Схемы драйверов светодиодных драйверов: Схемы драйверов светодиодов на PT4115, QX5241 и др. микросхемах с регулятором яркости для диммируемых светодиодных светильников

Драйверы для светодиодных лампочек.

Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
А теперь перейдём к делу.
Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).

Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4.

Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).

Эту формулу я писАл много раз. Повторюсь.
Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 — 30В и т.д.). Всё просто.
Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
(220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В).
При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
Конденсаторы заказывал эти:
https://aliexpress.com/item/snapshot/310648391.html
https://aliexpress.com/item/snapshot/310648393. html
Диоды вот эти:
https://aliexpress.com/item/snapshot/6008595825.html


Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.

У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.

Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
Посмотрим на характеристики от продавца:

[input voltage] ac85-265v» that everyday household appliances.»
[output voltage] load after 10-15v; can drive 3-4 3w led lamp beads series
[output current] 600ma

А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].

Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).

Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!

На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).


Микросхема 3106 отслеживает выходные параметры преобразователя через обратную связь с вспомогательной обмотки трансформатора и управляет ключевым транзистором. Попытки найти информацию на эту МС в Интернете ничего не дала. RS1 RS2 — токозадающие резисторы. От их номинала зависит выходной ток драйвера. RS1 (1 Ом) – основной, при помощи RS2 (33 Ом) выходной ток подгоняется более точно.

Оказывается, и у этих драйверов можно регулировать выходной ток. Снял зависимость выходного тока от сопротивления RS (может кому пригодится).

Регулировать ток при помощи выносного переменного резистора не получится. Паразитные ёмкости и индуктивности никто не отменял.
А теперь на счёт применимости.



В этот светильник что только не вклеивал (был обзор). Теперь приклеил 1-Вт-ные светодиоды. К ним буду подключать обозреваемые драйверы, так нагляднее.
А вот так он светит.

Всего 12 светодиодов (6 пар). Для равномерного распределения света самое оптимальное количество. Для эксперимента тоже лучше не придумаешь.
Один из вариантов подключения к драйверу с балластом на конденсаторах.

С1=1,5мкФ+1,2мкФ=2,7мкФ. Чтобы посчитать мощность, необходимо посчитать ток по формуле (2).
I=(228В-36В)*2,7мкФ/3,18=163мА. Мощность считается по формуле из школьного учебника физики.
Р= 36В*0,163А=5,9Вт.
А теперь посмотрим, что показывают приборы.


Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия.

Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.

У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.

Итого 3 параллели по 4 светодиода.
Вот, что показывает Ваттметр. 7,1Вт активной мощности.

Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.

Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

Всё рассмотрел, всё измерил.
Теперь выделю плюсы и минусы этих схем:
Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
-Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
-Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
-Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
+Схема очень проста, не требует особых навыков при изготовлении.
+Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
+Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
+Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
+Можно регулировать ток через светодиоды подбором ёмкости балласта.
+Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
На этом всё!
Удачи всем.

Схема драйвера светодиодной лампы: устройство ламп, разновидности схем

Чтобы выбрать драйвер для светодиодной лампы и, в дальнейшем, корректно установить его, нужно ознакомиться с необходимыми схемами и параметрами. Правильно подобранное устройство не только продлит срок службы изделия, но и сэкономит ваши денежные средства.

Contents

  1. Устройство светодиодной лампы
  2. Разновидности схем драйвера и их особенности
  3. С конденсаторами для снижения напряжения
  4. С импульсным драйвером
  5. С диммируемым драйвером
  6. Схема подключения драйвера к светодиодам

Устройство светодиодной лампы

Модели диодной лампы начали заменять стандартные. Стоят они дорого, но их технические параметры значительно превосходят устаревающие модели. Для понимания, как они работают, необходимо знать устройство светодиодной лампы.

Оно состоит из 5 элементов, которые соединены в одном корпусе:

