Тепловая энергия и теплоноситель в чем разница: Чем отличается теплоноситель от обычной воды горячего водоснабжения?

Содержание

Чем отличается теплоноситель от обычной воды горячего водоснабжения?

На схеме представленной ниже для пояснения этой самой разницы показана работа современной ИТП.

При открытой схеме горячего водоснабжения теплоноситель используется как на цели отопления, так и на цели горячего водоснабжения. То есть горячая вода в отопительных приборах, в кранах на кухне и в ванной одна и та же. Закрытая система (современные дома), предполагает что теплоноситель циркулирует по замкнутому кругу, расходуя тепловую энергию только на отопление. Горячее водоснабжение при этом осуществляется путём нагрева холодной воды этим же теплоносителем, но уже через специальное оборудование – пластинчатый теплообменник.


Для переноса тепловой энергии от генератора тепла (котла, бойлера, кипятильника) к потребителям энергии необходим теплоноситель. Существует три вида теплоносителя:

  • вода (или антифриз)
  • пар
  • воздух.

Самым распространенным теплоносителем в российском жилищном строительстве является вода, а система отопления, использующая этот теплоноситель, называется водяным отоплением.

Как видно из схемы в контуре отопления при нагревании молекулы солей и кислорода высвобождаются, что приводит к образованию на внутренних стенках труб солевых отложений — накипи, и завоздушиванию труб — пробками. Чем реже меняется вода в системе отопления, тем меньше будет отложения солей в трубах и воздушных пробок, в связи с этим воду необходимо подготавливать.

Таким образом получается, что горячая вода для повседневных нужд (контур ГВС) это сырая вода + теплоэнергия от теплообменника. Другими словами когда открываешь кран горячей воды и делаешь свои дела она утекает, взамен ушедшей приходит сырая вода ХВС (неподготовленная) и она снова нагревается в теплообменнике до нужной потребителю температуры.

Горячая вода которая используется в

системе отопления это теплоноситель (вода) прошедшая  специальную водоподготовку (добавление различных примесей, солей)+ теплоэнергия.

что это, расчёт, формула, вид квитанции

Получая по почте платёжные документы, многие не понимают – «тепловая энергия» в квитанции: что это, как она рассчитывается. Данный показатель означает нагрев отопительных приборов, за который взимается плата по тарифу. Но если в квитанции начинают появляться странные значения и переплата, редакция Homius  расскажет, как высчитать норму ГВС самостоятельно.

Тарифы на ГВС отличаются в разных регионах
ФОТО: biz.liga.net

Содержание статьи

Что такое тепловая энергия

При выборе источника тепла в помещении учитывается нагрузка на систему горячего водоснабжения. Многие домовладельцы не знают, что такое ГВС компонент на тепловую энергию. Это показатель, означающий норму расхода воды.

Сегодня все пользуются горячей и холодной водой, но не все знают, что такое «тепловая энергия» в квитанции ЖКХ. Если дом холодный, значит, тепловая энергия не подаётся в должном объёме. Это повод для обращения в управляющую компанию и подачи соответствующей жалобы.

Перед тем, как приступать к самостоятельным расчётам, нужно выяснить, что значит ГВС-компонент на ТЭ, как его рассчитать и вообще что это за коэффициент в тарифе. Когда мы видим в квитанции словосочетание «За нагрев воды», то не все понимают, что именно складывается за этой услугой. А между тем этот показатель был введён в 2013 году.

Сумма к оплате включает в себя несколько составляющих:

  • потеря тепла в трубах;
  • действующий тариф на энергию;
  • расходы на содержание батарей и центральной тепловой системы;
  • расходы на транспортировку горячей воды.

Самый простой способ узнавать точные показатели – установить счётчик. Также многие собственники задаются вопросом: что это такое – «подогрев воды» в квитанции ЖКХ. Это услуга, предоставляемая управляющей компанией по поставке тёплой воды в дома.

Чтобы не переплачивать, рекомендуется проверить расчёты самостоятельно
ФОТО: static.ngs.ruГВС в квитанции делится на два пункта – подача и нагрев
ФОТО: i0.u-mama.ru

ГКАЛ: что это такое

ГВС – это расшифровка термина «горячее водоснабжение», но, кроме этого показателя, необходимо знать ГВС в ГКАЛ. Что это такое и как определяется? Коммунальными службами единица тепла определяется в ГКАЛ. Эта аббревиатура расшифровывается: гигакалории.  Этот показатель утверждён Национальной комиссией. В стоимость одного ГКАЛ входит ремонт оборудования, цена электричества, газа и другие организационные расходы.

Чтобы высчитать объём тепла, нужно определить общее количество потребляемой жидкости, температуру горячей и холодной воды. Также нужно знать, что такое «теплоноситель» в квитанции, чтобы не запутаться в данных. Теплоноситель – это плата за тариф из двух компонентов: вода и полотенцесушители. Система расчёта проста – в управляющей компании берётся за основу общий тариф или показатель, предоставленный потребителем по счётчикам. Если в доме установлены тепловые счётчики, показатели в квитанциях будут максимально точны.

Учитывается не только подача тепла, но и нагрев воды
ФОТО: rbsmi.ru

Закон об изменении тарифов на горячую воду

В 2013 году было принято Постановление Правительства Российской Федерации №406, на основании которого со всех пользователей централизованной системы отопления стала взиматься плата по двухкомпонентному тарифу. Так, коммунальный платёж включает в себя графы: холодная вода, тепловая энергия.

В нормативных документах указано чёткое определение по данному вопросу. ГВС в квитанции – это показатель, который управляющие компании планируют затрачивать при нагреве воды.

