Показания за электричество подать: Все способы передачи показаний

Содержание

Все способы передачи показаний

Уважаемые клиенты! В рамках развития сервиса услуг и программы по защите персональных данных клиентов с 1 июля 2021 г. ПАО «ДЭК» прекратило прием показаний приборов учета на сайте без регистрации. Показания принимаются в Личном кабинете клиента.

Показания принимаются с 20 по 25 число ежемесячно, круглосуточно, без праздников, выходных и очередей. Чтобы передать показания, войдите в личный кабинет или зарегистрируйтесь в системе.

Перейти к Личному кабинету

Уважаемые клиенты г. Владивостока! Показания индивидуальных приборов учета по ГВС необходимо подавать в ПАО «ДЭК» и «Вычислительный центр по коммунальным платежам»:

Читать далее

ПАО «ДЭК» предлагает жителям Приморского края несколько способов передачи показаний приборов учета:

Через Личный кабинет:

Чтобы передавать показания через Интернет-сервис «Личный кабинет» на сайте ПАО «ДЭК», предварительно необходимо зарегистрироваться. Читайте далее на странице «Личного кабинета».

В мобильном приложении Viber (Вайбер):

Для передачи через Viber отсканируйте/наведите камеру смартфона с установленным Viber:


Или перейдите по ссылке: Вызвать бота (на Вашем устройстве должен быть установлен Viber).

Читайте также: подробная инструкция пользователя.

Установить Viber (для смартфона, для компьютера).

Через Единый контактный центр по тел. 8 (800) 234-77-77:

Схема работы сервиса автоматизированного приема показаний путем системы голосового распознавания:

  1. Позвонить на телефонный номер 8 (800) 234-77-77 или (423) 245-78-80
  2. Выбрать пункт меню «для передачи показаний приборов учета» (кнопка 1)
  3. Назвать номер лицевого счета по одной цифре (указан в платежном документе)
  4. Подтвердить (или не подтвердить, в случае не корректного распознавания) распознанный и озвученный сервисом адрес
    (сказать «да/верно» или «нет»)
  5. Назвать показания по предложенному сервисом номеру прибора учета
    (если передаваемые показания меньше предыдущих, система предложит проверить их корректность)
  6. Подтвердить правильность принятых показаний.

На сайте VL.RU (для жителей Владивостока - клиентов ДЭК):

SMS-сообщением: (электроэнергия)

По телефону отделения/РКЦ:

Показания можно передавать устно по телефону обслуживающего вас отделения Дальэнергосбыта; телефоны для передачи показаний указаны в ваших квитанциях.

В офисах компании:

Адреса офисов Дальэнергосбыта находятся в разделе «Обслуживание».

Через старшего по дому:

На общедомовом собрании можно принять решение, что вы доверяете ежемесячно сообщать показания индивидуального прибора учета председателю домового комитета или старшему по дому. В таком случае будет один ответственный человек, который в предусмотренный Постановлением №354 срок будет записывать показания и передавать их в обслуживающее отделение/расчетно-контрольный центр «Дальэнергосбыта». Если собственники поручат своему домкому съем показаний по дому, то ему необходимо прийти в ближайший офис обслуживания потребителей, где наши сотрудники выдадут ему ведомости для внесения показаний и подробно проконсультируют.

Уважаемые клиенты! В целях проведения расчетов за услугу электроснабжения рекомендуем снимать и передавать показания в период с 20 по 25 число месяца.

Почему важно передавать показания?

Расчет размера платы за потребленную электроэнергию за период производится на основании ежемесячных фактических показаний индивидуального прибора учета (в соответствии с пунктом 42 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011 г. № 354).

В случае непредставления потребителем показаний прибора учета за расчетный период в срок с 20 до 25 числа текущего месяца, плата за коммунальную услугу «энергоснабжение» рассчитывается исходя из среднемесячного объема потребления электроэнергии, но не более 3 расчетных периодов подряд. По истечению данного срока, при отсутствии показаний прибора учета, плата рассчитывается по нормативу (пункты 59б, 60 Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011 г. № 354).

Читайте далее:

Право потребителя по передаче показаний:

В соответствии с пунктом 33к(1) Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011г. №354, потребитель имеет право ежемесячно снимать и передавать полученные показания прибора учета электрической энергии в адрес ПАО «ДЭК». Сроки снятия и передачи показаний, в том числе способы передачи показаний приборов учета, указаны в разделе «Физическим лицам / Передача показаний».

Обращаем внимание, что в соответствии с п. 59б Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011г. №354, при непредоставлении потребителем показаний прибора учета плата за коммунальную услугу, предоставленную потребителю в жилом или нежилом помещении за расчетный период, определяется исходя из рассчитанного среднемесячного объема потребления коммунального ресурса потребителем, определенного по показаниям индивидуального или общего (квартирного) прибора учета за период не менее 6 месяцев, а если период работы прибора учета составил меньше 6 месяцев, – то за фактический период работы прибора учета, но не менее 3 месяцев. Данный расчетный метод применяется не более трех расчетных периодов подряд.

По истечении предельного количества расчетных периодов, за которые плата за коммунальную услугу определяется по среднемесячному потреблению, и отсутствии показаний прибора учета, в соответствии с п.60. Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011г. №354, плата за коммунальную услугу рассчитывается в соответствии с пунктом 42 настоящих Правил исходя из нормативов потребления коммунальных услуг (начиная с 4-го месяца непредоставления показаний).

Последствия в случае недопуска сотрудника ПАО «ДЭК»


в занимаемое помещение:

В соответствии с пунктом 32г Правил предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденных Постановлением Правительства РФ от 06.05.2011г. №354, (далее – Правила) исполнитель имеет право осуществлять не чаще 1 раза в 3 месяца проверку достоверности передаваемых потребителем сведений о показаниях индивидуальных, общих (квартирных) и комнатных приборов учета, распределителей, установленных в жилых помещениях и домовладениях, путем посещения помещений и домовладений, в которых установлены эти приборы учета, а также проверку состояния указанных приборов учета (не чаще 1 раза в месяц в случае установки указанных приборов учета вне помещений и домовладений в месте, доступ исполнителя к которому может быть осуществлен без присутствия потребителя, и в нежилых помещениях).

При недопуске 2 и более раз потребителем в занимаемое им жилое и (или) нежилое помещение исполнителя для проверки состояния установленных и введенных в эксплуатацию индивидуальных, общих (квартирных) приборов учета, проверки достоверности представленных сведений о показаниях таких приборов учета и при условии составления исполнителем акта об отказе в допуске к прибору учета показания такого прибора учета, предоставленные потребителем, не учитываются при расчете платы за коммунальные услуги до даты подписания акта проведения указанной проверки. В случае не предоставления потребителем допуска в занимаемое им жилое помещение, домовладение исполнителю по истечении указанного в подпункте «в» пункта 59 Правил предельного количества расчетных периодов, за которые плата за коммунальную услугу определяется по данным, предусмотренным указанным пунктом, размер платы за коммунальные услуги рассчитывается с учетом повышающих коэффициентов в соответствии с приведенными в приложении №2 Правил формулами расчета размера платы за коммунальные услуги холодного водоснабжения, горячего водоснабжения, электроснабжения, предусматривающими применение повышающих коэффициентов, начиная с расчетного периода, следующего за расчетным периодом, указанным в подпункте «в» пункта 59 Правил, до даты составления акта проверки.

Памятка по снятию показаний с электросчётчиков на примере счётчика «МИРТЕК-12-РУ»:

Информация на дисплее счетчика изменяется с интервалом 10 секунд, но для удобства можно нажать на синюю кнопку, что бы перелистнуть следующий кадр Для того, чтобы снять показания, необходимо пролистать кадры до следующего вида:

- для потребителей, рассчитывающихся по одноставочному тарифу, необходимо отражение на дисплее следующей информации – в левом верхнем углу надпись ∑Т2 и в нижней части по середине kW∙h (Рис.1)


Рис. 1

- для потребителей, рассчитывающихся по одноставочному тарифу, дифференцированному по двум зонам суток (день, ночь) необходимо отражение на дисплее следующей информации – в левом верхнем углу надпись Т1 (день), Т2 (ночь) и в нижней части по середине kW∙h, (Рис. 2, Рис. 3)


Рис. 2
Рис. 3

В срок с 20 по 25 число каждого месяца передать снятые показания в ПАО «ДЭК» или свою Управляющую компанию (ТСЖ, ТСН, ЖСК).

Памятка по снятию показаний с электросчётчиков на примере счётчика «ЭНЕРГОМЕРА СЕ 208»:

Приём показаний приборов учёта

Уважаемые клиенты!

Согласно Постановлению Правительства РФ №354 от 06.05.2011 г.: "Потребитель имеет право при наличии индивидуального, общего (квартирного) или комнатного прибора учёта ежемесячно снимать его показания и передавать полученные показания исполнителю или уполномоченному им лицу в срок не позднее 25-го числа текущего расчётного периода"

.

Осуществить передачу показаний Вашего прибора учёта Вы можете следующими способами:

1. В сервисе "Личный кабинет клиента" для потребителей-физических лиц, предварительно пройдя обязательную регистрацию на корпоративном сайте АО "Алтайэнергосбыт";

2. В мобильном приложении «Мой Алтайэнергосбыт», доступном для бесплатного скачивания в App Store и Google Play;

3. Через форму передачи показаний на корпоративном сайте АО "Алтайэнергосбыт"; 

4. По телефону контактного центра: 8-800-350-5566 (звонок бесплатный), а также по телефонным номерам Вашего обслуживающего подразделения;

5. Через "Интернет-приёмную" на корпоративном сайте АО "Алтайэнергосбыт";

6. По электронному адресу [email protected], указав в теме письма сообщение в следующем формате:

<ЛС абонента><Пробел><Показания счётчика>

7. Отправив sms-сообщение на мобильный номер приёма +7 9037672204 в формате:

<ЛС абонента><Пробел><Показания счётчика>

Внимание! Стоимость sms-сообщения согласно тарифному плану абонента!

Лицевой счёт (ЛС) потребителя расположен в правом верхнем углу квитанции на оплату электроэнергии, ежемесячно доставляемой потребителям АО "Алтайэнергосбыт".

В случае отсутствия у потребителя информации об ЛС, необходимо лично обратиться в обслуживающее подразделение АО "Алтайэнергосбыт" с предоставлением удостоверяющих документов.

Государственные услуги в Республике Татарстан. / Услуги / Оплата услуг ЖКХ / Оплата коммунальных платежей

Внимание! Вы используете устаревшую версию Internet Explorer (6.0)
Чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров:

Вниманию поставщиков коммунальных услуг!

Для подключения организации к приему платежей на Портале необходимо подписание соглашения. Оставить заявку на подписание соглашения можно по круглосуточному номеру телефона 8 (843) 5-114-115 или через форму обратной связи.

Оплата услуг ЖКХ, просмотр счет-фактуры, ввод показаний счетчиков

Оплата услуг по газоснабжению и техобслуживанию. Подача показаний приборов учета газа.

Выбор страховой компании и оформление полиса

Внесение абонентской платы за тепловую энергию, предоставляемую предприятием АО «Татэнерго»

Оплата услуг водоснабжения и водоотведения предоставляемых МУП Водоканал города Казани

Оплата услуги по техническому обслуживанию сигнализации квартиры, предоставляемую Филиалом ФГУП «Охрана» Росгвардии по Республике Татарстан

Внесение абонентской платы за техническое обслуживание системы домофон в пользу ООО «Виктория»

Способы передачи показаний

Способы передачи показаний приборов учёта.

Показания приборов учета можно передать с 18 по 25 число следующими способами:

1. Через сайт компании www.ivsbyt.ru через сервис «Личный кабинет» в разделе «Показания» . Функция передачи показаний приборов учета доступна с 18 по 25 число.

2. Через сайт компании www.ivsbyt.ru в разделе «Наши услуги» - «Передача показаний приборов учета». Данный сервис доступен без прохождения процедуры регистрации.

3. С помощью мобильного приложения ЛКК ИЭК. Мобильное приложение ЛКК ИЭК- "Личный кабинет в вашем кармане".