  • Цоколь – элемент, вкручиваемый в патрон люстры или другого светильника. Выпускают для:
    • бытового применения винтовой типа Е27 и Е14, изготовлен из латуни с никелевым антикоррозийным покрытием;
    • других нужд выпускаются источники света со штырьковым цоколем.
  • Драйвер – элемент, который стабилизирует поступающее напряжение и изменяет переменный ток в постоянный. Так же он обеспечивает питание светодиода.
    Состоит из 3 частей:
    • микросхем;
    • импульсного трансформатора;
    • конденсаторов.
  • Радиатор – элемент, который отводит тепло и обеспечивает для светодиодов оптимальный температурный режим для работы. Обычно он составляет видимую часть корпуса.
  • Рассеиватель – прозрачный “колпак”, который помогает распределять свет в пространстве. Изготавливается в виде полусферы для рассеивания пучков света под широким углом. В качестве материала применяют поликарбонат или пластик.
    Предотвращает попадание внутрь корпуса пыли и влаги. Для смягчения резкости света и уменьшения раздражающего влияния на глаза этот элемент изнутри покрывают люминофором. При этом достигается цветовая температура, аналогичная естественному освещению.
  • Светодиоды – главный рабочий элемент лампы, за счет него появляется свечение.
    Существует 4 основных технологии сборки чипа:
    • SMD-технология — самая распространенная в быту. Кристалл размещается на поверхности светового прибора;
    • DIP — световой элемент состоит из 1 мощного кристалла, сверху на который прикреплена линза;
    • Пиранья — любимчики автомобильной промышленности,присутствует 4 контакта;
    • COB-технология — продвинутая схема подключения светодиодных кристаллов, самый защищенный от перегрева и окисления вариант.

В недорогих изделиях драйвера может не быть, вместо него устанавливают блок питания, которые не обеспечивает ни стабилизации тока, ни напряжения.

Разновидности схем драйвера и их особенности

Производители в основном выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения.

Все преобразователи для LED-освещения, существующие на данный момент, делятся на:

  • созданные на основе 1÷3 транзисторов — простые;
  • с микросхемами с ШИМ — сложные.

Стандартная схема подключения LED-драйвера:

Соединение к источнику питания и количество светодиодов в нем воздействует на напряжение при выходе. Величина тока, который должен выдавать драйвер, напрямую зависит от общей мощности и яркости их излучения.

Мощность можно рассчитывать по формуле:

P = P(led) × n, где:

  • P(led) – потенциал одного элемента;
  • n — количество LED-элементов.

Важные моменты:

  • Прямой номинальный ток – главный параметр любого светодиода. Занижая его, мы теряем в яркости, а завышая – резко сокращаем срок службы.
  • Напряжение, приведенное в datasheet к светодиоду, не является определяющим и лишь указывает на то, сколько вольт упадёт на p-n-переходе при протекании номинального тока. Его значение необходимо знать.
  • Для подключения мощных светодиодов важна качественная система охлаждения. При установке на радиатор светодиодов с мощностью потребления больше 0,5 Вт будет идти стабильная продолжительная деятельность.

Подключение светодиодов к драйверу:

Обязательно учтите цветовой фактор потребителя при расчете, так как он влияет на падение напряжения.

По качеству драйвера разделяют на 3 типа:

  • низкого качества, работа до 20 тыс. часов;
  • с усредненными параметрами — до 50 тыс. часов;
  • преобразователь, состоящий из комплектующих известных брендов — 70 тыс. часов и больше.

С конденсаторами для снижения напряжения

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока 2 резистора — R2 и R3 — ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. R2, R3 и R4 используются не всеми производителями.

Минусы:

  1. Перегорание диодов, так как стабильности подачи тока не наблюдается. Напряжение на нагрузке полностью зависит от напряжения питания.
  2. Нет гальванической развязки, существует риск удара током. Не рекомендуется во время разборки ламп прикасаться к токоведущим элементам, так как они находятся под фазой.
  3. Практически невозможно достичь высоких токов свечения, потому что для этого потребуется увеличение емкостей конденсаторов.

С импульсным драйвером

Защищает от перепадов напряжения и помех в сети.

Примером служит модель CPC9909. Эффективность достигает 98 % — показателя, при котором действительно можно говорить об энергосбережении и экономии.

Питание устройства может происходить напрямую от высокого напряжения — до 550 В, так как драйвер оснащен встроенным стабилизатором.Схема стала проще, а стоимость — ниже.

Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

Импульсные драйверы имеют широкие диапазоны входных напряжений. Например, у микросхемы MAX16833 входной диапазон напряжений от 5 до 65 В, у MAX16822 — от 6,5 до 65 В.

Некоторые микросхемы позволяют задавать частоту преобразования от 20 кГц до 2 МГц. Контроллеры светодиодных драйверов MAX16801 и MAX16802 позволяют разработать DC/DC-преобразователь с выходным стабилизированным током до 10 А.

Драйверы MAX16807, MAX16809, MAX16838 и MAX16814 позволяют получить диапазон регулировки выходного тока с отношением 1:5000. Большинство импульсных светодиодных драйверов позволяют выбрать наиболее оптимальную топологию схемы для достижения максимальной эффективности работы.

С диммируемым драйвером

Диммер используется для плавной смены ярости свечения лампы. Одним из основных параметров является мощность. От мощности зависит максимальное количество подключаемых к нему светильников.

