Пластинчатая батарея отопления: Пластинчатые радиаторы: варианты радиаторов «гармошка»
Пластинчатые радиаторы: варианты радиаторов «гармошка»
Выбор и монтаж радиатора отопления
- Радиаторы отопления
Вступление
Пластинчатый радиатор представляет собой гнутую или прямую водопроводную трубу, с нанизанными на нее стальными пластинами. По трубе двигается теплоноситель, а пластины значительно усиливают конвекцию воздуха. Простота конструкции определяет их невысокую цену. Для эстетики конвектора закрывают симпатичными коробами из тонкой стали, окрашенной в белый цвет.
Стальные пластинчатые радиаторы — общие сведения
Стальные пластинчатые радиаторы в простой речи называют «гармошки». Вид гармошки создают пластины, нанизанные на трубу для теплоносителя.
Отличительная особенность таких радиаторов это высокая надежность. В пластинчатом радиаторе нет соединений, кроме входа и выхода теплоносителе.
Как следствие, сам радиатор потечь просто не может, негде прорываться теплоносителю.
Благодаря большому количеству пластин, и прямому движению теплоносителя конвектор нагревается до высокой температуры. Для защиты от прикосновений основной остов радиатора закрыт декоративным кожухом. В верхней крышке кожуха сделаны конвекционные отверстия.
Конвектора имеют малую тепловую инерционность, а значит можно управлять ими автоматикой, то есть в системы с пластинчатыми радиаторами возможна установка терморегуляторов.
Пластинчатые радиаторы образуют достаточно мощную тепловую завесу. Это свойство конвекторов позволяет использовать их в системах обогрева в полу. Правда, конструкция тепловых конвекторов для установки в пол отличается от настенных конвекторов, но принцип обогрева одинаков.
Недостатки пластинчатых радиаторов (конвекторов)
- Конвективный тип радиаторов не позволяет равномерно прогреть помещение. У радиаторов теплее, чем у противоположенной стены помещения.

- Пластины конвектора отличный сборщик пыли. Чистить их трудно. Со временем пыль уменьшает их теплоотдачу.
- Внешний вид пластинчатых радиаторов не радует, хотя есть симпатичные модели.
Вариации пластинчатых радиаторов
Как варианты, пластинчатые радиаторы применяются для отопления в полу (канальные конвекторы) и плинтусного отопления помещения.
Подключение конвекторов
Продаются два типа конвекторов по подключению. На это нужно обращать внимание при покупке. Первый тип, это конвектора с боковым подключением. Второй тип это конвектора с нижним подключением0. Он укомплектовывается клапанным вкладышем.
Тепловая мощность пластинчатых радиаторов
Теплоотдача конвекторов зависит от их длины и количество рядов с пластинами. Высота всех конвекторов, 200 мм.
Так, теплоотдача конвектора в «одну нитку» длинной 600 мм составляет 347 Вт. Он же длинной 3000м дает теплоотдачу в 1730 Вт. Радиатор в четыре «нитки» длинной 3000 мм дает теплоотдачу в 4179 Вт, а он же длинной 1000 мм отдаст 1393 Вт тепла.
Расчет радиатора производится по стандартной схеме расчета секций радиаторов, с учетом всех поправочных коэффициентов. Напомню, как это делается. ( читать статью: Упрощенный расчет системы отопления)
- На 1 кв. метр площади с потолком в 3 метра, нужно 100 Вт тепла.
- На комнату 16 кв. метров, нужен радиатор 1600 Вт. Это при идеальных условиях: одно окно, потолок 3 метра, комната не угловая. Если это не так, применяем поправочные коэффициенты:
- Два окна к=1,8: 1600×1,8=2880Вт;
- Угловая комната к=1,8: 2880×1,8=5184Вт;
- Потолок 2,65, к=2,65/3,0=0,88: 5148Вт×0,88=4547 Вт;
- Пластиковое окно к=0,8: 4547Вт×3637 Вт.
Стандартное окно имеет ширину 1400 мм, значит под каждым окном нужно установить 4-х секционные пластинчатые радиаторы длинной 1400 мм, с теплоотдачей 1950 Вт. Данные взяты из паспортов радиаторов фирмы Purmo. На этом все!
©Obotoplenii.ru
Другие статьи раздела: Радиаторы
- Алюминиевые радиаторы отопления
- Можно спрятать радиаторы в пол
- Монтаж электрических радиаторов в полу
- Расчет секций радиаторов отопления
- Панельные радиаторы отопления: описание, расчет, установка
- Чугунные батареи отопления: описание и характеристики
- Типы радиаторов отопления: какие типы радиаторов отопления существуют
Похожие статьи
- Типы конвекторов встраиваемых в пол
- Упрощенный расчет системы отопления
- Схема отопления дома площадью до 100 метров
- Чугунный радиатор отопления: характеристики, достоинств.
..
- Трубчатый радиатор: преимущества и недостатки
- Устройство радиаторов встраиваемых в пол
- Способы разводки труб отопления
- Отопительные приборы: радиаторы и конвекторы
- Типы радиаторов отопления: какие типы радиаторов отопле…
- Схема отопления, коллекторная разводка труб
Keywords:
пластинчатые радиаторы радиатор конвектор пластинчатый теплоотдача пластина окно теплоноситель тип
Последние статьи
Что такое парапетный газовый котёл 21 августа 2022
Правила установки газового котла в частном доме 20 мая 2022
Выбор электрического котла: котел Buderus Logamax 01 апреля 2022
Водяные печи на отработанном масле 27 января 2022
Гидрострелка (гидравлическая стрелка) отопления: всё самое важное 02 апреля 2021
Связанные материалы
Популярные статьи
org/Article»> Маркировка циркуляционных насосов для систем отопления- Установка циркуляционного насоса своими руками: инструкция, подключение, фото работ
- Кабель питания для электрического котла отопления: выбор сечения и марки
- Циркуляционный насос в конструкции газового котла
- 5 Схем подключения водяного теплого пола
Реклама
Стальные пластинчатые радиаторы отопления — плюсы и минусы — Вентиляция, кондиционирование и отопление
Пластинчатые радиаторы отопления появились в городских квартирах и загородных домах еще в прошлом веке, во время существования СССР. Советских строителей привлекала относительно высокая теплоотдача и максимальная конструкционная прочность такой батареи.
