный

Грубый

Кристаллический

Сота

Конхоидальный перелом

Износостойкий или гладкий из-за

перелом слоистый или мелко-

зернистая порода

Перелом более или менее виден

однородные округлые зерна

Грубый излом мелко- или среднего

зернистая порода, не содержащая легкого

видимые кристаллические составляющие

Содержит хорошо видимые кристаллы

составляющих

С видимыми порами и пустотами

Черный кремень, обсидиан,

стекловидный шлак

Гравий, сланец, сланец,

мрамор, некоторые

риолиты

Песчаник, оолит

Базальт, фельзит,

порфир, известняк

Гранит, габбро,

гнейс

Кирпич, пемза, вспененный шлак,

клинкер, керамзит

Оценка:

Классификация заполнителя определяется ситовым анализом, который - распределение частиц сыпучих материалов по разным размерам, обычно выражается в виде большего или меньшего кумулятивного процента чем ряд размеров отверстий сита (или процентное соотношение между определенными диапазоны отверстий сита).Результаты ситового анализа используются в трех способы: (1) определить, соответствует ли материал спецификациям; (2) выбрать наиболее подходящий материал; и (3) обнаруживать вариации в градации, которые достаточны, чтобы гарантировать смешивание выбранных размеров или корректировку бетона смешать пропорции.

Стандарт ASTM C 33, Стандартные спецификации для бетонных заполнителей, сортировка Требования к крупным и мелким заполнителям приведены в таблицах (3) и (4) соответственно.

Есть несколько причин для указания пределов оценок и максимального габариты агрегата, главное технологичность и стоимость. Например, очень из крупного песка образуются жесткие и не поддающиеся обработке бетонные смеси, а из очень мелкого пески увеличивают потребность в воде и цементе и неэкономичны. Агрегаты которые не имеют большого дефицита или избытка продукции какого-либо определенного размера самые технологичные и экономичные бетонные смеси.

Таблица (3), Требования к сортировке грубых заполнителей

Таблица (4), Требования к классификации мелких заполнителей
Сито (Спецификация E11) Процент прохождения
9.5 мм 4,75 мм 2.36 мм 1,18 мм 600 мкм 300 мкм 150 мкм 100 95–100 80–100 50–85 25-60 10-30 2-10
Источник: перепечатано с разрешения газеты 1991 г.

Ежегодная книга стандартов ASTM, Раздел 4, Том.

O4.02 Авторское право, ASTM, 1916 Race Street, Phila-

Дельфия, Пенсильвания 19103.

Минералогический состав:

Различия в минералогическом составе агрегатов известны влияют на прочность бетона. Замена известняка (известняка) на кремнистый (песчаник) заполнитель при идентичных условиях дает в существенном улучшении прочности бетона. Не только снижение максимальный размер крупного заполнителя, как показано на рисунке (1a), но с заменой известняка для песчаника, как показано на рисунке (1b), улучшили прочность бетона значительно через 56 дней.

Рисунок (1) Влияние размера и минералогии агрегатов на

прочность на сжатие, Мета и Монтейро

Расчет бетонной смеси - марка бетона M 20 - Портал гражданского строительства

Конструкция бетонной смеси - марка бетона M 20

1. ТРЕБОВАНИЯ
a) Установленная минимальная прочность = 20 Н / кв. Мм.

b) Требования к долговечности
i) Умеренное воздействие
ii) Минимальное содержание цемента = 300 кг / куб.м

c) Цемент
(см. Таблицу №5 IS: 456-2000)
i) Марка Chetak (Birla)
ii) Тип OPC
iii) Марка 43

d) Технологичность
i) коэффициент уплотнения = 0,7

e) Степень контроля качества Хорошо

2. ДАННЫЕ ИСПЫТАНИЙ ПОСТАВЛЯЕМЫХ МАТЕРИАЛОВ
a) ЦЕМЕНТ
i) Удельный вес = 3,05
ii) Сред. комп. прочность 7 дней = 46,5 более 33,0 ОК
28 дней = 55,0 более 43,0 ОК

b) Грубый щебень
i) 20 мм Graded
Тип щебень
Удельный вес = 2.68
Водопоглощение = 1,46
Свободная (поверхностная) влажность = 0

c) МЕЛКИЙ АГРЕГАТ (крупный песок)
i) Тип Натуральный (Ghaggar)
Удельный вес = 2,6
Водопоглощение = 0,5
Свободная (поверхностная) влажность = 1,4

