Принцип работы котла твердотопливного: Принцип работы твердотопливного котла — Статьи — Интернет-магазин отопительного оборудования

Содержание

устройство и принцип работы. Обновлено 30.07.2022

Основным недостатком твердотопливных котлов является необходимость регулярной растопки. В условиях низких температур даже незначительное промедление может стать причиной размораживания отопительной системы. Для предотвращения образования льда в контур добавляется антифриз, однако не всегда это возможно. Альтернативным вариантом является покупка твердотопливного котла с термоэлектрическим нагревателем (ТЭНом).

ТЭН — надежная страховка от размораживания системы. С гибридным котлом можно зимой смело оставлять дом с водяным отоплением на несколько дней без присмотра.

Содержание:

  1. Твердотопливный котел с ТЭНами: аргументы «за» и «против»
    • Аргументы «ЗА»
    • Какие могут возникнуть сложности
  2. Принцип работы твердотопливных котлов с ТЭНом
  3. Особенности подключения
  4. Выбор котла с ТЭНом
  5. Популярные модели

Твердотопливный котел с ТЭНами: аргументы «за» и «против»

Как и любое отопительное оборудование, котлы с термоэлектрическим нагревателем имеют и достоинства, и недостатки.

Аргументы «ЗА»:


  1. ТЭН — надежная страховка от размораживания системы. С гибридным котлом можно смело оставлять дом с водяным отоплением на несколько дней, не опасаясь увидеть по возвращении разорванные трубы, заиндевевшие стены или наросты льда на лопнувших радиаторах.
  2. Нет привязки к графику завоза топлива. Котел с ТЭНом позволяет поддерживать температуру в доме с водяным отоплением при перебоях с поставкой дров.
  3. Схема подключения твердотопливного котла с ТЭНом более экономична, чем покупка и установка двух отопительных котлов разного типа. Во-первых, оплачивается только один котел; во-вторых — стоимость оборудования впишется в рамки даже скромного бюджета.
  4. Наличие в отопительном контуре циркуляционного насоса не является обязательным. Естественная циркуляция за счет градиента плотности, возникающего из-за разницы температур, происходит и при нагреве воды за счет горения топлива, и при включении электрического блока.
  5. Мощность термоэлектрических нагревателей обычно не превышает 9 кВт, благодаря чему оборудование можно подключать к обычной электросети с напряжением 220 В.

Какие могут возникнуть сложности?

Главная проблема, связанная с эксплуатацией оборудования с ТЭНами — образование и отложение накипи. Рыхлый слой солей кальция и магния, покрывающий поверхность нагревательного элемента, значительно снижает коэффициент теплопередачи, что уменьшает эффективность нагрева.

По этой причине процесс технического обслуживания становится сложнее и расширяется перечень профилактических работ. Помимо очистки котла от сажи и проверки состояния дымохода необходимо осматривать нагревательные элементы и очищать их от накипи. Кроме того, ТЭНы нередко выходят из строя, что влечет необходимость их замены.

Принцип работы твердотопливных котлов комбинированных с ТЭНом

Принципы работы отопительной водяной системы с котлом на твердом топливе и с комбинированным котлом идентичны. Основная отличительная особенность гибридного котла твердое топливо/электричество заключается в наличии резервного источника тепла.

При горении дров выделяется тепловая энергия, за счет которой вода (или иной теплоноситель) нагревается до 60-90 °С. По окончании процесса горения температура воды в контуре постепенно снижается. Датчик, установленный в комбинированном котле, дает сигнал на контроллер при падении температуры ниже заданного значения. Одновременно с этим автоматически включается ТЭН и поддерживает температуру в установленном диапазоне. При растопке котла температура поднимается выше заданных значений и термонагревательный элемент автоматически отключается.

По описанному выше принципу работают практически все модели гибридных котлов. Конструктивные особенности могут повлечь некоторые незначительные изменения в процессе эксплуатации.

ТЭН включается автоматически и поддерживает температуру в установленном диапазоне.

Особенности подключения

Монтаж комбинированных водонагревательных котлов, работающих на твердом топливе и на электричестве, производится в строгом соответствии с положениями СНиП и ППБ. В качестве основных моментов, заслуживающих внимания, стоит выделить следующие:

  1. Если мощность электронагревательных элементов не превышает 3 кВт, подключение производится к действующей сети. Потребляемая мощность 6-9 кВт создает существенную дополнительную нагрузку на проводку, поэтому для мощных нагревателей должна быть выделена отдельная линия.
  2. Для котлов производительностью до 40 кВт место установки не регламентируется. Более мощные котлы должны размещаться в отдельном помещении (котельной), изолированном от жилой зоны.
  3. Подключение гибридного котла «твердое топливо/электричество» производится через отдельные автоматы на распределительном щите. Для термоэлектрического нагревателя перепады напряжения не критичны, но при использовании удаленного контроллера необходима установка стабилизатора напряжения.
  4. Помещение котельной должно иметь отапливаемым, иметь естественное освещение, приточно-вытяжную вентиляцию. Его площадь должна быть не менее 8 м2.
  5. Согласно нормам противопожарной безопасности, твердотопливные котлы длительного горения с тэном устанавливаются на расстоянии от стен не менее 50 см. Монтаж производится на основание, выполненное из огнестойких материалов.
    В отверстия в плитах перекрытия, предназначенные для дымохода, устанавливается защитный короб, а пространство между дымоходом и внутренними стенками короба заполняется термоизоляционными негорючими материалами.