Регулировка яркости свечения осветительных приборов позволяет установить в помещении нужный уровень освещения. Это удобно:

  • при создании отдельных зон;
  • снижении яркости света в дневное время;
  • для подчеркивания предметов интерьера.

Разделяются на группы по виду управления:

  • механические;
  • кнопочные;
  • дистанционные.

С помощью диммера использование электроэнергии становится более рациональным, а ресурс службы электроприбора увеличивается.

Существует 2 вида:

  • С ШИМ-управлением. Их устанавливают между лампой и блоком питания. Энергия подается в виде импульсов разной длительности.
  • 2-ой вид. Применяются для устройств со стабилизированным током и воздействуют на сам источник питания.

Диммируемая светодиодная лампа е14 хорошо подходит для комплектации автоматизированных систем. Справляется с исполнением источника света. Они являются весьма востребованными у потребителей.

14 – это диаметр цоколя лампы, выраженный в миллиметрах. Сегодня эти лампочки выпускаются в различных формах:

  • шар;
  • капля;
  • свеча;
  • гриб.

Схема подключения драйвера к светодиодам

Существует 3 вида подключения, рассмотрим на примере с 6 потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА:

  • последовательный;
  • параллельный;
  • последовательный по 2.

Основные виды схем:

  • На базе микросхемы. PT4115 имеет отдельный вывод для управления включением и выключением светодиодов. Используя этот вывод, можно легко получить диммируемый драйвер для светодиодного светильника.

    Диммируемый драйвер получается с помощью изменения уровня потенциала на выводе DIM (непрерывный режим работы драйвера), либо подавая на него импульсный сигнал нужной скважности (импульсный режим со стробоскопическим эффектом).
    В последнем случае максимальная частота следования импульсов – 50 кГц.
  • Плавное включение светодиодов, если между выводом DIM и “землей” включить конденсатор. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем соответственно дольше будет разгораться светильник.
  • С регулятором яркости постоянным напряжением. Работает благодаря тому, что внутри микросхемы вывод DIM “подтянут” к шине 5 В через резистор сопротивлением 200 кОм.
    Когда ползунок потенциометра находится в крайнем верхнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2 = 2.5 В, что соответствует 100 % яркости.
  • Без гальванической развязки. Проста и надежна. Делитель основан на емкостном сопротивлении. Электролитический конденсатор сглаживает пульсации после выпрямления.
    L7812 – сам стабилизатор.

Драйверы предназначены для сглаживания всех прыжков тока в электросистеме. К их выбору или самостоятельной сборке нужно подходить ответственно и только после просчета всех требуемых параметров. Схемы драйверов помогут выбрать нужный прибор и верно его установить.

Объяснение схемы драйвера светодиода

и доступные решения

Дни ламп накаливания прошли. В настоящее время светодиодное освещение берет верх, так как оно намного более энергоэффективно. С другой стороны, светодиодные фонари требуют хорошей схемы управления для правильной работы, и это так называемая схема драйвера светодиодов. Светодиоды в основном представляют собой форму диода, который излучает свет при прямом смещении. Диод рассчитан на прямое напряжение 0,3 В или 0,7 В для германия и кремния соответственно. Для светодиодных ламп прямое напряжение выше, чем у диода, и обычно может достигать 2-3,5 В на светодиод. Некоторые светодиоды, для которых указано более высокое напряжение, уже являются комбинацией нескольких светодиодов.

Светодиоды по своей природе являются источниками постоянного тока, но почему светодиоды используются непосредственно вместо ламп накаливания и КЛЛ в розетке переменного тока? Это стало возможным благодаря использованию схемы драйвера светодиодов. Схема драйвера светодиода будет преобразовывать переменный ток в постоянный, уровень которого будет безопасно использоваться светодиодами. Есть несколько доступных решений для схемы драйвера светодиодов. Драйверы светодиодов могут быть линейными или импульсными. Ознакомимся с этими решениями.

В схеме линейного драйвера светодиодов используется линейное устройство для управления током светодиодов. Это схемное решение совершенно неэффективно и ограничено только приложениями малой мощности. Линейный драйвер светодиодов может быть только простым источником напряжения и токоограничивающим резистором; это действительно очень просто, поэтому до сих пор популярное решение для управления светодиодами. Еще одним преимуществом линейного светодиодного драйвера является то, что он может обеспечить очень чистый свет, я имею в виду, что чистый свет заключается в отсутствии эффекта размытия или мерцания.

Простая линейная схема управления светодиодами

Ниже приведена очень простая схема управления светодиодами.