4. По многоканальному телефону +7 495 584-03-00.
Воспользоваться данным сервисом можно с 18 по 25 число по многоканальному номеру телефона, который ежемесячно указывается в счетах-квитанциях. Для передачи показаний необходимо позвонить по номеру телефона контакт-центра и передать показания согласно голосовой инструкции.

5. Направить показания приборов учета посредством SMS сообщения на номер  +7 916-145-71-67. Описание формата SMS-сообщения в разделе SMS-сервис .

6. При посещении клиентского офиса по адресу г.Ивантеевка, ул.Новая Слобода, д.4

7. Самостоятельно заполнить специальный бланк в счете-извещении и опустить бланк в ящик для приема показаний. 

8. С помощью электронной почты. По адресу [email protected]  следует направить письмо, указав в теме письма: «Показания». В самом письме необходимо указать (через пробел) по порядку: номер лицевого счета, показания (для однотарифного прибора учета). Например: 1234560 7541 или 2669990 87406.Для двухтарифного счетчика необходимо указать: номер лицевого счета, показания «день», показания «ночь». Например:1234560 87488 27634.

9. При оплате счета за электроэнергию :

  • - в терминалах АО "ЕСГП-Московская область";
  • - через сервисы и отделения ПАО Сбербанк России  (устройства самообслуживания, сотрудник Банка, «Сбербанк Онлайн»).

    Регулярная передача показаний прибора учета электроэнергии позволяет контролировать потребление электроэнергии и оплачивать только за фактическое потребление.

    Передавая показания счетчиков ежемесячно, вы экономите ваше время и контролируете свои платежи!

    Если есть вопросы - звоните по тел 8 (495) 584-0300

    Физические лица

    Уважаемые абоненты!

    В соответствии с Приказом Минэнерго РФ №211 от 20 марта 2020 года, с 1 апреля 2020 года ПАО «Россети Московский регион» приступило к исполнению обязанностей гарантирующего поставщика (ГП) электроэнергии на территории Красногорского района Московской области в отношении потребителей, ранее обслуживавшихся гарантирующим поставщиком АО «Красногорскэнергосбыт».

    В ходе принятия ПАО «Россети Московский регион» приборов учета, установленных у потребителей, выяснилось, что у части абонентов установлены приборы учета электрической энергии с предоплатой.

    Для граждан, у которых установлены приборы учета с предоплатой (SMART счетчики) Администрация городского округа Красногорск совместно с руководством АО «КЭС» и ПАО «Россети Московский регион» выработали следующий порядок действий:

    2.1. Также как и потребителям, использующим приборы учета без предоплаты, Вам необходимо снять показания прибора учета электрической энергии по состоянию на 01 апреля 2020 года и передать их до 10 апреля в ПАО «Россети Московский регион» на сайте sbyt.rossetimr.ru или по телефону 8 (800) 700-40-70. Далее показания приборов учета необходимо будет передавать с 15 по 26 числа каждого месяца на сайте sbyt.rossetimr.ru или по телефонам 8 (800) 700-40-70, 8 (499) 550-88-99.

    2.2. Если баланс предоплаты на Вашем приборе учета уже израсходован или близок к нулевому и вы ОТНОСИТЕСЬ к одно из следующих категорий граждан: граждане старше 65 лет, граждане с хроническими заболеваниям, инвалиды и маломобильные граждане, одинокие беременные женщины, одинокие матери/отцы/опекуны/попечители с малолетними детьми; Вы можете обратиться в ПАО «Россети Московский регион» по телефону 8 (800) 700-40-70 и оформить заявку на перепрограммирование Вашего прибора учета в режим постоплаты (классический режим, при котором баланс предоплаты учитываться не будет).

    2.3. Если баланс предоплаты на Вашем приборе учета уже израсходован или близок к нулевому и Вы НЕ ОТНОСИТЕСЬ к одно из следующих категорий граждан: граждане старше 65 лет, граждане с хроническими заболеваниям, инвалиды и маломобильные граждане, одинокие беременные женщины, одинокие матери/отцы/опекуны/попечители с малолетними детьми; во избежание отключений (для возобновления энергоснабжения), по факту достижения нулевого баланса на карте предоплаты, Вы можете осуществить пополнение счета карты (оплата осуществляется по реквизитам АО «КЭС», в пользу АО «КЭС») в офисах банков по следующим адресам (там же, где и раньше):

    г. Красногорск, ул. Ленина, д. 21, (Сбербанк)
    г. Красногорск, ул. Ленина, д. 63, (Сбербанк)
    г. Красногорск, ул. Ленина, д. 38Б, (Банк «Возрождение»),
    г. Красногорск, ул. Успенская,3, (Минбанк)

    График работы отделений банков на период карантина с 30 марта по 30 апреля по приёму платежей (Смарт-карты):

    ПАО «Сбербанк»
    г. Красногорск, ул. Ленина, д. 21
    График работы: 09:00-18:00
    Выходные дни: воскресенье

    г. Красногорск, ул. Ленина, д. 63
    График работы: пн-пт 09:00-16:00, сб 09:14:00
    Выходные дни: воскресенье

    Банк «Возрождение»
    г. Красногорск, ул. Ленина, д. 38Б
    Временный режим работы с 13.04 до 30.04
    График работы: 09:00-18:00
    Выходные дни: субота, воскресенье

    ПАО «МинБанк»
    Адрес: г. Красногорск, ул. Успенская, д. 3
    Тел.: 8 (495) 727-01-99
    Временный режим работы с 13.04.2020 по 30.04.2020
    График работы: пн-пт 09:00-17:00, перерыв 13:00-14:00
    Выходные дни: субота, воскресенье

    Обращаем Ваше внимание, что пополнение смарт карты в пользу АО «КЭС» вынужденная мера, направленная на обеспечение бесперебойного энергоснабжения потребителей, в условиях сложной эпидемиологической обстановки. ПАО «Россети Московский регион» осуществляет оперативное реагирование на отключения приборов учета в связи с достижением нулевого баланса (перепрограммирование приборов учета) в первую очередь у потребителей, относящихся к группе риска (граждане старше 65 лет, граждане с хроническими заболеваниям, инвалиды и маломобильные граждане, одинокие беременные женщины, одинокие матери/отцы/опекуны/попечители с малолетними детьми). Просим отнестись к этому с пониманием.

    2.4. ПАО «Россети Московский регион» с 13.04.2020 приступил к масштабным мероприятиям по перепрограммированию приборов учета с предоплатой у всех потребителей переводимых, в силу Приказа Министерства Энергетики РФ от 20.03.2020 № 211, из АО «КЭС» в ПАО «Россети Московский регион». Учитывая общее количество потребителей, у которых установлены приборы учета с предоплатой и сложившуюся сложную эпидемиологическую обстановку сроки реализации данных мероприятий составят не менее 2-х месяцев.

    2.5. К сожалению, проанализировав имеющиеся правовые механизмы и существующую судебную практику, ПАО «Россети Московский регион» вынужден констатировать, что ранее заявленная и доводимая до потребителей возможность автоматического перевода переплаченных потребителями денежных средств из АО «КЭС» в ПАО «Россети Московский регион» не может быть осуществлена без участия потребителя. В силу норм действующего Законодательства, всем потребителям пополневшим свои смарт карты, для возврата переплаты придётся самостоятельно обратиться в АО «КЭС» с заявлением о взаиморасчете по состоянию на 31 марта 2020 года и требованием о возврате переплаченных денежных средств. Во избежание отключений энергоснабжения, обращаться в АО «КЭС» необходимо будет только после перепрограммирования Вашего прибора учета.

    3. Оплачивать электрическую энергию, потребленную начиная с 01 апреля 2020 года, строго в адрес ПАО «Россети Московский регион» по реквизитам:

    Получатель: ПАО «Россети Московский регион»

    ИНН 5036065113 КПП 997650001
    Расчетный счет: 40702810638000257329
    Банк: ПАО «Сбербанк»
    БИК 044525225
    Кор счет Банка 30101810400000000225

    Счета на оплату электрической энергии с новыми реквизитами будут выставлены в первой декаде мая 2020 года и доставлены в почтовые ящики. Перед оплатой счета проверьте, совпадают ли реквизиты в квитанции с указанными в данной листовке.

    4. В случае возникновения вопросов, их можно задать по телефону 8 (800) 700 40 70.

    Cпособы приема показаний приборов учета

    Уважаемый Абонент!

    Передавать показания следует с 21 по 25 число каждого месяца!

    Сообщаем Вам способы передачи показаний индивидуальных приборов учета электроэнергии:

     

    1. Через Личный кабинет БГЭС

    Для этого нужно зайти на сайт  bges.ru, выбрать раздел "Личный кабинет" (ЛК), указать электронную почту, которая будет являться логином для входа в ЛК, и номер сотового телефона, пройти авторизацию через набор логина и пароля, после чего привязать лицевой счет к ЛК.

     

    2. Через Личный кабинет «Системы Город»

    Порядок регистрации и доступа в личный кабинет указаны на сайте системы «Город».

     

    3. По электронной почте, с помощью отправки SMS-сообщений или автоматического сервиса.

    ВНИМАНИЕ!

    Для данных способов отправки Вы должны получить ПИН-код. С 1 декабря 2012 года, персональный ПИН-код абонента указывается в чеке за оплату электроэнергии, если платеж внесен через систему «Город» в отделениях банка или почты. Обратите внимание, что пин-код не указывается в чеках, выданных банкоматом.  Для получения ПИН-кода Вы также можете обратиться в АО «Барнаульская горэлектросеть» по адресам ул. Ползунова, 50 (каб. 112), ул. Энтузиастов, 34А (каб. 4).

     

    3.1. Отправка показаний с помощью SMS-сообщения

    - SMS-сообщение на номер 8-903-767-67-22

    В тексте сообщения указать Лицевой счет, ПИН-код и показания прибора учета в формате:

    Лицевой счет*ПИН-код*показания#

    Например, текст сообщения: 12345678*1234*56789#

    где: 12345678 - номер Вашего лицевого счета, 1234 - Ваш ПИН-код, 56789 - Показания Вашего прибора учета.

    Стоимость исходящего SMS-сообщения тарифицируется Вашим сотовым оператором на основании Вашего тарифного плана.

     

    3.2 Отправка показаний с  помощью сообщения e-mail

    - электронное письмо на адрес [email protected]

    В «Теме»  сообщения указать Лицевой счет, ПИН-код и показания прибора учета в формате:

    Лицевой счет*ПИН-код*показания#

    Например, текст сообщения: 12345678*1234*56789#

    где: 12345678 - номер Вашего лицевого счета, 1234 - Ваш ПИН-код, 56789 - Показания Вашего прибора учета.

    ВНИМАНИЕ!

    Если вы отправляете электронное письмо - данные вносите в  поле «Тема».

     

    3.3. Воспользоваться «Автоматическим сервисом» по приему показаний с помощью телефонов с тональным набором цифр.

    Вы должны в автоматическом режиме по порядку выполнить ряд действий, а именно набрать номер лицевого счета, ПИН-код и показание. В процессе набора проверить правильность набранных цифр - лицевой счет должен состоять из 8 цифр, ПИН-код - четырехзначное число, показание проверяется на значность счетчика Абонента.

    Как воспользоваться данной услугой?

    - Набрав номер 35-02-02 Автоматический сервис по приему показаний работает круглосуточно.

      

    4. Звонок в call-центр.

    - Позвоните по телефону 35-04-04  в период с 21 по 25 число каждого месяца с 7.00 до 22.00. (без выходных) Ваши показания прибора учета примет оператор. Необходимо назвать номер лицевого счета,  ПИН-код и адрес.

      

    5. Автоматический  голосовой  сервис приема показаний 

    Работает круглосуточно по телефону (385 2) 50-16-50

     

    6. Заполнить бланк для передачи показаний прибора

    и опустить в специальные ящики для приема показаний, установленных в офисах компании по адресам: ул. Ползунова,50, ул. Энтузиастов, 34А.

