Скорость движения воздуха при естественной вентиляции: Скорость воздуха в воздуховоде: способы определения

Содержание

Работа систем вытяжной естественной вентиляции в жилом доме г. Тюмени

Библиографическое описание:

Жилина, Т. С. Работа систем вытяжной естественной вентиляции в жилом доме г. Тюмени / Т. С. Жилина, С. Д. Вяткина, Ю. С. Вяткина, В. С. Пересторонин. — Текст : непосредственный // Технические науки в России и за рубежом : материалы VII Междунар. науч. конф. (г. Москва, ноябрь 2017 г.). — Москва : Буки-Веди, 2017. — С. 106-111. — URL: https://moluch.ru/conf/tech/archive/286/13140/ (дата обращения: 16.06.2021).



От эффективности работы систем вентиляции зависит качество воздуха, которым дышит человек. Недооценка влияния воздухообмена на состояние воздушной среды в квартирах жилых домов приводит к существенному ухудшению самочувствия проживающих в них людей.

Согласно требованиям нормативной литературы [1] в многоэтажных жилых зданиях современной застройки вытяжка из помещений санузлов (ванных комнат) должна происходить посредством естественной тяги, возникающей внутри вертикальной шахты, выходящей над кровлей. Свежий воздух, попадая в комнаты через окна, под воздействием тяги в шахте, устремляется к ее выходу на кухне или в санузле (ванной) через вытяжные вентиляционные каналы (расположенные в несущих стенах или пристроенные). Он проходит через всю квартиру, постепенно загрязняясь, после чего удаляется наружу через вентканалы. Таким образом, обеспечивается воздухообмен во всем объеме квартиры.

Если в каком-либо месте перекрыть путь этому воздушному потоку, то обновление воздуха в квартире прекратится.

Расчет естественной вентиляции и выбор сечения каналов проводится в соответствии с действующими нормативными документами для температуры наружного воздуха плюс 5 °С и температуры внутри помещения плюс 20–22 °С. Именно при таких показателях воздухообмен соответствует санитарным нормам.

При строительстве подавляющего числа многоквартирных жилых домов придерживаются традиционной схемы приточно-вытяжной вентиляции с естественным побуждением воздуха, требующих наименьших капитальных и эксплуатационных затрат. В то же время современная нормативная база в области расчетных параметров микроклимата помещений жилых зданий регламентирует поддержание постоянных значений воздухообмена в течение всего периода эксплуатации.

В данной статье авторами проводится исследование работы систем естественной вентиляции в жилом многоэтажном здании, расположенном в г. Тюмени.

Обследуемое 16-этажное здание с теплым чердаком, вентиляционные каналы на кухне и в ванной комнате — пристроенные, обшиты гипсокартоном. Поэтажные отводы систем естественной вентиляции выполнены на каждом этаже. Окна пластиковые. На кровле здания расположены утепленные вытяжные вентиляционные шахты.

Исследования параметров работы систем естественной вентиляции были проведены в марте 2017 г. Замеры скорости движения воздуха, температуры воздуха проводились в квартирах на 11, 13, 15 этажах в ванных комнатах и в вытяжной вентиляционной шахте здания при температуре наружного воздуха минус 10

0С в безветренную погоду.

При определении наличия перемещения воздушных потоков в каналах системы естественной вентиляции применен цифровой анемометр — термометр TESTO 480.

Размеры сечения вентиляционного канала-спутника — 100х100 мм (рисунок 1).

Рис. 1. Точки замеров параметров воздуха в сечении вентиляционного канала

Произведены замеры параметров воздушного потока в следующих условиях:

  1. при закрытых окнах; оконные клапаны не установлены:

Таблица 1

Замеры параметров вытяжного воздуха в вентиляционном канале квартиры на 11 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

0,22

29,1

2

0,40

29,3

3

0,05

28,0

4

0,15

29,4

5

0,70

29,5

6

0,68

29,6

7

0,60

29,4

8

0,50

29,3

9

0,62

29,7

Скорость движения воздуха на выходе из решетки на 11 этаже — в диапазоне от 0,05 до 0,70 м/с (средняя скорость — 0,44 м/с).

Таблица 2

Замеры параметров вытяжного воздуха ввентиляционном канале квартиры на 13 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

0,25

27,8

2

0,50

27,6

3

0,16

26,4

4

0,45

26,5

5

0,69

27,6

6

0,67

27,5

7

0,50

27,7

8

0,59

26,9

9

0,63

26,4

Скорость движения воздуха на выходе из решетки на 13 этаже — в диапазоне от 0,16 до 0,69 м/с (средняя скорость — 0,49 м/с).

Таблица 3

Замеры параметров вытяжного воздуха ввентиляционном канале квартиры на 15 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

0,37

26,5

2

0,33

26,9

3

0,40

27,1

4

0,10

27,5

5

0,14

27,6

6

0,29

27,8

7

0,30

27,9

8

0,20

28,1

9

0,30

28,2

Скорость движения воздуха на выходе из решетки на 15 этаже — в диапазоне от 0,10 до 0,40 м/с (средняя скорость — 0,27 м/с).

Таблица 4

Замеры параметров воздуха на выходе из вытяжной вентиляционной шахты

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

1,05

23,8

2

0,85

24,7

3

0,93

24,1

4

0,95

24,1

5

1,01

23,3

6

0,88

24,8

7

0,87

24,7

8

0,95

24,0

9

1,08

24,5

Скорость движения воздуха на выходе из вытяжной вентиляционной шахты на кровле здания — в диапазоне от 0,87до 1,01 м/с (средняя скорость — 0,95 м/с).

2. при закрытых окнах; оконные клапаны установлены:

Таблица 5

Замеры параметров вытяжного воздуха в вентиляционном канале квартиры на 11 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

0,62

25,3

2

0,70

25,3

3

0,68

26,0

4

0,75

26,4

5

0,70

25,5

6

0,98

26,6

7

0,94

27,2

8

0,83

26,8

9

1,02

26,7

Скорость движения воздуха на выходе из решетки на 11 этаже — в диапазоне от 0,6 до 0,1,08 м/с (средняя скорость — 0,80 м/с).

Таблица 6

Замеры параметров вытяжного воздуха ввентиляционном канале квартиры на 13 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

0,65

22,8

2

0,60

23,6

3

0,76

24,4

4

0,83

25,5

5

0,8

25,6

6

0,78

25,5

7

0,80

24,7

8

0,84

24,6

9

0,88

24,4

Скорость движения воздуха на выходе из решетки на 13 этаже — в диапазоне от 0,6 до 0,88 м/с (средняя скорость — 0,77 м/с).

Таблица 7

Замеры параметров вытяжного воздуха ввентиляционном канале квартиры на 15 этаже

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

1,01

26,5

2

0,93

26,3

3

0,90

26,1

4

0,92

26,5

5

0,94

25,6

6

0,89

25,8

7

0,80

25,7

8

1,07

26,1

9

0,93

26,2

Скорость движения воздуха на выходе из решетки на 15 этаже — в диапазоне от 0,89 до 1,07 м/с (средняя скорость — 0,93 м/с).

Таблица 8

Замеры параметров воздуха на выходе из вытяжной вентиляционной шахты

точки замера

Скорость движения воздуха, м/с

Температура воздуха, °С

1

1,40

23,1

2

1,50

23,3

3

1,50

24,1

4

0,95

24,0

5

1,21

22,7

6

1,18

21,8

7

0,87

19,7

8

1,05

20,0

9

1,38

22,5

Скорость движения воздуха на выходе из вентиляционной шахты — в диапазоне от 0,87 до 1,50 м/с (средняя скорость — 1,23 м/с).

Результаты проведенных экспериментов 1 свидетельствуют о том, что система естественной вентиляции, удаляющая воздух из помещений ванных комнат, при закрытых окнах в комнатах без установки оконных клапанов практически не удаляет воздух из обслуживаемых помещений. В свою очередь, из результатов экспериментов 2 видно, что система естественной вентиляции при закрытых окнах в комнатах с установленными оконными клапанами работает на вытяжку в проектном режиме

Полученные результаты замеров были сопоставлены с действующими нормативными документами в области строительства многоэтажных зданий [3].

Таблица 9

Рекомендуемые скорости движения воздуха ввоздуховодах иканалах систем естественной вентиляции

п/п

Тип иместо расположения

воздуховода

Рекомендуемая скорость

движения воздуха, V, м/с

1

Вытяжные вентиляционные решетки

0,5–1,0*

2

Вертикальные вытяжные каналы

0,5–1,0*

3

Вытяжные каналы-спутники

1,0–1,5**

4

Сборные каналы

1,0–2,0*

5

Вытяжные шахты

1,0–1,5*

* принято по данным [6];

** Принято по данным [5].

Допустимая скорость движения воздуха в каналах верхнего этажа — 0,5…0,8 м/с, в каналах нижнего этажа и сборных каналах верхнего этажа 1,0 м/с [6];

Для организации притока в оконных блоках должны предусматриваться форточки или открывающиеся фрамуги, подающие воздух в верхнюю зону помещения.

Согласно [4] можно порекомендовать:

– установить приточные устройства — оконные регулирующие клапаны. Принцип работы подобных клапанов построен на законах физики о расширении твердых металлов за счет температурных изменений;

– рекомендуется выполнять приточные устройства в виде горизонтальной щели шириной 15 мм в верхней части оконной коробки с клапаном на нижнем подвесе. При этом поток наружного воздуха с помощью клапана и под действием конвективного потока от отопительного прибора под окном отклоняется на потолок помещения, опускаясь в зону обитания, как правило, на некотором расстоянии от окна, с параметрами, близкими к параметрам внутреннего воздуха. Длина приточного устройства на 200 мм меньше длины оконного блока (по 100 мм с каждой стороны). Приточные устройства должны давать возможность регулирования расхода приточного воздуха.

Таким образом, для обеспечения устойчивого функционирования систем естественной вентиляции жилых многоквартирных зданий необходимо:

– обязательное применение приточных устройств, обеспечивающих регулируемый приток свежего воздуха в помещения квартир;

– проведение на стадии проектирования систем вентиляции увязки вытяжных каналов с приточными вентиляционными устройствами и между собой.

Литература:

1. СП 54.13330.2011 Актуализированная редакция СНиП 31–01–2003 Здания жилые многоквартирные. — М., Минрегион России, 2011, 42 с.

2. Вяткина Ю. С. Исследование работы систем естественной вентиляции в жилом здании / Ю. С. Вяткина, С. Д. Вяткина, Т. С. Жилина // Сборник материалов Международной научно-практической конференции «Актуальные проблемы архитектуры, строительства, экологии и энергосбережения в условиях Западной Сибири». — Тюмень: РИО ТюмГАСУ, 2015, с. 152–157.

3. СТО НОСТРОЙ 34–2012 Устройство систем теплоснабжения, отопления, вентиляции, кондиционирования и холодоснабжения, 2011.

4. ТР АВОК 5.2–2012. Технические рекомендации по организации воздухообмена в квартирах жилых зданий [Электронный ресурс]. — Режим доступа: https://pro.tion.ru/wp-content/uploads/2014/09/H-НП-АВОК-5.2–2012

5. Ливчак В. И. Решения по вентиляции многоэтажных жилых зданий (из опыта Германии, Франции, Финляндии и Москвы) / В. И. Ливчак // АВОК. — 1999. — № 6, c. 24–31.

6. Малахов М. А. Системы естественно-механической вентиляции в жилых зданиях с теплыми чердаками / М. А. Малахов // АВОК. — 2006. — № 7. с. 8–19.