3. ЦЕЛЕВАЯ СРЕДНЯЯ ПРОЧНОСТЬ (TMS)
a) Статистическая константа K = 1,65
b) Стандартное отклонение S = 4,6
Таким образом, TMS = 27,59 Н / кв.м

Рекламные объявления


4. ВЫБОР СООТНОШЕНИЯ W / C
а) Как требуется для TMS = 0.5
б) В соответствии с требованиями для «Умеренного» воздействия = 0,55
Предположим, что отношение W / c равно 0,5.

5. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВОДЫ И ПЕСКА
Для В / Ц = 0,6
C.F. = 0,8
Макс. Агг. Размер 20 мм
a) Содержание воды = 186 кг / куб. М
b) Песок в процентах от общего количества заполнителя по абсолютному объему = 35%

Таким образом,
Чистое содержание воды = 180,42 кг / куб. М
Чистое процентное содержание песка = 33%

6. ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ЦЕМЕНТА
Отношение воды / цента = 0.5
Содержание воды = 180,42 кг / куб. М
Таким образом, содержание цемента = 360,84 кг / куб. М. Достаточно для умеренного воздействия. Скажем, 360 кг / куб. М.

7. ОПРЕДЕЛЕНИЕ Грубого и мелкого наполнителя
Принять захваченный воздух как 2%
Таким образом,
0,98 куб. М = [180,42 + 360 / 3,05 + {1 / 0,33} * {fa / 2.6}] / 1000
и 0,98 кум = [180,42 + 360 / 3,05 + {1 / 0,67} * {Ca / 2,68}] / 1000
Следовательно,
fa = 584 кг / куб. м
Ca = 1223,8 кг / куб. м

Пропорции окончательной смеси бетона марки М-20 составляют: -

Объявления

Примечание: 1 Рекомендуемый выше дизайн смеси должен быть подтвержден фактическими кубическими испытаниями.
2 Дизайн смеси основан на качестве и классификации материалов, фактически поставленных клиентом.
Любое изменение качества и градации приведет к изменениям в дизайне микса.

Этот дизайн микса был представлен постоянным автором этого сайта. Мы благодарны ему за отличный сервис.

Канварджот Сингх

Канварджот Сингх - основатель Civil Engineering Portal, ведущего веб-сайта по гражданскому строительству, который был признан лучшим онлайн-изданием CIDC.Он прошел гражданское обучение в университете Тапар, Патиала, и работал над этим веб-сайтом со своей командой инженеров-строителей.

Прочность бетона по сравнению с марками цемента

Исследование прочности бетона по сортам цемента

Д-р Рену Матур , ученый и руководитель, Д-р А. К. Мишра , ученый и Панкадж Гоэль , технический специалист, Отдел жестких покрытий, Центральный научно-исследовательский институт дорог, Нью-Дели.

Введение

Цементы разных марок, а именно. 43 OPC (IS – 8112) 1 , 53 OPC (IS-12269) 2 и портландцемент Пуццолана (на основе летучей золы), IS-1489 Часть I 3 и т. Д. Под разными торговыми марками доступны на рынке . Однако при испытании в лаборатории эти цементы не дают прочности, соответствующей их маркам, в случае OPC и маркировки, такой как 43 МПа 53 МПа на мешках в случае цементов Portland Pozzolana.

Чтобы спроектировать бетонную смесь желаемой прочности из имеющихся материалов, прочность цемента требуется через 7 дней (IRC: 44-2008) 4 или через 28 дней (IS: 10262-1982) 5 .Основываясь на значениях прочности цемента, водное соотношение непосредственно считывается из доступных диаграмм, приведенных в IRC-44 и IS-10262. Выбирая руководящие принципы в соответствии с вышеупомянутыми стандартами, в прошлом было возможно очень хорошее приближение прочности бетона, но в последние пару лет возникли трудности с получением желаемой прочности бетона с использованием современных цементов.