В основном он состоит только из источника постоянного напряжения и ограничительного резистора Rlimit. Однако в этом решении источником напряжения должен быть чистый постоянный или линейный уровень, чтобы установка тока для светодиодов не менялась. В том случае, если ток на светодиодах будет меняться, освещение несколько покажет изменение интенсивности, и это не приятно видеть глазами. Еще одним недостатком изменения тока светодиода является то, что светодиоды могут перегреться и выйти из строя.

В приведенной выше схеме источником напряжения является чистый постоянный ток, а ток светодиода, устанавливаемый ограничительным резистором, составляет 600 мА. Это дает общую мощность светодиода 8,332 Вт . Токоограничивающий резистор рассеивает 3,67 Вт. Общая мощность, подаваемая на схему, составляет 12 Вт , а эффективность составляет всего 69,43%, что очень мало.

Эффективность светодиода = 8,332 Вт / 12 Вт = 69,43%

Линейный регулятор в качестве драйвера светодиода

Вышеприведенный пример очень простой и элементарный подход к управлению светодиодами. В случае переменного источника напряжения можно использовать линейный регулятор. Линейный регулятор способен принимать переменное входное напряжение, сохраняя при этом постоянное выходное напряжение. Это все еще решение управления светодиодами с потерями, но лучше, чем первый подход, с точки зрения стабильности тока светодиодов.

На приведенной ниже схеме показана типичная схема линейного регулятора. VOUT — это узел, к которому прикладывается нагрузка, и она регулируется до уровня напряжения, установленного пользователем. Предположим, что диапазон входного напряжения равен 9-16В, выходное напряжение останется прежним; например 7,5 В на настройку. Когда разница между входом и выходом велика, линейный регулятор рассеивает огромную мощность, чтобы поддерживать регулируемое выходное напряжение. Свойство линейного регулятора поддерживать выходное напряжение делает его популярным для управления светодиодами.

Ниже приведена схема драйвера светодиода с использованием линейного регулятора Linear Technology, LT1083-12. Выход этого регулятора фиксированный 12В. Тем не менее, последовательный резистор необходим для установки безопасного уровня тока для светодиодов. Ток светодиода в этой схеме равен 261,6 мА .

Ток светодиода = (12 В – (3 X 3,128 В)) / 10 Ом = 261,6 мА

Мощность светодиода составляет всего 2,452 Вт .

Индикатор питания = 3 X 3,128 В X 261,6 мА = 2,45 Вт

 

Мощность, рассеиваемая ограничительным резистором, составляет 0,684 Вт.

Ограничительный резистор мощности = (261,6 мА) 2 X 10 Ом = 0,684 Вт

Мощность, рассеиваемая линейным регулятором, равна

 

= (16–12 В) X (261,6 мА + 5 мА) = 1,0664 Вт.

(Ток покоя указан в паспорте регулятора. Это лишь небольшое значение, и в большинстве случаев им можно пренебречь для упрощения расчетов.)

КПД цепи равен

Резистор ограничения мощности + регулятор мощности) = 2,45 Вт / (2,45 Вт + 0,684 Вт + 1,0664 Вт) = 58,33%

 

Эффективность очень низкая, как и в предыдущем решении. КПД еще больше снизится при работе с более высоким входным напряжением.

Специализированный линейный контроллер светодиодов

Существуют специальные линейные ИС, разработанные исключительно для драйверов светодиодов. Однако концепция и анализ со стороны силовой части
такие же, как и в приведенном выше примере.

Преимущество этих ИС заключается в возможности управления несколькими цепочками светодиодов и встроенной защите для коротких и открытых светодиодов. Еще одним преимуществом является включение функции затемнения. Обычный линейный регулятор не имеет функции диммирования.

Одним из примеров такого решения является BD8374HFP-M от ROHM semiconductor. Ниже приведена схема приложения. Это только один канал с возможностью затемнения, защитой от обрыва и короткого замыкания светодиодов, защитой от перенапряжения и перегрева.

Для этого контроллера установка тока светодиода осуществляется с помощью резистора RVIN_F. Этот резистор расположен на входе, в отличие от предыдущих примеров выше, которые расположены последовательно со светодиодами. В этом решении напряжение светодиода будет устанавливать выходное напряжение микросхемы контроллера. При использовании типичного регулятора напряжения выход представляет собой фиксированное напряжение, но здесь выход является переменным в зависимости от общего прямого напряжения светодиода.

Общая мощность светодиода представляет собой просто сумму прямых напряжений светодиода, умноженную на IOUT или ток, установленный резистором R VIN_F . Мощность, рассеиваемая линейной ИС (BD8374HFP-M), представляет собой разницу между входным напряжением и общим падением напряжения на светодиодах, умноженную на установленный выходной ток. С другой стороны, рассеиваемая мощность токозадающего резистора RVIN_F равна просто падению напряжения, умноженному на выходной ток, или квадрату выходного тока, умноженному на сопротивление. Расчет эффективности можно сделать так же, как и в приведенном выше примере.