Выбор котла с ТЭНом

Определяющим параметром для выбора котла является мощность: при недостаточном значении этого параметра о комфортной температуре в доме можно забыть. Оптимальной считается мощность, которая полностью компенсирует тепловые потери при среднестатистической температуре в отопительный период. Для этого не обязательно делать инженерный теплотехнический расчет: достаточно воспользоваться примерными значениями: в доме с качественным утеплением тепловые потери составляют 1 кВт на 10 м2. Если качество утепления наружных стен оставляет желать лучшего, этой мощности может оказаться недостаточно. Расчет производится с учетом материала и толщины стен, наличия теплоизолирующего слоя, количества окон. Во избежание ошибок расчет лучше доверить специалисту.

Необходимо принять во внимание и теплозащищенность здания. Если дом построен на открытой местности, продуваемой ветрами, расчетная мощность котла должна быть увеличена в соответствии с поправочным коэффициентом.

Важнейшим фактором является доступность твердого топлива. В районах с большим количеством лесов предпочтительны дрова, в степных — уголь.

Модели твердотопливных котлов с ТЭНом могут иметь разный набор опций, что значительно отражается на цене. Перед покупкой желательно определиться, будет ли котел использоваться исключительно для отопления или еще и для получения горячей воды, приготовления пищи. Предполагается ли работа котла в автоматическом режиме?

Только после получения и анализа всех данных можно отправляться в магазин отопительного оборудования.

Популярные модели твердотопливных котлов с ТЭНом


Завод «Теплодар» предлагает универсальные и бюджетные модели твердотопливных комбинированных котлов: «Куппер ПРО», «Куппер ОК», «Куппер ОВК» с ТЭНами мощностью 9 кВт, а также «Куппер Практик», нагревательные элементы в котором имеют мощность 6 кВт (можно заменить на более мощные).

Преимущества отопительных комбинированных котлов «Теплодар»:

  • Высокий КПД. Усовершенствованная конструкция теплообменника позволяет увеличить площадь теплосъема на 60 % без изменения габаритных размеров котла.
  • Изоляция корпуса минеральным картоном минимизирует теплопотери.
  • Твердотопливные котлы «Куппер-ОВК10» и «Куппер-ОВК18» оснащены плитой из чугуна, что позволяет использовать их для разогрева или приготовления пищи.
  • Конструкция котлов серии «Куппер» допускает использование всех видов твердого топлива. Возможен переход на газ или пеллеты, в этих случаях котлы нужно оборудовать газовой или пеллетной горелкой, также произведенной на нашем заводе.
  • В базовую комплектацию включен блок для установки ТЭНов, предназначенных для поддержания температуры после окончания процесса горения твердого топлива. Котлы мощностью 15 кВт могут оснащаться автоматическим регулятором тяги.

Котлы серии «Куппер» являются универсальными: они могут быть базой для любой системы отопления — открытой, закрытой, с принудительной или естественной циркуляцией теплоносителя. Конструктивные особенности позволяют подключать водяной контур с любой стороны, что существенно упрощает монтаж отопительной системы.

Твердотопливный котел с электронагревательным элементом минимизирует риск размораживания системы с водяным контуром, когда отсутствует возможность регулярной растопки. Установка гибридного котла «твердое топливо/электричество» позволит на непродолжительный срок оставить систему без присмотра, а также избежать замены воды в отопительной системе на антифриз. Надежное оборудование гарантирует безопасность работы отопительной системы даже в условиях экстремально низких температур.

Устройство и принцип работы твердотопливных котлов длительного горения

 

В современном мире на первый план выходит экономия природных ресурсов. За последние годы человечество в результате своей бурной деятельности потребило огромное количество природных ископаемых. Земные недра истощаются с пугающей скоростью, и уже через несколько десятилетий многие отрасли могу испытать сырьевой кризис.

 

Поэтому твердотопливные котлы длительного горения становятся одной из самых покупаемых моделей среди всех отопительных систем. Они позволяют намного более рационально использовать горючее и снижают его потребление в несколько раз. За отопительный сезон экономия может составить более тонны угля.

 

Эксплуатация оборудования

 


Двухконтурные отопительные котлы на твердом топливе отлично проявляют себя в эксплуатации. Горячая вода, получаемая с их помощью, обойдется дешевле, чем предоставляемая централизованно услуга. Поэтому многие люди отказываются от коммунального водоснабжения в пользу подогрева при помощи котла.