Современные пластинчатые радиаторы не только сохранили изначальную прочность, но и приумножили тепловую мощность конструкции. В итоге проверенная временем классика превратилась в инновационное решение, устроившее и дизайнеров интерьеров и специалистов по инженерным коммуникациям.
Современные пластинчатые конвекторы устроены с той же простотой конструкционного решения, что и предшествующие «советские» модели.
Такие радиаторы состоят из следующих конструкционных элементов:
- Изогнутого — чаще всего — U-образного — отрезка трубы, на торцах которой установлены два шаровых вентиля.
- Набора пластин, «нанизанных» на трубу. Причем в большинстве случаев пластины изготовлены из того же материала, что и трубы.
- Защитного кожуха – металлической коробки с открытой верхней частью и дном. Причем внутри кожуха можно вместит не один отрезок трубы (нитку), а сразу несколько таких «пакетов».
Устроенные подобным образом секционные и пластинчатые батареи работают по следующей схеме:
- Теплоноситель движется по трубе под большим давлением, практически не остывая.

- Тонкие пластины разогреваются до высокой температуры буквально за считанные секунды.
- Температура воздух внутри корпуса мгновенно поднимается на несколько градусов.
- Теплый воздух поднимается вверх, сквозь перфорацию в крышке кожуха, а холодный воздух «засасывается» в корпус сквозь отверстия в днище.
В итоге пластинчатые батареи отопления обеспечивают высокую скорость тепловой конвекции воздушных масс, прогревая небольшую комнату буквально за считанные минуты. Однако при обогреве действительно больших помещений естественно конвекции будет недостаточно. В этом случае со стороны днища в корпус пластинчатого конвектора инсталлируется тангенциальный вентилятор, обеспечивающий принудительную конвекцию.
Конструкция и принцип работы радиатораПричем забор воздушных масс осуществляется не со стороны днища, и сквозь перфорацию в нижней части боковых граней кожуха, что дает возможность «утопить» пластинчатую батарею в плите перекрытия, оставив на уровне напольного покрытия лишь верхнюю решетку.
Достоинства и недостатки пластинчатых батарей
Несомненным плюсом подобных отопительных приборов является высокая прочность конструкции.
Сквозь такой радиатор можно прокачивать теплоноситель под давлением 20 и более атмосфер – прочность конструкции зависит лишь от кольцевой жесткости трубы, которая выдерживает давление до 40 Бар.
Кроме того, такой радиатор не потечет – у него нет внутренних стыков. К прочим достоинствам следует причислить низкую стоимость и хорошую совместимость с дешевыми терморегуляторами, принцип действия которых основан на дозировании притока теплоносителя в отопительный прибор.
К явным «минусам» подобных отопительных приборов относится, во-первых, однообразие экстерьера, формы которого определяются контурами коробчатого кожуха, и, во-вторых, потеря тепловой мощности вследствие контакта с пылью – сквозь «забитые» пластины проходит существенно меньший объем воздуха.
Впрочем, оба недостатка легко устранимы – коробчатый корпус можно «утопить» в напольное покрытие или оформить в виде плинтуса, а пыль легко чистится с помощью обычного пылесоса.
Типы пластинчатых радиаторов
Классификацию сортамента пластинчатых батарей в большинстве случаев организуют по следующим конструкционным особенностям:
- По типу материала трубы и пластин.
- По числу «ниток» в корпусе кожуха.
- По схеме подключения радиатора в разводку.
- По схеме крепления кожуха к опорной поверхности.
Опираясь на первый способ классификации — По типу материала трубы и пластин, — мы можем выделить следующие типы батарей:
- Стальные пластинчатые радиаторы, основные элементы которых изготовлены из одноименного металла. Такие отопительные приборы относительно дешевы, но их тепловая мощность оставляет желать лучшего. Поэтому в паре с высокопрочными стальными тубами принято использовать пластины из металлов с более высокой теплопроводностью.
- Медные пластинчатые батареи, элементы которых изготовлены из этого цветного металла. Такой радиатор обеспечивает максимальную тепловую мощность.
Однако подобные изделия «по карману» далеко не всем домовладельцам. Поэтому, для удешевления стоимости конструкции, из меди производят только внутренние трубы, на которые нанизывают пластины из более дешевого металла.
Второй способ классификации – по числу «ниток» в корпусе – выделяет из сортамента следующие типы:
- Радиаторы с одним нагревательным элементом – «пакетом» из одной трубы и одного набора пластин.
- Батареи с двумя и более нагревательными элементами, в конструкцию которых входит напорный коллектор, распределяющий поток теплоносителя по нескольким «пакетам», и обратный коллектор, собирающий «исходящий» теплоноситель для последующей передачи в разводку.
Первый тип радиаторов дешевле и компактнее второй разновидности. Однако последний вариант обеспечит более высокую тепловую мощность, объяснимую большей площадью нагревательных элементов (пластин и труб).
Третий вариант классификации – по схеме подключения в разводку – выделяет следующие типы батарей:
- Радиаторы с боковым подключением. В этом случае штуцеры батареи расположены на боковой поверхности кожуха. Из-за этого покупателю батареи придется установить особые фитинги – уголки, обеспечивающие сопряжение горизонтального нагревательного элемента (трубы) и вертикального участка арматуры, отходящего от горизонтальной напорной или обратной ветви разводки. Впрочем, если трубы разводки уложены вертикально, то уголки не нужны.
- Радиаторы с нижним подключением. В этом случае штуцеры батареи расположены в нижней части кожуха, со стороны днища, что облегчает стыковку радиатора с горизонтальной разводкой, одновременно затрудняя монтаж к вертикальному стояку.
В итоге владельцам систем отопления с горизонтальной разводкой рекомендуют батареи с нижним подключением, а собственникам систем с вертикальными стояками – батареи с боковым подключением.
Хотя последний вариант можно адаптировать к горизонтальной разводке с помощью дешевого фитинга – уголка.
Четвертый вариант классификации – по способу крепления к опорной поверхности – выделяет следующие типы радиаторов:
- Навесные батареи, корпус которых крепится к стене с помощью особых кронштейнов.