     

    7.  Отправить показания письмом или телеграммой

    по адресу 656015, г. Барнаул, ул. Деповская, 19 с пометкой «Показания приборов учета». В тексте письма (телеграммы) указать номер лицевого счета, адрес, показания, подпись абонента, и дату отправления письма.

     

    Уважаемые абоненты!

    Обратите внимание, что при передаче показаний необходимо указывать цифры со счетчика с точностью до 1 кВтч, то есть цифры после запятой указывать НЕ нужно.

    АО «Барнаульская горэлектросеть»

     

    Жильцов переводят на «умные» счетчики

    С 1 июля началась бесплатная установка интеллектуальных приборов учета электроэнергии. За отказ от такого «подарка» повысят плату за услуги ЖКХ

    1 июля начали действовать правила перехода на интеллектуальные системы учета электрической энергии1. Старые приборы учета электроэнергии будут заменяться на новые, интеллектуальные, после выхода из строя отслуживших счетчиков или по истечении межповерочного интервала (временного отрезка, в течение которого изготовитель счетчика гарантирует его точную работу).

    Чем новые счетчики отличаются от старых?

    • Главное отличие новых счетчиков состоит в том, что после их установки не потребуется снимать и передавать показания. Интеллектуальный счетчик хранит и сам передает данные в энергетическую компанию, после чего потребителю выставляют счет на оплату. Способ передачи информации определяет поставщик – с помощью сотовой связи или через интернет-соединение.
    • Потребители смогут отслеживать показания онлайн и проверять их на приборе учета.
    • «Умные» счетчики фиксируют уровень напряжения и частоту, позволяя следить за качеством электроэнергии.
    • Появится возможность смены тарифа на электроэнергию онлайн (сейчас существуют три группы тарифов в зависимости от времени потребления в течение суток).
    • Если потребитель задерживает оплату счетов, интеллектуальная система учета предоставляет возможность поставщику электроэнергии дистанционно ограничить или приостановить ее подачу.
    • Интеллектуальные системы учета должны соответствовать установленным требованиям по защите информации и реагировать на факты несанкционированного доступа к системе. Предполагается, что это поможет предотвратить случаи хищения электроэнергии.
    • Большинство ошибок в начислениях платы за электричество связаны с неправильной передачей показаний абонентами. Поскольку с введением «умных» счетчиков достоверные данные о потребленной электроэнергии будут вовремя передаваться в дистанционном режиме, должно уменьшиться количество споров между поставщиками электроэнергии и потребителями.
    • Установка «умных» счетчиков должна способствовать сокращению длительности перерывов электроснабжения – согласно требованиям к интеллектуальной системе она передает информацию об отключении электроэнергии и восстанавливает питание.

    В какие сроки всех должны перевести на интеллектуальные системы учета электроэнергии?

    Замена приборов учета будет проходить поэтапно. С 1 июля 2020 г. сетевые организации могут устанавливать на свое усмотрение как привычные приборы учета, так и интеллектуальные. Многоквартирные дома, вводимые в эксплуатацию после 1 января 2021 г., должны быть оснащены интеллектуальными приборами учета. С 1 января 2022 г. устанавливать будут только «умные» счетчики.

    Полный переход на новые счетчики должен быть завершен к 1 января 2023 г. С этой даты начнут штрафовать компании, которые не обеспечили потребителям возможность использовать интеллектуальные приборы учета.

    Можно ли отказаться от установки новых счетчиков?

    Права у потребителя отказаться от установки «умного» счетчика не будет. В случае двукратного недопуска представителей гарантирующего поставщика или сетевой организации для установки прибора учета плата за электроснабжение рассчитывается исходя из нормативов потребления коммунальных услуг с применением к стоимости повышающего коэффициента, равного 1,5. То есть платить за услуги ЖКХ придется больше.

    Кто заплатит за новые счетчики?

    Закон предусматривает перенос обязанности платить за установку, эксплуатацию, поверку и замену приборов учета электроэнергии с потребителей на поставщиков ресурсов: с жильцов многоквартирных домов – на гарантирующих поставщиков, с остальных потребителей – на сетевые организации. Потребитель должен лишь обеспечивать целостность прибора учета в случае, если счетчик находится внутри принадлежащего ему помещения или в границах его земельного участка.

    Обязанность по приобретению и монтажу устройства возложена на сетевую организацию. В дальнейшем, согласно закону, такие расходы подлежат включению в состав тарифа на услуги по передаче электрической энергии.

    Как понять, что новый счетчик предлагает установить мошенник?

    Во время перехода на интеллектуальные системы учета электроэнергии возможно распространение случаев мошенничества. Злоумышленники могут предлагать жильцам установить новые счетчики «по льготной цене». Поэтому важно помнить: представитель электросетевой или энергосбытовой организации обязан показать удостоверение с печатью организации. За установку новых счетчиков денежные средства напрямую с потребителей не взимаются – расходы ресурсоснабжающих организаций будут включены в тарифы на электроэнергию. О тарифах и правилах перехода на новые счетчики можно узнать в управляющей компании или у поставщика услуг.


    1 Федеральный закон от 27 декабря 2018 г. № 522-ФЗ «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с развитием систем учета электрической энергии (мощности) в Российской Федерации».

    Как электрическая стимуляция используется в физиотерапии

    Итак, ваш врач назначил физиотерапию для вашей травмы и порекомендовал электрическую стимуляцию. Звучит интересно (и немного пугающе). Итак, что такое электростимуляция, или э-стим, и как она используется в физиотерапии?

    Хавьер Ларреа / Age Fotostock / Getty Images

    Что такое электростимуляция?

    Электростимуляция - это вид физиотерапевтического метода, который используется для выполнения различных задач физиотерапии (ФТ).Если у вас травма или заболевание, которое вызывает боль или ограниченную функциональную подвижность, ваш физиотерапевт может использовать электрическую стимуляцию или E-стим как часть вашей программы реабилитации.

    Условия, при которых используется электростимуляция, могут включать:

    • Боль в пояснице
    • Боль послеоперационная
    • При мышечной слабости или плохой моторике
    • Тендинит
    • Бурсит

    Если вы испытываете боль, спазм, воспаление или мышечную слабость, ваш физиотерапевт может использовать этот универсальный метод как часть вашего лечения.

    Почему используется E-Stim

    Электростимуляция используется в физкультуре по многим причинам. Его можно использовать для приема лекарств от воспаления. Электростимуляция может использоваться для сокращения слабых или плохо функционирующих мышц. E-Stim также может использоваться для уменьшения боли или спазма.

    Есть некоторые свидетельства и случаи, когда электронный стимул используется для лечения стойких ран. Физиотерапевт, который является специалистом по уходу за ранами, будет профессионалом, который предоставит вам это лечение.

    В наши дни главный вопрос в PT: следует ли использовать электрическую стимуляцию? Электростимуляция - относительно пассивный метод; вы ничего не делаете (или очень мало) во время лечения. Наиболее успешные программы реабилитации включают активное участие пациента. Ключевым моментом является изучение правильных движений и упражнений для вашего конкретного состояния.

    По этой причине некоторые профессионалы спорят о том, является ли электронный стимул чем-то ценным для физкультуры.Некоторые исследования показывают, что электрическая стимуляция очень мало способствует улучшению функциональных результатов. Другие исследования показывают, что некоторые виды стимуляции могут быть полезны.

    В то время как дебаты бушуют, одно можно сказать наверняка: вы можете столкнуться с электронным стимулятором, если пойдете на физиотерапию, поэтому знание того, что это такое и чего ожидать, может быть полезным.

    Чего ожидать во время E-Stim

    Если ваш физиотерапевт решит использовать электрическую стимуляцию во время реабилитации, он или она должны объяснить вам процедуру и ожидаемые риски и преимущества.Типичное применение электронного стимулятора выглядит примерно так:

    1. Обнажите обрабатываемый участок тела.
    2. Ваш физиотерапевт приложит электроды к вашей коже. Эти электроды подключены через провод к машине электронного стимулирования.
    3. Вы почувствуете легкое покалывание.
    4. Ощущение будет усиливаться до тех пор, пока оно не станет сильным, но комфортным.
    5. Если электронный стимулятор используется для снятия мышечного спазма или снятия боли, вы расслабитесь во время процедуры.
    6. Если электричество используется для улучшения мышечной силы или функции, вам может потребоваться сокращение мышц во время работы тренажера.

    Применение электрических импульсов может вызывать дискомфорт, но никогда не должно причинять вреда. Если вы чувствуете боль во время электростимуляции, сообщите об этом физиотерапевту. Он или она скорректируют лечение или прекратят его использование.

    Виды электростимуляции

    Ваш физиотерапевт будет использовать разные типы электростимуляции для выполнения разных задач.Узнайте о некоторых доступных типах.

    Чрескожная электрическая нервно-мышечная стимуляция (TENS)

    TENS - это метод физиотерапии, используемый для снятия острой и хронической боли при физиотерапии. Ваш физиотерапевт будет использовать TENS, чтобы уменьшить вашу боль, прикладывая электроды к вашему телу над болезненными участками. Интенсивность электричества будет отрегулирована, чтобы блокировать болевые сигналы, идущие от вашего тела к мозгу.

    Ионтофорез

    Ионтофорез - это тип электростимуляции, который используется для введения вам лекарств во время физиотерапии.Электрический ток проталкивает различные лекарства через кожу в ваше тело.

    Ваш физиотерапевт, скорее всего, будет использовать лекарства для уменьшения воспаления или мышечного спазма, или для разрушения отложений кальция, которые могут возникать при таких состояниях, как кальцифицирующий тендинит плеча, могут использоваться препараты для ионофореза. Различные лекарства используются для достижения разных целей с помощью ионтофореза.

    Нервно-мышечная электрическая стимуляция (NMES)

    NMES использует электрический ток, чтобы вызвать сокращение отдельной мышцы или группы мышц.Помещая электроды на кожу в различных местах, физиотерапевт может задействовать соответствующие мышечные волокна. Сокращение мышцы с помощью электрической стимуляции помогает улучшить сокращение пораженной мышцы.

    Физиотерапевт может изменить текущую настройку, чтобы обеспечить резкое или мягкое сокращение мышц. Наряду с усилением мышечной функции сокращение мышцы также способствует притоку крови к области, которая способствует заживлению. NMES также можно использовать для уменьшения мышечного спазма, искусственно утомляя мышцы спазмом, позволяя им расслабиться.

    Русская стимуляция

    Русская стимуляция - это форма электростимуляции, которая может выполнять ту же задачу, что и NMES: улучшать сокращение ваших мышц. Русский стим просто использует другую форму волны, которая может быть немного более удобной для вас.

    Интерференционный ток (IFC)

    Интерференционный ток часто используется физиотерапевтами для уменьшения боли, уменьшения мышечного спазма или улучшения локального кровотока к различным мышцам или тканям.Его часто используют для уменьшения боли в пояснице и мышечного спазма.

    Для создания интерференционного тока обычно используются четыре электрода, перекрещивающиеся друг с другом. Это заставляет токи, протекающие между электродами, «мешать» друг другу, и позволяет вашему физиотерапевту использовать ток более высокой интенсивности, сохраняя при этом максимальный комфорт для вас.

    Гальванический ток высокого напряжения (HVGC)

    Гальваническая стимуляция высоким напряжением использует высокое напряжение и низкочастотное электричество для проникновения глубоко в ткани.Он используется для снятия боли, улучшения кровотока, снятия мышечного спазма и улучшения подвижности суставов.

    Ограничения

    Имейте в виду, что многие формы электростимуляции являются пассивным лечением; вы ничего не делаете, пока получаете стимуляцию. Некоторые формы электронного стимула, такие как NMES и русский стим, требуют, чтобы вы были активны, пока он используется.

    Электростимуляция никогда не должна быть единственным лечением, которое вы получаете во время физиотерапии.

    Исследования показывают, что активное участие в программе физиотерапии с электростимуляцией или без нее дает наилучшие результаты.Электронный стимул следует использовать только для дополнения вашей программы активной физиотерапии, которая включает определенные движения и упражнения для лечения вашего состояния.