Среди всех существующих моделей особенно выделяются пиролизные котлы длительного горения. Их принцип работы основан на практически бескислородном сжигании топлива, в результате чего оно намного дольше горит, выделяет больше тепловой энергии и дает меньшее количество твердых отходов. А побочным продуктом реакции выделяется коксовый газ, который не выбрасывается в атмосферу, а так же сжигается в топке и выделяет дополнительное тепло. Это позволяет не только поднять КПД до немыслимых для твердого топлива 90%, но и значительно улучшает экологичность агрегатов.

 


Приобрести подобный аппарат не составит труда. В Украине купить котел длительного горения можно в Днепропетровске, Киеве, Харькове и любом другом крупном городе. Для этого достаточно обратиться в любой дилерский магазин или сертифицированный центр продаж отопительного оборудования. А можно и вовсе заказать себе аппарат через интернет прямо с адресной доставкой на дом. Точно так можно поступить и для покупки твердотопливного котла в Польше, России и любой другой стране.

 

Обзор популярных моделей

 


На отечественном рынке присутствует много чугунных и стальных твердотопливных агрегатов. Эти модели наименее склонны к поломкам, так как имеют самую простую конструкцию. Отсутствие автоматики делает их энергонезависимыми, что очень актуально для населенных пунктов, где часто отключают свет. Некоторые популярные модели:

 

  • 1.    Литовский твердотопливный котел длительного горения Stropuva (Стропува) является универсальным агрегатом, способным работать на всех видах угля, а также на дровах и отходах деревообрабатывающей промышленности. В эксплуатации очень прост и надежен, так что легко прослужит много лет без каких-либо эксцессов.
  • 2.    Твердотопливный котел длительного горения Buderus (Будерус) немецкого производства является лучшей на сегодняшний день моделью.
    Он является самым экономным агрегатом, так как немцы хорошо умеют выжимать максимум из минимума. Качественная сталь хорошо защищена от любых видов негативного воздействия, а компактные размеры порадуют людей, имеющих небольшую котельную. По всем основным параметрам техника выигрывает у конкурентов.
  • 3.    Котел твердотопливный длительного горения Буран производится в Украине и являет собой великолепное творение для бюджетного варианта. Этот агрегат в буквальном смысле работает на всем, что горит. Он неприхотлив к качеству топлива и может спокойно работать десятилетиями. Его недостатком является лишь низкий по сравнению с европейскими моделями показатель КПД.
  • 4.    Еще одна литовская модель Candle обладает всеми достоинствами и недостатками первого номера в списке, только производится на другом заводе.

 


На производстве используются автоматические котлы, которые самостоятельно подбрасывают топливо в камеру сгорания и вычищают сажу. Они стоят очень дорого, поэтому массового распространения не получили. Посмотреть их работу на видео можно в интернете на специализированном форуме или на сайте изготовителя. Ролик позволит более детально вникнуть в происходящий процесс, и возможно применить его в бытовых условиях при помощи конструктивной доработки. Главное в погоне за улучшением ничего не сломать.

 

Устройство котла

 


Для любителей все делать своими руками в сети есть специальные схемы и чертежи, позволяющие собрать котел самодельный длительного горения. Для этого понадобится корпус от какого-нибудь старого отопителя, расходники, сварочный аппарат и спецодежда для защиты.

 

 

 

По времени работа займет не много, но на каждом этапе нужно соблюдать аккуратность и следить, чтобы все складывалось нужным образом. Успешное завершение операции возможно только в случае выполнения всех требований технологического процесса. В противном случае все работы пойдут насмарку.

 


Устройство котла длительного горения подразумевает наличие топки закрытого типа, в которую ограничен доступ воздуха. Это позволяет долгое время поддерживать процесс горения, чтобы топливо лучше прогорало и отдавало максимум тепловой энергии.

 

Подача кислорода обычно регулируется механическим путем при помощи клапана. Отзывы о котлах подобного типа подтверждают, что они гораздо лучше ведут себя в эксплуатации, чем стандартные модели на твердом топливе.


Актуальные цены на котлы длительного горения лучше узнавать в день покупки у официальных дилеров. Нестабильная экономическая ситуация заставляет торгующие фирмы пересчитывать стоимость товаров практически каждый день.

Южный Котлы и оборудование | Паровой котел

Паровой котел — блочный — твердотопливный

Трехходовой блочный
Паровой котел — твердотопливный

 

ОСОБЕННОСТИ

  • Горизонтальный котел заводской сборки
  • Меньше работы на площадке и немедленный ввод в эксплуатацию
  • Ручной обжиг меньшей сложности
  • Большая печь для обжига
  • Вытяжной вентилятор обеспечивает непрерывную подачу топлива и удаление золы.
  • Трехходовая оптимальная рекуперация тепла
  • Сквозная видимость труб.
  • Легкий доступ для осмотра и очистки.
  • Большая площадь поверхности нагрева.
  • Больше парового пространства.

Полностью влажная изнанка

Полувлажная изнанка

Сухая изнанка

ПРИНЦИП ДЕЙСТВИЯ
Наши моноблочные котлы на твердом топливе специально разработаны для ручного управления пожарным. Печь оснащена специально разработанными жаропрочными колосниками. Твердое топливо подается вручную на штанги.