В драйвере светодиодов с линейным режимом колебания входного напряжения невелики, так как ограничиваются рассеиваемой мощностью линейного контроллера. Потери огромны и в линейном решении. Эти недостатки решаются за счет импульсного типа драйвера светодиодов. Драйвер светодиода с режимом переключения может быть понижающим (понижающим), повышающим (повышающим) или комбинированным (понижающий-повышающий). Импульсный светодиодный драйвер можно использовать непосредственно от универсальной сети переменного тока; скажем 90-264Vrms.

Принцип переключения режимов

Режим переключения означает, что управляющее устройство работает в режиме непрерывного переключения между включением и выключением переключающего устройства, такого как MOSFET или BJT. При включении переключателя в идеале сопротивление равно нулю, поэтому в идеале потери мощности нулевые. С другой стороны, при выключении ток в идеале равен нулю, поэтому потери мощности также нет. Такое поведение делает решение с режимом переключения более эффективным, чем линейное решение. Однако подход с переключением режимов более сложен, чем линейное решение, и будет стоить дороже.

Драйвер светодиодов, производный от понижающего преобразователя

Ниже приведена общая схема силовой части понижающего преобразователя. Понижающий преобразователь представляет собой понижающий преобразователь. Его выход всегда ниже, чем его вход. MOSFET Q1 приводится в насыщение и отключается сигналом ШИМ, чтобы генерировать выходное напряжение. Катушка индуктивности L1 служит накопителем энергии, который заряжается, когда полевой МОП-транзистор Q1 переходит в состояние насыщения. Он разряжается, когда MOSFET Q1 отключается.

Конденсатор C1 также служит в качестве резервуара для минимизации колебаний напряжения на выходной шине. Он заряжается, когда Q1 приводится в состояние насыщения, и разряжается, когда Q1 приводится в состояние отсечки. Диод D1 служит в качестве пути для тока индуктора, когда он разряжается, он функционирует только тогда, когда MOSFET Q1 находится в состоянии отсечки.

И МОП-транзистор, и диод проводят только часть периода переключения. Соотношение между входным и выходным напряжением определяется так называемым рабочим циклом. Идеальный рабочий цикл понижающего преобразователя составляет

Рабочий цикл, Buck = Vout / Vin

Пример рабочей схемы драйвера светодиода на основе понижающего преобразователя

Ниже приведена схема драйвера светодиода, основанная на топологии понижающего преобразователя. Это работает очень хорошо в симуляции, так что на самом деле. Управляющее устройство — LT3474 от Linear technology.

Путь питания проходит от IN к внутреннему переключателю U1 (Q1 в универсальном понижающем преобразователе выше), к L1 и C3 (C1 в универсальном понижающем преобразователе выше). D1 является диодом разрядного контура индуктора, как и D1 в общей схеме понижающего преобразователя выше. Схема позволяет широко варьировать входное напряжение в отличие от линейного решения.

Расчеты силовой части этой схемы драйвера такие же, как и для обычного понижающего преобразователя, который мы обсуждали выше. Эта схема драйвера светодиода имеет возможность диммирования ШИМ путем подачи ШИМ-сигнала на вывод ШИМ.

Смоделированный ток светодиода с ШИМ-управлением яркостью:

Как вы можете видеть на приведенной выше осциллограмме, напряжение светодиода, которое является выходным напряжением понижающего преобразователя, меньше входного напряжения, которое составляет 10 В, поскольку понижающий понижающий преобразователь. Ток светодиода модулируется для достижения затемнения.

Драйвер светодиодов на основе повышающего преобразователя

Ниже приведена типичная схема силовой части повышающего преобразователя. Q1 модулируется и работает в режимах насыщения и отсечки в быстрой манере. То же самое с понижающим преобразователем, переключающее устройство будет иметь идеальные нулевые потери, так как во время насыщения в идеале нет сопротивления, а во время отсечки нет тока. Когда Q1 включен, L1 заряжается, а D1 смещается в обратном направлении. Когда Q1 выключится, L1 изменит полярность и сместит D1 вперед, после чего ток достигнет выходного узла. C1 служит резервуаром, так что энергия все еще поступает в нагрузку, когда катушка индуктивности заряжается. Повышающий преобразователь также является управляемым рабочим циклом, его идеальное уравнение рабочего цикла:

Рабочий цикл, форсирование = 1 – (VIN / VOUT)

Пример рабочей схемы драйвера светодиодов на основе форсирования

Ниже приведена схема простого драйвера светодиодов, полученного из повышающего преобразователя.