До 2013 года в квитанциях не учитывался нагрев полотенцесушителей и стояков, но после принятия закона эти показатели добавились к общей сумме. Также стоит уточнить, что такое «ГВС нагрев» в квитанции. Под нагревом подразумевается поставка холодной воды на отопительное предприятие и её подогрев.

В квитанции обозначается компонент на воду в рублях за кубометр
ФОТО: vesti70.ruДля экономии рекомендуется устанавливать индивидуальные приборы учёта
ФОТО: komcity.ru

Компонент на тепловую энергию: что это, как рассчитать

Большинство домовладельцев пугаются, увидев в платёжном документе графу «компонент на холодную воду». Сначала нужно разобраться, «ГВС компонент на теплоноситель» – что это? Это общий объём холодной воды, которая нужна для того, чтобы полностью обеспечить нужды горячего водоснабжения.

Если в доме отсутствует индивидуальный прибор учёта, расчёт ведётся по нормативам – 3,5 м³ на одного человека. При возникновении ошибки необходимо обратиться в управляющую компанию, уточнив тарифы на текущий год. Тариф ежемесячно обозначается в квитанции.

Ежемесячно потребители передают данные с приборов учёта в управляющую компанию
ФОТО: dagpravda.ru

Какое оборудование используется для нагрева воды

Прежде чем начинать самостоятельные расчёты, нужно понять, что означает «тепловая энергия» в квитанции. Вода поставляется на централизованные пункты в холодном виде, и только при работе специального оборудования формируется горячий поток. Услуга ГВС – это поставка пара в отопительные трубы и воды в краны.

Задаваясь вопросом, отопление ГКАЛ – что это в квитанции, многие так же желают знать, какое оборудование используется для нагрева воды. В городских квартирах используются водонагреватели.

При этом некоторые собственники устанавливают в квартирах устройство для индивидуального нагрева и пытаются понять, что это такое – «подогрев ГВС» в квитанции, почему за него  нужно платить. УК формируют квитанции на весь дом, и, если в одной из квартир стоит отопительное оборудование, осуществляющее подогрев воды, необходимо написать заявление для перерасчёта.

Если установлен единый водонагреватель на дом, за обслуживание и ремонт платят все жильцы
ФОТО: dvinatoday.ru

Тепловая энергия ГВС: что это, где находится в квитанции

Для тех собственников, которые не знают, что такое тепловая энергия в квитанции, существует простая схема. В документе нужно найти фразу «компонент «тепловая энергия» и изучить тариф.

Компонент – это  холодная вода, при нагреве которой в квартиру подаётся отопление.

Задавая вопрос: горячее водоснабжение энергия – что это такое, нужно изучить схему, по которой определяется общий платёж.

В этот показатель входят следующие данные: общий тариф, расходы на обслуживание и ремонт, ставка на потерю тепла и расходы на передачу теплоносителя.

Общее количество тепловой энергии может отличаться в разные месяцы, поэтому лучше всего использовать индивидуальные приборы учёта
ФОТО: nsktv.ru

Особенности самостоятельного расчёта

Не все пользователи знают, что такое «теплоэнергия ГВС» в квитанции, а многие не доверяют расчётному центру и самостоятельно подсчитывают количество затраченной тепловой энергии. Чтобы в домашних условиях все посчитать и исключить обман, нужно сначала выяснить: компонент на ТЭ в квитанции – что это, как он начисляется.

Чтобы сделать правильный расчёт, необходимо знать действующий тариф на ТЭ. Отсутствие или наличие прибора учёта, установленного в квартире, также влияет на результат. Если счётчиков нет, за основу берётся нормативный показатель.

Если в многоквартирном доме стоят приборы учёта, то общая сумма высчитывается умножением тарифа на показатели счётчиков. Каждый может быстро выяснить, «горячее водоснабжение: носитель» и «энергия» –  что это, как правильно высчитать показатели.

Подавать данные со счётчиков можно онлайн
ФОТО: fednews.ruТариф на ТЭ указывается в квитанции
ФОТО: zvu-74.ru

Подача жалобы при неправильном расчёте в квитанции

Если после самостоятельного расчёта и определения «ГВС тепловая энергия» в квитанции заметна ошибка, необходимо обратиться в управляющую компанию и потребовать разъяснений. В случае, если сотрудник не может объяснить за что поступила оплата, как работает теплоноситель и почему было начислено именно это количество выплаты, гражданин имеет право подать письменную претензию.

На такой документ УК обязана отреагировать в течение 13 рабочих дней. В случае, если ответ не поступает по завершению этого срока, а потребитель не может понять, за что он переплачивает, нужно переходить к следующему шагу – подаче иска в прокуратуру и суд.

Граждане РФ имеют право отстаивать свои интересы, если они были нарушены. Суд определит, почему горячая вода в квитанции стоит дороже, чем по действующим расценкам и, при подтверждении ошибки, назначит возврат средств.

Плата за тепловую энергию взимается на основании ЖК РФ, данная услуга не является бесплатной
ФОТО: kpravda.ruНеобходимо получить письменный отказ в предоставлении расчёта от управляющей компании
ФОТО: economnavode.ru

В заключение

Нередко при получении квитанции обнаруживаются ошибки в расчётах, допущенные управляющей компанией. Каждый гражданин имеет право в таком случае получить возврат средств.

А вы проверяете данные, указанные в квитанции? Приходилось ли вам подавать заявление на перерасчёт?