Основные термины (генерируются автоматически): скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, вытяжная вентиляционная шахта, выход, канал квартиры, наружный воздух.

Похожие статьи

Влияние работы систем

естественной вентиляции на…

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Анализ систем перемешивающей и вытесняющей

вентиляции

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Анализ эффективности

естественного воздухообмена

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Эффективное осушение

воздуха помещений бассейнов

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Вентиляционные системы, применяемые на судах

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

О возможности использования тепловой депрессии, возникающей…

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

Расчет средней плотности

воздуха в стволах при нагнетательном…

скорость движения воздуха, температура воздуха, естественная вентиляция, замер параметров, вытяжной воздух, этаж, канал квартиры, выход, вытяжная вентиляционная шахта, наружный воздух.

О методах определения потери и подсосов

воздуха

Опыт наладки вентиляционных систем показывает, что предусматриваемое СНиП 2.04.05-97 увеличение производительности вентиляторов на 10 или 15% для компенсации подсоса воздуха в вытяжных и потерь воздуха в приточных системах не всегда обеспечивает достижение…

Нормализация

температурно-влажностного режима холодных…

температуру наружного воздуха; ‒ температуру в чердачном пространстве

Таким образом, температурно-влажностный режим чердачных помещений оказывает огромное влияние как внутри здания и квартир верхних этажей, так и в подъезде в целом.

Скорость воздуха в воздуховодах: СНиП, формула расчёта

Воздухопроводы приточных или вытяжных вентиляционных систем могут изготавливаться из разных материалов и быть различной конфигурации. При этом их габаритные размеры целиком зависят от двух других параметров, и формула расчета скорости воздуха хорошо отражает эту зависимость. Эти два параметра – расход воздуха, движущегося по каналу, и скорость его движения.

Схема устройства воздуховода.

Как правильно подобрать параметры воздушного канала?

Из трех параметров, принимающих участие в расчете, нормируется только один, это диаметр круглого воздуховода или габаритные размеры канала прямоугольного сечения. В Приложении Н СНиП «Отопление, вентиляция и кондиционирование» представлена нормаль диаметров и размеров, которых следует придерживаться при разработке вентиляционных систем. Остальные два параметра (скорость и расход воздушных масс) не нормируются, потребности в количестве свежего воздуха для вентиляции могут быть разными, иногда и довольно большими, поэтому расход определяется отдельными требованиями и расчетами. Только в жилых зданиях, детских садах, школах и учреждениях здравоохранения для помещений различного назначения прописаны четкие нормы вытяжки и притока. Эти значения представлены в нормативной документации, касающейся этих видов зданий.

Схема правильной установки канального вентилятора.

Скорость движения воздушных масс в каналах не ограничивается и не нормируется, ее следует принимать по результатам расчета, руководствуясь соображениями экономической целесообразности. В справочной технической литературе существуют рекомендуемые величины скоростей, которые можно принимать при тех или иных конкретных условиях. Рекомендуемые значения скорости движения воздуха, в зависимости от назначения воздухопровода для вентиляционных систем с механическим побуждением, отражены в Таблице 1.

Таблица 1

Назначение воздуховодаМагистраль- ныйБоковое ответвлениеРаспредели- тельныйРешетка для притокаВытяжная решетка
Рекомендуемая скоростьОт 6 до 8 м/сОт 4 до 5 м/сОт 1,5 до 2 м/сОт 1 до 3 м/сОт 1,5 до 3 м/с

При естественном побуждении рекомендуемая скорость движения потока в системе варьируется от 0,2 до 1 м/с, что также зависит от функционального назначения каждого воздухопровода. В некоторых вытяжных шахтах высотных домов или сооружений эта величина может достигать 2 м/с.

Вернуться к оглавлению

Порядок вычислений

Изначально формула расчета скорости воздушного потока в канале представлена в справочниках под редакцией И.Г. Староверова и Р.В. Щекина в следующем виде:

L = 3600 x F x ϑ, где:

  • L – расход воздушных масс на данном участке трубопровода, м³/ч;
  • F – площадь поперечного сечения канала, м²;
  • ϑ – скорость воздушного потока на участке, м/с.

Таблица расчета вентиляции.

Для определения скорости потока формула принимает такой вид:

ϑ= L / 3600 x F

Именно по ней рассчитывается действительная скорость воздуха в канале. Это нужно делать как раз по причине нормируемых значений диаметра или размеров трубы по СНиП. Вначале принимается рекомендуемая скорость для того или иного назначения воздухопровода и просчитывается его сечение. Далее диаметр канала круглого сечения определяется обратным просчетом по формуле площади круга:

F = π x D2 / 4, здесь D – диаметр в метрах.

Размеры канала прямоугольного сечения находят подбором ширины и высоты, произведение которых даст площадь сечения, эквивалентного расчетному. После этих вычислений подбирают ближайшие по нормали размеры воздухопровода (обычно принимают тот, который больше) и в обратном порядке находят величину действительной скорости потока в будущем воздуховоде. Данная величина потребуется для определения динамического давления на стенки трубы и вычисления потерь давления на трение и в местных сопротивлениях вентиляционной системы.

Вернуться к оглавлению

Некоторые экономические аспекты подбора размеров воздухопровода

Таблица для расчета гидравлического диаметра воздуховода.

При расчете размеров и скорости воздуха в воздуховоде наблюдается такая зависимость: при увеличении последней диаметры каналов уменьшаются. Это дает свои преимущества:

  1. Проложить трубопроводы меньших размеров гораздо проще, особенно если их нужно подвешивать на большой высоте или если условия монтажа весьма стесненные.
  2. Стоимость каналов меньшего диаметра соответственно тоже меньше.
  3. В больших и сложных системах, которые расходятся по всему зданию, прямо в каналы необходимо монтировать дополнительное оборудование (дроссельные заслонки, обратные и противопожарные клапаны). Размеры и диаметры этого оборудования также уменьшатся, и снизится их стоимость.
  4. Прохождение перекрытий трубопроводами в производственном здании может стать настоящей проблемой, если его диаметр большой. Меньшие размеры позволят пройти так, как нужно.

Главный недостаток такого выбора заключается в большой мощности вентиляционного агрегата. Высокая скорость воздуха в малом объеме создает большое динамическое давление, сопротивление системы растет, и для ее работы требуется вентилятор высокого давления с мощным электродвигателем, что вызывает повышенный расход электрической энергии и, соответственно, высокие эксплуатационные затраты.

Другой путь – это снижение скорости воздушных потоков в воздуховодах. Тогда параметры вентиляционного агрегата становятся экономически приемлемыми, но возникает множество трудностей в монтаже и высокая стоимость материалов.

Схема организации воздухообмена при общеобменной вентиляции.

Проблемы прохождения большой трубой перегруженных оборудованием и инженерными сетями мест решается множеством поворотов и переходов на другие виды сечений (с круглого на прямоугольное или плоскоовальное). Проблему стоимости приходится решать единоразово.

Во времена СССР проектировщики, как правило, старались найти компромисс между этими двумя решениями. В настоящее время удорожания энергоносителей появилась тенденция к применению второго варианта. Собственники предпочитают единоразово решить финансовые вопросы и смонтировать более экономичную вентиляцию, чем потом в течение многих лет оплачивать высокие затраты электроэнергии. Применяется и универсальный вариант, при котором в магистральных воздухопроводах с большими расходами скорость потока увеличивают до 12-15 м/с, чтобы уменьшить их диаметры. Дальше по системе соблюдается скорость 5-6 м/с на ответвлениях, вследствие чего потери давления выравниваются. Вывод здесь однозначный: скорость движения воздушного потока в каналах играет немаловажную роль для экономики предприятия.

Вернуться к оглавлению

Значения параметров в различных видах воздушных каналов

В современных вентиляционных системах применяются установки, включающие в себя весь комплекс для подачи и обработки воздуха: очистка, нагревание, охлаждение, увлажнение, шумопоглощение. Эти установки называют центральными кондиционерами. Скорость потока внутри нее регламентируется заводом-производителем. Дело в том, что все элементы для обработки воздушных масс должны действовать в оптимальном режиме, чтобы обеспечить требуемые параметры воздуха. Поэтому производители изготавливают корпуса установок определенных размеров под заданный диапазон расходов воздуха, при которых все оборудование будет работать эффективно. Обычно значение скорости движения потока внутри центрального кондиционера лежит в пределах 1,5-3 м/с.

Вернуться к оглавлению

Каналы магистральные и ответвления

Схема магистрального воздуховода.

Следом наступает очередь главного магистрального воздуховода. Часто он имеет большую протяженность и проходит транзитом через несколько помещений, прежде чем начнет разветвляться. Рекомендуемая максимальная скорость 8 м/с в таких каналах может не соблюдаться, поскольку условия прокладки (особенно через перекрытия) могут существенно ограничивать пространство для его монтажа. Например, при расходе 35 000 м³/ч, что не редкость на предприятиях, и скорости 8 м/с диаметр трубы составит 1,25 м, а если ее увеличить до 13 м/с, то размер станет уже 1000 мм. Такое увеличение технически осуществимо, так как современные воздуховоды из оцинкованной стали, изготовленные спирально-навивным методом, имеют высокую жесткость и плотность. Это исключает их вибрацию на высоких скоростях. Уровень шума от такой работы достаточно низок, а на фоне звука от работающего оборудования может быть практически не слышен. В Таблице 2 представлены некоторые популярные диаметры магистральных воздухопроводов и их пропускная способность при разной скорости движения воздушных масс.

Таблица 2

Расход, м3Ø400 ммØ450 ммØ500 ммØ560 ммØ630 ммØ710 ммØ800 ммØ900 ммØ1 м
ϑ = 8 м/с3617457656507087897111393144691831122608
ϑ = 9 м/с40695148635779741009312877162782060025434
ϑ = 10 м/с45215720706388591121414241180862288828260
ϑ = 11 м/с49746292776997451233515666198952517731086
ϑ = 12 м/с542668648476106311345717090217042746633912
ϑ = 13 м/с587874369182115171457818514235122975536738

Схема эжекционной системы вентиляции.

Боковые ответвления воздухопроводов разводят подачу или вытяжку воздушной смеси по отдельным помещениям. Как правило, на каждом из них устанавливается диафрагма либо дроссель – клапан для регулировки количества воздуха. Эти элементы обладают немалым местным сопротивлением, поэтому сохранять высокую скорость нецелесообразно. Однако ее значение тоже может выходить за границы рекомендуемого диапазона, поэтому в Таблице 3 отражена пропускная способность воздуховодов самых популярных диаметров для ответвлений при различных скоростях.

Таблица 3

Расход, м3Ø140 ммØ160 ммØ180 ммØ200 ммØ225 ммØ250 ммØ280 ммØ315 ммØ355 мм
ϑ = 4 м/с22028836645257270588511201424
ϑ = 4,5 м/с24832341150864379399412601601
ϑ = 5 м/с275360457565714882110714001780
ϑ = 5,5 м/с302395503621786968121515401957
ϑ = 6 м/с3304325486788571058132816802136
ϑ = 7 м/с38550464079110001235155019602492

Недалеко от места присоединения к магистрали в канале устраивают лючок, он нужен для замера скорости потока после монтажа и регулировки всей вентиляционной системы.

Вернуться к оглавлению

Каналы внутри помещений

Кратность воздухообмена вентиляции.

Распределяющие каналы присоединяют основное ответвление к устройствам подачи или вытяжки воздуха из помещения: решеткам, распределительным или всасывающим панелям, диффузорам и прочим раздающим элементам. Скорости в этих отводах можно сохранять как в основном ответвлении, если мощность вентиляционного агрегата это позволяет, а можно и снизить до рекомендуемых. В таблице 4 можно увидеть расходы воздуха при различных скоростях и диаметрах каналов.