При использовании повышающего драйвера вход всегда должен быть ниже общего прямого напряжения светодиодов. В этой схеме входное напряжение равно 3, а общее напряжение светодиода составляет 9,64 В на основе моделирования.

Драйвер светодиодов Buck-Boost

Если приложению требуется очень широкий диапазон напряжений, который не может быть обеспечен одним только повышающим или понижающим преобразователем, рассмотрите возможность использования повышающего или повышающего драйвера светодиодов. Примером этого является схема ниже от Linear Technology.

 

Цепь драйвера светодиодов, полученная от сети переменного тока

Решения, которые мы обсуждали выше, относятся ко всем приложениям постоянного тока. Как насчет того, если нам нужен светодиодный светильник, который мы можем напрямую подключить к розетке переменного тока, как коммерческие светодиодные светильники, доступные в настоящее время, что нам делать? В связи с этим нам нужна еще одна схема драйвера светодиодов, подходящая для ACDC. Есть несколько вещей, которые делают это возможным.

Неизолированный драйвер светодиодов ACDC с потерями

Ниже приведена схема простого неизолированного драйвера светодиодов ACDC. Он состоит только из пассивных устройств и стабилитрона и диода. Это экономичное решение, но не эффективное и безопасное в использовании. Будь осторожен.

 

Неизолированный драйвер светодиодов ACDC без потерь

Решение, показанное ниже, по-прежнему не изолировано, так как отсутствует изолирующий трансформатор. Это решение предоставлено Richtek с использованием контроллера RT8402. Однако этот драйвер эффективнее по сравнению с первой схемой выше. Это конкретное решение — доллар



производный драйвер светодиодов AC-DC. Мостовой выпрямитель преобразует переменный ток в постоянный, а Q1, D1, L1 и EC1 являются силовой секцией понижающего преобразователя. Это эффективный драйвер, поскольку Q1 работает между насыщением и отсечкой. Тем не менее, будьте осторожны, это решение не является изолированным.

Другое решение от Richtek с использованием контроллера RT8487:

Оба решения обычно используются в коммерческих маломощных и недорогих светодиодных лампах.

  Изолированный драйвер светодиодов ACDC без потерь с использованием топологии обратного хода

Для мощных светодиодных ламп или ламп предпочтительнее схема ниже. Это решение от Richtek с использованием RT7306. Это обратноходовой драйвер светодиодов. Наличие трансформатора обеспечивает изоляцию между линией переменного тока и светодиодами. Нет опасности поражения электрическим током, если вы случайно коснетесь выходной стороны.

Благодаря обратноходовой топологии драйвер может работать в широком диапазоне входных напряжений от 90-264 В переменного тока. Это решение также эффективно при мощности менее 50 Вт. Однако при мощности более 50 Вт КПД может снизиться, но все равно будет достаточно высоким по сравнению с линейным решением.

Усовершенствованная схема драйвера светодиодов

Одним из первых проектов, за которые берутся начинающие разработчики или инженеры-электронщики, является создание мигающего светодиода. Выполнить эту задачу с помощью простого резистора для ограничения тока относительно просто. Тогда многие люди считают, что это стандартная «конечная цель» для управления светодиодами. Для простых светодиодных индикаторов и маломощного освещения такое линейное управление светодиодами подходит, но многие приложения требуют другого подхода. В этой статье я описываю несколько распространенных альтернативных стратегий и некоторые неортодоксальные методы, которые мы использовали в прошлом для схем драйверов светодиодов. Советы по проектированию печатной платы для мощных приложений можно найти в нашей статье на эту тему здесь.

 

Основные соображения

Основное соображение при принятии решения о том, как управлять светодиодами, — допустимая потеря мощности. В устройствах с батарейным питанием эта потеря мощности соответствует сокращению срока службы батареи. В мощных светодиодных приложениях это эквивалентно выделяемому теплу. Прежде чем выбрать, как управлять светодиодами, подумайте, какую мощность ваша конструкция позволяет рассеивать. Это определяет большинство решений.

Другим важным фактором является количество используемых светодиодов. Не только общее количество, но и сколько разных цветов/типов? Чем больше разнообразия, тем сложнее становится, так как сложнее согласовать прямое напряжение от одной нити к другой. Понимание общего количества светодиодов также необходимо для определения управляющего напряжения для их последовательного включения.

Линейный привод от микроконтроллера

 

Рис. 1. Самая простая схема драйвера светодиодов. Слаботочным светодиодом можно управлять напрямую с вывода ввода/вывода микроконтроллера.