- Встраиваемые батареи, корпус которых «утапливается» в пол, опираясь на плиту перекрытии днищем.
Причем наибольшее распространение получили именно навесные радиаторы. Ведь монтаж «утапливаемых» в пол батарей требует больших усилий, направленных на обустройство ниши и скрытую укладку разводки.
Радиатор пластинчатый отопления
Главная » Отопление » Радиатор пластинчатый отопления
Пластинчатые радиаторы отопления
Содержание:
- 1 Конструкция и виды
Наряду с секционными, трубчатыми и панельными радиаторами широкое распространение получили и пластинчатые радиаторы отопления.
По уровню теплоотдачи они уступают только радиаторам панельного типа. Однако в отличие от них имеют более низкую стоимость, могут функционировать при давлении в системе свыше 10 Атм (до 17-20 Атм) и допускают скрытую установку во внутрипольных нишах.
Старый ребристый радиатор.
Принципиальное отличие пластинчатых батарей отопления от других типов заключается в способе обогрева помещения. Во всех остальных конструкциях до 70-80% мощности расходуется на тепловое излучение и обогрев стен и предметов в помещении, от которых затем прогревается воздух. В пластинчатых эта мощность служит для нагрева воздуха напрямую и обеспечения его конвекции (перемешивания) внутри помещения. Отсюда и второе название этих приборов отопления – конвекторы.
Нагрев воздуха – это одновременно и достоинство и недостаток, которые предопределяют область применения этих приборов. Дело в том, что нагрев помещений до нужной температуры с помощью теплового излучения хотя и занимает больше времени, но и эффект от него длиться дольше, и для нахождения людей создаваемые условия больше подходят с точки зрения комфорта.
За прибором отопления находится теплоотражающая алюминиевая пластина.
Ребристые, наоборот, способны в кратчайшие сроки нагреть до нужной температуры большие объемы воздуха, но при этом создают значительные потоки воздуха, которые создают дискомфорт для находящихся в неподвижной позе людей. Именно этим обусловлено их применение в коридорах общественных зданий, на лестничных клетках, в спортивных залах, складских комплексах и т.д. То есть там, где существуют значительные объемы помещений и происходит постоянное движение людей (либо не происходит, как на складах).
Старый пластинчатый радиатор в подъезде жилого дома
Конструкция и виды
В основе конструкции пластинчатого радиатора отопления лежит одна или несколько прямых, U или W-образная трубка, к которой перпендикулярно приварены или закреплены иным образом большое количество металлических теплообменных пластин. Движущийся по трубкам теплоноситель нагревает эти пластины, а они затем отдают полученное тепло в помещение.
Обычно готовый прибор размещается внутри тонкостенного корпуса, служащего для предохранения от ожогов и порезов об острые кромки пластин. Корпус или кожух также защищает пластины радиатора от пыли и механических повреждений. Однако существуют модели, как правило, это стальные радиаторы с увеличенной толщиной ребер и обработанными кромками, которые предназначены для эксплуатации без кожуха, «как есть».
Старая ребристая батарея.
Наряду с размерами и формой различают следующие основные разновидности пластинчатых батарей отопления.
- По материалу прибора: стальные; медные; биметаллические в комбинациях: сталь – медь, сталь – алюминий, реже медь – алюминий.
- По количеству труб: однотрубные и многотрубные с коллектором.
- По способу подсоединения к магистрали: с боковым и нижним подключением.
- По способу монтажа бывают навесные радиаторы и встраиваемые в напольную нишу. Последние устанавливаются либо непосредственно на перекрытие, либо на теплоизоляционный материал.

Старый пластинчатый радиатор отопления.
Самые распространенные и доступные по стоимости из перечисленных отопительных приборов – стальные. Но они же обладают и наименьшей теплоотдачей. Самые дорогие – медные. Обладают наивысшей теплоотдачей, эксплуатационной надежностью и привлекательным внешним видом.
Если говорить о достоинствах и недостатках, то к несомненным достоинствам относится дешевизна, высокая теплоотдача и скорость обогрева воздуха. А также надежность за счет минимального количества стыковочных узлов. Наиболее существенные недостатки: неравномерность распределения температур по уровням помещения и повышенные требования к чистоте. Хотя, последнее правильнее назвать скрытым достоинством стальных пластинчатых радиаторов отопления.
Ребристый радиатор, за которым расположена алюминиевая теплоотражающая пластина.
В заключение. Подавляющее большинство производимых радиаторов работают по принципу естественной циркуляции воздуха. Но есть модели с встроенным вентилятором.
Это, соответственно, увеличивает стоимость и общее энергопотребление прибора, но и за счет увеличения интенсивности перемешивания воздуха частично решает проблему резкого различия температур по высоте помещения.
otoplenie-guide.ru
Пластинчатые радиаторы
Вступление
Пластинчатый радиатор представляет собой гнутую или прямую водопроводную трубу, с нанизанными на нее стальными пластинами. По трубе двигается теплоноситель, а пластины значительно усиливают конвекцию воздуха. Простота конструкции определяет их невысокую цену. Для эстетики конвектора закрывают симпатичными коробами из тонкой стали, окрашенной в белый цвет.
Стальные пластинчатые радиаторы — общие сведения
Стальные пластинчатые радиаторы в простой речи называют «»гармошки». Вид гармошки создают пластины, нанизанные на трубу для теплоносителя.
Отличительная особенность таких радиаторов это высокая надежность. В пластинчатом радиаторе нет соединений, кроме входа и выхода теплоносителе.
Как следствие, сам радиатор потечь просто не может, негде прорываться теплоносителю.
Благодаря большому количеству пластин, и прямому движению теплоносителя конвектор нагревается до высокой температуры. Для защиты от прикосновений основной остов радиатора закрыт декоративным кожухом. В верхней крышке кожуха сделаны конвекционные отверстия.
Конвектора имеют малую тепловую инерционность, а значит можно управлять ими автоматикой, то есть в системы с пластинчатыми радиаторами возможна установка терморегуляторов.
Пластинчатые радиаторы образуют достаточно мощную тепловую завесу. Это свойство конвекторов позволяет использовать их в системах обогрева в полу. Правда, конструкция тепловых конвекторов для установки в пол отличается от настенных конвекторов, но принцип обогрева одинаков.