    Риски

    Если ваш физиотерапевт хочет использовать электрическую стимуляцию во время вашего реабилитационного лечения, он или она должны объяснить вам различные преимущества и риски, связанные с лечением.

    Риски электронного стимула могут включать разрыв мышц, ожог тканей или раздражение кожи.

    Если у вас разрыв мышцы

    Если импульс электростимуляции настроен на слишком высокую интенсивность, вы можете почувствовать сильную мышечную боль.В этом случае может произойти разрыв мышечной ткани. В этом случае следует немедленно прекратить е-стим и начать лечение острой мышечной травмы. Это может быть отдых, лед и подъем.

    При раздражении кожи

    Некоторые формы электростимуляции могут вызвать раздражение кожи под электродом. В ионофорезе во время нанесения используется постоянный ток, который, как известно, вызывает раздражение кожи.

    Иногда людей с чувствительной кожей может раздражать клей электрода или электрическая стимуляция.При появлении раздражения процедуру следует прекратить и нанести лосьон на пораженный участок.

    При ожоге ткани

    Если электрическая стимуляция применяется с слишком большой интенсивностью, могут возникнуть ожоги тканей. Хотя это бывает редко, это может произойти, и процедуру следует немедленно прекратить и обеспечить соответствующий уход за кожей.

    Ваш физиотерапевт может убедиться, что электрическая стимуляция используется должным образом, чтобы минимизировать риски, связанные с использованием электронной стимуляции.Понимание этих рисков может помочь вам решить, хотите ли вы включить его в свою реабилитацию.

    Противопоказания

    Есть условия, при которых нельзя использовать электростимуляцию. Эти противопоказания к использованию электронного стимулятора должны быть учтены вашим физиотерапевтом.

    Противопоказания к электростимуляции включают:

    • Изменение чувствительности тканей
    • Нарушение психического статуса
    • Наличие имплантированного электрического устройства (электронный стимул может мешать работе кардиостимуляторов или имплантированных стимуляторов боли)
    • Над злокачественной тканью
    • Над слишком влажными ранами
    • Около глаз, сонной артерии, передней части шеи или над репродуктивными органами

    Ваш физиотерапевт должен был выявить эти противопоказания во время первичного обследования, но важно напомнить ему о любом заболевании, которое может негативно повлиять на электронный стимул.

    Альтернативы электростимуляции

    Если у вас нет возможности использовать электронный стимул для лечения или вы не хотите его использовать, ваш физиотерапевт может предложить вам альтернативные варианты. Если у вас есть боль или ограниченная подвижность, посоветуйтесь со своим физиотерапевтом и посмотрите, подходит ли электростимуляция для вас и вашего конкретного состояния.

    Слово от Verywell

    Если у вас есть состояние, которое приводит к боли или ограничению функциональной подвижности, вам следует проконсультироваться с врачом и обратиться к физиотерапевту.Он или она может использовать электронный стимул, чтобы дополнить вашу программу реабилитации. Если да, то знание того, что такое электрический стимул и как он используется, может помочь вам полностью понять всю вашу программу реабилитации.

    Лечебная терапия, хирургическая терапия, подробности операции и наблюдение

    Автор

    Брайан Дж. Дейли, MD, MBA, FACS, FCCP, CNSC Профессор и программный директор, Департамент хирургии, руководитель, Отделение травм и критических состояний, Медицинский научный центр Университета Теннесси, Медицинский колледж

    Брайан Дж. Дейли, MD , MBA, FACS, FCCP, CNSC является членом следующих медицинских обществ: Американская ассоциация хирургии травм, Восточная ассоциация хирургии травм, Южная хирургическая ассоциация, Американский колледж грудных врачей, Американский колледж хирургов, American Medical Ассоциация, Ассоциация академической хирургии, Ассоциация хирургического образования, Шоковое общество, Общество реаниматологии, Юго-Восточный хирургический конгресс, Медицинская ассоциация Теннесси

    Раскрытие: Ничего не раскрывать.

    Соавтор (ы)

    Хуан Дж. Гальегос, доктор медицины Врач-резидент по общей хирургии, Мемориальная больница Университета Теннесси

    Хуан Дж. Гальегос, доктор медицинских наук, является членом следующих медицинских обществ: Американской медицинской ассоциации, Общества торакальных хирургов, Медицинской ассоциации Теннесси, Техасской медицинской Association

    Раскрытие информации: не подлежит раскрытию.

    Jose Fernando Aycinena Goicolea, MD Colorectal Surgeon, The Longstreet Clinic

    Jose Fernando Aycinena Goicolea, MD является членом следующих медицинских обществ: Американский колледж хирургов, Медицинское общество Пенсильвании

    Раскрытие информации: раскрывать нечего.

    Али Фарук Маллат, доктор медицины, магистр медицины, FACS Доцент кафедры хирургии, Общий медицинский центр Акрона, больница Хиллкрест, клиника Кливленда

    Али Фарук Маллат, доктор медицины, магистр медицины, FACS является членом следующих медицинских обществ: Американский колледж Хирурги, Американская медицинская ассоциация, Восточная ассоциация хирургии травм, Международный колледж хирургов Секция США, Национальная арабская американская медицинская ассоциация, Общество американских желудочно-кишечных и эндоскопических хирургов, Общество интенсивной терапии, Общество хирургической инфекции

    Раскрытие: Ничего не сказано раскрыть.

    Специальная редакционная коллегия

    Франсиско Талавера, фармацевт, доктор философии Адъюнкт-профессор, Фармацевтический колледж Медицинского центра Университета Небраски; Главный редактор Medscape Drug Reference

    Раскрытие информации: Получил зарплату от Medscape за работу. для: Medscape.

    Роберт Л. Шеридан, доктор медицины Заместитель начальника штаба, начальник ожоговой хирургии, Больница Шрайнерс Бернс; Доцент кафедры хирургии отделения травм и ожогов Массачусетской больницы общего профиля и Гарвардской медицинской школы

    Роберт Л. Шеридан, доктор медицины, является членом следующих медицинских обществ: Американская академия педиатрии, Американская ассоциация хирургии травм , Американская ожоговая ассоциация, Американский колледж хирургов

    Раскрытие информации: нечего раскрывать.

    Главный редактор

    Джон Гейбель, доктор медицины, магистр, доктор наук, AGAF Заместитель председателя и профессор отделения хирургии отделения желудочно-кишечной медицины, профессор отделения клеточной и молекулярной физиологии Медицинской школы Йельского университета; Директор хирургических исследований хирургического отделения больницы Йель-Нью-Хейвен; Член Американской гастроэнтерологической ассоциации; Член Королевского медицинского общества

    Джон Гейбель, доктор медицинских наук, магистр, доктор наук, AGAF является членом следующих медицинских обществ: Американской гастроэнтерологической ассоциации, Американского физиологического общества, Американского общества нефрологов, Ассоциации академической хирургии, Международного общества нефрологов. , Нью-Йоркская академия наук, Общество хирургии пищеварительного тракта

    Раскрытие информации: нечего раскрывать.

    Благодарности

    Авторы и редакторы Medscape Reference выражают признательность предыдущему соавтору Джозефу Маккадамсу, доктору медицины, за вклад в разработку и написание этой статьи.

    Поражение электрическим током: первая помощь - Mayo Clinic

    Опасность поражения электрическим током зависит от типа тока, величины напряжения, от того, как ток проходит по телу, от общего состояния здоровья человека и от того, как быстро с ним обращаются.

    Поражение электрическим током может вызвать ожоги или не оставить видимых следов на коже. В любом случае электрический ток, проходящий через тело, может вызвать внутреннее повреждение, остановку сердца или другие травмы. При определенных обстоятельствах даже небольшое количество электричества может быть фатальным.

    Когда обращаться к врачу

    Человек, получивший травму в результате контакта с электричеством, должен быть осмотрен врачом.

    Осторожно

    • Не прикасайтесь к пострадавшему, если он все еще находится в контакте с электрическим током.
    • Позвоните в службу 911 или на местный номер службы экстренной помощи, если источником ожога стал провод высокого напряжения или молния. Не приближайтесь к высоковольтным проводам, пока не отключите питание. Воздушные линии электропередач обычно не изолированы. Держитесь на расстоянии не менее 20 футов (около 6 метров) - дальше, если провода прыгают и искры.
    • Не перемещайте человека с поражением электрическим током, если он или она не находится в непосредственной опасности.

    Когда обращаться за неотложной помощью

    Позвоните в службу 911 или на местный номер службы экстренной помощи, если пострадавший получит:

    • Сильные ожоги
    • Путаница
    • Затрудненное дыхание
    • Нарушения сердечного ритма (аритмии)
    • Остановка сердца
    • Мышечные боли и сокращения
    • Изъятия
    • Потеря сознания

    Примите следующие меры во время ожидания медицинской помощи:

    • По возможности выключите источник электричества.В противном случае переместите источник подальше от вас и человека, используя сухой непроводящий предмет из картона, пластика или дерева.
    • Начните СЛР, если у человека нет признаков кровообращения, таких как дыхание, кашель или движение.
    • Постарайтесь предотвратить переохлаждение раненого.
    • Наложите повязку. Накройте все обожженные участки стерильной марлевой повязкой, если таковая имеется, или чистой тканью. Не используйте одеяло или полотенце, потому что свободные волокна могут прилипнуть к ожогам.
    14 июля 2020 Показать ссылки
    1. Первая помощь при поражении электрическим током. Американский институт профилактической медицины. http://www.healthy.net/Health/Article/First_Aid_for_Electric_Shock/1490. По состоянию на 22 января 2018 г.
    2. Электротравмы. Руководство Merck Professional Version. https://www.merckmanuals.com/professional/injuries-poisoning/electrical-and-lightning-injuries/electrical-injuries. По состоянию на 22 января 2018 г.
    3. AskMayoExpert. Электротравма. Рочестер, Миннесота.: Фонд Мэйо медицинского образования и исследований; 2015.
    4. Kermott, CA, et al., Eds. Неотложная и неотложная помощь. В: Руководство клиники Мэйо по уходу за собой. 7-е изд. Рочестер, Миннесота: Фонд Мейо медицинского образования и исследований; 2017.
    5. Аварийные ситуации от А до Я: поражение электрическим током. Американский колледж врачей скорой помощи. http://www.emergencycareforyou.org/Emergency-101/Emergencies-A-Z/Electrical-Injury-Shock/. По состоянию на 22 января 2018 г.
    6. Электротравмы.Руководство Merck Professional Version. https://www.merckmanuals.com/professional/injuries-poisoning/burns. По состоянию на 22 января 2018 г.

    Продукты и услуги

    1. Книга: Руководство Mayo Clinic по воспитанию здорового ребенка

    .

    Электрические ожоги: Первая помощь - Клиника Мэйо

    Электрические ожоги могут быть вызваны рядом источников электричества, такими как молния, электрошокеры и контакт с током в доме.Легкие электрические ожоги можно лечить так же, как и другие легкие ожоги.

    Когда обращаться к врачу

    Человек, получивший травму в результате контакта с электричеством, должен быть осмотрен врачом. Иногда поражение электрическим током может вызвать повреждение внутренних тканей, обычно руки или ноги. Повреждение может быть хуже, чем можно было бы ожидать от ожога на коже.

    Осторожно

    • Не прикасайтесь к пострадавшему, если он все еще находится в контакте с электрическим током.
    • Позвоните в службу 911 или на местный номер службы экстренной помощи, если источником ожога стал провод высокого напряжения или молния. Не приближайтесь к высоковольтным проводам, пока не отключите питание. Воздушные линии электропередач обычно не изолированы. Держитесь на расстоянии не менее 20 футов (около 6 метров) - дальше, если провода прыгают и искры.
    • Не перемещайте человека с поражением электрическим током, если только он не находится в непосредственной опасности.