 

Цепь линейного привода — это любая схема, в которой вся избыточная мощность рассеивается в виде тепла. Самым простым примером этого является схема светодиод-резистор, как упоминалось ранее. Если ток, подаваемый на светодиод, минимален, то он обычно может напрямую управляться от вывода микроконтроллера, такого как Arduino, как показано на рисунке 1. Основным недостатком любой схемы линейного драйвера светодиода является рассеивание избыточной мощности. Также крайне важно убедиться, что имеется достаточный «запас» напряжения, чтобы можно было управлять светодиодами.

 

Рис. 2. Схема светодиода с линейным управлением. R1 необходим для рассеивания всей мощности от избыточного напряжения; Выбранный резистор должен быть в состоянии безопасно рассеивать мощность.

 

Линейный привод от полевого МОП-транзистора

На рис. 2 показана схема драйвера светодиодов, управляемая n-канальным полевым МОП-транзистором нижнего плеча для включения/выключения светодиодов. FET также позволяет регулировать яркость ШИМ. Используя закон Ома, и со светодиодами, имеющими прямое напряжение 2 В каждый: V = IR, 12-(5 * 2) = I * 4, 92 * 4 = Р = 1Вт . Рассеивание 1 Вт — это много для одного резистора, и для этого требуется резистор размером 2512 или больше для поверхностного монтажа.

Другой вариант, который мы с большим успехом использовали в линейных схемах светодиодов, заключается в разделении токоограничивающих резисторов. Вместо того, чтобы использовать один резистор 4R, два резистора 2R будут использоваться последовательно, равномерно распределяя рассеиваемую мощность между ними, используя вместо этого резисторы 1210. Это также позволяет стратегически разместить резисторы на плате, равномерно распределяя тепло. На рис. 6 показано, как разделение резисторов работает с разными светодиодами.

 

Линейный привод от источника/драйвера постоянного тока

Многие «встроенные» драйверы светодиодов подают постоянный ток на цепочку светодиодов. Эти драйверы предлагают гораздо больше удобства, чем схемы, управляемые резистором. Однако важно отметить, что эти драйверы по-прежнему используют линейную технологию. Крайне важно понять, сколько энергии будет рассеивать драйвер, и убедиться, что она находится в безопасном диапазоне.

 

Рис. 3. Линейный драйвер светодиодов TI. Хотя эти драйверы добавляют много удобства, они не более эффективны, чем использование стандартной схемы светодиод-резистор.

 

На рис. 3 показан пример линейного восьмижильного драйвера светодиодов. Драйвер управляет тремя цепями одинаковых светодиодов из предыдущей схемы. Температура ограничивает максимальную мощность, которую драйвер может рассеивать. При максимальной температуре 100°C он может рассеивать максимум около 1,8 Вт. Чип также ограничен максимальным током 70 мА на нить. Чтобы рассчитать мощность, рассеиваемую чипом при 70 мА, для каждой жилы: P=IV, P/3=0,07*(12-10), P=0,42 Вт. 0,42 Вт находится в пределах безопасного диапазона для этого чипа, поэтому его можно использовать как есть. Если мощность была слишком высокой, можно разместить резистор на каждой жиле. Пока резистор имеет правильный размер, он будет рассеивать часть мощности, а чип рассеивает остальную часть. Этот трюк, показанный на рисунке 4, весьма полезен, когда длина прядей не сбалансирована.

 

Рис. 4. Линейный драйвер светодиодов на основе TI. Чип управляет 8 цепями светодиодов, одна из которых намного короче остальных. Два резистора по 100 Ом уравновешивают эту нить, рассеивая часть избыточного тепла.

 

Постоянный ток от переключаемого драйвера светодиодов

Импульсный драйвер светодиодов постоянного тока работает аналогично линейному драйверу, за исключением того, что он использует топографию переключения. Это переключение позволяет ему работать при превышении 80%-90% эффективность. Существенным недостатком смены драйверов является их дороговизна. Имея на борту какой-либо импульсный источник питания, также возникает нежелательный шум в режиме переключения.

 

Рис. 5. Схема на основе AL8860 очень эффективно управляет тремя светодиодами.

 

На рис. 5 показана схема импульсного драйвера светодиодов на основе AL8860. Он управляет одной нитью светодиодов от любого напряжения от 5 до 40 В. В зависимости от подаваемого напряжения и напряжения светодиодов этот чип способен работать до 9КПД 7% при токе около 1А. В идеальных условиях вы можете управлять цепочкой светодиодов при токе 1А, рассеивая при этом менее десятой доли ватта от чипа! Это существенное отличие от предыдущих примеров с использованием линейной технологии. Существуют также понижающе-повышающие драйверы, которые принимают 5 В (например) в качестве входа и могут управлять светодиодными цепями до 20 В. Они, как правило, не так эффективны, как выпадающие регуляторы, но все же их можно рассмотреть.