Таблица 4

Расход, м3Ø100 ммØ112 ммØ125 ммØ140 ммØ160 ммØ180 ммØ200 ммØ225 мм
ϑ = 1,5 м/с42,450,765,882,6108137169214
ϑ = 2 м/с56,567,787,8110144183226286
ϑ = 2,5 м/с70,684,6110137180228282357
ϑ = 3 м/с84,8101132165216274339429
ϑ = 3,5 м/с99,9118153192251320395500
ϑ = 4 м/с113135175см. в Таблице 3

Скорости, рекомендуемые для вытяжных и приточных решеток, а также других воздухораспределяющих устройств, необходимо соблюдать.

Воздух на выходе из них или при всасывании встречает множество небольших преград и производит шум, превышать уровень которого недопустимо. Звук выходящего из решетки потока на большой скорости обязательно будет слышен. Еще один неприятный момент: сильная воздушная струя, попадая на людей, может привести к их заболеваниям.

Вентиляционные системы с естественным побуждением обычно применяются в жилых и общественных зданиях или же в административных корпусах промышленных предприятий. Это разного рода вытяжные шахты, находящиеся во внутренних перегородках помещений, или наружные вертикальные воздуховоды. Скорость движения воздушного потока в них невелика, редко достигает 2-3 м/с в тех случаях, когда шахта имеет значительную высоту и возникает хорошая тяга. Когда речь идет о небольших расходах (порядка 100-200 м³/ч), лучшего решения, чем естественная вытяжка, не найти. Ранее и по сей день в промышленных помещениях применяют крышные дефлекторы, работающие за счет ветровой нагрузки. Скорость воздуха в таких вытяжных устройствах зависит от силы ветрового потока и достигает 1-1,5 м/с.

Вернуться к оглавлению

Измерение параметров воздушного потока при наладке системы

После того как приточная или вытяжная вентиляционная система смонтирована, необходимо ее наладить. Для этого с помощью лючков на воздуховодах измеряют скорость движения потока на всех магистралях и ветках системы, после чего производят регулировку дроссель-клапанами либо воздушными заслонками. Именно скорость воздуха в каналах является определяющим параметром при наладке, через нее и диаметр высчитывают расход на каждом из участков. Приборы, которыми проводят данные замеры, называют анемометрами. Устройства бывают нескольких типов и работают по разным принципам, каждый тип предназначен для измерения определенного диапазона скоростей.

Типы вентиляций в частном доме.

  1. Анемометры крыльчатого типа имеют небольшой вес, просты в обращении, но имеют некоторую погрешность измерений. Принцип работы – механический, диапазон измеряемых скоростей – от 0,2 до 5 м/с.
  2. Приборы чашечного типа тоже являются механическими, но диапазон проверяемых скоростей у них шире, от 1 до 20 м/с.
  3. Термоанемометры снимают показания не только скорости потока, но и его температуры. Принцип действия – электрический, от специального датчика, вносимого в воздушный поток, результаты выводятся на экран. Прибор работает от сети 220 В, времени на измерение требуется меньше, и погрешность у него невысокая. Существуют устройства, работающие от батареек, диапазоны проверяемых скоростей могут быть самые разные, в зависимости от типа прибора и завода-производителя.

Величина скорости движения воздушного потока, наряду с двумя другими параметрами, расходом и поперечным сечением канала, является одним из самых важных факторов работы вентиляционных систем любого назначения.

Этот параметр присутствует на всех этапах, начиная от расчета скорости воздуха в воздуховоде и заканчивая наладкой работы системы после ее монтажа и пуска.

правильный расчет допустимого объёма воздушных масс, санитарные нормы

Режим микроклимата в любом помещении влияет на работоспособность и самочувствие людей в целом. Для того чтобы определить, каким должен быть состав воздуха, необходимо обратиться к утверждённым законодательным нормам, которые и регулируют этот вопрос. Скорость воздуха в воздуховоде при этом играет ключевую роль для обеспечения такого микроклимата.

Необходимость качественной вентиляции

Сначала необходимо определить, почему важно обеспечить попадание воздуха в помещение через вентиляционные каналы.

Согласно строительным и гигиеническим нормам, каждый промышленный или частный объект должен иметь качественную систему вентиляции. Главной задачей такой системы является обеспечение оптимального микроклимата, температуры воздуха и уровня влажности, чтобы человек при работе или отдыхе мог себя чувствовать комфортно. Это возможно только тогда, когда воздух не является слишком тёплым, переполненным различными загрязнителями и имеет довольно высокий уровень влаги.

Некачественная вентиляция способствует появлению инфекционных заболеваний и патологий дыхательных путей. Кроме этого, быстрее портятся продукты питания. Если воздух имеет очень большой процент влаги, то на стенах может образоваться грибок, который может в последующем перейти на мебель.

Свежий воздух может попасть в помещение разными способами, но основным его источником всё же является качественно вмонтированная система вентиляции. При этом в каждом отдельном помещении она должна просчитываться под его конструктивные особенности, состав воздуха и объём.

Стоит отметить, что для частного дома или квартиры небольших размеров будет достаточно установить шахты с естественной циркуляцией воздуха. Для больших коттеджей или производственных цехов нужно монтировать дополнительное оборудование, вентиляторы для принудительной циркуляции воздушных масс.

При планировке здания любого предприятия, цехов или общественных учреждений больших размеров необходимо следовать таким правилам:

  • в каждой комнате или помещении необходима качественная система вентиляции;
  • состав воздуха должен отвечать всем установленным нормам;
  • на предприятиях следует устанавливать дополнительное оборудование, с помощью которого можно регулировать скорость обмена воздуха, а в целях частного использования — менее мощные вентиляторы, если естественная вентиляция не справляется;
  • в разных помещениях (кухня, санузел, спальня) требуется монтировать разные типы систем вентиляции.

Для того чтобы вентиляция соответствовала таким требованиям, нужно сделать необходимые расчёты. Кроме этого, важно правильно подобрать оборудование — устройства для подачи и отвода воздуха.

Также следует проектировать систему таким образом, чтобы воздух был чистым в том месте, где он будет забираться. В противном случае в вентиляционные шахты и затем в комнаты может попадать загрязнённый воздух.

Во время составления проекта вентиляции, после того как необходимый объём воздуха рассчитан, проделываются отметки, где должны находиться вентиляционные шахты, кондиционеры, воздуховоды и прочие комплектующие. Это относится как к частным коттеджам, так и к многоэтажным домам.

От размеров шахт будет зависеть эффективность работы вентиляции в целом. Необходимые к соблюдению правила по требуемому объёму указаны в санитарной документации и нормах СНиП. Скорость воздуха в воздуховоде в них также предоставлена.

Санитарные нормы

Санитарные нормы

Скорость движения воздуха в воздуховодах непосредственно зависит от таких не менее важных показателей, как уровень шума и вибрации. Воздух, который проходит по каналам, с увеличением количества различных изгибов шахты и поворотов пропорционально увеличивает количество издаваемого шума и вибрации от движения.

По мере уменьшения сопротивления будет снижаться давление в вентиляционной системе и, конечно же, скорость движения кислорода. Для того чтобы понять общие правила выбора оборудования и его правильного расчёта, нужно узнать нормы основных факторов, которые влияют на выбор.

Уровень шума

Нормы, которые можно найти в СНиПах по этому вопросу, касаются всех видов жилых помещений: многоквартирных и частных домов, производственных и общественных зданий.

Согласно таким нормам, необходимо не превышать максимально допустимый уровень шума в следующих помещениях:

  • палаты, больницы, санатории — днём до 50 Дб, а ночью до 40 Дб;
  • учебные кабинеты — до 55 Дб;
  • жилые квартиры — до 55 Дб днём и до 45 Дб ночью;
  • в зданиях, которые прилегают к больницам и санаториям — днём до 60 Дб, ночью до 50 Дб;
  • территории, которые прилегают к жилым зданиям — днём до 70 Дб, а ночью до 60 Дб;
  • непосредственно возле здания школы — до 70 Дб.

Одной из причин увеличения уровня шумов в доме и, соответственно, превышения допустимых норм является неправильно сформированная сеть воздуховодов.

Показатель вибрации

Так же, как и уровень шума, вибрация напрямую влияет на скорость движения кислорода в шахтах. При этом такой показатель зависит от множества факторов. К ним можно отнести качество прокладок (их функция заключается в снижении уровня вибрации), размер воздуховода, скорость кислорода (который движется по каналам), материал для изготовления шахт и прочие нюансы.

Что касается цифр, то уровень вибрации должен быть в пределах 109—115 Дб. Если при проверке эти показатели будут превышены, то необходимо исправлять технические недочёты, допущенные при проектировании, или заменить вентилятор, который работает очень громко.

Скорость потока воздуха в вентиляции по нормам СНиП не должна влиять на увеличение таких показателей, как излишний шум или вибрация.

Кратность воздухообмена

Очищение воздуха в помещении происходит благодаря системе вентиляции. Этот процесс может быть как естественным, так и принудительным. В первом варианте вентиляция происходит в первую очередь через оборудованную систему шахт без вмонтированного дополнительного оборудования. К этому можно отнести постоянное открывание и закрывание дверей, окон, форточек и просто все щели в помещении.

Нужно понимать, что за определённое количество времени воздух в комнате должен несколько раз меняться, чтобы оставаться постоянно очищенным в пределах норм. Число смен воздуха за день — это кратность. Этот показатель также очень важный для определения скорости воздуха в воздуховодах.

Кратность можно вычислить по такой формуле: N=V/W.

Значения в формуле можно подставлять следующие:

  • N — кратность воздуха за 1 час.
  • V — объём кислорода, попадающего с улицы в комнату за 1 час.
  • W — объём помещения.

Если нормы не будут соблюдены, это чревато последствиями — будет увеличиваться уровень шума, вибрации и т. п. Кроме этого, в помещении не будет достаточно свежего воздуха.

Также это может привести к следующей ситуации:

  1. Показатель завышен. Такой вариант возникает, когда скорость воздуха в шахтах превышает норму. Последствия — неправильный температурный режим в помещении. Оно просто не будет успевать прогреваться. Если воздух очень сухой, то это будет провоцировать различные болезни дыхательных путей, кожи и т. п.
  2. Показатель занижен. При возникновении такой ситуации свежий воздух не поступает в помещение в достаточном количестве, поэтому уровень загрязнения довольно высок. В кислороде присутствует большая концентрация вредных веществ, бактерий, болезнетворных организмов, опасных газов. Количество кислорода уменьшается, а углекислого газа — увеличивается. Кроме этого, может наблюдаться повышенный уровень влажности, что чревато появлением плесени.

Для того чтобы такой показатель, как кратность, отвечал всем санитарным нормам, необходимо проверить его. Если он не соответствует общим требованиям, то требуется заменить отвечающее за это оборудование — вентиляторы или другие нагнетающие приборы для механического удаления неприятных запахов. При необходимости меняется и система шахт полностью.

Рекомендованная скорость

Определив максимальную скорость воздуха в воздуховоде, можно получить качественный результат. При составлении проекта необходимо для каждого помещения высчитывать нормы вентиляции отдельно. К примеру, на производстве — это цеха, в жилых многоэтажках — квартиры, а в частных коттеджах — поэтажные блоки.

Перед тем как устанавливать систему вентиляции, следует определиться с ключевыми элементами и зафиксировать их местонахождение. Нужно знать, какие маршруты будут проложены, систему магистралей и её размеры, форму вентиляционных шахт и их габариты.