    Когда обращаться за неотложной помощью

    Позвоните в службу 911 или на местный номер службы экстренной помощи, если пострадавший получит:

    • Сильные ожоги
    • Путаница
    • Затрудненное дыхание
    • Нарушения сердечного ритма (аритмии)
    • Остановка сердца
    • Мышечные боли и сокращения
    • Изъятия
    • Потеря сознания

    Примите следующие меры во время ожидания медицинской помощи:

    • По возможности выключите источник электричества.В противном случае отодвиньте источник как от себя, так и от пострадавшего, используя сухой непроводящий предмет из картона, пластика или дерева.
    • Начните СЛР, если у человека нет признаков кровообращения, таких как дыхание, кашель или движение.
    • Постарайтесь предотвратить переохлаждение раненого.
    • Наложите повязку. Накройте все обожженные участки стерильной марлевой повязкой, если таковая имеется, или чистой тканью. Не используйте одеяло или полотенце, потому что свободные волокна могут прилипнуть к ожогам.
    19 июня 2020 Показать ссылки
    1. Что делать в случае неотложной медицинской помощи: Ожоги. Американский колледж врачей скорой помощи. http://www.emergencycareforyou.org/Emergency-101/Emergencies-A-Z/Burns/. Доступ 9 января 2018 г.
    2. Kermott, CA, et al., Eds. Неотложная и неотложная помощь. В: Руководство клиники Мэйо по уходу за собой. 7-е изд. Рочестер, Миннесота: Фонд Мейо медицинского образования и исследований; 2017.
    3. AskMayoExpert. Электротравма. Рочестер, Миннесота.: Фонд Мэйо медицинского образования и исследований; 2015.
    4. Первая помощь при поражении электрическим током. Американский институт профилактической медицины. http://www.healthy.net/Health/Article/First_Aid_for_Electric_Shock/1490. Доступ 9 января 2018 г.

    .

    Основы практики, история процедуры, проблема

    Автор

    Брайан Дж. Дейли, MD, MBA, FACS, FCCP, CNSC Профессор и программный директор, Департамент хирургии, руководитель, Отделение травм и критических состояний, Медицинский научный центр Университета Теннесси, Медицинский колледж

    Брайан Дж. Дейли, MD , MBA, FACS, FCCP, CNSC является членом следующих медицинских обществ: Американская ассоциация хирургии травм, Восточная ассоциация хирургии травм, Южная хирургическая ассоциация, Американский колледж грудных врачей, Американский колледж хирургов, American Medical Ассоциация, Ассоциация академической хирургии, Ассоциация хирургического образования, Шоковое общество, Общество реаниматологии, Юго-Восточный хирургический конгресс, Медицинская ассоциация Теннесси

    Раскрытие: Ничего не раскрывать.

    Соавтор (ы)

    Хуан Дж. Гальегос, доктор медицины Врач-резидент по общей хирургии, Мемориальная больница Университета Теннесси

    Хуан Дж. Гальегос, доктор медицинских наук, является членом следующих медицинских обществ: Американской медицинской ассоциации, Общества торакальных хирургов, Медицинской ассоциации Теннесси, Техасской медицинской Association

    Раскрытие информации: не подлежит раскрытию.

    Jose Fernando Aycinena Goicolea, MD Colorectal Surgeon, The Longstreet Clinic

    Jose Fernando Aycinena Goicolea, MD является членом следующих медицинских обществ: Американский колледж хирургов, Медицинское общество Пенсильвании

    Раскрытие информации: раскрывать нечего.

    Али Фарук Маллат, доктор медицины, магистр медицины, FACS Доцент кафедры хирургии, Общий медицинский центр Акрона, больница Хиллкрест, клиника Кливленда

    Али Фарук Маллат, доктор медицины, магистр медицины, FACS является членом следующих медицинских обществ: Американский колледж Хирурги, Американская медицинская ассоциация, Восточная ассоциация хирургии травм, Международный колледж хирургов Секция США, Национальная арабская американская медицинская ассоциация, Общество американских желудочно-кишечных и эндоскопических хирургов, Общество интенсивной терапии, Общество хирургической инфекции

    Раскрытие: Ничего не сказано раскрыть.

    Специальная редакционная коллегия

    Франсиско Талавера, фармацевт, доктор философии Адъюнкт-профессор, Фармацевтический колледж Медицинского центра Университета Небраски; Главный редактор Medscape Drug Reference

    Раскрытие информации: Получил зарплату от Medscape за работу. для: Medscape.

    Роберт Л. Шеридан, доктор медицины Заместитель начальника штаба, начальник ожоговой хирургии, Больница Шрайнерс Бернс; Доцент кафедры хирургии отделения травм и ожогов Массачусетской больницы общего профиля и Гарвардской медицинской школы

    Роберт Л. Шеридан, доктор медицины, является членом следующих медицинских обществ: Американская академия педиатрии, Американская ассоциация хирургии травм , Американская ожоговая ассоциация, Американский колледж хирургов

    Раскрытие информации: нечего раскрывать.

    Главный редактор

    Джон Гейбель, доктор медицины, магистр, доктор наук, AGAF Заместитель председателя и профессор отделения хирургии отделения желудочно-кишечной медицины, профессор отделения клеточной и молекулярной физиологии Медицинской школы Йельского университета; Директор хирургических исследований хирургического отделения больницы Йель-Нью-Хейвен; Член Американской гастроэнтерологической ассоциации; Член Королевского медицинского общества

    Джон Гейбель, доктор медицинских наук, магистр, доктор наук, AGAF является членом следующих медицинских обществ: Американской гастроэнтерологической ассоциации, Американского физиологического общества, Американского общества нефрологов, Ассоциации академической хирургии, Международного общества нефрологов. , Нью-Йоркская академия наук, Общество хирургии пищеварительного тракта

    Раскрытие информации: нечего раскрывать.

    Благодарности

    Авторы и редакторы Medscape Reference выражают признательность предыдущему соавтору Джозефу Маккадамсу, доктору медицины, за вклад в разработку и написание этой статьи.

    Электробезопасность

    Токоведущие части, которым может подвергнуться работник, должны быть обесточены до того, как работник будет работать на них или рядом с ними, если отключение этих частей не создает дополнительных или повышенных опасностей или является невозможным из-за конструкции оборудования или эксплуатационных ограничений.Примеры повышенных или дополнительных опасностей включают отключение оборудования жизнеобеспечения, отключение систем аварийной сигнализации, отключение вентиляционного оборудования опасной зоны или отключение освещения в зоне. Токоведущие части, которые работают при напряжении ниже 50 вольт относительно земли, не нуждаются в обесточивании, если нет повышенного риска электрических ожогов или взрывов из-за электрической дуги.

    Детали без напряжения

    Когда сотрудники работают с обесточенными частями или достаточно близко к ним, чтобы подвергать сотрудников опасности поражения электрическим током, которые они представляют, необходимо соблюдать следующие правила работы, связанные с безопасностью:

    • Считайте находящимися под напряжением любые проводники и части электрооборудования, которые были обесточены, но не были должным образом заблокированы или помечены.
    • В то время как любой сотрудник подвергается контакту с частями стационарного электрооборудования или цепями, которые были обесточены, цепи, питающие эти части, должны быть заблокированы или помечены, либо и то, и другое. Кроме того, необходимо контролировать опасность поражения электрическим током; квалифицированный специалист должен проверить цепь, чтобы убедиться в обесточивании всех источников напряжения.
    • Безопасные процедуры выключения цепей и оборудования должны быть определены до того, как цепи или оборудование будут выключены. Все источники электроэнергии должны быть отключены.Устройства цепей управления, такие как кнопки, электрические переключатели и блокировки, не должны использоваться в качестве единственного средства отключения цепей или оборудования. Блокировки не должны использоваться вместо процедур блокировки и маркировки.

    Детали под напряжением

    Считается, что работники работают с открытыми частями под напряжением или рядом с ними, когда работают с открытыми частями под напряжением либо путем прямого контакта, либо с помощью инструментов или материалов, либо при работе достаточно близко к частям, находящимся под напряжением, чтобы подвергаться любой опасности, которую они представляют.Только квалифицированному персоналу разрешается работать с частями электрических цепей или оборудованием, которые не были обесточены (блокировка / маркировка). Квалифицированный персонал способен безопасно работать в цепях под напряжением и знаком с правильным использованием специальных мер предосторожности, средств индивидуальной защиты, изоляционных и защитных материалов и изолированных инструментов.

    Расстояние доступа квалифицированного специалиста к переменному току

    Диапазон напряжения (между фазами)

    Минимальная дистанция подхода

    300В и менее

    Избегайте контакта

    Более 300 В, но не более 750 В

    1 фут

    Более 750 В, но не более 2 кВ

    1 фут.6 дюймов

    Более 2 кВ, но не более 15 кВ

    2 фута

    Более 15 кВ, но не более 37 кВ

    3 фута

    Более 37 кВ, но не более 87,5 кВ

    3 фута 6 дюймов

    Более 87.5кВ, не более 121кВ

    4 фута

    ВЛ

    Если работы должны выполняться рядом с воздушными линиями, линии должны быть обесточены и заземлены или должны быть приняты другие защитные меры до начала работ. Такие защитные меры, такие как защита, изоляция или изоляция, должны предотвращать контакт квалифицированного лица, выполняющего работу, с проводами любой частью своего тела или косвенно через токопроводящие материалы, инструменты или оборудование.

    Неквалифицированным лицам, работающим на возвышенности вблизи воздушных линий, не разрешается приближаться или прикасаться к проводящим предметам, которые могут касаться или приближаться к любой неохраняемой воздушной линии под напряжением, чем следующие расстояния:

    Напряжение относительно земли

    Расстояние

    50кВ или ниже

    10 футов

    Более 50кВ

    10 футов (плюс 4 дюймаза каждые 10кВ свыше 50кВ)

    Неквалифицированным лицам, работающим на земле в непосредственной близости от воздушных линий, не разрешается подносить токопроводящий объект или любой изолированный объект, не имеющий надлежащих изоляционных характеристик, ближе к неохраняемым, находящимся под напряжением воздушным линиям на расстояние, указанное выше.

    Квалифицированным лицам, работающим вблизи воздушных линий, как на возвышенности, так и на земле, не разрешается приближаться или брать любой токопроводящий объект без одобренной изолирующей ручки ближе к незащищенным частям, находящимся под напряжением, которые в таблице выше, Расстояние подхода для Квалифицированные лица, если:) Человек изолирован от части, находящейся под напряжением, с помощью соответствующих перчаток, с рукавами, если необходимо, рассчитанными на соответствующее напряжение, или б.) Часть, находящаяся под напряжением, изолирована от всех людей, или в.) Человек изолирован от всех проводящие объекты с потенциалом, отличным от находящейся под напряжением части.

    Проведение электрического тока к телу человека и через него: обзор

    Эпластика. 2009; 9: e44.

    Опубликовано в Интернете 12 октября 2009 г.

    , PhD, MD, FACEP a и, MS, PhD, DSc b

    Raymond M.Fish

    a Исследовательская лаборатория биоакустики и отделение хирургии, Университет Иллинойса в Урбана-Шампейн

    Лесли А. Геддес

    b Школа биомедицинской инженерии Велдона, Университет Пердью, W Lafayette, Ind

    a a a a Исследовательская лаборатория биоакустики и отделение хирургии, Иллинойсский университет в Урбана-Шампейн,

    b Школа биомедицинской инженерии Велдона, Университет Пердью, Вирджиния Лафайет, штат Индиана

    Это статья в открытом доступе, авторские права на работу сохраняются за авторами. .Статья распространяется по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

    Эта статья цитируется в других статьях в PMC.