Недостатки пластинчатых радиаторов (конвекторов)
- Конвективный тип радиаторов не позволяет равномерно прогреть помещение. У радиаторов теплее, чем у противоположенной стены помещения.

- Пластины конвектора отличный сборщик пыли. Чистить их трудно. Со временем пыль уменьшает их теплоотдачу.
- Внешний вид пластинчатых радиаторов не радует, хотя есть симпатичные модели.
Вариации пластинчатых радиаторов
Как варианты, пластинчатые радиаторы применяются для отопления в полу (канальные конвекторы) и плинтусного отопления помещения.
Подключение конвекторов
Продаются два типа конвекторов по подключению. На это нужно обращать внимание при покупке. Первый тип, это конвектора с боковым подключением. Второй тип это конвектора с нижним подключением0. Он укомплектовывается клапанным вкладышем.
Тепловая мощность пластинчатых радиаторов
Теплоотдача конвекторов зависит от их длины и количество рядов с пластинами. Высота всех конвекторов, 200 мм.
Так, теплоотдача конвектора в «одну нитку» длинной 600 мм составляет 347 Вт. Он же длинной 3000м дает теплоотдачу в 1730 Вт. Радиатор в четыре «нитки» длинной 3000 мм дает теплоотдачу в 4179 Вт, а он же длинной 1000 мм отдаст 1393 Вт тепла.
Расчет радиатора производится по стандартной схеме расчета секций радиаторов, с учетом всех поправочных коэффициентов. Напомню, как это делается. ( читать статью: Упрощенный расчет системы отопления)
- На 1 кв. метр площади с потолком в 3 метра, нужно 100 Вт тепла.
- На комнату 16 кв. метров, нужен радиатор 1600 Вт. Это при идеальных условиях: одно окно, потолок 3 метра, комната не угловая. Если это не так, применяем поправочные коэффициенты:
- Два окна к=1,8: 1600×1,8=2880Вт;
- Угловая комната к=1,8: 2880×1,8=5184Вт;
- Потолок 2,65, к=2,65/3,0=0,88: 5148Вт×0,88=4547 Вт;
- Пластиковое окно к=0,8: 4547Вт×3637 Вт.
Стандартное окно имеет ширину 1400 мм, значит под каждым окном нужно установить 4-х секционные пластинчатые радиаторы длинной 1400 мм, с теплоотдачей 1950 Вт. Данные взяты из паспортов радиаторов фирмы Purmo. На этом все!
Специально для Obotoplenii.ru
Другие статьи раздела: Радиаторы
Популярные
Социальные кнопки для Joomla
obotoplenii.
ru
Стальные пластинчатые радиаторы отопления — плюсы и минусы
Пластинчатые радиаторы отопления появились в городских квартирах и загородных домах еще в прошлом веке, во время существования СССР. Советских строителей привлекала относительно высокая теплоотдача и максимальная конструкционная прочность такой батареи.
Стальные пластинчатые радиаторы
Современные пластинчатые радиаторы не только сохранили изначальную прочность, но и приумножили тепловую мощность конструкции. В итоге проверенная временем классика превратилась в инновационное решение, устроившее и дизайнеров интерьеров и специалистов по инженерным коммуникациям.
Особенности конструкции пластинчатых радиаторов
Современные пластинчатые конвекторы устроены с той же простотой конструкционного решения, что и предшествующие «советские» модели.
Такие радиаторы состоят из следующих конструкционных элементов:
- Изогнутого — чаще всего — U-образного — отрезка трубы, на торцах которой установлены два шаровых вентиля.

- Набора пластин, «нанизанных» на трубу. Причем в большинстве случаев пластины изготовлены из того же материала, что и трубы.
- Защитного кожуха – металлической коробки с открытой верхней частью и дном. Причем внутри кожуха можно вместит не один отрезок трубы (нитку), а сразу несколько таких «пакетов».
Устроенные подобным образом секционные и пластинчатые батареи работают по следующей схеме:
- Теплоноситель движется по трубе под большим давлением, практически не остывая.
- Тонкие пластины разогреваются до высокой температуры буквально за считанные секунды.
- Температура воздух внутри корпуса мгновенно поднимается на несколько градусов.
- Теплый воздух поднимается вверх, сквозь перфорацию в крышке кожуха, а холодный воздух «засасывается» в корпус сквозь отверстия в днище.
В итоге пластинчатые батареи отопления обеспечивают высокую скорость тепловой конвекции воздушных масс, прогревая небольшую комнату буквально за считанные минуты.
Однако при обогреве действительно больших помещений естественно конвекции будет недостаточно. В этом случае со стороны днища в корпус пластинчатого конвектора инсталлируется тангенциальный вентилятор, обеспечивающий принудительную конвекцию.
Конструкция и принцип работы радиатора
Причем забор воздушных масс осуществляется не со стороны днища, и сквозь перфорацию в нижней части боковых граней кожуха, что дает возможность «утопить» пластинчатую батарею в плите перекрытия, оставив на уровне напольного покрытия лишь верхнюю решетку.
Достоинства и недостатки пластинчатых батарей
Несомненным плюсом подобных отопительных приборов является высокая прочность конструкции.
Сквозь такой радиатор можно прокачивать теплоноситель под давлением 20 и более атмосфер – прочность конструкции зависит лишь от кольцевой жесткости трубы, которая выдерживает давление до 40 Бар.
Кроме того, такой радиатор не потечет – у него нет внутренних стыков. К прочим достоинствам следует причислить низкую стоимость и хорошую совместимость с дешевыми терморегуляторами, принцип действия которых основан на дозировании притока теплоносителя в отопительный прибор.
К явным «минусам» подобных отопительных приборов относится, во-первых, однообразие экстерьера, формы которого определяются контурами коробчатого кожуха, и, во-вторых, потеря тепловой мощности вследствие контакта с пылью – сквозь «забитые» пластины проходит существенно меньший объем воздуха.
Впрочем, оба недостатка легко устранимы – коробчатый корпус можно «утопить» в напольное покрытие или оформить в виде плинтуса, а пыль легко чистится с помощью обычного пылесоса.