Первичный воздух поступает в топку через отверстия в колоснике. Колосники сконструированы таким образом, что они охлаждаются за счет охлаждающего действия первичного воздуха. Вторичный воздух поступает в печь через отверстия, предусмотренные в передней части печи. Этот воздух сообщает круговое движение пламени и дымовым газам. Вытяжной вентилятор поддерживает отрицательное давление в печи. Это уникальное соотношение двух потоков первичного воздуха и вторичного воздуха предотвращает плавление золы и образование шлака. Это также обеспечивает полное сгорание топлива.

Полу/мокрая задняя камера, расположенная в задней части топки, эффективно поглощает поступающее в нее пламя, обеспечивает полный оборот и перемешивание газов перед поступлением на второй ход. На задней стенке камеры предусмотрена дверца для облегчения быстрого удаления летучей золы и предотвращения закупорки труб. Передняя дымовая камера также обеспечивает полный оборот смешения газов перед входом в третий и последний ход дыма. Полу/мокрая задняя камера, расположенная в задней части топки, эффективно поглощает поступающее в нее пламя, обеспечивает полный оборот и смешение дыма. газы перед входом во второй проход. На задней стенке камеры предусмотрена дверца для облегчения быстрого удаления летучей золы и предотвращения закупорки труб. Передняя дымовая камера также обеспечивает полный оборот смешивания газов перед входом в третий и последний проход дымовых труб. Поскольку все полезное тепло поглощается, тепловой КПД равен поглощению тепла, тепловой КПД достигает 75 =/-3% на основе полной общей теплоты сгорания твердого топлива 3000–3500 ккал/кг.

КОНСТРУКЦИЯ
Наши котлы производятся в соответствии со строгими стандартами, установленными Индийскими нормами регулирования котлов. Котлы спроектированы таким образом, чтобы защищать от чрезмерных тепловых нагрузок. Котлы изготавливаются с использованием стальных листов и труб качества котлов. Качество обеспечивается в самом производственном процессе, что снижает количество брака и переделок. Все продольные и окружные швы контролируются рентгеновским излучением, а котлы снимаются с напряжения там, где это необходимо, перед гидравлическими испытаниями.

ЭЛЕКТРИЧЕСКОЕ УПРАВЛЕНИЕ
Полностью пыленепроницаемая панель управления содержит все реле и элементы управления, необходимые для безопасной работы котла и его аксессуаров. Защита от перегрузки гарантирует, что двигатели не перегреваются.

СТАНДАРТНЫЙ КОМПЛЕКТ ПОСТАВКИ

  • Котел с топкой, полу/мокрая задняя камера, дымовые трубы и плавкая вставка Изготовлены, испытаны и сертифицированы с передним и задним дымовыми ящиками, установленными на седле для простоты установки. В комплект поставки входит комплект жаростойких чугунных противопожарных решеток и чугунных дверей.
  • Один вытяжной вентилятор с двигателем.
  • Поставляются два комплекта насосов питательной воды и двигателей, трубопровод и обратные клапаны
  • Один комплект креплений котла качества I.B.R.
  • Автоматический регулятор уровня воды.
  • Панель управления

ПРОИЗВОДИТЕЛЬНОСТЬ
Мы производим широкий стандартный диапазон мощностей испарения от 300 до 6000 кг/ч (от и при 100°С) со стандартными рабочими давлениями 10,54, 15 и 17,5 кг/см2.

Энергии | Бесплатный полнотекстовый | Эксплуатационные испытания твердотопливного котла на различных видах топлива

1.

Введение

Твердотопливные котлы играют ключевую роль в загрязнении окружающей среды в Европе. Хотя сжигание древесины хорошего качества можно рассматривать как экологически безопасный способ производства тепла, соответствующие показатели выбросов могут быть получены только при использовании комбинации высококачественных видов топлива, сжигаемых в котлах хорошего качества. В результате раздробленности экономических и инфраструктурных особенностей развития каждой страны использование современного топочного оборудования в незначительной степени характеризует производство тепла на основе большого количества твердотопливных котлов. Загрязнение атмосферного воздуха вызывает около 400 000 преждевременных смертей в год, а также еще большее число серьезных заболеваний в Европе [1,2]. Одним из основных источников загрязнения воздуха является бытовое потребление энергии. Наиболее часто используемыми источниками тепловой энергии являются сжигание газа, а также сжигание древесины. Распределение использования топлива без централизованного теплоснабжения показано в таблице 1.

С 1990-х годов и по настоящее время комбинированное использование газа и твердого топлива очень распространено в индивидуальной зоне. В дополнение к приведенной выше таблице, в пропорциях в Венгрии около 45% жилищ используют только природный газ, а 21% используют твердое топливо (дрова, уголь или их смесь). Комбинация газового отопления и твердотопливного котла используется в 15% квартир [3].