    Abstract

    Цель: Цель данной статьи - объяснить, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Методы: Эта междисциплинарная тема объясняется путем первого обзора электрических и патофизиологических принципов.Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Также обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен отпускания, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током. После обзора основных принципов обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий.Темы, связанные с ожогами высоким напряжением, включают замыкания на землю, градиент потенциала земли, ступенчатый и контактный потенциалы, дуги и молнии. Результат: Практикующий врач будет лучше понимать электрические механизмы травм и их ожидаемые клинические эффекты. Выводы: Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему происходят конкретные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

    В этой статье объясняется, каким образом электрический ток проходит через тело человека и как это влияет на характер травм. Эта междисциплинарная тема объясняется в части A путем сначала обзора электрических и патофизиологических принципов, а затем в части B путем рассмотрения конкретных типов несчастных случаев. Есть дискуссии о том, как электрический ток проходит через тело через воздух, воду, землю и искусственные проводящие материалы. Обсуждаются сопротивление кожи (импеданс), внутреннее сопротивление тела, путь тока через тело, феномен отпускания, разрушение кожи, электрическая стимуляция скелетных мышц и нервов, сердечная аритмия и остановка, а также утопление при поражении электрическим током.После обзора основных принципов в части B обсуждается ряд клинически значимых примеров механизмов аварий и их медицинских последствий. К темам, связанным с высоковольтными ожогами, относятся замыкания на землю, градиент потенциала земли, ступенчатые потенциалы и потенциалы прикосновения, дуги и молнии. . Понимание того, как электрический ток достигает и проходит через тело, может помочь понять, как и почему происходят определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

    ЧАСТЬ A: ОСНОВЫ ЭЛЕКТРИЧЕСТВА И КАК ЭТО ВЗАИМОДЕЙСТВУЕТ С ТЕЛОМ ЧЕЛОВЕКА

    Поражение электрическим током определяется как внезапная резкая реакция на электрический ток, протекающий через любую часть тела человека. Удар электрическим током - смерть от поражения электрическим током. Первичное поражение электрическим током - повреждение тканей, вызванное прямым воздействием электрического тока или напряжения. Вторичные травмы, такие как падения, являются обычным явлением. Если не указано иное, эта статья относится к токам и напряжениям 60 (или 50) Гц переменного тока (среднеквадратичное значение). Кроме того, под сопротивлением мы на самом деле подразумеваем величину импеданса. Высокое напряжение относится к среднеквадратичному значению переменного тока 600 В или более.

    Очень малые количества электрического тока вызывают серьезные физиологические эффекты.

    Ток означает количество электричества (электронов или ионов), протекающего в секунду.Ток измеряется в амперах или миллиамперах (1 мА = 1/1000 ампера). Количество электрического тока, протекающего через тело, определяет различные эффекты поражения электрическим током. Как указано в таблице, различные величины тока вызывают определенные эффекты. Большинство эффектов, связанных с током, возникает в результате нагревания тканей и стимуляции мышц и нервов. Стимуляция нервов и мышц может привести к проблемам, начиная от падения из-за отдачи от боли до остановки дыхания или сердца. Чтобы вызвать физиологические эффекты, требуется относительно небольшой ток.Как показано в таблице, для отключения автоматического выключателя на 20 А требуется в тысячу раз больше тока, чем для остановки дыхания.

    Таблица 1

    Расчетное влияние переменного тока 60 Гц *

    90
    1 мА Едва ощутимая
    16 мА Максимальный ток, который средний человек может схватить45 и «отпустить» 20 мА Паралич дыхательных мышц
    100 мА Порог фибрилляции желудочков
    2 A Остановка сердца и повреждение внутренних органов
    15/20 A размыкатель †

    Сопротивление кожи защищает тело от электричества

    Тело имеет сопротивление току.Более 99% сопротивления тела прохождению электрического тока приходится на кожу. Сопротивление измеряется в Ом. Мозолистая, сухая рука может иметь сопротивление более 100000 Ом из-за толстого внешнего слоя мертвых клеток в роговом слое. Внутреннее сопротивление тела составляет около 300 Ом по отношению к влажным, относительно соленым тканям под кожей. Сопротивление кожи можно эффективно обойти, если есть повреждение кожи от высокого напряжения, порез, глубокое истирание или погружение в воду (таблица). Кожа действует как электрическое устройство, такое как конденсатор, в том смысле, что пропускает больший ток, если напряжение быстро меняется.Быстро меняющееся напряжение будет приложено к ладони и пальцам руки, если он держит металлический инструмент, который внезапно касается источника напряжения. Этот тип контакта даст намного большую амплитуду тока в теле, чем это могло бы произойти в противном случае. 2

    Таблица 2

    Способы значительного снижения защитного сопротивления кожи

    Существенные физические повреждения кожи: порезы, ссадины, ожоги
    Разрыв кожи при 500 В или более
    Быстрое приложение напряжения к участку кожи
    Погружение в воду

    Напряжение

    Напряжение можно рассматривать как силу, проталкивающую электрический ток через тело .В зависимости от сопротивления будет течь определенный ток при любом заданном напряжении. Именно ток определяет физиологические эффекты . Тем не менее, напряжение действительно влияет на результат поражения электрическим током несколькими способами, как описано ниже.

    Разрыв кожи

    При напряжении 500 В или более высокое сопротивление внешнего слоя кожи выходит из строя. 3 Это значительно снижает сопротивление тела току. В результате увеличивается сила тока, протекающего при любом заданном напряжении.Области разрыва кожи иногда представляют собой раны размером с булавочную головку, которые можно легко не заметить. Они часто являются признаком того, что в тело может проникнуть большой ток. Можно ожидать, что этот ток приведет к повреждению глубоких тканей мышц, нервов и других структур. Это одна из причин, почему при высоковольтных повреждениях часто возникают серьезные повреждения глубоких тканей, а не ожоги кожи.

    Электропорация

    Электропорация (повреждение клеточной мембраны) происходит из-за приложения большого напряжения к длине ткани.Это могло произойти при 20 000 В из рук в руки. Электропорация также может происходить при напряжении 120 В, когда конец шнура питания находится во рту ребенка. В этой ситуации напряжение невелико, но вольт на дюйм ткани такое же, как и в случае, когда высокое напряжение прикладывается от руки к руке или с головы до ног. В результате электропорации даже кратковременный контакт может привести к серьезным травмам мышц и других тканей. Электропорация - еще одна причина возникновения глубоких повреждений тканей.

    Нагрев

    При прочих равных, тепловая энергия, передаваемая тканям, пропорциональна квадрату напряжения (увеличение напряжения в 10 раз увеличивает тепловую энергию в 100 раз).

    Переменный и постоянный ток

    Мембраны возбудимых тканей (например, нервных и мышечных клеток) будут передавать ток в клетки наиболее эффективно при изменении приложенного напряжения. Кожа в чем-то похожа тем, что пропускает больше тока при изменении напряжения. Следовательно, при переменном токе происходит непрерывное изменение напряжения с 60 циклами изменения напряжения в секунду. При использовании переменного тока, если уровень тока достаточно высок, будет ощущение поражения электрическим током, пока сохраняется контакт.Если есть достаточный ток, клетки скелетных мышц будут стимулироваться настолько быстро, насколько они могут ответить. Эта скорость меньше 60 раз в секунду. Это вызовет тетаническое сокращение мышц, что приведет к потере произвольного контроля над мышечными движениями. Клетки сердечной мышцы будут получать 60 стимуляций в секунду. Если амплитуда тока достаточная, произойдет фибрилляция желудочков. Сердце наиболее чувствительно к такой стимуляции в «уязвимый период» сердечного цикла, который происходит во время большей части зубца T.

    Напротив, при постоянном токе ощущение шока возникает только тогда, когда цепь замкнута или разорвана, если только напряжение не относительно высокое. 4 Даже если амплитуда тока велика, это может не произойти в уязвимый период сердечного цикла. При переменном токе длительность разряда более 1 сердечного цикла определенно даст стимуляцию в уязвимый период.

    Как связаны ток, напряжение и сопротивление

    Закон Ома выглядит следующим образом:

    На рисунке показаны источник напряжения и резистор.Например, сопротивление 1000 Ом, подключенное к источнику электроэнергии на 120 В, будет иметь значение

    . Напряжение вызывает протекание тока ( I ) через заданное сопротивление. Несколько круговой путь тока называется цепью.

    Токовый путь (-а)

    Электроэнергия течет из (как минимум) одной точки в другую. Часто это происходит от одной клеммы к другой клемме источника напряжения. Соединение между выводами источника напряжения часто называют «нагрузкой».«Нагрузкой может быть что угодно, проводящее электричество, например лампочка, резистор или человек. Это показано на рисунке.

    Чтобы проиллюстрировать некоторые важные моменты, эту схемную модель можно применить к автомобилю. Например, отрицательная клемма автомобильного аккумулятора подключена («заземлена») к металлическому шасси автомобиля. Положительный вывод подключается к красному кабелю, состоящему из отдельных проводов, идущих к стартеру, фарам, кондиционеру и другим устройствам. Электрический ток течет по множеству параллельных путей: радио, стартер, свет и многие другие пути тока.Ток в каждом пути зависит от сопротивления каждого устройства. Отсоединение положительного или отрицательного полюса батареи остановит прохождение тока, хотя другое соединение не повреждено.

    Применение модели к человеческому телу

    На примере автомобиля легче понять, как протекает ток в человеческом теле. Человек, получивший удар электрическим током, будет иметь (как минимум) 2 точки контакта с источником напряжения, одна из которых может быть заземлением. Если либо соединение отключено, ток не будет течь.Аналогия также объясняет, как ток может проходить по множеству параллельных путей, например, через нервы, мышцы и кости предплечья. Сила тока в каждом автомобильном приборе или типе ткани зависит от сопротивления каждого компонента.

    Рисунок развивает модель еще дальше. Он показывает аккумулятор и фары на велосипеде. Ржавые контакты на положительной и отрицательной клеммах аккумуляторной батареи. Общее сопротивление, через которое напряжение должно протекать, равно сопротивлению двух ржавых контактов в дополнение к сопротивлению фар. Чем больше сопротивление, тем меньше ток . Ржавое соединение аналогично сопротивлению кожи, а фара аналогична внутреннему сопротивлению кузова. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи .

    Ржавые контакты добавляют сопротивление току. Фары аналогичны внутреннему сопротивлению кузова, а ржавые соединения аналогичны сопротивлению кожи. Общее сопротивление тела равно внутреннему сопротивлению тела плюс 2 сопротивления кожи.

    На рисунке изображен человек, подключенный к источнику напряжения. Есть соединения с левой рукой и левой ногой. «Общее сопротивление тела» человека складывается из очень низкого (приблизительно 300 Ом) внутреннего сопротивления тела плюс 2 сопротивления при контакте с кожей. Сопротивление контакта с кожей обычно составляет от 1000 до 100000 Ом, в зависимости от площади контакта, влажности, состояния кожи и других факторов. Таким образом, кожа обеспечивает большую часть защиты тела от электрического тока.

    Схема человека, подключенного к источнику напряжения.

    Высоковольтный контакт

    Высоковольтные (≥600 В) контакты иногда кажутся парадоксальными. Птица удобно сидит на высоковольтной линии электропередачи. Но человек в рабочих ботинках, стоящий рядом с грузовиком, погибает при прикосновении к его стороне, потому что приподнятое навесное оборудование грузовика касалось линии электропередачи. Высокое напряжение разрушает электрические изоляторы, включая краску, кожу и большую часть обуви и перчаток. Специальная обувь, перчатки и инструменты считаются защитными при определенных уровнях напряжения.Эти элементы необходимо периодически проверять на наличие (иногда точного размера) разрывов изоляции. Изоляция может оказаться неэффективной, если на поверхности предмета есть влага или загрязнения.

    Как отмечалось выше, для протекания тока требуются 2 или более точек контакта, находящихся под разным напряжением. Многие электрические системы подключены («заземлены») к земле. Опорные конструкции часто бывают металлическими, а также физически находятся в земле.

    Рабочий был электрически подключен к линии электропередачи через металлические части своего грузовика.Высокое напряжение (7200 В) было достаточно высоким, чтобы пройти через краску на грузовике и его обуви. Птица не находилась достаточно близко к земле или чему-либо еще, чтобы замкнуть цепь на землю. Есть птицы с большим размахом крыльев, которые действительно получают удар током, когда перекрывают разрыв между проводами и конструкциями, находящимися под разным напряжением.

    ЧАСТЬ B: ВИДЫ ЭЛЕКТРИЧЕСКОГО КОНТАКТА

    Шаговый и контактный потенциалы

    Земля (земля) под нашими ногами обычно находится под напряжением 0 В.Линии электропередач и радиоантенны заземляют путем соединения их с металлическими стержнями, вбитыми в землю. Если человек идет босиком по земле с расставленными ногами, между двумя ступнями должно быть напряжение 0 В. Это нормальное состояние нарушается, если проводник высоковольтной линии электропередачи достигает земли или если молния ударяет по земле.