Предыдущая

DIY HomiusНаполнитель для подушек: какой лучше, плюсы и минусы искусственных и натуральных материалов

Следующая

ШторыОсобенности выбора и монтажа потолочных карнизов для штор

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Оплата теплоэнергии в составе ГВС

Постановлением Правительства РФ от 14.02.2015 № 129 в целях регулирования порядка применения двухкомпонентных тарифов на горячую воду внесены изменения в ПП РФ от 06.05.2011 № 354 и ПП РФ от 23.05.2006 № 306. Согласно внесенным поправкам при установлении двухкомпонентных тарифов на горячее водоснабжение (далее — ГВС) «размер платы за коммунальную услугу по горячему водоснабжению рассчитывается исходя из суммы стоимости компонента на холодную воду, предназначенную для подогрева в целях предоставления коммунальной услуги по горячему водоснабжению, и стоимости компонента на тепловую энергию, используемую на подогрев холодной воды в целях предоставления коммунальной услуги по горячему водоснабжению» (абзац 6 пункта 38 Правил 354), при этом уполномоченный орган субъекта РФ «устанавливает норматив расхода тепловой энергии, используемой на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению

» (пункт 32(1) Правил 306). И если порядок расчета стоимости ГВС между потребителем и исполнителем коммунальной услуги (далее — ИКУ) был решен (хотя и по сей день имеется огромное число случаев его нарушения), то при расчете между ИКУ и ресурсоснабжающей организацией (далее — РСО) возникали и продолжают возникать споры, особенно в случаях оборудования домов общедомовыми приборами учета, определяющими как объем потребления ГВС, так и количество теплоэнергии в составе потребленной горячей воды.

 

Тепло в ГВС: обем потребления и стоимость к оплате

Если рассматривать потребление горячей воды в помещениях МКД, то легко установить случаи, в которых при одинаковом объеме потребления горячей воды потребление тепла в составе этой воды будет различным. К таким случаям можно отнести потребление при отсутствии циркуляции в доме «остывшей» горячей воды теми жильцами, кто раньше просыпается с утра или позже ложится спать вечером. Очевидно, что более горячей будет вода при длительном единовременном потреблении по сравнению с множеством кратковременных включений, даже если суммарный объем кратковременных включений будет равен объему длительного единовременного потребления. В межотопительный период наблюдается существенная разница температуры горячей воды в однотипных домах (для которых услановлены одинаковые нормативы потребления) в зависимости от протяженности сети ГВС от этих домов до РСО (удаленность МКД от котельной) — жильцы домов, подключенных к «концевым» сегментам теплосетей, обычно пользуются менее горячей водой, чем дома, подключенные к «транзитным» трубопроводам тех же сетей.

Вероятно, для создания некой усредненной унифицированной системы расчета Правительство РФ приняло решение утверждать нормативы расхода теплоэнергии на подогрев ГВС и наделило правом устанавливать такие нормативы субъекты РФ, уполномоченные утверждать нормативы потребления коммунальных услуг

. Тем самым была исключена возможность определения различной стоимости горячей воды (в рублях за куб.метр), например, для жильцов различных квартир одного и того же многоквартирного дома. Необходимо отметить, что также исключена и различная стоимость горячей воды (в рублях за куб.метр) для жильцов одного дома в различные месяцы — ведь расчет стоимости кубометра горячей воды, потребленного потребителем, должен проивзодиться исходя из стоимости компонента на холодную воду, тариф на которую утверждается субъектом РФ, и стоимости компонента на тепловую энергию, тариф на которую и объем на каждую единицу воды (норматив тепла на подогрев ГВС) тоже утверждается субъектом РФ. Таким образом, стоимость одного кубометра горячей воды никак не зависит от реального расхода тепла на подогрев этой воды (каким-либо образом измеренного или рассчитанного), а рассчитывается исходя только из тех параметров, которые утверждены органами госвласти субъекта РФ.

Если говорить о количестве теплоэнергии, потребляемом на цели горячего водоснабжения всем многоквартирным домом (далее — МКД), то, разумеется, такое количество можно определить таким общедомовым прибором учета (далее — ОПУ), который измеряет не только расход горячей воды на нужды ГВС, но и теплосодержание этой воды. Позиция подавляющей части РСО, заключающаяся в том, что тепло, поступившее в МКД, подлежит оплате в полном объеме, является разумной и логичной. Не менее логичным является определение количества теплоэнергии в составе ГВС, потребленного всем МКД, по ОПУ, позволяющему такое количество измерить. При этом в применении норматива расхода тепловой энергии, используемой на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению, утвержденного органами госвласти субъекта РФ, по мнению указанных РСО, необходимости нет. В случае же отсутствия в общедомовом приборе учета ГВС функции по измерению количества тепла (а тем более при отсутствии ОПУ вообще) те же РСО полагают использование норматива тепла на подогрев ГВС уже необходимым.

Позиция, безусловно, не лишена логики, однако действующее законодательство РФ не дает права выбора — использовать в расчетах норматив тепла на подогрев ГВС или не использовать. Нормы о применении в расчетах именно норматива расхода тепловой энергии, используемой на подогрев холодной воды для предоставления коммунальной услуги по горячему водоснабжению, являются императивными, подлежащими безусловному исполнению. В то же время никаких норм о возможности применения в расчетах показаний ОПУ, определяющих количество теплоэнергии в составе ГВС, законодательство РФ попросту не содержит. Таким образом, использование в расчетах таких показаний ОПУ хотя и логично, но не основано на законе, а следовательно — неправомерно. При этом использование в расчетах норматива тепла на подогрев ГВС — не право, предусмотренное для отдельных случаев (например, отсутствие ОПУ, либо отсутствие функции ОПУ по измерению теплосодержания в ГВС), а обязанность для любых случаев без исключения.