Типы пластинчатых радиаторов
Классификацию сортамента пластинчатых батарей в большинстве случаев организуют по следующим конструкционным особенностям:
- По типу материала трубы и пластин.
- По числу «ниток» в корпусе кожуха.
- По схеме подключения радиатора в разводку.
- По схеме крепления кожуха к опорной поверхности.
Опираясь на первый способ классификации — По типу материала трубы и пластин, — мы можем выделить следующие типы батарей:
- Стальные пластинчатые радиаторы, основные элементы которых изготовлены из одноименного металла.
Такие отопительные приборы относительно дешевы, но их тепловая мощность оставляет желать лучшего. Поэтому в паре с высокопрочными стальными тубами принято использовать пластины из металлов с более высокой теплопроводностью. - Медные пластинчатые батареи, элементы которых изготовлены из этого цветного металла. Такой радиатор обеспечивает максимальную тепловую мощность. Однако подобные изделия «по карману» далеко не всем домовладельцам. Поэтому, для удешевления стоимости конструкции, из меди производят только внутренние трубы, на которые нанизывают пластины из более дешевого металла.
Пластинчатый радиатор из меди
Второй способ классификации – по числу «ниток» в корпусе – выделяет из сортамента следующие типы:
- Радиаторы с одним нагревательным элементом – «пакетом» из одной трубы и одного набора пластин.
- Батареи с двумя и более нагревательными элементами, в конструкцию которых входит напорный коллектор, распределяющий поток теплоносителя по нескольким «пакетам», и обратный коллектор, собирающий «исходящий» теплоноситель для последующей передачи в разводку.

Первый тип радиаторов дешевле и компактнее второй разновидности. Однако последний вариант обеспечит более высокую тепловую мощность, объяснимую большей площадью нагревательных элементов (пластин и труб).
Третий вариант классификации – по схеме подключения в разводку – выделяет следующие типы батарей:
- Радиаторы с боковым подключением. В этом случае штуцеры батареи расположены на боковой поверхности кожуха. Из-за этого покупателю батареи придется установить особые фитинги – уголки, обеспечивающие сопряжение горизонтального нагревательного элемента (трубы) и вертикального участка арматуры, отходящего от горизонтальной напорной или обратной ветви разводки. Впрочем, если трубы разводки уложены вертикально, то уголки не нужны.
- Радиаторы с нижним подключением. В этом случае штуцеры батареи расположены в нижней части кожуха, со стороны днища, что облегчает стыковку радиатора с горизонтальной разводкой, одновременно затрудняя монтаж к вертикальному стояку.

В итоге владельцам систем отопления с горизонтальной разводкой рекомендуют батареи с нижним подключением, а собственникам систем с вертикальными стояками – батареи с боковым подключением. Хотя последний вариант можно адаптировать к горизонтальной разводке с помощью дешевого фитинга – уголка.
Четвертый вариант классификации – по способу крепления к опорной поверхности – выделяет следующие типы радиаторов:
- Навесные батареи, корпус которых крепится к стене с помощью особых кронштейнов.
- Встраиваемые батареи, корпус которых «утапливается» в пол, опираясь на плиту перекрытии днищем.
Причем наибольшее распространение получили именно навесные радиаторы. Ведь монтаж «утапливаемых» в пол батарей требует больших усилий, направленных на обустройство ниши и скрытую укладку разводки.
climanova.ru
Радиатор пластинчатый
Содержание
- 1 Стальные пластинчатые радиаторы
- 2 Типы
- 3 Тепловая мощность
Пластинчатый радиатор – гнутая или прямая водопроводная труба с нанизанными на нее стальными пластинами.
Теплоноситель циркулирует по трубе, а пластины увеличивают уровень конвекции воздуха.
Благодаря простой и незамысловатой конструкции, имеют недорогую цену и для улучшения эстетического восприятия, эти радиаторы часто прячут под различными коробами. Но даже сами модели имеют большой выбор форм и исполнений.
Пластинчатые радиаторы отопления имеют высокое рабочее давление и не очень сильную теплоотдачу, но отличная конвекция компенсирует этот недостаток.
Батареи пластинчатого типа чаще всего устанавливают в квартирах и домах, подключённых к централизованной тепловой магистрали.
Проблема в подключении радиатора может возникнуть из-за высокого давления в такой сети – 13-17 Атм. В таком случае и используют батареи, способные выдерживать такое давление: секционные, пластинчатые. Остальные же приборы при первой существенной нагрузке получат столь сильные повреждения, что просто не вынесут конструктивного разрушения панелей или теплообменника.
Стальные пластинчатые радиаторы
«Гармошка» или стальной пластинчатый радиатор отопления.
Называется так из-за своеобразной гармошки, получающейся из-за внутренних платин, поставленных вертикально, сквозь которые и проходит труба с телпоносителем.
Такие радиаторы невероятно надежны, не имеют соединений кроме входа и выхода теплоносителя. Благодаря этому и потечь он практически не может. Из-за огромного количества пластин внутри, конвектор нагревается до высоких температур. Декоративный кожух служит больше для безопасности, так как внутренности радиатора очень нагреваются и могут обжечь при контакте. В верхней части защитного кожуха батареи есть конвекционные отверстия.
Этот вид радиаторов может свободно устанавливаться в больших помещениях коммерческой недвижимости.
Дополнительные возможности у стальных пластинчатых радиаторов отопления появляются с установкой вентиляторов, что значительно усиливает теплоотдачу в несколько десятков раз.
Внутрипольные конвекторы могут быть модифицированы специальными приемниками влаги для порогов в магазинах, бассейнах, саунах и т.
п. Приемник влаги – специальная лейка, собирающая полученную воду, транспортируя ее в специальный слив канализации, выведенный для этих целей.
- именно из-за конвективного типа батареи не прогревают постепенно равномерно все пространство помещения, что может создать перепад температур, холодные зоны и сырость в некоторых местах;
- между пластинами постоянно скапливается пыль, а чистить их весьма проблематично. Накопившаяся пыль со временем может стать своеобразным буфером и значительно уменьшить теплоотдачу;
- существуют и более-менее симпатичные модели, но в целом мобильный ряд не очень радует эстетически.
Типы
Классифицируются пластинчатые радиаторы по количеству рабочих контуров и панелей: 11, 21, 22, 31, 32, 33.