Движение воздушных потоков внутри жилых и производственных зданий является очень сложным, поэтому ими занимаются только специалисты с соответствующим опытом работы.

Согласно общепринятым нормам, внутри помещения скорость воздуха не должна превышать показателя 0,3 метра за секунду. В качестве исключения из правила могут выступать ремонтные или другие строительные работы, при которых максимальный показатель может увеличиваться максимум на 30%.

Стоит отметить, что в больших производственных цехах должна работать система вентиляции, состоящая из двух шахт, а не одной, как это допустимо в квартирах или частных домах. В связи с этим скорость каждого из воздуховодов должна составлять 50% от необходимого максимума для каждой шахты.

Бывают форс-мажорные обстоятельства, кода необходимо полностью закрыть вентиляционные шахты или уменьшить количество вытекаемого воздуха за единицу времени. При этом сделать это нужно оперативно. К примеру, в случае возникновения пожара вентиляцию требуется перекрыть до минимального уровня в целях предотвращения распространения огня по другим помещениям здания. Для этого дополнительно в систему монтируются клапаны и отсекатели.

Правильный выбор

Правильный выбор

Кроме расчёта скорости в воздуховоде, необходимо правильно выбрать сам материал для монтажа шахт. Если все расчёты сделаны, следует выбрать диаметр круглых труб или сечение квадратных для создания системы вентиляции. Кроме этого, не помешает приобрести и металлические решётки во избежание попадания твёрдых частей в каналы.

Также можно предварительно купить вентилятор для нагнетания воздуха и определить, какую скорость и давление он создаёт. Зная такие показатели, как скорость воздуха и необходимое количество для определённой комнаты, можно определить, какого сечения должны быть вентиляционные шахты. Для этих целей используется формула S = L/3600*V.

Определив такой результат, можно подсчитать и диаметр труб по формуле D = 1000*√(4*S/π), где

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

  • D — диаметр воздуховода.
  • S — внутренний объём шахт.
  • n — число «пи» равно 3.14.

Полученные результаты сопоставляют с нормами СНиП и по этим параметрам выбирают сечения труб, самые близкие к полученному результату.

Стоит отметить, что для таких расчётов необязательно пользоваться формулами или таблицами СНиП. Сегодня существует достаточно много онлайн-калькуляторов, с помощью которых очень просто просчитать расход приточного кислорода, скорости, давления и других показателей, просто введя исходные данные.

Таким образом, скорость в вентиляционных шахтах играет важную роль для обеспечения поступления воздуха в помещение, а также дымоудаления и выкачки из комнаты других вредных веществ.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Виды вентиляции, её устройство. Установка вентиляции

Каждое здание должно оснащаться эффективной вентиляционной системой, ведь постоянный воздухообмен также важен, как хорошая система отопления или качественная вода. Учеными уже давно была установлена связь между развитием в домах ряда негативных явлений и неправильной вентиляцией. Таким образом, хороший воздухообмен помещений необходим не только для продления срока эксплуатации здания, но и для поддержания нашего здоровья.

Для чего нужна вентиляция?

Главная цель вентиляции – это организованная подача в помещение свежего воздуха и последующая замена (или удаление) загрязненного воздуха. Воздухообмен должен осуществляться с определенной частотой. В строениях с плохой вентиляционной системой скапливается очень много пыли, микроскопических химических веществ (регулярное использование средств бытовой химии). Повышенная влажность способствует образованию плесени, а в воздухе наблюдается высокая концентрация грибковых спор.

 

Человек, работающий или проживающий в таком здании, может жаловаться на жжение в глазах, головные боли, проблемы с концентрацией внимания и быструю утомляемость. Повышенная влажность в строениях и плохая вентиляция помещений приводит к конденсации и образованию капелек влаги на потолках и стенах.

Подобные условия становятся идеальными для развития грибков, негативно влияющих на здоровье человека и приводящих к постепенному разрушению здания. Также перечисленные факторы очень часто являются причиной большинства респираторных заболеваний, а для людей, склонных к аллергии, представляют серьезную угрозу их здоровью.

Классификация систем вентиляции

Вентиляционные системы классифицируются по четырем основным способам:

1. По способу создания для циркуляции воздушного потока:

— искусственная вентиляция;

— с естественным приводом.

2. По назначению:

— вытяжные системы;

— приточные.

3. По зоне обслуживания:

— общеобменные системы;

— местные.

4. По конструктивному исполнению:

— бесканальные системы;

— канальные.

Основные виды вентиляции

Различают следующие основные виды вентиляционных систем:

1. Естественная.

2. Механическая.

3. Вытяжная.

4. Приточная.

5. Приточно-вытяжная.

6. Местная.

7. Общеобменная.

Естественная вентиляция

Как можно догадаться, такая вентиляция создается естественным путем, без использования вентиляционных агрегатов, а только посредством естественного воздухообмена, потоков ветра и разницей температуры на улице и в помещении, а также за счет колебания атмосферного давления. Такие виды вентиляции сравнительно недорогие по стоимости, а главное, их легко монтировать. Однако такие системы напрямую зависят от климатических условий, поэтому не способны справиться со всеми проблемами.

 

Механическая

Когда осуществляется принудительная замена отработанного воздуха на поток свежего – это и есть механическая вентиляция. В данном случае применяется специальное оборудование, которое позволяет отводить и подводить воздушный поток в помещение в необходимом объеме, независимо от изменяющихся климатических условий.

В таких системах воздух при необходимости подвергается различным видам обработки (увлажнение, осушение, охлаждение, нагревание, очистка и многое другое), что практически невозможно организовать в естественных вентиляционных системах.

На практике очень часто применяют смешанные виды вентиляции, которые одновременно совмещают механическую и естественную системы. Для каждого конкретного случая выбирается наиболее оптимальный способ вентиляции в санитарно-гигиеническом отношении, а также, чтобы она была технически и экономически рациональна. Механическую систему можно устанавливать как для всего помещения (общеобменная), так и на конкретном рабочем месте (местная вентиляция).

Приточная

Посредством приточных систем осуществляется подача чистого воздушного потока в вентилируемые помещения, который сменяет загрязненный. При необходимости приточный воздух подвергают специальной обработке (увлажнение, нагревание, очистка и т. д.).

Вытяжная

Такая система предназначена для удаления из помещения загрязненного воздуха. В большинстве случаев в помещениях предусматриваются одновременно вытяжные и приточные виды вентиляции. Важно, чтобы их производительность была сбалансированной, с учетом возможности поступления воздушного потока из смежных помещений или в смежные помещения.

Также в помещениях может устанавливаться только приточная или только вытяжная система. В таком случае воздух поступает в помещение из смежных комнат или снаружи через специальные проемы, либо перетекает в смежные помещения, или же удаляется из данного помещения наружу.

 

Местная вентиляция

Это система, при которой воздушный поток направляется в определенное место (местная приточная система), и загрязненный воздух удаляется из мест скопления вредных выделений — местная вытяжка (вентиляция).

Местная приточная система

Воздушные души (сосредоточенный воздушный поток с повышенной скоростью) относятся к местным приточным вентиляционным системам. Их основной задачей является подача чистого воздуха к постоянным рабочим местам, снижение температуры воздуха в их зоне, обдув рабочих, которые подвергаются интенсивному тепловому облучению.

Воздушные завесы (у печей, ворот и т. д.) также относятся к местным системам вентиляции, они изменяют направление воздушного потока или создают воздушные преграды. Такая вентиляционная система, в отличие от общеобменной, требует меньших затрат. В помещениях производственного назначения при выделении вредностей (теплоты, влаги, газов и т. д.) обычно применяется смешанная схема вентиляции: местная (приток и местные отсосы) — для обслуживания рабочих мест, и общая — для устранения во всем объеме помещения вредного воздуха.

Местная вытяжная система

Когда вредности (пыль, газ, дым) и тепло выделяются локализованно, к примеру, от плиты на кухне или станка на производстве, применяют местную вытяжную вентиляционную систему. Она улавливает и отводит вредные выделения, предотвращая их последующее распространение по всему объему помещения.

 

К таким системам относятся местные и бортовые отсосы, вытяжные зонты и многое другое. Также к местной вытяжной вентиляции относят воздушные завесы – воздушные преграды, которые не дают воздушному потоку проникать с улицы в помещение или из одного помещения в другое.

Общеобменная вентиляция

Такая система предназначена для осуществления вентиляции помещения в целом или его значительной части. Общеобменная вытяжная схема вентиляции предусматривает удаление воздуха из всего обслуживаемого помещения равномерно, а общеобменная приточная система подает воздушный поток и распределяет его по всему объему помещения.

Естественная или механическая система: какую выбрать?

Для комфортного существования человеку требуется не только тепло, но и чистый, свежий воздух. Причем свежий воздух человеку необходим постоянно и в большом количестве. Важна также и объемная скорость движения воздушного потока в комнате. При естественной системе скорость значительно ниже, чем при механической вентиляции.

 

Но воздухообмен, который достигается посредством механической системы, намного выше, чем при естественной вентиляции.

Кроме того, при механической системе вентиляционные каналы, по сравнению с естественной вентиляцией, имеют меньший размер. Это обусловлено нормируемой скоростью движения воздушного потока в вентиляционных системах. Согласно СНиП «Отопление, вентиляция и кондиционирование», для механической системы скорость движения воздуха должна быть от 3 до 5 м/с, для естественной вентиляции – 1 м/с. Другими словами, чтобы пропустить через систему один и тот же объем воздуха, у естественной вентиляции размеры каналов будут в 3-5 раз больше.

Очень часто при возведении зданий просто нет возможности пропустить такие большие каналы. Кроме того, при естественной системе протяженность воздуховодов не может быть большой, так как создаваемое разницей плотностей воздуха давление очень мало. В связи с этим при больших площадях попросту не обойтись без механической вентиляции.

Вентиляция помещений – главные составляющие

В состав отопления, вентиляции и кондиционирования входит масса агрегатов, обеспечивающих высокоэффективную циркуляцию воздушных масс в помещении. Важно, чтобы проект вентиляции, а также размещение устройств было выполнено в соответствии с действующими нормами и правилами (ТКП, СНиП).

 

Вентиляционные системы могут быть снабжены каналами или же их не иметь – все зависит от конструктивных особенностей помещения.

Важно помнить, что вентиляция является серьезным и значимым элементом, поэтому как к проектированию, так и к подбору оборудования необходимо подходить грамотно. Стоит также обратить внимание, что для организации регулируемого воздухообмена применяются универсальные и самые разнообразные агрегаты. Наиболее доступными и простыми считаются вентиляторы – они могут быть радиальными, осевыми и диаметральными.

Кроме того, в помещении могут устанавливаться вентиляционные установки, которые монтируются в специальных каналах – воздуховодах, либо же на крыше зданий. Также установка вентиляции предполагает устройство воздушных клапанов, заслонок, распределительных элементов и решеток, которые позволяют сделать движение воздушного потока в помещении максимально эффективным.

Основные параметры вентиляционных систем

1. Производительность. При расчете данного параметра необходимо учитывать количество бытовой техники, количество проживающих в доме людей, а также площадь помещений. Следует рассчитать, какое время и какой объем понадобится вентиляционной системе для вывода загрязненного воздуха и последующего заполнения чистым. Для коттеджей наиболее оптимальное значение воздухообмена считается от 1000 до 2000 м3/ч. Для расчета площадь помещения умножается на его высоту и на на его высоту и на 2.