Из вышесказанного следует, что при расчете стоимости ГВС (как между потребителем и исполнителем услуги по ГВС, так и между ИКУ и РСО) используется не фактически потребленный объем теплоэнергии на подогрев воды для предоставления коммунальной услуги по горячему водоснабжению, а норматив потребления тепла на подогрев ГВС.

 

Что установил суд?

Указанные обстоятельства изучил Арбитражный суд Московской области, а потом — по апелляционной жалобе — 10-й Арбитражный апелляционный суд, при рассмотрении дела по иску ООО «Орехово-Зуевская Теплосеть» к ТСЖ «Автопроезд» (дело № А41-18008/16) о взыскании задолженности по оплате тепловой энергии. В качестве третьих лиц к участию в деле были привлечены Главное Управление Московской области «Государственная жилищная инспекция Московской области», Министерство строительства и жилищно-коммунального хозяйства РФ, Министерство строительства и жилищно-коммунального хозяйства Московской области.

В Решении от 12.12.2016 по делу № А41-18008/16 АС Московской области указал:

«Непосредственно, полно и объективно исследовав представленные сторонами доказательства в обоснование заявленных требований и возражений, суд пришел к следующему.

Как установлено судом, 26 сентября 2012 года, между истцом и ответчиком заключен Договор на теплоснабжение № 240, в соответствии с которым истец является энергоснабжающей организацией, ответчик — абонент.

В соответствии с п.1 ст.539 Гражданского кодекса Российской Федерации (далее — ГК РФ) по договору энергоснабжения, энергоснабжающая организация обязуется подавать абоненту (потребителю) через присоединенную сеть энергию, а абонент обязуется оплачивать принятую энергию…

На основании ст.544 ГК РФ, оплата энергии производится за фактически принятое абонентом количество энергии в соответствии с данными учета энергии, если иное не предусмотрено законом, иными правовыми актами или соглашением сторон. Порядок расчетов за энергию определяется законом, иными правовыми актами или соглашением сторон.

В соответствии с положениями статьи 157 Жилищного кодекса Российской Федерации (далее — ЖК РФ) размер платы за коммунальные услуги рассчитывается исходя из объема потребляемых коммунальных услуг, определяемого по показаниям приборов учета, а при их отсутствии исходя из нормативов потребления коммунальных услуг, утверждаемых органами государственной власти субъектов Российской Федерации в порядке, установленном Правительством Российской Федерации, по тарифам, установленным органами государственной власти субъектов Российской Федерации в порядке, установленном федеральным законом.

Частью 5 статьи 9 Федерального закона от 27 июля 2010 г. № 190-ФЗ «О теплоснабжении» установлено, что тарифы на горячую воду в открытых системах теплоснабжения (горячего водоснабжения) устанавливаются в виде двухкомпонентных тарифов с использованием компонента на теплоноситель и компонента на тепловую энергию.

Согласно части 9 статьи 32 Федерального закона от 7 декабря 2011г. № 416-ФЗ «О водоснабжении и водоотведении» тарифы в сфере горячего водоснабжения могут быть установлены в виде двухкомпонентных тарифов с использованием компонента на холодную воду и компонента на тепловую энергию в порядке, определенном основами ценообразования в сфере водоснабжения и водоотведения, утвержденными Правительством Российской Федерации.

Пунктом 88 Основ ценообразования в сфере водоснабжения и водоотведения, утвержденных постановлением Правительства Российской Федерации от 13 мая 2013 г. № 406, предусмотрено, что органы регулирования тарифов устанавливают двухкомпонентный тариф на горячую воду в закрытой системе горячего водоснабжения, состоящий из компонента на холодную воду и компонента на тепловую энергию.

Таким образом, органы исполнительной власти субъектов Российской Федерации в области регулирования цен (тарифов) принимают решения об установлении двухкомпонентных тарифов на горячую воду в соответствии с нормами действующего законодательства.

В целях регулирования порядка применения двухкомпонентных тарифов на горячую воду постановлением Правительства Российской Федерации от 14 февраля 2015 г. № 129 (вступило в силу 28 февраля 2015 года) внесены изменения в Правила предоставления коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов, утвержденные постановлением Правительства Российской Федерации от 6 мая 2011г. № 354 (далее — Правила №354), и Правила установления и определения нормативов потребления коммунальных услуг, утверждённые постановлением Правительства Российской Федерации от 23 мая 2006 г. № 306 (далее — Правила № 306).

Пунктом 38 Правил № 354 предусмотрено, что в случае установления двухкомпонентных тарифов на горячую воду размер платы за коммунальную услугу по горячему водоснабжению рассчитывается исходя из суммы стоимости компонента на холодную воду, предназначенную для подогрева в целях предоставления коммунальной услуги по горячему водоснабжению, и стоимости компонента на тепловую энергию, используемую на подогрев холодной воды в целях предоставления коммунальной услуги по горячему водоснабжению.

В соответствии с пунктом 42 Правил № 354 в случае установления двухкомпонентных тарифов на горячую воду размер платы за коммунальную услугу по горячему водоснабжению, предоставленную потребителю за расчетный период в жилом помещении, оборудованном индивидуальным или общим (квартирным) прибором учета, определяется в соответствии с формулой 23 приложения № 2 к Правилам № 354 исходя из показаний приборов учета горячей воды и норматива расхода тепловой энергии, используемой на подогрев воды, а при отсутствии такого прибора учета — исходя из норматива потребления горячей воды и норматива расхода тепловой энергии, используемой на подогрев воды.