Например, стальной конвектор, в наличии которого одна панель и один змеевик, имеет маркировку 11 класса. Более сложные устройства имеют несколько панелей и змеевиков: две панели и один змеевик – 21 класс, три панели и три змеевика – 33 класс.
Купленные батареи отопления чаще всего комплектуются паспортом и набором для монтажа.
Тепловая мощность
Уровень теплоотдачи зависит полностью от длины и количества рядов с пластинами в конвекторе.
Например, теплоотдача конвектора длиной 600 мм с одним змеевиком будет составлять 347 Вт. Такой же тип, но длиной 3000 мм, даст теплоотдачу в 1730 Вт. Радиатор в четыре змеевика длиной 3000 мм – 4179 Вт, и он же длиной 1000 мм – 1393 Вт тепла.
Расчет теплоотдачи производится по стандартному методу расчета радиаторов с учетом всех поправочных факторов.
(1 голосов, рейтинг: 5,00 из 5) Загрузка…
poluchi-teplo.ru
Оптимизация охлаждающей пластины аккумуляторной батареи электромобиля | Блог
Эффективное и точное охлаждение охлаждающей пластины батареи электромобиля имеет решающее значение для обеспечения их оптимальной производительности, надежности батареи и окупаемости инвестиций в течение жизненного цикла.
Высокие затраты на разработку можно снизить благодаря доступу к быстрым и точным результатам моделирования с помощью инженерного моделирования в облаке. Например, дополнительные расходы на НИОКР, прототипирование и механическую обработку сокращаются за счет получения оптимизированной и менее сложной конструкции на более ранних этапах цикла проектирования.
Охлаждающая пластина аккумулятора CFD Динамическое управление температурой Электромобиль Теплопередача
В этой статье представлены исследования проектирования и моделирования технологии охлаждающих пластин аккумуляторов для электромобилей. Инженерное моделирование используется для выполнения полностью связанного анализа теплопередачи охлаждающей плиты для динамического управления температурой. Кроме того, с помощью усовершенствованного дозвукового CFD-решателя выполняется исследование конструкции для оценки характеристик давление-расход в проточном канале охлаждающей пластины.
Параллельное моделирование в облаке используется для анализа сценариев как для геометрических вариантов, так и для нескольких расходов теплоносителя. В этом примере наши рабочие процессы моделирования показывают пользователям, как настроить и запустить полный анализ теплопередачи и потока охлаждающей пластины, включая перепад давления и температуру при различных скоростях потока охлаждающей жидкости. Инженеры могут следовать этому примеру, чтобы узнать, как быстро выполнить параметрическое проектное исследование в SimScale и ответить на ключевые вопросы проектирования .
Достижение оптимальной надежности батареи с помощью CFD и теплопередачи
SimScale имеет множество типов анализа, доступных в зависимости от приложения. В этом примере для анализа оптимизации охлаждающей пластины батареи для аккумуляторов электромобилей использовались два типа анализа. Тип дозвукового анализа в SimScale создает автоматизированную и надежную шестигранную ячеистую сетку, используя метод декартовой сетки с подгонкой тела, который значительно сокращает время создания сетки на порядок.
Алгоритм создания сетки с высокой степенью параллелизма дает сетку более высокого качества, требующую гораздо меньшего количества ячеек для достижения точности, сравнимой с традиционными схемами дискретизации. Это приводит к более быстрой сходимости и, следовательно, более быстрому моделированию.
Дозвуковой тип анализа используется для моделирования как несжимаемого, так и сжимаемого потока, при этом турбулентность моделируется с использованием уравнений RANS и модели турбулентности k-эпсилон. Мощной функцией этого типа анализа является встроенная параметрическая возможность определения граничных условий скорости на входе. На этапе настройки моделирования пользователи могут одновременно определить несколько расходов на входе, которые затем моделируются одновременно. Тип анализа сопряженной теплопередачи (CHT) в SimScale позволяет проводить анализ теплопередачи между твердой и жидкой областями. Типичные применения типа анализа CHT включают анализ теплообменников, охлаждение электронного оборудования и корпусов электроники, а также проектирование светодиодных светильников.
Сетка жидкость/твердое тело требуется для моделирования CHT с четкими определениями границ раздела жидкости и твердого тела, также называемых контактами. Сетка автоматически генерируется в SimScale, а продвинутые пользователи могут выполнять локальное уточнение. В случае охлаждающей пластины батареи дозвуковой анализ используется для моделирования потока охлаждающей жидкости через канал охлаждающей пластины, чтобы установить оптимальные скорости потока с учетом перепада давления. Решатель CHT используется для демонстрации эффективности теплообменника и тепловых характеристик.
Улучшение конструкции охлаждающей пластины аккумулятора
Целью данного исследования является максимизация динамического управления температурой новой конструкции охлаждающей пластины аккумулятора, используемой для охлаждения аккумуляторных блоков электромобилей.
Мы рассмотрим два варианта пластинчатого теплообменника. Оригинальная конструкция (V1) является распространенным компонентом, широко используемым в промышленности, и имеет один змеевидный канал охлаждения. Известно, что такая конструкция вызывает появление горячих точек, что приводит к проблемам с долговечностью батареи. Инженер-теплотехник разработал новую конструкцию (V2), в которой используется лабиринтный охлаждающий канал со значительно увеличенной площадью поверхности для обмена тепловой энергией. Это предварительная проверка концептуального дизайна, требующая моделирования для проверки прогнозируемой производительности и сравнения ее с исходной версией.
Используя SimScale, инженер может быстро и точно оценить обе конструкции. Обе конструкции охлаждающих пластин аккумуляторов имеют один вход и один выход. Вход скорости используется для определения массового расхода хладагента (воды), который является основным механизмом отвода тепла для извлечения тепла из батарей. Охлаждающей пластине батареи назначается алюминий из библиотеки материалов SimScale, вода используется в качестве хладагента, а источник питания применяется для представления тепла, выделяемого батареей.
При импорте файла САПР версии 2 ассоциативность между файлами САПР автоматически применяется в SimScale, сохраняя соглашения об именах для деталей/граней из модели САПР версии 1. Это означает, что при обмене файлами САПР для сравнительных исследований пользователям не нужно переназначать граничные условия, настройки сетки или выходные данные управления результатами, что значительно ускоряет сравнение двух или более вариантов САПР одного продукта.