2. Уровень шума. Чем выше скорость работы вентиляции, тем, соответственно, больше уровень шума. Не нужно приобретать чересчур «быстрые» системы. Если первый пункт будет рассчитан правильно, то вам удастся не только сохранить свой бюджет, но и спокойный сон. В таком случае установка вентиляции будет правильной. Также не стоит покупать воздуховоды с заниженными показателями, так как их будет тяжело правильно установить, и они не смогут во время работы выдержать нагрузки. Для коттеджа приемлемая средняя скорость воздушного потока составляет от 13 до 15 м/с.

3. Еще одним немаловажным параметром является мощность. Температуру поступающего в помещение воздуха регулирует калорифер. Согласно СНиП «Отопление, вентиляция и кондиционирование», температура не должна превышать +16°C. В зависимости от предполагаемого места установки прибора, рассчитывается мощность калорифера. Важно, чтобы он мог работать и при минусовых температурах в зимний период времени. Выбирая мощность, следует ориентироваться на максимальный плюсовой и минусовой показатели температуры. Если на улице максимальная минусовая температура -10°C, то калорифер должен нагревать воздух как минимум на 26°C. К примеру, для офисных помещений может использоваться до 50 кВт мощности, для квартиры вполне достаточно и 1-5 кВт.

Вентиляция дома, схема и монтаж – основные этапы

Еще на этапе проектирования необходимо определить точки крепления вентиляционного оборудования, как основного, так и вспомогательного. В данном случае имеются некоторые ограничения – не рекомендуется устанавливать оборудование над источниками тепла (печь, камин и др). Важно, чтобы проект вентиляции полностью соответствовал требованиям, которые предъявляются к нормативно-технической документации.

 

Устройство вентиляционной системы предполагает следующие основные этапы:

1. Подготовка.

— Выполняется разметка мест предполагаемой установки вентиляционных устройств.

— С учетом запаса (2-3 сантиметра) выдалбливаются отверстия. Запас требуется для комфортного монтажа системы.

— Подчищаются края отверстий.

2. Устройство вентиляции.

— Передняя часть вентилятора устанавливается в отрезок трубопровода.

— Затем конструкция размещается в отверстии.

— Пространство между вентилятором и стеной заливается пеной.

3. Монтаж электрики.

— В стене выполняются борозды под кабель.

— В получившиеся отверстия укладывается кабель к вентилятору.

— Кабель закрепляется при помощи скоб.

4. Отделочные работы.

— На выключатель вентилятора устанавливается защитный короб.

— Герметиком промазываются все стыки вентиляционной системы.

— Борозды с проводкой, а также места примыкания системы к стене отштукатуриваются и шпаклюются.

Система полностью готова к запуску. Это несложная вентиляция, цена такой системы будет зависеть от стоимости вентилятора.

Заключение

Системы отопления, вентиляции и кондиционирования являются неотъемлемой частью современного офиса, дома или любого другого объекта недвижимости. Данные системы состоят из самых инновационных и современных агрегатов, проектируются в зависимости от конструктивных особенностей здания, позволяя в значительной степени сэкономить на отоплении. Важно помнить, что грамотно спроектированная и установленная вентиляционная система – это залог создания в помещении оптимального микроклимата.


Естественная вентиляция — Информтех — проектирование вентиляции и кондиционирования

Естественная вентиляция – это система вентиляции, не имеющая принудительной движущей воздух силы (вентилятора). Движение воздуха в естественной системе вентиляции осуществляется за счет естественных сил (перепада давления).

Проветривание помещений

К естественной вентиляции, например, относится осуществляемое вручную проветривание помещений: при открытии окон в двух комнатах без использования вентиляторов начинается движение воздуха, вызванное тем, что атмосферное давление на улице возле одного окна несколько выше, чем возле другого. Как следствие, наружный воздух попадает в квартиру через первое окно и движется ко второму.

Кстати, именно такую схему воздухообмена в квартирах рекомендует СНиП 2.08.01-89 „Жилые здания“: наружный воздух поступает через открытые форточки жилых комнат и удаляется через вытяжные решетки, установленные в кухнях, ванных комнатах и туалетах.

Воздухообмен квартиры не должен быть ниже:

  • суммарной нормы вытяжки из туалетов, ванных комнат и кухни:
    • от кухонной электроплиты объем вытяжки должен составлять 60 м 3
    • от кухонной газовой плиты — 90 м 3
    • из совмещенного (душ + унитаз) санузла в квартире — 50 м 3
  • нормы притока, равной 3 м 3 /ч на каждый квадратный метр жилой площади

Применение естественной вентиляции

Естественная вентиляция предусматривается для вспомогательных помещений (склады, санузлы, кухни в жилых зданиях и т.д.).

На системах естественной вентиляции вентиляторы не устанавливаются, удаление воздуха происходит за счет перепада давления между воздухозаборной решеткой и верхней точкой шахты. На шахтах таких систем устанавливается либо зонт, либо дефлектор, который увеличивает тягу в шахте.

Расчет естественной вентиляции

Движение воздуха при естественной вентиляции обеспечивается перепадом давления. Давление, принуждающее перемещаться воздух, определяется по следующей формуле:

Р ест = (ρ вн — ρ н )*h*g, Где:
  • ρ н — плотность наружного воздуха, кг/м 3 ;
  • ρ вн — плотность воздуха внутри помещения, кг/м 3 ;
  • h — расстояние oт центра приточного проема до центра вытяжного пo вертикали, м;
  • g — ускорение свобoдного падения, равное 9,81 м/с 2.

Расчет естественной вентиляции сводится к определению живого сечения воздуховодов (воздушных каналов). Условием расчета является равенство давления, принуждающего перемещаться воздух, и аэродинамического сопротивления воздуховодов.

Сопротивление воздуховодов определяется по формуле:

р = R*l + Z,

где
  • R — удельная потеря давления пo длине участка из-за трения, Па/м;
  • l — длина участка, м;
  • Z — потери в местных сопротивлениях, Па.

Величины R и Z зависят от вида воздуховодов или воздушных каналов, их сечения и геометрической формы вытяжного канала (повороты, сужения, расширения и др.). Эти величины выбираются по таблицам в зависимости от скорости движения воздуха. В свою очередь скорость движения воздуха определяется по формуле:

V = G / (S * 3600),

где:

  • G – расход вытяжного воздуха, м 3 /ч;
  • S – площадь вытяжного канала, м 2 ;

Целью расчета является либо определение расхода воздуха, который будет вытягиваться через имеющиеся каналы, либо определение конфигурации вытяжных каналов и высоты подъёма вытяжной шахты для обеспечения требуемого расхода воздуха.

Электрические вентиляторы.Виды и работа.Как выбрать и применение

Вентилятором называют устройство, способное перемещать газ, который имеет степень сжатия не более 1,15. Еще в древности использовались некоторые приемы вентиляции закрытых пространств, например, производилась естественное проветривание. Теорию движения воздушных масс естественным путем в трубах и каналах создал Ломоносов. По мнению академика Ленда, полная вентиляция достигается только механическим путем.

С появлением механических вентиляторов эта технология стала быстро развиваться. Первый успешно действующий центробежный вентилятор был разработан в 19 веке инженером Саблуковым, который предложил использовать его для вентиляции рудников, трюмов кораблей, сушки и т.д. Большую популярность получили механические вентиляторы в конце 19 века, затем появились электрические вентиляторы.

Естественная и принудительная вентиляция

В настоящее время такие устройства используются в различных областях промышленности, а также в быту. Нормальная работа бытовой вентиляции, в которой бы происходила естественная циркуляция воздуха, может обеспечиваться только благодаря небольшому перепаду давления между входом и выходом системы, а также соблюдением определенных условий:

  • Выходное отверстие должно находиться на 4 метра выше входного отверстия.
  • Для создания хорошей пропускной способности при небольшой скорости воздуха, нужны воздушные каналы большого размера.
  • Форма сечения каналов также важна, и должна быть приближена к круглой форме. Внутренняя поверхность воздуховодов должна быть гладкой, чтобы не допускать завихрений воздуха.

При внедрении в эту схему электрического вентилятора, рассмотренные условия выполнять не обязательно, так как:
  • Разница давлений между вытяжным и нагнетательным каналом создается лопастями вентилятора, поэтому разница высот при этом не имеет значения.
  • Принудительная вентиляция создает большую скорость движения воздуха, поэтому даже небольшие воздуховоды способны пропустить через себя большой объем воздушных масс.
  • Электрические вентиляторы дают возможность создавать перепад давления значительно больше, в отличие от естественной тяги, поэтому гладкая поверхность внутренних поверхностей не всегда необходима, и этим часто пренебрегают.

Наибольшая скорость воздуха при естественной тяге не превышает одного метра в секунду, а принудительное нагнетание позволяет достичь скорости более 3 метров в секунду.

Классификация

Все модели бытовых вентиляторов работают от электрического двигателя. Различные модели имеют отличия друг от друга по мощности мотора, скорости вращения, наибольшему рабочему давлению, производительности, виду крыльчатки, габаритам и другим характеристикам.

  • Осевые вентиляторы считаются самыми простыми по конструкции, и наиболее популярными моделями, применяемыми в бытовых условиях.
  • Центробежные модели обладают большей производительностью, могут создавать высокое давление, большую скорость воздуха в каналах.Одним из видов этих моделей стала система с диаметральными лопастями, но так как эта конструкция слишком громоздкая, то она в бытовых условиях не применяется.
  • Канальные вентиляторы используются для монтажа внутри каналов прохождения воздуха. Их особенностью является компактный корпус и низкие шумовые параметры.
Осевые электрические вентиляторы

Такие электрические вентиляторы называют аксиальными, так как при его функционировании направление потока воздуха и крыльчатка находятся на одной оси. Такая конструкция получила большое распространение в различных системах вентиляции:

  • Электродвигатели подобных изделий обычно имеют малую мощность, поэтому они считаются наиболее экономичными, и способны эксплуатироваться долгое время без перерыва.
  • Аксиальные не могут создавать высокого давления, но их мощности вполне хватает для непрерывного обновления всей воздушной массы в помещении. Этот режим действия дает возможность гарантировать равномерный обмен воздуха в течение всего периода работы, поэтому аксиальные вентиляторы применяют в качестве охлаждения или вытяжки.
  • Осевая схема вытяжки воздуха обладает простой конструкцией, представляющей собой воздушный канал прямоточного типа, с находящейся в нем лопастной крыльчаткой и приводом от электрического двигателя. Поэтому стоимость вентиляционных устройств аксиального вида значительно ниже, по сравнению с другими сложными конструкциями.В качестве достоинства осевых моделей следует назвать очень низкий шум, по сравнению с другими аналогичными изделиями. Поэтому они обычно применяются для организации вытяжки на кухне, в санузле, ванной комнате.
Центробежные вытяжки и нагнетатели

Для нормального функционирования сложных систем вентиляции с большим числом и длиной вытяжных и нагнетательных каналов необходима установка промышленных вентиляторов высокой производительности. Они могут за короткий период переместить значительное количество воздуха. Обычно для таких целей применяются электрические вентиляторы с центробежным расположением лопастей.

Рабочим элементом этого устройства является металлический корпус, выполненный из оцинкованной или нержавеющей стали, внутри которого смонтирован вращающийся барабан на подшипниках. На стенках этого барабана расположено большое число радиальных лопастей.

При вращении лопастного барабана с большой скоростью воздух захватывается им, придавая ему вращение. Под воздействием центробежной силы воздух отходит от центра крутящегося барабана к стенкам металлического кожуха. Далее воздух поступает к выходному окну нагнетательного канала.