Вместе с тем, Правилами № 354 не предусмотрено применение тепловой энергии в качестве коммунальной услуги, что соответствует положениям части 4 статьи 154 ЖК РФ.

Учитывая изложенное, Правилами № 354 предусматривается распределение тепловой энергии, используемой на подогрев холодной воды в целях предоставления коммунальной услуги по горячему водоснабжению, в рамках норматива расхода тепловой энергии на подогрев воды в целях предоставления коммунальной услуги по горячему водоснабжению.

В связи с этим соответствующими изменениями, внесенными в Правила № 306, предусматривается, что норматив потребления коммунальной услуги по горячему водоснабжению определяется путем установления норматива потребления горячей воды в жилом помещении и норматива расхода тепловой энергии на подогрев воды для целей горячего водоснабжения.

Так, согласно пункту 7 Правил № 306 при выборе единицы измерения нормативов потребления в отношении горячего водоснабжения (горячей воды) используются следующие показатели:

в жилых помещениях — куб. метр холодной воды на 1 человека и Гкал на подогрев 1 куб. метра холодной воды или куб. метр горячей воды на 1 человека;

на общедомовые нужды — куб. метр холодной воды и Гкал на подогрев 1 куб. метра холодной воды на 1 кв. метр общей площади помещений, входящих в состав общего имущества в многоквартирном доме, или куб. метр горячей воды на 1 кв. метр общей площади помещений, входящих в состав общего имущества в многоквартирном доме.

Данный принцип обеспечивает справедливое распределение тепловой энергии на подогрев кубометра воды между всеми потребителями в зависимости от объема потребления горячей воды. В этой связи, порядок определения размера платы за коммунальную услугу по горячему водоснабжению, установленный Правилами № 354, полностью соответствует требованиям ЖК РФ и установлен с учетом исключения возникновения несправедливой финансовой нагрузки на граждан.

Таким образом, независимо от наличия коллективного (общедомового) прибора учета тепловой энергии в системе горячего водоснабжения многоквартирного дома, независимо от системы теплоснабжения (горячего водоснабжения) (открытая или закрытая), а также независимо от периода времени года (отопительный или неотопительный), количество тепловой энергии, использованной на подогрев воды, определяется по установленным в предусмотренном законодательством порядке нормативам расхода тепловой энергии на подогрев воды для целей горячего водоснабжения.

Соответственно, при наличии нормативов расхода тепловой энергии на подогрев горячей воды показания приборов учета, измеряющих тепловую энергию, используемую в целях горячего водоснабжения, не учитываются ни в расчетах с потребителями, ни в расчетах с ресурсоснабжающими организациями.

Иного порядка определения размера платы за коммунальную услугу по горячему водоснабжению в рассматриваемом случае Правилами № 354 не предусмотрено.

Гражданские права и обязанности управляющей организацией или товарищества собственников жилья либо жилищного кооператива или иного специализированного потребительского кооператива (далее — товарищество, кооператив) по осуществлению расчетов за ресурсы, необходимые для предоставления коммунальных услуг, возникают из договоров ресурсоснабжения, заключаемых в порядке, предусмотренном Правилами, обязательными при заключении управляющей организацией или товариществом собственников жилья либо жилищным кооперативом или иным специализированным потребительским кооперативом договоров с ресурсоснабжающими организациями, утвержденными постановлением Правительства Российской Федерации от 14 февраля 2012 г. № 124 (далее соответственно — постановление № 124, Правила № 124).

Согласно подпунктам «г», «е» пункта 17 Правил № 124 порядок определения объемов поставляемого коммунального ресурса, порядок оплаты коммунального ресурса являются существенными условиями договора ресурсоснабжения.

При этом во взаимосвязи с требованиями Правил № 124 при заключении договора ресурсоснабжения подлежат применению также Требования при осуществлении расчетов за ресурсы, необходимые для предоставления коммунальных услуг, утвержденные постановлением Правительства Российской Федерации от 28 марта 2012 г. № 253 (далее — Требования).

Пунктом 4 Требований установлено, что в пользу ресурсоснабжающих организаций подлежат перечислению денежные средства, поступившие исполнителю от потребителей в счет оплаты именно коммунальных услуг.

При этом пунктом 5 Требований предусмотрено, что размер платежа исполнителя коммунальной услуги, причитающегося к перечислению в пользу ресурсоснабжающей организации, поставляющей конкретный вид ресурса, определяется в зависимости от оплаты потребителем соответствующей коммунальной услуги в полном размере, указанном в платежном документе, либо при частичной оплате, что в полной мере корреспондирует с указанными выше нормами Правил № 124.

На основании вышеуказанного, размер платежа исполнителя коммунальной услуги в пользу ресурсоснабжающей организации подлежит определению с учетом количества денежных средств, поступивших от потребителей коммунальных услуг, а также с учетом объемов коммунальных ресурсов в случае поставки ресурсоснабжающей организацией коммунального ресурса ненадлежащего качества или с перерывами, превышающими установленную продолжительность.

Кроме того, управляющие организации (товарищества, кооперативы) являясь исполнителями коммунальных услуг в многоквартирном доме, приобретают у ресурсоснабжающих организаций коммунальный ресурс не для перепродажи, а для предоставления соответствующей коммунальной услуги потребителям и оплачивают потребленный в таком многоквартирном доме объем коммунального ресурса из платежей, поступивших от потребителей за коммунальную услугу.