Анализ теплопередачи показывает, что, несмотря на большую площадь контактной поверхности в V2, тепловые результаты намного хуже по сравнению с исходной конструкцией V1, поскольку V2 демонстрирует более высокие температуры на охлаждающей пластине батареи. Дизайн V2 нуждается в дальнейшем моделировании и оптимизации.
Чтобы помочь разрешить эти противоречивые результаты, инженер-конструктор анализирует поток отдельно.
Результаты анализа дозвукового потока жидкости, решение которого занимает всего четыре минуты, дают дополнительные сведения. Поток в V1 поддерживает постоянный поток 3,5 м/с на всем протяжении одного канала. В конструкции V2 наблюдается сильное изменение скорости теплоносителя по каналам лабиринта. Во многих областях наблюдается почти застойный поток в областях пиковой температуры, поэтому охлаждающие каналы не эффективно отводят тепло от этих областей, что приводит к ухудшению тепловых характеристик. Мы можем использовать анализ потока жидкости, чтобы посмотреть исключительно на скорость потока, чтобы лучше понять падение давления на охлаждающей пластине. Суммарное падение давления в любых двух точках можно извлечь из SimScale с помощью меню управления результатами.
В этом случае при постоянном расходе теплоносителя 0,13 кг/с V1 имеет 29Перепад давления между входом и выходом составляет 2 кПа, а V2 в десять раз меньше при 22,7 кПа. Это могло бы иметь некоторые преимущества, если бы тепловые характеристики V2 были сравнимы с V1, например, меньшая мощность накачки и, следовательно, энергия, необходимая для работы насоса. Однако сначала нам нужно попытаться повысить его тепловые характеристики. Поскольку у нас достаточно перепада давления, мы можем попытаться увеличить поток охлаждающей жидкости через V2.
Используя параметрические входные данные в типе дозвукового анализа, мы можем указать несколько расходов в граничных условиях на входе для параллельного выполнения. Simscale распознает, что у нас есть параметризованная установка исследования, и все прогоны (все скорости потока) моделируются параллельно в облаке на серверах SimScale.
Это освобождает ваш локальный ПК/ноутбук и не потребляет ресурсы машины. SimScale отправит пользователям уведомление по электронной почте, когда все запуски будут успешно завершены.
Более высокий массовый расход 0,3 кг/с дает повышенную скорость потока в V2 и улучшенные тепловые характеристики. Падение давления на охлаждающей пластине значительно увеличилось, но все еще на 60% ниже, чем в оригинальной конструкции V1. Новая конструкция охлаждающей пластины V2 обеспечивает более низкую среднюю температуру, хотя и менее равномерную, с более высокой скоростью потока, но гораздо меньшим перепадом давления, чем у V1. Дополнительные итерации проекта потребуются для дальнейшего улучшения распределения температуры и надежности батареи в V2. Инженеры, желающие оптимизировать эту пластину охлаждения батареи, могут параметризовать модель САПР, скорость потока охлаждающей жидкости и температуру на входе для более детального изучения конструкции. Замена материалов также проста благодаря обширной библиотеке материалов SimScale.
Моделирование теплопередачи в облаке
Доступ к моделированию на ранних стадиях проектирования продукта необходим для достижения требуемых тепловых характеристик конструкций охлаждающих пластин аккумуляторов при одновременном снижении затрат на физическое прототипирование. С облачной платформой SimScale инженеры и проектировщики могут использовать передовые решатели, которые учитывают связанные анализы проводимости, конвекции и излучения, чтобы получать точные результаты в различных предметных областях и масштабах.
Посмотрите нашу демо-версию «Оптимизация характеристик охлаждения аккумуляторов электромобилей», чтобы узнать, как можно быстро выполнить параметрическое исследование конструкции и выполнить полный тепловой анализ охлаждающей пластины, включая перепад давления и температуру при различных скоростях потока охлаждающей жидкости:
Нагревательная пластина и пластина для перемешивания,
| ||||||||||||||||||||||||||||||||||||||||
EV: проблемы и решения
Заглавное фото: Cold Plate любезно предоставлено Lucid Motors
Современные технологии позволяют более эффективно использовать и контролировать тепловую энергию в электромобилях. Управление температурой оптимизировано между такими компонентами, как аккумулятор, система HVAC (отопление, вентиляция и кондиционирование воздуха), электродвигатель и инвертор.
Это делается с помощью так называемой системы управления температурой батареи (BTMS).
Например, когда двигатель нагревается, тепло может быть перенаправлено в кабину или аккумулятор для наилучшего использования энергии.
Чтобы лучше понять производственные проблемы и решения, связанные с аккумуляторами для электромобилей, давайте рассмотрим следующие темы:
- Методы охлаждения аккумуляторов электромобилей
- Почему аккумуляторы электромобилей необходимо охлаждать
- Проблемы управления температурным режимом
- Примеры систем терморегулирования аккумуляторов
- Лазеры для улучшения управления температурой в батареях
Способы охлаждения аккумуляторов EV
Аккумуляторы EV можно охлаждать с помощью воздушное охлаждение или жидкостное охлаждение . Жидкостное охлаждение — это предпочтительный метод, отвечающий современным требованиям к охлаждению. Давайте рассмотрим оба метода, чтобы понять разницу.
Воздушное охлаждение
Воздушное охлаждение использует воздух для охлаждения батареи и существует в пассивной и активной формах.
Пассивное воздушное охлаждение использует воздух снаружи или из салона для охлаждения или обогрева аккумулятора. Обычно тепловыделение ограничивается несколькими сотнями ватт.
Активное воздушное охлаждение получает воздух, поступающий от кондиционера, который включает в себя испаритель и нагреватель для контроля температуры воздуха. Обычно она ограничивается 1 кВт охлаждения и может использоваться для охлаждения или обогрева салона.
Жидкостное охлаждение
Жидкостное охлаждение — самая популярная технология охлаждения. Для охлаждения батареи используется жидкий хладагент, такой как вода, хладагент или этиленгликоль. Жидкость проходит через трубки, охлаждающие пластины или другие компоненты, окружающие клетки, и переносит тепло в другое место, например радиатор или теплообменник. Компоненты, несущие жидкость, предотвращают прямой электрический контакт между ячейками и жидким хладагентом.