Бывают случаи, когда цементы определенных марок дают более чем предписанную прочность через 7 дней, после чего наблюдается очень небольшой прирост их прочности до 28 дней, а в некоторых случаях прочность не достигает уровня, соответствующего марке.Бывают также случаи, когда цемент марки 43 дает 28-дневную прочность, совпадающую с прочностью 53. Ранее ИС-269 6 удовлетворял все потребности страны в цементе. Однако в то время железные дороги и министерство обороны предъявляли определенные особые требования к прочности и составу цемента, и их желательно было охватить стандартизацией, чтобы их можно было также сделать доступными как продукты с маркировкой ISI. Таким образом, высокопрочные цементы вошли в список марок IS-8112, OPC-43 и IS-12269, OPC-53, чтобы удовлетворить эти особые требования.Все три класса, а именно. IS 269 (сорт 33), IS - 8112 (сорт 43) и IS - 12269 (сорт 53) были обычными портландцементами.

Помимо этих трех марок OPC, в настоящее время в стране имеется ряд разновидностей цементов, подпадающих под действие IS - 1489 (часть I) - 1991, Спецификация для портландцемента - Pozzolana Cement (на основе летучей золы). Поскольку эти КПП не оценивались, не существует процедуры проверки их качества на основе их прочности через 3,7 или 28 дней. Поскольку эти цементы основаны на летучей золе, пропорции которой не указаны, они не имеют какой-либо модели прочности в разном возрасте, как в случае с OPC.Мешки с этими цементами имеют маркировку IS - 1489 - часть I, 43 МПа или 53 МПа. Поскольку IS: 1489 (часть I) сформулирован так, чтобы обеспечить прочность порядка 33 МПа, маркировка 43 МПа / 53 МПа на мешках с цементом вводит в заблуждение, поскольку потребитель не может отклонить партию в случае более низкой прочности. . Неустойчивое поведение цемента по отношению к их прочность и прочность бетонных смесей предполагают подробное изучение имеющихся цементов.

Цели и сфера применения

  • Основная цель проекта заключалась в изучении различных известных марок цемента, имеющихся на рынке.r.t. развитие прочности бетона, приготовленного с их использованием.
  • Для упрощения процедуры расчета бетонной смеси с имеющимися цементами.

Рабочий план и методология

Цементы разных марок и цементы одной торговой марки, но из разных партий закупались на местном рынке. Они были испытаны на прочность при сжатии через 7, 28 и 90 дней, чтобы изучить характер увеличения прочности.

Бетонные смеси с тремя различными марками цемента были разработаны в соответствии с существующими стандартами с использованием четырех различных количеств цемента на кубический метр бетона при различных соотношениях воды и цемента.

Полученные результаты были проанализированы, обсуждены и даны предложения по проектированию бетонных смесей с имеющимся цементом в разумные сроки.

Результаты и обсуждение

Прочность на сжатие различных марок цементов и цементов одной марки, закупленных из разных партий, показана в Таблице 1.
Таблица 1:
S. No. Детали цемента Прочность на сжатие кг / кв.размеры в см
7 дней 28 дней 90 дней
1. Бирла Цемент 53 МПа 248 425 468
2. Ambuja Cement 53 МПа 335 510 597
3. Sri Ultra 53 МПа 247 348 400
4. J.K. Цемент OPC 43 315 400 425
5. Birla Nirman Cement 53 МПа 361 490 530
6. Бирла Самрат 53 МПа 251 530 550
7. Rajshree OPC 53 363 523 545
8. ACC 53 МПа 355 573 590
9. Ambuja 53 МПа 387 527 540
10. Лафарж 53 МПа 227 423 525
11. Lafarge 53 МПа 229 375 470
12. Лафарж 53 МПа 230 350 400
13. Lafarge 53 МПа 250 435 500
14. Лафарж 53 МПа 360 450 475
15. Шри Рам OPC 53 359 519 519
16. Шри Рам OPC 53 377 517 535
17. Шри Рам OPC 53 468 492 500
18. Шри Рам OPC 53 360 400 430
19. Шри Рам OPC 53 448 570 603
20. Шри Рам OPC 53 472 580 590
21. Дж. К. Сарва Шактиман OPC 43 268 438 580
22, Дж.К. Сарва Шактиман OPC 43 247 430 480
23. Дж. К. Сарва Шактиман OPC 43 300 400 490
24. Дж. К. Сарва Шактиман OPC 43 370 450 475