В соответствии с Решением Верховного Суда Российской Федерации от 8 июня 2012 г. № АКПИ12-604, согласно которым в рамках постановления № 124 управляющая организация, товарищество или кооператив, не являются хозяйствующими субъектами с самостоятельными экономическими интересами, отличными от интересов жильцов как непосредственных потребителей коммунальных услуг. Данные организации осуществляют деятельность по предоставлению коммунальных услуг на основании договора управления многоквартирным домом и оплачивают объем коммунального ресурса, поставляемого по договору ресурсоснабжения, только из поступивших платежей потребителей. При таком положении размер платы за коммунальный ресурс по договору ресурсоснабжения должен быть равен размеру платы за коммунальную услугу, оплачиваемую всеми потребителями коммунальных услуг в соответствии с Правилами их предоставления.

Учитывая изложенное, вне зависимости от договоренности стороны обязаны следовать императивным нормам, которые регулируют порядок расчетов за оказанные коммунальные услуги.

Согласно пунктам 10, 11 части 1 статьи 4 ЖК РФ отношения по поводу предоставления коммунальных услуг, внесения платы за жилое помещение и коммунальные услуги регулирует жилищное законодательство.

В соответствии с положениями статьи 8 ЖК РФ к жилищным отношениям, связанным, в том числе с использованием инженерного оборудования, предоставлением коммунальных услуг, внесением платы за коммунальные услуги, применяется соответствующее законодательство с учетом требований, установленных ЖК РФ.

С учетом изложенного, при заключении договора ресурсоснабжения с лицами, осуществляющими управление многоквартирным домом, и установления в нем условий, в том числе регламентирующих порядок прекращения поставки соответствующего вида коммунального ресурса в многоквартирный дом, необходимо в первую очередь руководствоваться нормами жилищного законодательства, в частности Правил № 124 с учетом положений Правил № 354.

Пунктом 5 Требований установлено, что размер платежа исполнителя, причитающегося к перечислению в пользу ресурсоснабжающей организации, поставляющей конкретный вид ресурса, определяется в размере указанной в платежном документе платы за конкретную коммунальную услугу, начисленной потребителю за данный расчетный период в соответствии с Правилами № 354 (при оплате потребителем в полном объеме), а при оплате потребителем не в полном объеме — размере, пропорциональном размеру платы за конкретную коммунальную услугу в общем размере указанных в платежном документе платежей за работы и услуги, выполненные (предоставленные) за данный расчетный период.

Исходя из этого, товарищество собственников жилья обязано покрывать обязательства перед ресурсоснабжающими организациями за объем коммунального ресурса за счет средств, поступивших от потребителей в оплату потребленных коммунальных услуг по горячему водоснабжению, то есть рассчитанного исходя из норматива расхода тепловой энергии, используемой на подогрев воды в целях предоставления коммунальной услуги по горячему водоснабжению.

На основании вышеизложенного Арбитражный суд Московской области полагает, что заявленные исковые требования не подлежат удовлетворению.

Руководствуясь статьями ст. 110, 112, 162, 167170, 176 Арбитражного процессуального кодекса Российской Федерации, арбитражный суд Московской области

Р Е Ш И Л :

В удовлетворении исковых требований отказать».

 

Десятый арбитражный апелляционный суд, рассмотрев апелляционную жалобу на решение АС Московской области, принял Постановление от 17.04.2017 № 10АП-805/2017 по делу № А41-18008/16, которым повторил аргументы суда первой инстанции, дополнительно указав:

«Доводы апелляционной жалобы повторяют доводы иска, были обоснованно отклонены судом первой инстанции.

Принимая во внимание совокупность изложенных обстоятельств, апелляционный суд не находит предусмотренных законом оснований для переоценки выводов суда первой инстанции и удовлетворения требований апелляционной жалобы.

Руководствуясь статьями 266, 268, пунктом 1 статьи 269, статьей 271 Арбитражного процессуального кодекса Российской Федерации, суд

ПОСТАНОВИЛ:

Решение Арбитражного суда Московской области от 12 декабря 2016 года по делу № А41-18008/16 оставить без изменения, апелляционную жалобу — без удовлетворения».

 

Выводы

Арбитражный суд Московской области и поддержавший его мнение 10-й Арбитражный апелляционный суд при рассмотрении дела № А41-18008/16 установили, что независимо от наличия коллективного (общедомового) прибора учета тепловой энергии в системе горячего водоснабжения многоквартирного дома, независимо от типа системы теплоснабжения/горячего водоснабжения (открытая или закрытая), независимо от периода года (отопительный или межотопительный), «количество тепловой энергии, использованной на подогрев воды, определяется по установленным в предусмотренном законодательством порядке нормативам расхода тепловой энергии на подогрев воды для целей горячего водоснабжения…, при наличии нормативов расхода тепловой энергии на подогрев горячей воды показания приборов учета, измеряющих тепловую энергию, используемую в целях горячего водоснабжения, не учитываются ни в расчетах с потребителями, ни в расчетах с ресурсоснабжающими организациями».

В данный момент на рассмотренные в настоящей статье решения судов подана кассационная жалоба в Арбитражный суд Московского округа. Жалоба принята к рассмотрению, заседание назначено на 26.07.2017. Подписчики информационной рассылки АКАТО будут проинформированы о решении кассационной инстанции по указанному делу.

 

Решение АС Московской области от 12.12.2016 по делу № А41-18008/16 > > >

Постановление 10 ААС от 17.04.2017 № 10АП-805/2017 по делу N А41-18008/16 > > >

 

****************************************************************************

Результаты рассмотрения кассационной жалобы > > >

****************************************************************************

 

Приборы учета тепловой энергии

Установка приборов учета тепловой энергии

Узел учета тепловой энергии — комплекс приборов и устройств, обеспечивающих учет тепловой энергии, массы (объема) теплоносителя, а также контроль и регистрацию его параметров. Конструктивно узел учета представляет собой набор «модулей», которые врезаются в трубопроводы. В узел учета тепла входят: вычислитель, преобразователи расхода, температуры, давления, приборы индикации температуры и давления, а также запорная арматура.