Промышленные модели работают от мощных электродвигателей, действующих в циклическом или постоянном режиме, и начинают работать при срабатывании датчиков климатической системы, либо вручную.

Центробежные вентиляционные установки могут с равной эффективностью действовать на вытяжке и подаче воздуха. Поэтому их применяют в вытяжной и приточной системе вентиляции принудительного типа.

Тангенциальные электрические вентиляторы

Такие вентиляторы еще называют диаметральными. Барабан этого изделия выполнен в виде «беличьей клетки» (ротор имеет полый центр, вдоль периферии расположены лопатки), и напоминает форму цилиндра.

Крыльчатка заменяет стенки цилиндра, ее лопатки изготовлены в виде загнутых лопастей. Крыльчатка этого тангенциального изделия вмонтирована в корпус, имеющий форму диффузора, похожего на корпус центробежной модели, с тем отличием, что воздух засасывается по всей длине с передней стороны корпуса, в отличие от центробежной модели, где воздух забирается с торца.

Воздушные массы захватываются вращающимися лопастями, а затем с помощью диффузора получают ускорение в необходимом направлении. Воздух в тангенциальных вентиляторах поступает по периферии ротора, и перемещается к выходу как в центробежной конструкции.

Такие устройства формируют равномерный поток воздуха по всей ширине барабана, и не создают много шума. Они имеют громоздкий корпус, и создают относительно низкое давление воздуха, что является их недостатками.

Тангенциальные электрические вентиляторы стали популярными при использовании в воздушных завесах, кондиционерах и других устройствах, в которых не требуется мощный напор воздуха. Слабый напор не позволяет выполнять полную фильтрацию воздуха в устройстве бытового кондиционера.

Канальные электрические вентиляторы

Для монтажа внутри воздуховода, либо в промежутке магистральной линии вытяжки воздуха служат канальные вентиляционные конструкции. Они применяются в качестве вспомогательного или основного рабочего устройства вытяжной или приточной вентиляции.

Основными особенностями канальных изделий являются следующие рабочие параметры:
  • Обычно производятся по осевой схеме, имеют компактный корпус, обладают низкой величиной шума.
  • Возможна самостоятельная установка в существующие и проектируемые вентиляционные воздуховоды, а также в другие места, не требующие профессионального мастерства.
  • Реализуются в торговой сети большим перечнем разных моделей, отличающихся по габаритам, производительности, форме и другим техническим характеристикам. Поэтому выбрать подходящую модель не вызовет затруднений.

Специалисты рекомендуют отдавать предпочтение устройствам с лопастями, изготовленными из антикоррозионных материалов – нержавеющей стали, пластмассы и других материалов, так как в воздухе всегда имеется водяной пар, а вентиляционные каналы склонны к накапливанию конденсата.

Многозональные электрические вентиляторы

В центральной системе удаления дыма, кондиционирования и вентиляции воздуха в собственном доме удобно применять многозональные электрические вентиляторы. Они выполняются в виде центробежного вентилятора высокой производительности, монтируемого в специальном техническом помещении – на чердаке, в подвале.

Особенностями этого устройства являются:
  • Корпус многозонального устройства имеет несколько фланцев для соединения с нагнетательными или вытяжными каналами.
  • Каждый фланцевый выход может обслуживать независимо разные бытовые, хозяйственные и жилые объекты.
  • В результате, одно изделие способно полностью гарантировать работу вытяжной и приточной вентиляции всего дома.
Как выбирать электрические вентиляторы
Чтобы правильно выбрать вентилятор по поставленным задачам и назначению, специалисты советуют следовать определенным рекомендациям:
  • Для лучшего проветривания санузлов и ванных комнат лучше купить осевой вентилятор, у которого производительность не ниже 30 кубометров в час.
  • Для мест с высокой влажностью, например в бане или душевой, класс защиты электродвигателя должен быть выше IP
  • Если требуется вытяжка для кухни, то необходимая производительность вычисляется путем умножения общего объема помещения на число 10. Если объем помещения кухни размером 3х4 метра и высотой 3 метра равен 36 м3, то производительность вытяжки требуется не меньше 360 кубометров в час.
  • Для жилых помещений производительность вытяжного вентилятора рассчитывается по аналогичной схеме, но в этом случае общий объем нужно умножать на число 3.
  • Если требуется нагреть воздух в помещении, то существуют тепловентиляторы бытового назначения. В них перед лопастями нагнетателя закреплен нагревательный элемент, проходя через который воздух нагревается.
  • При выборе вытяжки следует обратить внимание на наличие обратного клапана, который предотвращает проникновение холодного воздуха снаружи.
  • Наиболее оптимальным выбором для бытовых вытяжек являются осевые электрические вентиляторы.
Похожие темы:

Принцип работы, проектирование и монтаж естественной вентиляции в частном доме.

   Качество микроклимата в жилых помещениях напрямую влияет на физиологическое и психологическое самочувствие человека. Внутренняя среда определяется рядом основных параметров, в которые входят температура, влажность и скорость движения воздуха в строении. Обогрев помещений до комфортного уровня обеспечивает система отопления, а за показатели влажности и воздухообмена отвечает вентиляция.

   ГОСТ 30494 «Здания жилые и общественные. Параметры микроклимата в помещениях» регламентируют допустимые параметры внутренней среды жилых, общественных, административных и бытовых помещений. Застройщики многоквартирных комплексов обязаны соблюдать установленные стандарты, так как их нарушение влечет за собой привлечение ответственности перед законом. При строительстве частного дома собственники часто уделяют незаслуженно мало внимания грамотной организации вентиляции, что впоследствии может существенно снизить качество жизни, негативно влияя на самочувствие и жизнедеятельность проживающих. Именно поэтому важно обеспечить воздухообмен в помещениях на оптимальном уровне, организовав вентиляционную систему согласно утвержденным требованиям и нормам.

   При проектировании частного дома необходимо заранее определиться с типом вентиляционной системы. Они бывают двух видов:

   Естественная — действует за счет разницы давления внутри и снаружи здания. Функциональность системы зависит от условий окружающей среды (температуры, чистоты и скорости воздушных масс). Для организации и содержания естественной вентиляции не требуется специального оборудования. Главным минусом является невозможность контролировать качество подачи воздуха в помещения.

   Принудительная — в основе работы лежит разница давления, которая создается с помощью специального оборудования. Используемые приборы позволяют подготовить воздух до комфортных показателей, а затем подавать в жилые помещения. Недостатком можно считать достаточно высокие затраты на оборудование и содержание вентиляции.

   Отвод скопившегося в помещениях углекислого газа и нейтрализацию сильных запахов выполняет вытяжная вентиляция. Приток кислорода, поддержание чистоты воздуха и нормализацию влажности обеспечивает приточная система. Обычно эту функцию выполняют окна и балконы в положении проветривания. Бывает приточно-вытяжная вентиляция, которая одновременно обеспечивает устранение отработанного воздуха и приток свежего.

   Несмотря на вышеперечисленные доводы, естественная вентиляция обладает как очевидными плюсами, так и возможными минусами.

К преимуществам данного типа системы можно отнести:
    • относительно небольшие затраты на оборудование и установку;
    • отсутствие необходимости в специальном техническом обслуживании, исключая ситуации очевидной поломки или засора;
    • движение воздуха происходит естественно, без участия электрических приборов, что исключает появление постороннего шума.  

При выборе естественного типа вентиляции необходимо учитывать следующие вероятные минусы:
    • нет возможности регулировать скорость воздухообмена, что может привести к повышенной влажности внутри помещений, и в последствии к появлению грибка и плесени;
    • с воздухом через вентиляцию может проникать пыль, насекомые, вредные частицы;
    • в холодное время года возможны потери тепла через воздуховоды до 40%;
    • эффективность вентиляции существенно снижается с повышением температуры воздуха на улице. 

   Приведенные минусы естественного типа вентиляции можно свести к минимуму сделав правильные расчеты системы. В этом помогут СНиП 41-01-2003, СП 60.13330.2012 «Отопление, вентиляция и кондиционирование» — строительные нормы и правила РФ.

   Расчет параметров вентиляции производится специалистом с применением различных формул и таблиц, которые учитывают назначение строения, площадь и высоту помещений, количество и высоту вытяжных и приточных каналов, число проживающих людей.

   При условии правильной организации, естественная вентиляция вполне справляется с воздухообменом в большинстве квартир и домов. Грамотно проведенные расчеты позволяют эффективно определить точки размещения отдушин и воздуховодов, сэкономить на материалах и сократить сроки установки.

Расчет естественной вентиляции

   Чтобы самостоятельно осуществить расчет вентиляционной системы, необходимо знать ряд основополагающих аспектов, от которых напрямую зависит эффективность. Чем выше устанавливается шахта, тем интенсивней будет тяга, а значит вытяжная вентиляция будет работать лучше. Каждый метр жилой площади должен обеспечиваться не менее 3 м³ воздуха в течение одного часа.

   Разделенные дверью помещения разного назначения имеют свою специфику при установки вентиляции.

    • Кухонная зона с газовым оборудованием должна быть обеспечена объемом воздуха не менее 90м³/ч. Наличие электрического оборудования требует 60 м³/ч.
    • Санузлу необходимо не менее 50 м³/ч. 
    • Жилые комнаты требуется обеспечить воздухом не менее 30 м³/ч. 
    • Подсобные помещения, прихожая, кладовая — около 15 м³/ч.

   Приведенные вычисления должны учитывать количество людей проживающих в здании. Данный показатель может существенно изменить конечные параметры вентиляции. Санитарными нормами определено, что для комфортной жизнедеятельности постоянных проживающих требуется объем воздуха 60 м³/ч, а для временных посетителей не менее 20 м³/ч.

   Произведем расчет вентиляции для частного дома с площадью жилого пространства 80 м². Для этого необходимо определить объем воздуха в каждом отдельном помещении, путем умножения площади комнаты на высоту потолков (3 м.). 

Гостиная — 22 х 3 = 66 м³
Спальня — 18 х 3 = 54 м³
Детская — 17 х 3 = 51 м³
Кухня — 10 х 3 = 30 м³
Санузел — 8 х 3 = 24 м³
Коридор — 5 х 3=15 м³

   Далее в расчете нужно применить такой коэффициент, как кратность воздухообмена. Сведения представлены в нормативной таблице СНиП 2.08.01-89. Чаще всего используют норматив вытяжной вентиляции. Полученный показатель будет обозначать объем полной смены воздуха в помещении в течение часа. Вычисления производятся по формуле: L=N*V, где N – коэффициент кратности из таблицы, V- объем воздуха в помещении. Каждый показатель нужно довести до кратности пяти в сторону увеличения. 

Гостиная — 66 м³*1 = 70 м³/ч
Спальня — 54 м³*1 = 55 м³/ч
Детская — 51м³*1 = 55 м³/ч
Кухня — 30 м³ = не менее 90 м³/ч
Санузел — 24 м³ = не менее 50 м³/ч

   Коридор — 15 м³/ч = данные в таблице кратности отсутствуют, поэтому в дальнейшем расчете это помещение не учитывается.

   Как правило, приток воздуха в вентиляционной системе естественного типа осуществляется через окна, двери или приточные шахты в «чистых» помещениях: спальни, гостиные, кабинет и т. д. Удаление отработанного воздуха происходит из кухонной зоны и санузла. В связи с этим в дальнейшем расчете необходимо отдельно сложить показатели помещений с притоком и оттоком воздуха. 