    Напряжение от воздушных линий электропередачи может достигать земли несколькими способами. Линия может порваться или отсоединиться от своих изолированных опор и вступить в контакт с самой землей или с конструкциями, которые сами связаны с землей.Опорные провода (растяжки) могут отсоединяться от своих соединений у земли и становиться под напряжением при контакте с линией электропередачи. В этом случае растяжка под напряжением находится под высоким напряжением. Если растяжка касается земли, напряжение на земле в точке контакта и вокруг нее больше не равно 0 В.

    Когда провод под напряжением контактирует с землей напрямую или через проводник, это называется замыканием на землю. Уменьшение напряжения с расстоянием от точки контакта с землей объекта под напряжением называется градиентом потенциала земли .Падения напряжения, связанные с этим рассеянием напряжения, называются потенциалами земли.

    На рисунке показана типичная кривая распределения градиента напряжения. Этот график показывает, что напряжение уменьшается с увеличением расстояния от заземляющего объекта. Слева от заземленного объекта, находящегося под напряжением, есть разница напряжений между двумя ногами человека, называемая ступенчатым потенциалом. Справа есть разница напряжений между рукой человека и двумя ногами, называемая потенциалом прикосновения.Также существует ступенчатый потенциал между двумя ногами человека справа. (Рисунок и этот раздел являются модификациями части правил OSHA [Standards-29 CFR].)

    Ступенчатые и сенсорные потенциалы. Фактические цифры могут варьироваться в зависимости от типа почвы и влажности, а также других факторов.

    Мгновенное горение, нагрев электрическим током или и то и другое.

    Дуги высокого напряжения связаны с прохождением электричества через воздух. В некоторых случаях дуга не касается человека. В этой ситуации от тепла дуги могут возникнуть серьезные ожоги (мгновенный ожог).Также возможны ожоги от горящей одежды и других веществ. Ожоги также могут быть вызваны прикосновением к предметам, которые термически горячие, но не находятся под напряжением.

    Дуги высокой энергии могут вызывать взрывные ударные волны. 5 Тупая сила травмы, которая возникает в результате, может повредить человеку, разорвать барабанные перепонки и ушибить внутренние органы.

    Если дуга или провод под напряжением контактирует с человеком и через него проходит электричество, может возникнуть травма из-за электрического тока, протекающего через тело, в дополнение к механизмам повреждения, упомянутым выше.

    Клинически важно определить, повлекло ли высоковольтное повреждение электрический ток, протекающий через тело. Ток, протекающий через тело из-за высокого напряжения, может привести к возникновению условий, за которыми необходимо следить с течением времени. Эти состояния включают миоглобинурию, коагулопатию и компартмент-синдромы. Несколько клинических и связанных с электрическим контактом проблем могут помочь определить, протекал ли ток через тело. Во-первых, для протекания электрического тока через тело требуется как минимум 2 точки контакта.При высоком напряжении это обычно ожоги на всю толщину. Они могут быть размером с булавочную головку, а иногда их может быть несколько из-за искрения. Если проводник, например кусок проволоки, соприкоснулся с кожей, это может привести к ожогу из-за формы соприкасающегося объекта.

    Горение от вспышки при отсутствии тока через тело, напротив, имеет тенденцию быть диффузным и относительно однородным. Прорывы от вспышки на , иногда на меньше, чем полная толщина, тогда как ожоги от высоковольтных контактов будут на всю толщину.

    Так называемые входные и выходные раны

    Часто бывает всего 2 контактных ожога, которые обычно называют входными и выходными ранами.Эти термины относятся к тому факту, что электрический ток исходит от источника напряжения, входит в тело в одной точке, протекает через тело в другую точку контакта, где он выходит из тела и возвращается к источнику напряжения (или земле). Эта терминология несколько сбивает с толку, если учесть, что переменный ток меняет направление много раз в секунду. Терминология также может вводить в заблуждение, потому что она напоминает пулевые ранения, которые иногда имеют небольшие входные и более крупные выходные ранения. При поражении электрическим током размер раны будет зависеть от таких факторов, как размер и форма проводника, геометрия пораженной части тела и влажность.Аналогия с огнестрельными ранениями также вводит в заблуждение, поскольку не всегда имеется выходное ранение от пули, потому что пуля остается застрявшей в человеке. Таким образом, 2 отдельных ожога третьей степени предполагают протекание тока через тело. Диффузный ожог неполной толщины не предполагает протекания тока через тело.

    Помимо особенностей, связанных с контактом, существуют клинические признаки, которые могут помочь определить, был ли ток через глубокие ткани. Например, можно ожидать, что высоковольтный контакт с рукой, связанный с током, протекающим в руку, будет вызывать твердость и нежность предплечья.При пассивных и активных движениях пальцев может возникнуть боль, а в руке может возникнуть сенсорная недостаточность.

    Молния

    Молния обычно сверкает над поверхностью тела, что приводит к удивительно небольшим повреждениям у некоторых людей. Влажная кожа и очень короткие электрические импульсы побуждают электрический ток проходить по поверхности тела. Тем не менее, молния иногда травмирует людей из-за протекания тока в теле, тупой механической силы, эффекта взрыва, который может разорвать барабанные перепонки и ушибить внутренние органы, а также интенсивный свет, который может привести к катаракте.

    Контакт с проводниками

    Низкое напряжение (

    <600 В)

    Последствия разрядов низкого напряжения перечислены в таблице. Приведенные текущие уровни зависят от конкретного пути тока, продолжительности контакта, веса, роста и телосложения человека (особенно мускулатуры и костных структур) и других факторов. Эффекты, которые возникают в каждом конкретном случае, сильно зависят от нескольких факторов, связанных с тем, как осуществляется контакт с источником электричества. Эти факторы включают в себя путь тока, влажность, отсутствие возможности отпустить и размер областей контакта.

    Путь тока

    Если путь тока проходит через грудную клетку, непрерывные тетанические сокращения мышц грудной стенки могут привести к остановке дыхания. Dalziel, 6 , который проводил измерения на людях, сообщает, что токи, превышающие 18 мА, стимулируют грудные мышцы, так что дыхание останавливается во время шока.

    Другой эффект, который возникает при трансторакальном пути тока, - это фибрилляция желудочков. Трансторакальные пути тока включают руку в руку, руку к ноге и от передней части груди до задней части груди.Эксперименты на животных показали, что порог фибрилляции желудочков обратно пропорционален квадратному корню из продолжительности тока.

    Явление отпускания при низком (

    <600 В) контакте

    Фактором, который существенно влияет на травмы, полученные при низком напряжении, является неспособность отпустить. Сила тока в руке, которая заставляет руку непроизвольно сжимать руку, называется отпускающим током. 7 Если, например, пальцы человека обхватить большой кабель или ручку пылесоса под напряжением, большинство взрослых смогут отпустить его с током менее 6 мА.При 22 мА более 99% взрослых не смогут отпустить. Боль, связанная с отпусканием тока, настолько сильна, что молодые мотивированные добровольцы могли терпеть ее всего несколько секунд. 7 При прохождении тока в предплечье стимулируются мышцы сгибания и разгибания. Однако сгибательные мышцы сильнее, и человек не может добровольно расслабиться. Практически во всех случаях неспособности отпускать руки используется переменный ток. Переменный ток многократно стимулирует нервы и мышцы, что приводит к тетаническому (устойчивому) сокращению, которое длится до тех пор, пока продолжается контакт.Если это приводит к тому, что субъект ужесточает хватку за проводник, результатом является продолжающийся электрический ток через человека и снижение контактного сопротивления. 8

    При использовании переменного тока возникает ощущение поражения электрическим током, пока сохраняется контакт. Напротив, с постоянным током возникает только ощущение шока, когда цепь замкнута или разорвана. Пока контакт поддерживается, ощущения шока не возникает. Ниже 300 мА постоянного тока (среднеквадратичное значение) явление отпускания отсутствует, потому что рука не зажата непроизвольно.Когда ток проходит через руку, возникает ощущение тепла. Замыкание или разрыв цепи приводит к болезненным неприятным ударам. При токе более 300 мА отпускание может быть невозможно. 4 Порог фибрилляции желудочков для разряда постоянного тока длительностью более 2 секунд составляет 150 мА по сравнению с 50 мА для разряда 60 Гц; для разрядов короче 0,2 секунды порог такой же, как и для разрядов 60 Гц, то есть примерно 500 мА. 4

    Мощность обогрева также увеличивается, когда человек не может отпустить.Это связано с тем, что плотный захват увеличивает площадь кожи, эффективно контактирующую с проводниками. Кроме того, со временем между кожей и проводниками накапливается высокопроводящий пот. Оба эти фактора снижают контактное сопротивление, что увеличивает протекающий ток. Кроме того, нагревание сильнее, потому что продолжительность контакта часто составляет несколько минут по сравнению с долей секунды, необходимой для того, чтобы отказаться от болезненного раздражителя.

    Неспособность отпустить приводит к увеличению тока в течение более длительного периода времени.Это увеличит повреждение из-за нагрева мышц и нервов. Также будет усиление боли и частота остановки дыхания и сердца. Также может быть вывих плеча с травмой связок и сухожилий, а также переломы костей в области плеч.

    Явление отпускания при высоком (> 600 В) контакте

    Несколько разных результатов могут произойти, когда человек схватится за провод, подающий из рук в руки напряжение 10 кВ переменного тока. Такой контакт занимает более 0,5 секунды, прежде чем большая часть клеток дистального отдела предплечья подвергнется тепловому повреждению.Однако в течение 10–100 миллисекунд мышцы на пути тока сильно сократятся. Человека можно стимулировать, чтобы он сильнее сжимал провод, создавая более сильный механический контакт. Или человека может оттолкнуть от контакта. Какое из этих событий произойдет, зависит от положения руки относительно проводника. Большинство очевидцев сообщают, что жертвы отталкиваются от проводника, возможно, из-за общих мышечных сокращений. В таких случаях время контакта оценивается примерно в 100 миллисекунд или меньше. 9 (стр. 57)

    Контакт с погружением: утопление электрическим током

    Клинические проблемы

    Утопление или близкое к утоплению может быть результатом попадания электричества в воду. Состояния, требующие лечения почти утопления, вызванного электричеством, в основном такие же, как и условия, связанные с неэлектрическим утоплением. Эти состояния включают повышение миоглобина, которое может привести к почечной недостаточности (обнаруживаемой по повышению креатинкиназы [КФК] и анализу мочи), респираторному дистресс-синдрому у взрослых, гипотермии, гипоксии, электролитным нарушениям и аритмиям, которые включают желудочковую тахикардию и фибрилляцию желудочков.Считается, что уровни креатинкиназы и миоглобина в неэлектрических случаях почти утопления связаны с жестокой борьбой, а также иногда с длительной гипоксией и электролитным дисбалансом. Электричество в воде может стимулировать мышцы достаточно сильно, чтобы вызвать у человека сильную мышечную боль во время и после того, как он или она почти утонул. Это еще больше увеличит уровни КФК и миоглобина по сравнению с теми, которые могут возникнуть в результате неэлектрического воздействия на стол, близкий к утоплению. Уровень креатинкиназы иногда повышается в течение дня или более под влиянием проводимого лечения, продолжающейся гипоксии или гипотонии и других состояний, которые могут повлиять на продолжающийся некроз тканей.

    Таблица 3

    Почему погружение в воду при очень низких напряжениях может быть фатальным

    1 Погружение очень эффективно смачивает кожу и значительно снижает ее сопротивление на единицу площади
    2 Площадь контакта большой процент площади всей поверхности тела
    3 Электрический ток также может проникать в организм через слизистые оболочки, такие как рот и горло
    4 Человеческое тело очень чувствительно к электричеству.Очень малое количество тока может вызвать потерю способности плавать, остановку дыхания и остановку сердца.