Домохозяйства, использующие твердое топливо, имеют высокую территориальную концентрацию, при этом следует отметить, что их распределение сильно зависит от социально-экономического и инфраструктурного развития данного региона. В 19районах более 50% жилищ отапливаются исключительно дровами. Еще в 22 районах 75% жилищ хотя бы частично отапливаются дровами. Хотя сжигание древесины является CO2-нейтральным сжиганием с использованием возобновляемых источников энергии, при ненадлежащих условиях оно приводит к значительным выбросам [2,4].

Для каждого твердотопливного прибора стандарт МСЗ ЕН 303-5 определяет четкие требования по КПД и выбросам (среди прочих требований), но выполнение этих параметров верно при определении, конкретных лабораторных условиях, профессиональной эксплуатации и, наконец, но не в последнюю очередь, обеспечиваются и выполняются строгие требования к качеству топлива. Из упомянутой выше социально-экономической и инфраструктурной зависимости следует, что выбросы от твердого топлива в основном зависят от работающего оборудования и качества сжигаемого в нем топлива. На основе датских данных за 2016 г. удельные выбросы твердых частиц при некоторых режимах отопления показаны на рис. 19.0003

На основании рисунка 1 видно, что приборы на твердом топливе, которые можно считать устаревшими, имеют выдающиеся значения выбросов. Для сравнения, старая дровяная печь в конце линии выбрасывает в 715 раз больше загрязняющих веществ, чем выбросы пыли PM2,5 от грузовика, которому более десяти лет; однако даже экологически безопасный пеллетный котел дает более чем в 22 раза больше [1,5].

Было проведено несколько международных исследований сжигания современных пеллет или древесной щепы для котлов бытового размера или номинальной мощностью до 50 кВт. На примере двух видов щепы на основе сосны показано, что увеличение коэффициента избытка воздуха снижает выброс загрязняющих веществ, но также снижает максимальную извлекаемую производительность [6]. При использовании пеллетного топлива извлекаемая мощность выше, и можно выполнить ряд требований согласно EN 14785 [7].

Принимая во внимание социально-экономическое и инфраструктурное развитие венгерских регионов, а также снижение необходимой нагрузки на окружающую среду, мы рассмотрели традиционный бытовой твердотопливный котел с ручной подачей топлива по извлекаемой мощности и загрязняющим веществам. выбросы.

2. Эксплуатационные характеристики

Даже в обычных устройствах количество первичного и вторичного воздуха для горения оказывает существенное влияние на процессы горения в котле [8]. В случае открытых отопительных приборов по МСЗ ЕН 303-5 требования согласно ЕН 14,597:

  • Оснащен регулятором температуры,

  • Оснащен предохранительным ограничителем температуры.

Защитный ограничитель температуры можно не устанавливать, если устройство нельзя отключить и избыточная тепловая энергия может рассеиваться в виде пара за счет соединения с атмосферой. В большинстве случаев используемые в домашних хозяйствах открытые отопительные приборы с ручным дозированием не подключаются к буферному баку отопления, а работают с вентилем регулирования температуры [9].]. Основная цель регулятора температуры – максимизировать температуру теплоносителя, производимого котлом. Во время работы клапан без вспомогательной энергии регулирует угол открытия заслонки управления тягой в зависимости от мощности, которая непрерывно изменяется во время стрельбы. Постоянное вмешательство оказывает существенное влияние на качество процесса горения в топке и, следовательно, на выброс вредных веществ.

В ходе наших лабораторных измерений были изучены рабочие характеристики твердотопливного котла, оснащенного регулятором температуры, а также рабочие параметры, возникающие при сжигании различных топливных зарядов при определенных углах открытия заслонки регулирования тяги.

3. Процедура измерения

Перед фактическими измерениями в котле была сожжена загрузка для устранения ошибок холодного пуска, формирования подходящих углей и прогрева нашей системы до рабочей температуры [10]. Исследуемая нами система работала по схеме, показанной на рис. 2. После предварительного нагрева через дверцу топки, показанную на рисунке, равномерно загружалось 7,2 кг топлива. В ходе испытаний в каждом случае контролировалось полное время сгорания загруженного топлива. Измеряемые параметры приведены в таблице 2.

Были выполнены различные операции для случаев без рабочего регулятора тяги (регулятора температуры) и без регулятора тяги с различными настройками фиксированной заслонки тяги, а также было измерено влияние различных топливных нагрузок для случаев фиксированной подачи первичного воздуха. В различных исследованиях измерений были выполнены случаи согласно Таблице 3. Чтобы четко определить открытие дверцы контроля тяги устройства, необходимо определить скорость потока, которую можно определить из отношения поперечного сечения свободного потока в результате открытия дверцы к номинальному поперечному сечению в свободном пространстве. , как показано на рис. 2. На рис. 3 показано схематическое расположение измерительной станции.

Общее геометрическое определение поперечного сечения безнапорного потока:

Из отношения поперечного сечения безнапорного потока к номинальному поперечному сечению можно определить расход для заслонки контроля тяги:

Где:

  • C ПРОЕКТ -Номер потери,

  • . × л).

В случае испытуемого котла:

  • В = 14 см,

  • Д = 12 см.