Приточный воздухообмен: 70 м³ + 55 м³ + 55 м³ = 180 м³/ч

Вытяжной воздухообмен: 90 м³ + 50 м³ = 140 м³/ч

   Для того, чтобы вентиляционная работала эффективно, необходимо чтобы приточный и вытяжной объем воздуха имели одинаковые значениям. В данном случае необходимо повысить показатели вытяжного воздухообмена в помещениях с принятыми минимальными параметрами кратности. Прибавляем к показателю кухни недостающий объем 40 м³/ч. Таким образом получаем равный объем притока и удаления воздуха. После этого определяем сечение воздуховодов по специальной таблице.

   При вычислении размеров воздуховодов в частном доме используется средний показатель скорости выхода воздуха, который находится в диапазоне 1,0 — 2,5 м/с. Сечение канала вентиляции определяется в зависимости от объема воздуха во всех жилых помещениях. 

   На практике размер воздуховода одноэтажного строения имеет следующее параметры:

    • 200 м³ = диаметр от 18 см;
    • 400 м³ = диаметр от 25 см;
    • 600 м³ = диаметр от 32 см.

   Если планируется установка воздушного канала прямоугольной формы, то приведенные выше значения понадобятся при расчете его размера. 

   Используется следующая формула: 
S=πR²
где S – сечение в м²,
π — число Пи, равное 3,14,
R – радиус трубы воздуховода. 

   В результате применения формулы получаем значение площади круга. Для получения размера прямоугольного канала параметр увеличиваем на 20% — 25%, так как пропускаемость круглых труб выше. 

 

Таблица: расход воздуха в воздуховодах для проектирования систем вентиляции

 

Параметры воздуховодов

Расход воздуха (м³/ч) при скорости

Диаметр круглого воздуховода

Размеры прямоугольного воздуховода

Площадь сечения воздуховода

2 м/с

3 м/с

 

80х90 мм

72 см²

52

78

Ø 100 мм

63х125 мм

79 см²

57

85

 

63х140 мм

88 см²

63

95

Ø 110 мм

90х100 мм

90 см²

65

97

 

80х140 мм

112 см²

81

121

Ø 125 мм

100х125 мм

125 см²

90

135

 

100х140 мм

140 см²

101

151

Ø 140 мм

125х125 мм

156 см²

112

169

 

90х200 мм

180 см²

130

194

Ø 160 мм

100х200 мм

200 см²

144

216

 

90х250 мм

225 см²

163

243

Ø 180 мм

160х160 мм

256 см²

184

276

 

90х315 мм

283 см²

204

306

Ø 200 мм

100х315 мм

315 см²

227

340

 

100х355мм

355 см²

256

383

Ø 225 мм

160х250 мм

400 см²

288

432

 

125х355 мм

443 см²

319

479

Ø 250 мм

125х400 мм

500 см²

360

540

 

200х315 мм

630 см²

454

680

Ø 300 мм

200х355 мм

710 см²

511

767

 

160х450 мм

720 см²

518

778

Ø 315 мм

250х315 мм

787 см²

567

850

 

250х355 мм

887 см²

639

958

Ø 350 мм

200х500 мм

1000 см²

720

1080

 

250х450 мм

1125 см²

810

1215

Ø 400 мм

250х500 мм

1250 см²

900

1350

   Приведенная таблица поможет определить параметры воздуховодов вентиляционной системы. Для каждого помещения расчет канала производится отдельно. Оптимальным будет планирование системы вентиляции на стадии проектирования здания. Это позволит грамотно просчитать необходимые показатели в соответствии с установленными нормами. Такой подход гарантирует эффективную работу системы, а значит воздух в помещениях будет способствовать здоровой и полноценной жизни людей.

курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курс.

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.»

Стивен Дедак, P.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова . Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.

проеду по твоей роте

имя другим на работе «

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны.Вы

— лучшее, что я нашел ».

Russell Smith, P.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от отказов »

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя

студент, оставивший отзыв на курсе

материалов до оплаты и

получает викторину «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия «.

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, П.Е.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании каких-то неясных раздел

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор

.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

и онлайн-формат был очень

доступный и простой

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

.

обзор текстового материала. Я

также понравился просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследований в

документ но ответы были

в наличии. «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в управлении трафиком, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать «

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для Professional

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес электронной почты который

пониженная цена

на 40% «

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил. «

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

.

при необходимости дополнительных

аттестат. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, а материалы были краткими, а

хорошо организовано.

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

.

хороший справочный материал

для деревянного дизайна.

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Building курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими.

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы на

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Сохраняю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и демонстрировали понимание

материала. Тщательно

и комплексное.

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по моей линии

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину.

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях .

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс.»

Ира Бродская, П.Е.

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а затем вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Глэдд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат . Спасибо за создание

процесс простой ».

Фред Шейбе, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час. «

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

имея платить за

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по

.

много разные технические зоны за пределами

по своей специализации без

приходится путешествовать.»

Гектор Герреро, П.Е.

Грузия

Воздушный поток и скорость из-за естественной тяги

Разница температур между наружным и внутренним воздухом создает «естественную тягу», заставляя воздух проходить через здание.

Направление воздушного потока зависит от температуры наружного и внутреннего воздуха. Если температура внутреннего воздуха выше, чем температура наружного воздуха, плотность внутреннего воздуха меньше плотности наружного воздуха, и внутренний воздух будет течь вверх и выходить из верхних частей здания.Более холодный наружный воздух будет поступать в нижние части здания.

Если температура наружного воздуха выше, чем температура внутреннего воздуха — внутренний воздух более плотный, чем наружный воздух — и воздух стекает внутрь здания. Более теплый наружный воздух поступает в верхние части здания.

Напор естественной тяги

Напор естественной тяги можно рассчитать как

dh мм вод. Ст. = 1000 h (ρ o ρ r ) / ρ h (1)

где

dh мм вод. Ст. = напор в миллиметрах водяного столба (мм H 2 O)

ρ o = плотность наружного воздуха 31487 кг / м )

ρ r = плотность внутри воздуха (кг / м 3 )

ρ h3o = плотность воды кг / м 3 )

h = высота между выпускным и входящим воздухом (м)

Давление естественной тяги

Уравнение (1) может быть изменено на SI единицы давления:

dp = g ( ρ o ρ r ) h (1b)

где

d p = давление (Па, Н / м 2 )

g = ускорение свободного падения — 9.81 (м / с 2 )

Плотность и температура

С плотностью воздуха 1,293 кг / м 3 при 0 o C — при любой плотности воздуха температура может быть выражена как

ρ = (1,293 кг / м 3 ) (273 K) / (273 K + t) (2)

или

ρ = 353 / (273 + t) (2b)

где

ρ = плотность воздуха (кг / м 3 )

= фактическая температура ( o C)

Уравнение (1) выше можно легко изменить, заменив плотности уравнением (2) .

Калькулятор давления естественной тяги

Калькулятор, представленный ниже, можно использовать для расчета давления естественной тяги, создаваемого разницей внутренней и внешней температуры.

Основные и незначительные потери в системе

Сила естественной тяги будет уравновешена большими и незначительными потерями в каналах, входах и выходах. Основные и второстепенные потери в системе могут быть выражены как

dp = λ (l / d h ) ( ρ r v 2 /2) + Σξ 1/2 ρ r v 2 (3)

где

dp = потеря давления (Па, Н / м 2 f, фунтов / фут 2 )

λ = коэффициент трения Дарси-Вайсбаха

л = длина воздуховода или трубы (м, футы)

42 d = гидравлический диаметр (м, фут)

Σ ξ = коэффициент малых потерь (суммированный)

Воздушный поток и скорость воздуха

Equatio n (1) и (3) могут быть объединены для выражения скорости воздуха в воздуховоде

v = [(2 г ( ρ o ρ r ) h) / ( λ l ρ r / d h + Σ ξ ρ r )] 1/2 000 (4)

Уравнение (4) также можно изменить, чтобы выразить объем воздушного потока через воздуховод

q = π d h 2 /4 [(2 g ( ρ o ρ r ) h) / ( λ l ρ r / d h + Σ ξ ρ ] r ] r / 2 (5) 9000 4

, где

q = объем воздуха (м 3 / с)

Калькулятор скорости и расхода воздуха с естественной тягой

Калькулятор ниже можно использовать для расчета объема и скорости воздушного потока в воздуховод, аналогичный изображенному на рисунке выше.Используемый коэффициент трения составляет 0,019 , что подходит для каналов из обычной оцинкованной стали.

Пример — Естественная тяга

Рассчитайте воздушный поток, вызванный естественной тягой в обычном двухэтажном семейном доме. Высота столба горячего воздуха от первого этажа до выпускного воздуховода над крышей составляет примерно 8 м . Наружная температура составляет -10 o C , а внутренняя температура составляет 20 o C .

Воздуховод диаметром 0.2 м идет от 1. этажа до розетки над крышей. Длина воздуховода 3,5 м . Утечки воздуха через здание не принимаются во внимание. Меньшие коэффициенты суммируются до 1.

Плотность наружного воздуха может быть рассчитана как

ρ o = (1,293 кг / м 3 ) (273 K) / ((273 K) + (-10 o C))

= 1,342 кг / м 3

Плотность внутреннего воздуха можно рассчитать как

ρ r = (1.293 кг / м 3 ) (273 K) / ((273 K) + (20 o C))

= 1,205 кг / м 3

Скорость в воздуховоде может быть рассчитывается как

v = [(2 (9,81 м / с 2 ) ((1,342 кг / м 3 ) — (1,205 кг / м 3 )) (8 м)) / ( 0,019 (3,5 м) (1,205 кг / м 3 ) / (0,2 м) + 1 (1,205 кг / м 3 ) )] 1/2

= 3.7 м / с

Расход воздуха можно рассчитать как

q = (3,7 м / с) 3,14 (0,2 м) 2 /4

= 0,12 м 3 / с

Примечание!

, что эти уравнения можно использовать для сухого воздуха, а не для расчетов массового расхода и потерь энергии, когда влажность воздуха может иметь огромное влияние.

График Natural Draft — СИ и британские единицы

Понятие естественной вентиляции — Естественная вентиляция для инфекционного контроля в медицинских учреждениях

4.1. Движущие силы естественной вентиляции

Три силы могут перемещать воздух внутри зданий:

Первые две силы объясняются в следующих разделах. Естественные силы управляют естественной вентиляцией, а механические вентиляторы — механической вентиляцией. Механическая сила может сочетаться с естественными силами в гибридной или смешанной системе вентиляции.

4.1.1. Давление ветра

Когда ветер дует в здание, он создает положительное давление на наветренной стороне и отрицательное давление на подветренной стороне.Это заставляет воздух течь через наветренные отверстия в здание к отверстиям низкого давления на подветренной стороне (см.). Можно оценить давление ветра для простых зданий. Ветровые потоки вокруг зданий сложны и являются предметом ряда учебников, например, Aynsley, Melbourne & Vickery (1977) и Liu (1991).

Рисунок 4.1

Направления ветровых потоков в здании.

Для односторонней вентиляции с помещениями, в остальном герметично закрытыми, влияние среднего давления ветра отсутствует, только колебания компонентов (см.).Этеридж и Сандберг (1996) довольно подробно рассмотрели тему неустойчивого давления. Это обычная конструкция; однако со временем возникает значительная утечка через двери и другие проникновения в комнату. Следует помнить, что даже если окно открыто, достаточное количество воздухообмена в час (ACH) не обязательно может быть достигнуто.

Рисунок 4.2

Колеблющиеся компоненты, способствующие одностороннему потоку воздуха.