Из результатов видно, что эти цементы не соответствуют требованиям прочности, установленным BIS для OPC или PPC (таблица 2).Из результатов также видно, что, хотя хорошее количество цементов имеет 7-дневную прочность на сжатие (C / S) ниже 300 кг / кв. см, у большинства из них К / С за 28 дней выше 400 кг / кв. см и 90 дневный К / С до 500 кг / кв. см и все еще выше.
Таблица 2:
S. No. Тип цемента Прочность на сжатие кг / кв. размеры в см
7 дней 28 дней
1 OPC - 43
(IS - 8112)
330 430
2 OPC - 53
(IS-12269)
370 530
3 КПП
(IS - 1489, Часть I)
220 330
Из этого исследования выяснилось, что эти доступные цементы могут быть использованы для цементобетонных работ, включая бетон для дорожных покрытий.Хотя цементы Portland Pozzolana предназначены для 33-го класса, ни один из PPC, испытанных в рамках этого исследования, не имел силы этого порядка. Полученные результаты очень высокие. Тот факт, что невозможно спроектировать бетонную смесь высокой прочности с цементами низкой прочности, среди производителей цемента Portland Pozzolana существует тенденция производить высокопрочные PPC с такими этикетками, как IS: 1489 (Часть I) , 43 МПа и IS: 1489 (Часть I), 53 МПа для привлечения потребителя. Дилемма состоит в том, что в случае недобора прочности 43 МПа / 53 МПа потребитель не может отказаться от ППК и в любом случае будет использовать поставляемый цемент с прочностью на сжатие не менее 7 суток 220 кг / кв.см и прочность на сжатие 28 суток, 330 кг / кв. см. В настоящее время, когда производители PPC не сортируют свою продукцию, а также предложение OPC на открытом рынке сильно ограничено, у потребителя остается единственный вариант - найти способы использования имеющихся цементов для создания бетонных смесей для различных применений.

Таким образом, для любого проекта создание бетонной смеси стало сложной задачей. Чтобы сделать процесс проектирования бетонной смеси менее громоздким, согласно настоящему исследованию, минимальная прочность на сжатие за 7 дней составляет 250 кг / кв.см рекомендуется для цемента, используемого для изготовления бетона высокого качества (PQC).

Из списка испытанных цементов для исследования были выбраны три марки цемента. Для детальных исследований был разработан ряд цементно-бетонных смесей с использованием четырех различных количеств цемента (360 кг, 380 кг, 400 кг и 420 кг) и различных водоцементных соотношений, а именно. 0,45, 0,50, 0,55 и 0,60. Результаты представлены в таблицах 3, 4, 5.

Таблица 3:
J K CEMENT OPC - 43
Содержание цемента на куб. М
Соотношение Вт / ц 360 кг 380 кг 400 кг 420 кг
Содержание воды Прочность кг / кв.размеры в см Содержание воды Прочность кг / кв.см Содержание воды Прочность кг / кв. размеры в см Содержание воды Прочность кг / кв. размеры в см
К / С Ф / С К / С Ф / С К / С Ф / С К / С Ф / С
28
День
56
День
28
День
28
День
56
День
28
День
28 день 56
День
28 день 28
День
56
День
28 день
0.45 162 171 490 520 57,0 180 480 512 56,0 189 455 490 51,0
0,50 180 427 480 48.4 190 421 460 50,7 200 396 426 44,0 210 405 445 45,0
0,55 198 358 388 39,5 209 354 384 39.0 220 231
0,60 216 295 333 33,0 228 240 252