4. Результаты измерений

Среди измеренных параметров по таблице 2 в число основных компонентов загрязняющих веществ, подлежащих учету, включено развитие выбросов оксида углерода, имеющее ключевое значение согласно стандарту МСЗ ЕН 303-5. осмотрел. В дополнение к эволюции выбросов наша важная цель состояла в том, чтобы получить максимально возможный выход энергии из устройства при одновременном снижении выбросов.

4.
1. Оценка варианта 1

В случае 1, согласно таблице 3, сжигались сухие поленья влажностью не более 15 % при перемещении люка первичного воздуха котла устройством автоматического регулирования тяги. В соответствии с упомянутым выше стандартом МСЗ EN 303-5 для твердотопливного оборудования мощностью не более 50 кВт, оснащенного автоматическая система дозирования. Определенное объемное соотношение (частей на миллион) преобразуется в значение массового расхода (мг/м 3 ). Следующие значения применяются в качестве коэффициента пересчета для преобразования частей на миллион в мг/м 3 : f CO = 1,25 [9]. Выбросы окиси углерода необходимо проверять по среднему значению, выделяемому при полном сгорании. Тем не менее, стоит наблюдать за изменением количества CO, выделяемого в течение всего интервала сжигания, а также за значениями восстанавливаемой мощности, показанными на рис. 4 и рис. 5.

На рис. 4 и рис. 5 видно, что автоматическое регулирование тяги дверь постоянно снижает скорость потока параллельно с увеличением мощности (Q), и в то же время также увеличивается выброс CO. Как видно, на этапе строительного обжига Q увеличивается, а СО уменьшается. В этот интервал система приближается к идеальному процессу сгорания, но в то же время достигает установленной максимальной температуры, что вызывает закрытие регулятора тяги. Когда груз в топке поступает в секцию снижения, устройство управления начинает открывать дверку первичного воздуха для поддержания заданной на регуляторе тяги температуры. Минимальный расход почти 25 мин обусловлен тем, что из-за безопасной работы даже в случае полного отключения должно быть обеспечено минимальное количество воздуха для горения, что означает расход 0,093 в данном случае. Также можно заметить, что в начальной, развивающейся фазе горения мгновенные выбросы СО резко возрастают одновременно с закрытием дверцы регулятора тяги. За весь интервал времени обжига средний выброс СО составил 5973 ppm, что более чем на 1600 ppm выше допустимого стандартом предела.

4.2. Оценка случая 2

Из рисунка 6 ясно видно, что при постоянном высоком расходе процесс обжига происходит за короткое время, а за фазой развития следует фаза быстрого снижения. В случае промежуточного расхода время выгорания увеличилось почти на час, а фаза развития характеризовалась практически постоянной пиковой мощностью в течение 10 мин. Фаза спада растянулась во времени. При низком расходе время выгорания также удлиняется, но максимальная восстанавливаемая мощность оказывается значительно ниже значения предыдущего параметра настройки. По сравнению с восстанавливаемой мощностью, показанной на рис. 4, максимальная восстанавливаемая мощность также была выше. На рис. 7 показаны значения выбросов моноксида углерода для всей стадии горения при расходах, описанных выше.

Сплошная горизонтальная линия указывает допустимое значение выбросов CO согласно стандарту MSZ EN 303-5. Можно заметить, что при самом высоком расходе оборудование работает выше допустимого предела выбросов почти все время горения. Сопротивление воздухозаборника прибора в этом случае самое низкое, поэтому температура дымовых газов, а вместе с тем и тяга в дымоходе увеличиваются из-за повышения температуры топки. В результате комбинированного действия этих явлений количество воздуха для горения, поступающего в топку, превышает количество, необходимое для идеального горения, что приводит к ухудшению качества горения и, следовательно, к увеличению выбросов CO. При промежуточном положении заслонки регулирования тяги наблюдается монотонно возрастающее выделение СО в развивающейся фазе топки; однако после максимальной мощности и идеального сгорания при этой настройке образование CO резко падает и кратковременно превышает стандартный предел в фазе выгорания. При наименьшем расходе выбросы СО приобретают характер, аналогичный предыдущему заданному значению, но более высокие значения выбросов угарного газа обычно наблюдаются в течение времени полного сгорания.

Средние значения выбросов CO, полученные для каждого расхода, приведены в таблице 4.

Таким образом, можно констатировать, что автоматическая регулировка тяги является наиболее неблагоприятной с точки зрения образования угарного газа, а тягорегулирующая заслонка с постоянным значение расхода 0,27 является наиболее благоприятным. В среднем может быть достигнуто снижение выбросов CO более чем на 2600 ppm, что почти вдвое меньше допустимого среднего предела выбросов CO.

В случае, показанном на рис. 8, коэффициент избытка воздуха можно наблюдать при различной тяге и в случае дверцы регулятора тяги. При расходе 0,27 он наблюдается дольше всего, почти постоянное значение, для которого контроль также отражает другие параметры горения. В 0,09и 0,44 значения коэффициента избытка воздуха резко возрастают, отражая быстрое выгорание и повышение уровня кислорода на 21%.