Давление ветра, создаваемое на поверхности здания, выражается как разность давлений между общим давлением на точку и статическим атмосферным давлением.Данные о ветровом давлении обычно можно получить в аэродинамических трубах с помощью масштабных моделей зданий. Если форма здания, его окружающее состояние и направление ветра одинаковы, давление ветра пропорционально квадрату скорости наружного ветра. Таким образом, давление ветра обычно нормируется путем деления на динамическое давление скорости наружного ветра. Стандартизованное давление ветра называется коэффициентом давления ветра и обозначается как C p . Скорость ветра на открытом воздухе обычно измеряется на высоте карниза здания в аэродинамической трубе:

, где:

C p = коэффициент ветрового давления (-)

P T = всего давление (Па)

P AS = статическое атмосферное давление на высоте здания (Па)

ρ = плотность воздуха (кг / м 3 )

V H = ветер скорость на удаленном участке от окружающих воздействий на высоте здания (м / с).

4.1.2. Накопительное давление (или плавучесть)

Накопительное давление (или плавучесть) создается за счет разницы температуры или влажности (иногда определяемой как разница плотности) между внутренним и наружным воздухом. Эта разница порождает дисбаланс градиентов давления внутреннего и внешнего воздушных столбов, вызывая вертикальный перепад давления.

Когда воздух в помещении теплее, чем на улице, воздух в помещении становится менее плотным и поднимается вверх. Воздух поступает в здание через нижние отверстия и выходит через верхние отверстия.

Направление потока меняется в меньшей степени, когда воздух в помещении холоднее, чем наружный воздух; воздух в помещении более плотный, чем наружный. Воздух поступает в здание через верхние отверстия и выходит через нижние отверстия.

Потоки в здании, вызванные накоплением (или плавучестью), зависят от температуры в помещении и на улице. Скорость вентиляции через дымовую трубу является функцией разницы давлений между двумя отверстиями в этой дымовой трубе.

Перепад давления можно рассчитать следующим образом:

ΔPs = (ρo − ρi) gH = ρogHTi − ToTo

, где:

P с = давление дымовой трубы (или плавучесть) (Па)

ρ o = плотность наружного воздуха (кг / м 3 )

ρ i плотность воздуха в помещении (кг / м 3 )

г = ускорение свободного падения (9.8 м / с 2 )

H = высота между двумя отверстиями (м)

T i = температура воздуха в помещении (° K)

T o = температура наружного воздуха ( ° К)

4.2. Скорость потока вентиляции

Практически, скорость естественной вентиляции с помощью ветра через комнату с двумя противоположными отверстиями (например, окно и дверь) можно рассчитать следующим образом:

ACH = 0,65 × скорость ветра (м / с) × наименьшая площадь проема (м2) × 3600 с / ч объем помещения (м3)

Скорость вентиляции (л / с) = 0.65 × скорость ветра (м / с) × наименьшая площадь проема (м 2 ) × 1000 л / м 3

предоставляет оценки ACH и скорости вентиляции только за счет ветра при скорости ветра 1 м / s, принимая палату размером 7 м (длина) × 6 м (ширина) × 3 м (высота), с окном 1,5 × 2 м 2 и дверью 1 м 2 × 2 м 2 (наименьшее отверстие).

Таблица 4.1

Расчетный объем воздухообмена в час и интенсивность вентиляции для палаты 7 м × 6 м × 3 м.

Скорость ветра относится к значению на высоте здания на участке, достаточно удаленном от здания без каких-либо препятствий (например,грамм. в аэропорту).

Для естественной вентиляции стека (или плавучести) ACH можно рассчитать как:

Воздухообмен в час (ACH) = 0,15 × наименьшая площадь проема (м2) × 3600 сек / ч × (температура воздуха в помещении — на улице (° K)) × высота дымовой трубы (м) объем помещения (м3)

Скорость вентиляции (л / с) = 0,15 × 1000 л / м3 × наименьшая площадь проема (м2) × (температура воздуха в помещении и на улице (° K)) × высота дымовой трубы (м)

Расширенные инструменты проектирования как для анализа, так и для определения размеров отверстий: также имеется (CIBSE, 2005).

4.3. Резюме

Перед проектированием чисто естественной системы вентиляции проектировщикам необходимо понять основные движущие силы естественной вентиляции — давление ветра и давление дымовой трубы (или выталкивающей силы). Эти силы управляют движением воздуха внутри здания и через него, и при необходимости их можно комбинировать для создания оптимальной системы естественной вентиляции.

Естественная вентиляция | WBDG — Руководство по проектированию всего здания

Введение

Почти все исторические здания вентилировались естественным путем, хотя многие из них были повреждены из-за установки перегородок и механических систем.С ростом осведомленности о стоимости и влиянии энергопотребления на окружающую среду естественная вентиляция становится все более привлекательным методом снижения энергопотребления и затрат, а также для обеспечения приемлемого качества окружающей среды в помещении и поддержания здорового, комфортного и продуктивного климата в помещении, а не более преобладающий подход к использованию ИВЛ. При благоприятном климате и типах зданий естественная вентиляция может использоваться как альтернатива установкам кондиционирования воздуха, что позволяет сэкономить 10–30% от общего потребления энергии.

Системы естественной вентиляции основаны на разнице давлений для подачи свежего воздуха через здания. Разница в давлении может быть вызвана ветром или эффектом плавучести, создаваемым разницей температур или разницей влажности. В любом случае количество вентиляции будет в решающей степени зависеть от размера и расположения отверстий в здании. Систему естественной вентиляции полезно рассматривать как контур, в котором одинаковое внимание уделяется приточной и вытяжной вентиляции. Проемы между комнатами, такие как окна с фрамугой, жалюзи, решетки или открытая планировка, — это методы создания контура воздушного потока через здание.Требования кодекса в отношении передачи дыма и огня создают проблемы для проектировщиков систем естественной вентиляции. Например, в исторических зданиях лестница использовалась в качестве вытяжной трубы, что во многих случаях запрещено правилами.

Описание

Естественная вентиляция, в отличие от принудительной вентиляции с помощью вентилятора, использует естественные силы ветра и плавучести для подачи свежего воздуха в здания. Свежий воздух необходим в зданиях для устранения запахов, обеспечения кислородом для дыхания и повышения теплового комфорта.При внутренней скорости воздуха 160 футов в минуту (фут / мин) воспринимаемая внутренняя температура может быть снижена на целых 5 ° F. Однако, в отличие от настоящего кондиционирования, естественная вентиляция неэффективна для снижения влажности поступающего воздуха. Это накладывает ограничения на применение естественной вентиляции во влажном климате.

A. Типы эффектов естественной вентиляции

Ветер может продувать воздух через отверстия в стене с наветренной стороны здания и высасывать воздух из отверстий с подветренной стороны и крыши.Разница температур между теплым воздухом внутри и холодным воздухом снаружи может привести к тому, что воздух в комнате поднимется и будет выходить через потолок или выступ и попадать через нижние отверстия в стене. Точно так же плавучесть, вызванная разницей влажности, может позволить сжатому столбу плотного, охлаждаемого испарением воздуха наполнять пространство, а более легкий, теплый и влажный воздух выпускать ближе к верху. Эти три типа эффектов естественной вентиляции описаны ниже.

Ветер

Ветер вызывает положительное давление с наветренной стороны и отрицательное давление с подветренной стороны зданий.Чтобы уравновесить давление, свежий воздух будет поступать в любое наветренное отверстие и выходить из любого отверстия с подветренной стороны. Летом ветер используется для подачи как можно большего количества свежего воздуха, а зимой вентиляция обычно снижается до уровня, достаточного для удаления избыточной влаги и загрязняющих веществ. Выражение для объема воздушного потока, вызванного ветром:

Qwind = K x A x V, где

Qwind = объем воздушного потока (м 3 / ч)
A = площадь меньшего отверстия (м 2 )
V = скорость ветра снаружи (м / ч)
K = коэффициент полезного действия

Коэффициент полезного действия зависит от угла ветра и относительного размера входных и выходных отверстий.Он варьируется от 0,4 для ветра, падающего в отверстие под углом 45 °, до 0,8 для ветра, падающего прямо под углом 90 °.

Иногда ветровой поток преобладает параллельно стене здания, а не перпендикулярно к ней. В этом случае все еще возможно вызвать ветровую вентиляцию архитектурными особенностями или способом открытия створки окна. Например, если ветер дует с востока на запад вдоль стены, обращенной на север, первое окно (которое открывается наружу) будет иметь петли с левой стороны, которые будут действовать как ковш и направлять ветер в комнату.Второе окно будет открываться с правой стороны, чтобы отверстие было направлено вниз по ветру от открытого стекла, а отрицательное давление вытягивало воздух из комнаты.

Важно избегать препятствий между наветренными впускными и подветренными выпускными отверстиями. Избегайте перегородок в помещении, ориентированных перпендикулярно потоку воздуха. С другой стороны, в принятой конструкции впускные и выпускные окна исключаются прямо напротив друг друга (вы не должны видеть сквозь здание, в одном окне и в другом), чтобы способствовать большему перемешиванию и повысить эффективность вентиляция.

Плавучесть

Плавучесть вентиляции может быть вызвана температурой (вытяжная вентиляция) или влажностью (градирня). И то, и другое можно объединить, установив охлаждающую башню, которая подает воздух, охлаждаемый испарением, низко в помещении, а затем полагаясь на повышенную плавучесть влажного воздуха, когда он нагревается, для выпуска воздуха из помещения через дымовую трубу. Подача холодного воздуха в помещение осуществляется под давлением столба холодного воздуха над ним. Хотя и градирни, и дымовые трубы использовались отдельно, автор считает, что градирни следует использовать только в сочетании с вытяжной вентиляцией помещения, чтобы обеспечить стабильность потока.Плавучесть возникает из-за разницы в плотности воздуха. Плотность воздуха зависит от температуры и влажности (холодный воздух тяжелее теплого воздуха при той же влажности, а сухой воздух тяжелее влажного воздуха при той же температуре). Внутри самой градирни влияние температуры и влажности действует в противоположных направлениях (температура понижается, влажность повышается). Внутри комнаты тепло и влажность, исходящие от людей, а также другие внутренние источники имеют тенденцию поднимать воздух. Несвежий нагретый воздух выходит из отверстий в потолке или крыше и позволяет свежему воздуху поступать в нижние отверстия, чтобы заменить его.Ступенчатая вентиляция — особенно эффективная стратегия зимой, когда разница температур в помещении и на улице максимальна. Вентиляция с эффектом стеклопакета не будет работать летом (предпочтительнее использовать ветровые или влажные источники), поскольку для этого требуется, чтобы в помещении было теплее, чем на улице, что нежелательно летом. Дымоход, обогреваемый солнечной энергией, может использоваться для управления эффектом дымовой трубы без повышения температуры в помещении, а солнечные дымоходы очень широко используются для вентиляции компостных туалетов в парках.1/2, где

Qstack = объемная скорость вентиляции (м 3 / с)
Cd = 0,65, коэффициент расхода.
A = свободная площадь входного отверстия (м 2 ), что равняется площади выходного отверстия.
г = 9,8 (м / с 2 ). ускорение свободного падения
h = расстояние по вертикали между средними точками входа и выхода (м)
Ti = средняя температура воздуха в помещении (K), обратите внимание, что 27 ° C = 300 K.
To = средняя температура наружного воздуха (K)

Вентиляция градирни эффективна только при очень низкой наружной влажности.Следующее выражение для воздушного потока, создаваемого столбом холодного воздуха, нагнетающего давление в источнике воздуха, основано на форме, разработанной Томпсоном (1995), с коэффициентом по данным, измеренным в Центре посетителей национального парка Зайон