Установка прибора учета это не технология и не метод энергосбережения, это стимул к экономии энергии. При установке приборов учета потребители тепловой энергии постоянно могут наблюдать за потреблением ресурса, тем самым узнавать: сколько они потребили и на сколько могут сократить потребление тепловой энергии, чтобы платить меньше.

Коммерческий учет теплоносителей подразумевает внедрение в отношения по производству, транспортировке, потреблению тепловой энергии организационной и нормативно-правовой базы, которая будет способствовать повышению экономических стимулов к энергоресурсосбережению у всех участников процесса теплоснабжения. Позволяет производить оплату за тепловую энергию только по показаниям узла учета тепла, а не по стандартным расчетным нормам.

При установке прибора учета тепла стоит учитывать стоимость и марку завода-изготовителя. Как правило, более дешевые приборы быстрей окупаются, но более дорогие имеют возможность работать дольше без поломок и потерей в метрологической точности.

В большинстве современных систем теплоснабжения приборный учет тепловой энергии внедряется активно. Для потребителей он интересен возможностью экономии денежных средств, для поставщика возможностью отслеживать потребление, поиском мест утечек и т.д.

Стоит принимать во внимание, что в большинстве многоквартирных домов возможен учет только горячей воды и учет тепловой энергии по общедомовому счётчику, и нет возможности индивидуального учета тепловой энергии в отопительных приборах. Это связано с вертикальной разводкой стояков отопления и учет технологически не осуществим. В современных домах с горизонтальной разводкой отопления учет тепловой энергии возможен.

Законодательство

Вопросы учета тепловой энергии регулируются Федеральным законом от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации» (ст. 13), а также при взаимоотношениях юридических лиц друг с другом «Правилами учета тепловой энергии и теплоносителя» и Гражданским кодексом РФ, при взаимоотношениях жителей с юридическими лицами или управляющими компаниями постановлением правительства № 307 «О порядке предоставления коммунальных услуг гражданам» и Жилищным Кодексом РФ.

Исходя из Федерального законодательства приборами учета должны быть оснащены все потребители (организации, здания, сооружения и многоквартирные дома) до 1 января 2012 г.

Порядок установки узла учета тепловой энергии

Начало работ по установке узлов учета тепловой энергии, проводятся с обследования объекта и последующей разработки проекта узла учета тепловой энергии. Специалисты, занимающиеся проектирвоанием узлов учета тепла, проводят все необходимые расчёты, подбирают оборудование, контрольно-измерительные приборы, и главное — теплосчетчик. После того как проект разработан, необходимо провести согласование с организацией, поставляющей тепловую энергию для данного объекта. Этого требуют существующие нормы проектирования и правила учета тепловой энергии.

После согласования, можно приступать к монтажу узлов учета теплв. Монтаж на объекте у заказчика состоит из врезки (модулей, запорной арматуры в трубопроводы) и проведения электромонтажных работ. Электромонтажные работы заканчиваются подключением расходомеров и датчиков к вычислителю и запуском вычислителя для осуществления учета тепловой энергии.

Далее производится наладка узла учета тепловой энергии, которая заключается в программировании вычислителя и проверке работоспособности системы учета, после чего проводится сдача узла учета тепла согласующим сторонам на коммерческий учет, осуществляемый специальной комиссией от лица теплоснабжающей компании. Кстати, такой узел учета должен проработать определенный срок, который колеблется у разных организаций от 72 часов до 7 дней.

Для объединения нескольких узлов учета в единую диспетчерскую сеть понадобится диспетчеризация узлов учета — организация мониторинга учета и дистанционный съем информации с теплосчетчиков.

Типы теплосчетчиков

Теплосчетчик — это средство измерений, состоящее, как правило, из преобразователей расхода, температуры, давления, а также тепловычислителя. Преобразователи монтируются непосредственно на трубопроводах, а вычислитель, принимая их сигналы, по определенным алгоритмам вычисляет на основе полученных данных величину потребленной тепловой энергии. Кроме того, он архивирует результаты измерений (показания преобразователей), чтобы в дальнейшем можно было анализировать режимы работы системы теплоснабжения, фиксировать внештатные и аварийные ситуации и т.п. Таким образом, теплосчетчик выполняет сразу две задачи: обеспечивает коммерческий учет, результаты которого используются при расчетах между поставщиком и потребителем тепла, а также является средством технологического контроля в системах теплоснабжения.

Для учета тепловой энергии в водяных системах теплоснабжения — в составе теплосчетчиков применяются расходомеры, а точнее — преобразователи расхода. Расходомер служит для измерения расхода, т.е. количества воды, протекающего через данное сечение за единицу времени. Расход измеряется в единицах массы, деленных на единицу времени (кг/с, кг/мин, кг/ч, г/с и т.д.) или в единицах объема, деленных на единицу времени (м3/c, м3/мин, м3/ч, см3/с и т.д.). В первом случае имеем массовый, а во втором — объемный расход.

В зависимости от типа расходомера и измеряемых параметров теплосчетчики имеют свои плюсы и минусы, отличия установки, величины погрешности, надежности работы и т.д.

Можно выделить следующие виды расходомеров, различия которых основаны на различных методах измерения:

  • тахометрические

  • вихревые

  • электромагнитные

  • ультразвуковые

  • переменного перепада давления

  • комбинированные.