4.3. Оценка случая 3

В случае 3 процедура была такой же, как и раньше. Для трех скоростей потока были получены значения выбросов монооксида углерода и выхода энергии, показанные на Рис. 9 и Рис. 10.

Можно заметить, что при сжигании брикетного топлива выбросы CO могут соответствовать максимально допустимому среднему предельному значению выброса моноксида углерода, указанному пунктирной линией, при любом заданном значении. В случае брикетов мы получили наименьшее значение эмиссии при расходе 0,27, что составляет почти половину значения по сравнению с сжиганием бревен. Однако в случае сжигания древесины средний выход энергии составляет 17,1 кВтч по сравнению с 14,5 кВтч, полученными для брикетов. Однако в случае брикетов в рабочем состоянии, относящемся к максимальному раскрытию, был получен более высокий выход энергии 16,1 кВт·ч при минимальном увеличении выбросов оксида углерода. Заметным отличием от сжигания бревен было то, что в случае предельного значения выбросов CO, которое соблюдается даже при самом низком расходе, мы достигли почти вдвое большего выхода энергии, чем в случае брикетов.

5. Резюме

В ходе наших исследований мы провели эксплуатационные испытания котла смешанного типа для использования в частных домах. В ходе испытаний была определена расходная характеристика заслонки регулирования тяги, с помощью которой измерялись рабочие параметры, возникающие при работе устройства при различных значениях уставки. Было исследовано семь отдельных случаев с двумя видами топлива. В первом случае анализировалось влияние дверцы контроля тяги, постоянно контролируемой ограничителем температуры, при топке поленом.

По результатам измерений можно констатировать, что этот тип регулирования оказывает неблагоприятное влияние на значения выбросов окиси углерода устройством и на выход рекуперируемой энергии, и поэтому не может рассматриваться как оптимальное решение с точки зрения охраны окружающей среды и энергопотребления.

Затем, в случае бревен и брикетов, были исследованы выход извлекаемой энергии и выброс моноксида углерода при трех различных постоянных скоростях потока. Мы обнаружили, что, за исключением одного случая, пределы выбросов CO, указанные в соответствующем стандарте для дверей с постоянным контролем тяги, могут быть соблюдены при более высоком выходе энергии, чем в случае с постоянным контролем тяги.

При сжигании бревен при всех испытанных настройках были достигнуты более высокие выбросы CO, чем при сжигании брикетов. При сжигании брикетов мы получаем самый высокий выход энергии при низком расходе и выбросах угарного газа в пределах предельного значения. Дальнейшей частью нашего исследования является влияние регулятора тяги на пыль, которая является одним из основных загрязнителей в твердотопливном оборудовании. Он технически более сложен из-за сложной реализации изокинетического отбора проб.

Вклад авторов

Все авторы прочитали и согласились с опубликованной версией рукописи.

Финансирование

Это исследование финансировалось Фондом NRDI (TKP2020 IES, Грант № BME-IE-MISC) на основании устава поддержки, изданного Управлением NRDI под эгидой Министерства инноваций и технологий.

Заявление Институционального контрольного совета

Неприменимо.

Заявление об информированном согласии

Неприменимо.

Заявление о доступности данных

Данные доступны по запросу ([email protected]).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Ссылки

  1. Press-Kristensen, K. Загрязнение воздуха от сжигания топлива в жилых помещениях; Датский экологический совет: Копенгаген, Дания, 2016 г.; Текст: Kåre Press-Kristensen, макет: Koch & Falk; ISBN 978-87-92044-92-1. [Google Scholar]
  2. Nielsen, OK; Плейдруп, MS; Винтер, М.; Миккельсен, М.Х.; Нильсен, М.; Гилденкерн, С.; Фаузер, П.; Альбрекцен, Р.; Хьельгаард, К.; Бруун, Х.Г.; и другие. Ежегодный информационный отчет Дании по кадастрам выбросов ЕЭК ООН с базового года Протоколов до 2014 года; Научный отчет DCE — Датского центра окружающей среды и энергетики, Орхусский университет Фредериксборгвей: Роскилле, Дания, 2016 г.; Том 399, стр. 457–498. [Google Scholar]
  3. Aujeszky, P.; Балинт, Б.; Фабиан, З .; Францен, Л.; Кинчес, А.; Патакине Шароши, З.; Патай, А.; Сабо, З .; Силагьи, Г.; Tóth, R. Környezeti helyzetkép, 2011; Központi Statisztikai Hivatal: Будапешт, Венгрия, 2012 г.; ISSN 1418 0878. [Google Scholar]
  4. Зофия, Б.А. A szociális tüzelőanyag-támogatás Magyarországon; Habitat for Humanity Magyarország: Будапешт, Венгрия, 2018 г.; стр. 3–26. [Google Scholar]
  5. Брэм, С.; Де Рюйк, Дж.; Лаврик, Д. Использование биомассы: анализ системных возмущений. заявл. Энергия 2009 , 86, 194–201. [Google Scholar] [CrossRef]
  6. Серрано, К.; Портеро, Х .; Монедеро, Э. Сжигание сосновой щепы в бытовом котле на биомассе мощностью 50 кВт. Топливо 2013 , 111, 564–573. [Google Scholar] [CrossRef]
  7. EN 14785. Отопительные приборы жилых помещений, работающие на древесных гранулах. Требования и методы испытаний; Европейский Союз: Брюссель, Бельгия, 2016 г. [Google Scholar]
  8. Stolarski, MJ; Кржижаняк, М .; Варминьски, К.; Снег, М. Энергетическая, экономическая и экологическая оценка отопления семьи. Энергетическая сборка. 2013 , 66, 395–404. [Google Scholar] [CrossRef]
  9. MSZ EN 303-5 Стандартные отопительные котлы. Отопительные котлы на твердом топливе с ручной и автоматической топкой номинальной тепловой мощностью до 500 кВт. Терминология, требования, тестирование и маркировка; BSI: London, UK, 2012. [Google Scholar]
  10. Verma, V.K.; Брэм, С .; Делаттин, Ф.; Лаха, П.; Вандендал, И.; Хубин, А .; де Рюйк, Дж. Агропеллеты для бытовых котлов отопления: Стандартные лабораторные и реальные. заявл. Энергетика 2012 , 90, 17–23. [Google Scholar] [CrossRef]