Как и воздушное охлаждение, существуют пассивные и активные системы. Активное жидкостное охлаждение более сложное и дорогое, но обеспечивает более высокие характеристики, такие как двигательная установка и мощность зарядки. Разница между активным и пассивным охлаждением заключается в том, что при пассивном охлаждении для управления температурой жидкости используется окружающий воздух, тогда как
В некоторых системах управления температурным режимом используется среда прямого контакта, такая как масло или другие диэлектрические жидкости, непосредственно контактирующие с элементами. Это в основном используется в электромобилях, не предназначенных для потребителей, поскольку они менее безопасны и обеспечивают менее эффективную изоляцию между ячейками и окружающей средой.
Методы охлаждения с течением времени
В настоящее время большинство аккумуляторов имеют жидкостное охлаждение с использованием активного охлаждения, поскольку оно позволяет лучше контролировать температуру.
Жидкости являются лучшими проводниками тепла, чем воздух — в сотни раз лучше, если быть точным, — что облегчает управление температурой.
Поскольку в начале революции электромобилей производство батарей было намного дороже, производители делали все, чтобы минимизировать производственные затраты, что сделало пассивное воздушное охлаждение более привлекательным. Но стоимость аккумуляторов за последнее десятилетие снизилась, а быстрая зарядка, которая требует более жестких требований к охлаждению, приобрела популярность. В результате технология пассивного воздушного охлаждения утратила свою популярность.
Например, в начале 2010-х у вас было два варианта примерно по одинаковой цене: Nissan Leaf с воздушным охлаждением и аккумулятором большей емкости или Chevy Volt с активным жидкостным охлаждением, но с меньшим запасом хода, но более мощным аккумулятором. . Большая дальность действия, мощная батарея с активным охлаждением была бы слишком дорогой в то время.
Одна из причин, по которой активное охлаждение является более дорогим, заключается в том, что оно включает в себя больше компонентов, таких как тепловой насос, теплообменник, циркуляционный насос, клапаны и несколько датчиков температуры.
Однако результаты охлаждения намного надежнее.
Почему аккумуляторы электромобилей необходимо охлаждать
Аккумуляторы электромобилей имеют определенные рабочие диапазоны, которые имеют решающее значение для срока службы и производительности аккумуляторов. Они предназначены для работы при температуре окружающей среды, которая составляет от 68°F до 77°F (от 20°C до 25°C). Лучший контроль над температурой аккумуляторов повышает их производительность и срок службы.
- Во время работы они могут выдерживать температуру от -22°F до 140°F (от -30°C до 50°C)
- Во время перезарядки они могут выдерживать температуры от 32°F до 122°F (от 0°C до 50°C)
Аккумуляторы выделяют много тепла во время работы, и их температура должна быть снижена до рабочего диапазона. При высоких температурах (от 158°F до 212°F или от 70°C до 100°C) могут возникать тепловые выходы из строя, вызывающие цепную реакцию, которая разрушает аккумуляторную батарею.
Во время быстрой зарядки батареи должны быть охлаждены.
Это связано с тем, что большой ток, поступающий в батарею, производит избыточное тепло, которое необходимо отводить, чтобы сохранить высокую скорость зарядки и не перегревать батарею.
Иногда их также необходимо нагревать, когда температура слишком низкая, или для повышения производительности. Например, аккумуляторы нельзя заряжать при температуре ниже 32°F (0°C). Или такие компании, как Tesla, предлагают предварительный подогрев батареи в некоторых моделях для достижения высокой производительности, разгона от 0 до 60 миль в час менее чем за 2 секунды.
Проблемы управления температурным режимом
Наиболее распространенными проблемами управления температурным режимом аккумуляторов электромобилей являются утечки, коррозия, засорение, климат и старение. Как вы увидите, системы жидкостного охлаждения создают проблемы, которых нет у систем воздушного охлаждения.
- Утечки могут возникать только в системах жидкостного охлаждения, соединения трубопроводов которых имеют риск утечек по мере старения батареи.
Любая утечка быстро ухудшит производительность и срок службы батареи. Они могут даже привести к тому, что электромобиль перестанет работать, если влажность воздействует на электрическую изоляцию аккумулятора. Аккумуляторные модули, соединения, насосы и клапаны должны оставаться целыми. - Коррозия может возникать только в системах жидкостного охлаждения, охлаждающие пластины которых могут подвергаться коррозии по мере старения жидкого гликоля. Поэтому охлаждающая жидкость должна быть заменена в рамках технического обслуживания автомобиля.
- Засорение — это риск, связанный с сотнями небольших каналов, по которым проходит жидкость в аккумуляторе.
- Климатические условия по всему миру создают различные тепловые проблемы для батарей. Примеры включают оставление автомобиля под палящим солнцем в течение длительного времени или проживание в месте с чрезвычайно низкими температурами зимой. Аккумуляторы должны постоянно выдерживать широкий диапазон температур.
Для этого система охлаждения аккумуляторной батареи должна работать, даже когда автомобиль не используется. - Старение вызывает проблемы управления температурным режимом, которые необходимо планировать. По мере того, как батареи стареют, большая часть энергии теряется в виде тепла. Система управления температурным режимом должна быть построена для этих более жестких условий, которые возникают позже в течение срока службы батареи, а не только для типичных условий в течение первых лет.
Примеры систем терморегуляции аккумуляторов
На следующих схемах показаны системы терморегуляции в известных электромобилях.
Nissan
Дополнительная информация: Система охлаждения Nissan Leaf
Mother Wolt
9002 Дополнительная информация: Chevy Volt System78. Система охлаждения Tesla Model 3
Лазеры для улучшения управления температурой в батареях
В соответствии с новой тенденцией к структурным батареям элементы прикрепляются непосредственно к шасси автомобиля.

500С
Прецизионная конфорка с большой площадью нагрева (373 x 273 мм) — EQ — HP3040
Цены, указанные в Интернете, действительны для рынка США и только при оплате кредитной картой. Там будет дополнительная плата за доставку и обработку. Цена разная от страны к стране.