    Воздействие электрического тока

    Многие определения воздействия электрического тока на людей были сделаны Далзилом. 10 Для любого данного эффекта, такого как столбнячные сокращения мышц, существует диапазон текущих уровней, которые вызывают эффект из-за индивидуальных различий субъектов. Например, ток, необходимый для возникновения тетанических сокращений мышц предплечья («отпускающий» ток), может составлять от 6 до 24 мА (среднеквадратичное значение переменного тока 60 Гц) в зависимости от пациента.Следовательно, текущие уровни, перечисленные в публикациях, могут быть максимальными, средними или минимальными уровнями, в зависимости от обсуждаемых вопросов. С точки зрения безопасности часто подходят значения, близкие к минимальным.

    Как указано в таблице, Dalziel 7 обнаружил, что ток 10 мА может вызвать тетанические сокращения мышц и, следовательно, потерю мышечного контроля. Кроме того, Smoot and Bentel 12 обнаружили, что 10 мА тока было достаточно, чтобы вызвать потерю мышечного контроля в воде. Они проводили измерения в соленой воде и не сообщали о приложенных напряжениях.

    Таблица 4

    Механизмы смерти при утоплении электрическим током

    Механизм Необходимый ток, мА Необходимое напряжение, В переменного тока
    Электрическая стимуляция сердца, вызывающая фибрилляцию желудочков 30
    Тетаническое сокращение (эффективное паралич) дыхательных мышц 20 6
    Потеря мышечного контроля конечностей: 16 мА для среднего человека 1 16 4 .8
    Потеря мышечного контроля конечностей: всего 10 мА для наиболее чувствительных женщин 7 , 11 10 3

    Общее сопротивление тела в воде

    Общее с учетом мер безопасности сопротивление тела от руки к ноге в воде считается равным 300 Ом. 13 - 15 Smoot 11 , 16 измерили полное сопротивление тела 400 Ом с погружением.Во многом это связано с внутренним сопротивлением тела. Таким образом, погружение устраняет большую часть сопротивления кожи.

    Соленая вода обладает высокой проводимостью по сравнению с человеческим телом, поэтому поражение электрическим током в соленой воде является относительно редким явлением. Это связано с тем, что большая часть электрического тока проходит по внешней стороне тела.

    Если есть разница напряжений, например, между одной рукой и другой, то через тело будет протекать электрический ток. Сила тока равна напряжению, деленному на общее сопротивление тела.

    Какое напряжение в воде может быть смертельным?

    В таблице указаны значения силы тока, необходимые для возникновения фибрилляции желудочков и других смертельных состояний. Общее сопротивление тела в воде составляет 300 Ом. Таким образом, известны необходимый ток и сопротивление, которое он должен испытывать. Таким образом, можно рассчитать необходимое напряжение. Для фибрилляции желудочков расчет выглядит следующим образом:

    Требуемое напряжение = Ток × Сопротивление

    Для того, чтобы вызвать фибрилляцию желудочков, необходимое напряжение составляет:

    Напряжение = 100 мА × 300 Ом = 30 В

    Рисунки для других механизмов смерти указаны в табл.

    Электрический контакт, связанный с водой, часто происходит двумя способами. Эти механизмы могут происходить в ваннах, бассейнах и озерах. Первый механизм контакта заключается в том, что человек в воде выходит из воды и контактирует с токопроводящим объектом, находящимся под напряжением. Например, человек чувствует себя хорошо, сидя в ванне. Сопротивление контакта его руки с объектом под напряжением за пределами ванны может быть достаточно высоким, чтобы защитить его или ее, особенно если его или ее рука не мокрая и площадь контакта небольшая.

    Второй механизм контакта включает человека в воде, находящегося в электрическом поле из-за проводника под напряжением, который находится в воде. Например, электрический нагреватель, подключенный к тёплому проводу розетки 120 В переменного тока, падает в воду. Заземленный слив находится близко к плечам человека, а обогреватель - у его или ее ног. Это дает разницу напряжений 120 В переменного тока от плеч до ступней. При общем сопротивлении тела 300 Ом протекает 360 мА, что более чем в 3 раза превышает величину, необходимую для фибрилляции желудочков.

    В озерах, прудах и других водоемах источник электроэнергии может генерировать ток в воде. Местоположение напряжений в воде можно измерить. В воде могут присутствовать напряжения из-за того, что корпус лодки, подключенной к береговому источнику питания, находится под напряжением. В воде также могут присутствовать напряжения из-за находящихся под напряжением проводников в воде, которые пропускают электрический ток в воду.

    Может существовать электрический градиент (или поле), аналогичный описанной выше ситуации для ступенчатого и касательного потенциалов.Ситуацию сложнее проанализировать в воде, потому что человек в воде принимает разные позы и ориентации в трех измерениях (вверх, вниз и в стороны - север, юг, восток и запад). Трансторакальное напряжение и напряжение на конечностях будут меняться по мере движения человека в зависимости от ориентации (направления) электрического поля.

    Измерения потери мышечного контроля в воде

    Измерения, аналогичные измерениям Smoot и Bentel 12 , были выполнены с одобрения институционального наблюдательного совета Университета Иллинойса в Урбана-Шампейн.Металлические пластины помещали внутрь резиновых контейнеров. Металлические пластины были плоскими на дне контейнеров. Сверху на каждую металлическую пластину помещали резиновый коврик с отверстиями. (Изолированный) провод заземления источника питания был подключен к одной пластине, а напряжение переменного тока 60 Гц от источника питания было подключено к другой пластине. Испытуемый стоял, опираясь на каждый резиновый коврик по одной ноге, как показано на рисунке. Таким образом, субъект контактировал с электрическим током в основном через воду, контактирующую с ногами через отверстия, а также через воду, контактирующую с ногами выше.Эта траектория потока между ногами имитировала ситуации рукопашного боя и рукопожатия, которые могут возникнуть у пловцов в воде. Эта установка сводила к минимуму ток через грудную клетку. В исследовании участвовал всего 1 субъект.

    Установка для измерения напряжения и тока в воде.

    Свежая (не соленая) вода с проводимостью 320 мкм / см наполняла каждое ведро до уровня около бедра. Было обнаружено, что электрически индуцированные сокращения мышц сильно меняются положением ног в воде.

    Первоначальное тестирование показало, что при 3,05 В (среднеквадратичное значение переменного тока 60 Гц) между пластинами протекал ток 8,65 мА, что приводило к непроизвольному сгибанию колена на 90 °. Это сгибание нельзя было преодолеть произвольным усилием. Колено можно было произвольно сгибать дальше, но оно не выпрямлялось больше, чем на 90 °. Непроизвольное резкое сгибание произошло, когда нога была поднята (сгибанием бедра) так, чтобы бедро было горизонтальным, а колено находилось на уровне воды. Это похоже на ситуацию во время плавания.Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра (путем разгибания бедра в нейтральное положение) и нога становится вертикальной. Общее сопротивление корпуса рассчитывается следующим образом:

    При 4,05 В протекает ток 12,6 мА. Колено было согнуто на 135 °, то есть пятка находилась рядом с ягодицами. Это нельзя было преодолеть добровольными усилиями. Опять же, это произошло, когда нога была поднята так, чтобы колено находилось на уровне воды, аналогично ситуации, когда кто-то плывет.Меньшее нарушение мышечного контроля было отмечено в других положениях ног. Контроль над мышцами постепенно восстанавливается, когда ступня опускается на дно ведра и нога становится вертикальной. Сопротивление составит 4,05 В / 12,6 мА = 332 Ом.

    Текущие уровни, измеренные в этих экспериментах, согласуются с уровнями, о которых сообщают Dalziel, 7 Smoot, 11 и NIOSH, 1 , как указано в таблицах и. Общее сопротивление системы (вода плюс предмет) близко к 300 Ом, что часто упоминается в литературе.

    ЗАКЛЮЧЕНИЕ

    Существует множество типов электрических контактов, каждый из которых имеет важные характеристики. Понимание того, как электрический ток достигает и проходит через тело, может помочь врачу понять, как и почему произошли определенные несчастные случаи и какие медицинские и хирургические проблемы могут возникнуть.

    Благодарности

    Авторы благодарят Энди Фиша за иллюстрации.

    СПИСОК ЛИТЕРАТУРЫ

    1. Национальный институт охраны труда.Смерть рабочих от удара током. Публикация NIOSH № 98-131. 2009 г. Доступно по адресу: http://www.cdc.gov/niosh/docs/98-131/overview.html. Проверено 20 марта. [Google Scholar] 2. Рыба Р. М., Геддес Л. А.. Электрофизиология всплесков тока подключения. Cardiovasc Eng. 2008. 8 (4): 219–24. [PubMed] [Google Scholar] 3. Гримнес С. Диэлектрический пробой кожи человека in vivo. Med Biol Eng Comp. 1983; 21: 379–81. [PubMed] [Google Scholar] 4. Бернштейн Т. Расследование предполагаемых случаев поражения электрическим током и возгораний, вызванных внутренним напряжением.IEEE Ind Appl. 1989. 25 (4): 664–8. [Google Scholar] 5. Капелли-Шеллпфеффер М, Ли RC, Тонер М, Диллер КР. Документ представлен на конференции IEEE PCIC. Филадельфия, Пенсильвания: 1996. Взаимосвязь между параметрами аварии и травмы. 23–25 сентября. [Google Scholar] 6. Далзил CF. Опасность поражения электрическим током. IEEE Spectr. 1972; 9 (2): 41–50. [Google Scholar] 7. Далзил CF. Воздействие электрического шока на человека. ИРЭ Транс Мед Электрон. 1956: 44–62. PGME-5. [Google Scholar] 8. Рыба РМ. Феномен отпускания. В: Рыба Р.М., Геддес Л.А., редакторы.Электрическая травма: медицинские и биоинженерные аспекты. Тусон, Аризона: Издательство юристов и судей; 2009. глава 2. [Google Scholar] 9. Ли Р. К., Кравальо Э. Г., Берк Дж. Ф., редакторы. Электрическая травма. Кембридж, Англия: Издательство Кембриджского университета; 1992. [Google Scholar] 10. Далзил Чарльз Ф., Ли В. Р. Переоценка смертельных электрических токов. IEEE Trans Indus Gen Appl. 1968; ИГА-4 (5): 467–476. D.O.I.10.1109 / TIGA.1968.4180929. [Google Scholar] 11. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна.IEEE Trans Power Apparat Sys. 1964. 83 (9): 945–964. [Google Scholar] 12. Smoot AW, Bentel CA. Опасность поражения электрическим током осветительных приборов подводного плавательного бассейна. Нью-Йорк. При поддержке Underwriter's Laboratories Inc. Доклад представлен на: Зимнем совещании по энергетике IEEE; Февраль 1964 г .; Нью-Йорк (раздел на страницах 4 и 5) [Google Scholar] 13. ВМС США. Учебная серия по электричеству и электронике военно-морского флота. Модуль 1 - Введение в материю, энергию и постоянный ток. Иногородний учебный курс. Пенсакола, штат Флорида: Центр профессионального развития и технологий военно-морского образования и обучения; 1998 г.С. 3–108. Доступно по адресу: www.hnsa.org/doc/neets/mod01.pdf. По состоянию на 26 марта 2009 г. [Google Scholar] 14. Управление военно-морского флота, канцелярия начальника военно-морских операций. Руководство по программе безопасности и гигиены труда ВМС США для сил на плаву. Том III. Вашингтон, округ Колумбия: военно-морское ведомство, канцелярия начальника военно-морских операций; 2007. С. D5–9. Доступно по адресу: http // doni.daps.dla.mil / Directive / 05000% 20General% 20Management% 20Security% 20and% 20Safety% 20Services / 05-100% 20Safety% 20and% 20Occupational% 20Health% 20Services / 5100.19E% 20-% 20Volume% 20III.pdf. [Google Scholar] 15. Национальный центр испытаний и исследований в области электроэнергетики. Паразитные напряжения - проблемы, анализ и смягчение последствий [окончательный вариант] Форест-Парк, штат Джорджия: Национальный центр испытаний и исследований в области электроэнергетики; 2001.