Рисунок 1. Выбросы твердых частиц при различных методах отопления в Дании [1].

Рисунок 1. Выбросы твердых частиц при различных методах отопления в Дании [1].

Рисунок 2. Геометрическая параметризация дверцы контроля тяги (*: умножение).

Рисунок 2. Геометрическая параметризация дверцы контроля тяги (*: умножение).

Рис. 3. Схематичное расположение измерительной станции.

Рис. 3. Схематичное расположение измерительной станции.

Рисунок 4. Развитие добротности при различных дебитах за весь период.

Рис. 4. Развитие добротности при различных дебитах за весь период.

Рисунок 5. Развитие СО при разных расходах за весь период.

Рисунок 5. Развитие СО при разных расходах за весь период.

Рисунок 6. Эволюция выработанной мощности при различных постоянных расходах.

Рис. 6. Эволюция выработанной мощности при различных постоянных расходах.

Рисунок 7. Эволюция выбросов CO для каждого расхода.

Рис. 7. Эволюция выбросов CO для каждого расхода.

Рисунок 8. Фактор избытка воздуха при различных сквозняках.

Рис. 8. Фактор избытка воздуха при различных сквозняках.

Рисунок 9. Средние выбросы CO для различных видов топлива.

Рис. 9. Средние выбросы CO для различных видов топлива.

Рисунок 10. Средний выход энергии для различных видов топлива.

Рис. 10. Средний выход энергии для различных видов топлива.

Таблица 1. Использование топлива в жилых домах в Венгрии (2011 г.).

Таблица 1. Использование топлива в жилых домах в Венгрии (2011 г.).

444444444444444444444444444444444444444444444444444444444444444444444444444444444тели4444444444444444444444444444444444444444444444444444444444444444444444444444444н. 0002 Таблица 2. Измеряемые параметры.

Таблица 2. Измеряемые параметры.

Fuel Number of Dwellings
(Thousands)
Proportion of Dwellings as a % of Total Inhabited Dwellings
Gas 2388 61.96
Coal 113 2,93
Электричество 76 1,97
масляного топлива 1 0. 0358935377777777777777777777777777777777777777777777777777777777777777777777777777щей77777777777777777777777777777777777777777777777777777777777777777777777777777ще0358 38.14
Solar energy 5 0.13
Geothermal energy 3 0.08
Pellets 2 0.05
Other renewable 3 0.08
Другое топливо 4 0,10
Все обитаемые жилища 3854 100,00358
Sign of Measured Parameter Unit Name of Measured Parameter
O 2 % Oxygen content of flue gas
CO 2 % Содержание диоксида углерода в дымовых газах
CO ppm Carbon monoxide content of flue gas
NOx ppm Nitrogen oxide content of flue gas
SO 2 ppm Sulfur dioxide content of flue gas
Δp chimney Pa Chimney draft
t fg °C Combustion product temperature
λ Excess air factor
qA % Combustion product loss
m víz L/min Heating medium mass flow
t fw °C Flow temperature
t r °C Температура обратной среды

Таблица 3. Рассмотрены дела.

Таблица 3. Рассмотрены дела.

. Средний выброс CO.

Таблица 4. Средний выброс CO.

Fuel Mass Primary Air Control Door Operation Notation
Wood 7.2 kg with draft controller 1st case
C draft = 0.093 2nd case
C draft = 0.275
C draft = 0.440
Briquette 7 kg C ПРОЕКТ = 0,093 3 -й случай
C = 0,275
C 9. = 0,440353
C 2. = 0,40353
C 29353 = 0,40353
C 23 = 0,40353
.0355
Операция CO AVG Средняя разница MAX
(PPM)3
(PPM)3
Проект кртл. 5973.03 1606.96
C draft = 0.09 4017.14 −348.