Таблица 4:
BIRLA NIRMAN 53 МПа
Содержание цемента на куб. М
Соотношение Вт / ц 360 кг 380 кг 400 кг 420 кг
Содержание воды Прочность кг / кв.размеры в см Содержание воды Прочность кг / кв.см Содержание воды Прочность кг / кв. размеры в см Содержание воды Прочность кг / кв. размеры в см
К / С Ф / С К / С Ф / С К / С Ф / С К / С Ф / С
28
День
56
День
28
День
28
День
56
День
28
День
28 день 56
День
28 день 28 день 56 День 28 день
0.45 162 171 470 495 52,0 180 475 500 54,0 189 470 490 52,0
0,50 180 439 480 48.0 190 430 475 46,6 200 398 427 42,0 210 390 420 41,0
0,55 198 393 469 43,6 209 328 393 38.5 220 231
0,60 216 350 398 36,5 228 240 252

Таблица 5:
BIRLA SAMRAT 53 МПа
Содержание цемента на куб. М
Соотношение Вт / ц 360 кг 380 кг 400 кг 420 кг
Содержание воды Прочность кг / кв.размеры в см Содержание воды Прочность кг / кв.см Содержание воды Прочность кг / кв. размеры в см Содержание воды Прочность кг / кв. размеры в см
К / С Ф / С К / С Ф / С К / С Ф / С К / С Ф / С
28
День
56
День
28
День
28
День
56
День
28
День
28 день 56
День
28 день 28 день 56 День 28 день
0.45 162 171 480 525 56,0 180 480 527 57,0 189 448 490 50,0
0,50 180 409 466 47.0 190 451 533 54,0 200 405 501 43,5 210 425 445 44,0
0,55 198 381 449 40,0 209 401 468 45.0 220 231
0,60 216 364 430 38,5 228 240 252

Из результатов видно, что при том же соотношении воды и цемента прочность на сжатие и изгиб продолжает снижаться по мере увеличения содержания цемента с 360 кг до 420 кг для содержания воды выше 190 литров на кубический метр бетона.По мере увеличения содержания цемента при том же водоцементном соотношении содержание воды на кубический метр бетона продолжает увеличиваться. Чтобы ограничить максимальное содержание воды на кубический метр бетона до 190 литров с учетом рекомендаций, предложенных в IRC-44 и IS-10262 (для максимального размера крупного заполнителя 20 мм), и большей дисперсности имеющихся цементов, w / c соотношение может быть выбрано равным 0,50 для 360 и 380 кг цемента на кубический метр бетона и 0,45 для 400 и 420 кг цемента на кубический метр бетона.

На основании исследования можно с легкостью спроектировать бетонную смесь за минимально разумное время, следуя процедуре, описанной ниже:

  1. Испытать цемент на прочность на сжатие в течение 7 дней. Если прочность на сжатие больше 250 кг на кв. См, подбирайте ее для расчета бетонной смеси.
  2. Разработайте четыре бетонных смеси, используя
    1. Цемент – 360 кг; Вода – 180 литров
    2. Цемент – 380 кг; Вода-190 литров
    3. Цемент-400кг; Вода – 180 литров
    4. Цемент-420 кг; Вода – 190 литров
  3. Приготовьте все четыре смеси одновременно в лаборатории.Проверить удобоукладываемость и при необходимости использовать суперпластификатор. Подготовьте кубические и балочные образцы из смесей для испытания через 28 дней.
  4. Исходя из результатов, смесь может быть выбрана с учетом желаемой прочности на сжатие и изгиб. Следует избегать использования очень низкого в / ц и чрезмерного использования суперпластификаторов, поскольку помимо того, что их использование является неэкономичным, долгосрочные эффекты этих добавок обычно не известны обычным пользователям.

Заключение и рекомендации

  • Все доступные OPC и PPC, независимо от маркировки на их мешках, имеют прочность в течение 28 дней выше 400 кг / кв.см . Прочность этих цементов со временем увеличивается, и через 90 дней у многих цементов C / S выше 500 кг / кв. см.
  • Поскольку цементы обладают хорошей прочностью, их можно использовать для изготовления бетона высокого качества.
  • Цемент
  • Portland Pozzolana в соответствии с IS: 1489 (часть - I) был произведен для долговечности конструкции, а не для большей прочности.