 

Реальная схема драйвера светодиодов, пример

Мы с большим успехом использовали необычный метод управления светодиодами. Он сочетает в себе линейный привод и импульсный привод, предлагая преимущества обоих. Это особенно полезно, когда есть много разных цветов светодиодов.

Например, у нас есть 100 светодиодов с током 1 А каждый и 5 разными цветами. Входное питание 24 В постоянного тока с раздельным управлением цветами. Нам нужно подключить 28 красных (прямое напряжение = 2,1 В), 20 желтых (Vf = 2,5 В), 10 желтых (Vf = 2,8 В), 22 зеленых (Vf = 2,5 В) и 20 белых (Vf = 4 В). Да, это крайний пример — и по требуемой мощности, и по количеству светодиодов — но мы недавно разработали подобную плату!

 

Много водителей!

При управлении светодиодами с током 1 А очевидным первым выбором является использование схемы импульсного драйвера светодиодов. Проблема, возникающая при таком подходе, заключается в том, что при такой высокой мощности переключающие драйверы смогут управлять только одной цепью каждый. Это означает, что нам потребуется много драйверов на этой плате. Чем больше переключающих драйверов на плате, тем больше шума при переключении. Разделение нитей дает нам:

  1. 11 КРАСНЫЙ, 23,1 В
  2. 11 RED, 23.1V
  3. 6 RED, 12.6V
  4. 9 AMBER, 22.5V
  5. 9 AMBER, 22.5V
  6. 2 AMBER, 5V
  7. 8 YELLOW, 22.4V
  8. 2 YELLOW, 5.6V
  9. 8 GREEN, 22.5V
  10. 8 GREEN, 22.5V
  11. 6 GREEN, 15V
  12. 5 WHITE, 20V
  13. 5 WHITE, 20V
  14. 5 WHITE, 20V
  15. 5 WHITE, 20V

The thought of having 15 Различные драйверы светодиодов с переключением режимов на одной печатной плате наверняка вызовут кошмары у любого, кто работает с EMC! Хотя управлять ими таким образом вполне возможно, для этого потребуется обширная фильтрация, гарантирующая отсутствие наложения шума импульсного режима на шины питания. Для этого проекта большой радиатор должен быть на обратной стороне платы. Хотя мы хотели ограничить выделяемое тепло, у нас была некоторая гибкость в нашей конструкции. Я лучше буду иметь дело с жарой, чем с 15 переключателями!

Линейное питание всех цепей от 24 В потребовало бы огромного количества рассеиваемой мощности, больше, чем это было бы возможно, особенно на коротких цепях. Например, нить номер 6: P=IV=1A*(24V-5V)=19W. Удачи в поиске стандартного резистора или линейного драйвера для рассеивания 19 Вт мощности!

 

Альтернативное решение

Мы решили сначала управлять длинными жилами непосредственно от шины 24 В с помощью линейного привода с использованием резисторов. Пряди 1, 2, 4, 5, 7, 9, 10, 12, 13, 14 и 15 питаются от 24В. Белые нити рассеивают наибольшую мощность: P=IV=(24-20)*1= P=4W . Используя резисторы размера 2010, каждый из которых может рассеивать 2 Вт (3502, серия CGS), 3 резистора 1,3 R используются на каждой цепи, при этом каждый резистор рассеивает около 1,3 Вт. Одна из этих нитей показана ниже на рис. 6.

 

Рис. 6. Схема светодиода с линейным управлением, использующая шину 24 В.

 

Жилы 3, 6, 8 и 11 оставлены и слишком короткие для прямого питания 24 В. Что мы сделали, так это использовали два импульсных понижающих регулятора, чтобы понизить шину 24 В до шины 6 В и 16 В. Рейка 16 В напрямую управляет нитями 3 и 11, а шина 6 В — 6 и 8.

 

Рис. 7. Импульсный регулятор напряжения снижает напряжение до 6 В. Обратите внимание на CLC-фильтр на входе, а также на большую выходную емкость. Это предотвращает взаимодействие шума переключения режимов с любыми другими регуляторами.

 

На рис. 7 показана схема импульсного регулятора для понижения напряжения шины 24 В до 6 В. Затем эта шина 6 В управляет светодиодами точно так же, как шина 24 В. Использование этой комбинации позволяет управлять широким спектром светодиодов с различным прямым напряжением, сводя к минимуму количество импульсных стабилизаторов на плате.