Тахометрические

Тахометрические расходомеры (крыльчатые, турбинные, винтовые) наиболее простые приборы. Принцип действия механических теплосчетчиков основан на преобразовании поступательного движения потока жидкости во вращательное движение измерительной части. Основа их конструкции — помещенная в поток жидкости крыльчатка или турбинка. Она связана со счетным механизмом, который преобразует количество ее оборотов в литры или кубические метры.

В не меньшей степени используются и расходомеры других типов. Их общее отличие от тахометрических состоит в том, что в конструкции прибора отсутствуют какие бы то ни было подвижные части, а в измерениях участвуют электронные устройства.

Вихревые

Вихревые расходомеры работают на принципе широко известного природного явления — образование вихрей за препятствием, стоящим на пути потока. Частота образования вихрей при этом прямо пропорциональна скорости потока.

Электромагнитные

Принцип действия электромагнитных расходомеров основан на способности измеряемой жидкости возбуждать электрический ток при ее движении в магнитном поле (используется явление электромагнитной индукции).

Ультразвуковые

Принцип работы: на трубе друг напротив друга устанавливаются излучатель и приемник ультразвукового сигнала. Излучатель посылает сигнал сквозь поток жидкости, а приемник через некоторое время получает его. Время задержки сигнала между моментами его излучения и приема прямо пропорционально скорости потока жидкости в трубе.


Какие факторы влияют на размер платы за отопление?

«Почему сумма за отопление за март больше, чем за февраль, ведь в марте было тепло?!», — такой вопрос нам задают абоненты. Давайте разбираться, какие факторы влияют на размер платы за отопление.

В первую очередь — продолжительность расчетного периода и температура наружного воздуха.

Показания общедомовых приборов учета тепла снимают не с 1 по 30 (31) числа месяца, а за период. В 2020 году отопительный сезон начался 17 сентября. Поэтому, например, показания для расчета платы за ноябрь снимались с 17 октября по 16 ноября. Период составил 31 день. А за декабрь с 17 ноября по 14 декабря, то есть 28 дней. За январь — с 15 декабря и по 08—14 января, за 25—31 день в зависимости от дома.

Показания за март снимались с 10—15 февраля (в зависимости от дома) и за 31 день.

Февраль стал самым холодным месяцем за зиму. 17 февраля было — 23,3 °С; 21 февраля — 24,2 °С; 22 февраля — 25,2 °С (таблицу температур см. на фото). То есть, самые холодные дни февраля вошли в период марта.  И нужно понимать, что это средняя температура за сутки, ночью бывало и ниже —30°С.  Если кратко: в период снятия показаний за февраль средняя температура была примерно — 9,6 °С, средняя температура за период снятия за март примерно — 14,1 °С. Разница 4,5°С!

Чтобы в морозы в квартирах была комфортная температура и днем, и ночью, в дом должно зайти больше тепла. Это как с одеждой: чем холоднее на улице, тем теплее мы одеваемся. И вроде нам одинаково тепло, но в — 30 °С  мы надеваем валенки, а при — 10°С можем и в ботинках прогуляться.

Сколько тепла зашло в дом фиксирует общедомовой прибор учета тепла или кратко ОДПУ. Мы берем для расчета именно показания ОДПУ, то есть считаем по факту потребления.  Раньше все показания снимали и передавали нам управляющие компании. Сейчас в большинстве домов, которые обслуживает МУП УИС, установлены модемы. Они позволяют снимать показания удаленно, без вмешательства человека. В этом случае невозможно неправильно списать цифры или что-то подкрутить. Распечатки ведомостей учета параметров ОДПУ находятся в открытом доступе по ссылке https://mup-uis.ru/consumers/sp/#/. Каждый может зайти и сравнить потребление домом в январе, феврале, марте. С помощью этих данных можно контролировать работу УК, а также анализировать энергоэффективность дома.  Вверху распечатки написан период, за который снимались показания в конкретном доме. А какая погода была в эти дни, можно найти в интернете.

Кроме этого, старшие по домам могут обратиться в УЖХ, взять логин и пароль от личного кабинета, и онлайн контролировать потребление тепла домом. И если они увидят, что вдруг произошёл скачок, не связанный с резким похолоданием, то оперативно задать вопрос своей УК: что происходит?

Еще один фактор, влияющий на начисления — исправность ОДПУ. ОДПУ — общедомовое имущество. Следить за его исправностью — обязанность УК. При этом на распечатках ведомостей учета параметров тепла можно увидеть, когда срок поверки вашего прибора и примерно понять, насколько корректно он считает.

Четвертый, очень важный фактор — качественная регулировка внутридомовой системы отопления управляющей компанией.

Мы проводили анализ: взяли однотипные дома в одном квартале, подключённые к одному теплоисточнику (котельной). Дано: котельная одна, теплоноситель одной температуры, дома однотипные. Однако в одних домах потребление тепла увеличилось почти в 2 раза, а в других на 10-15%. О чем это говорит? Что в одних домах УК добросовестно относится к своей работе, а в других либо не хочет регулировать, либо идет на поводу у кого-то из жителей, кому и в +25°С холодно (Недавний случай: из-за одной жительницы, которая мерзла и  «доставала» УК, во всем доме в квартирах было очень жарко. Соответственно, и платежи за тепло у всех были весьма существенными). Возможен и еще один фактор: дом «берет» больше тепла, потому что кто-то установил дополнительные секции на батареях, вынес батареи на лоджию и т.д. Комфортно одному — платит за это весь дом.

Еще один наш анализ показал, что в тех домах, где регулировка проводится своевременно, потребление тепла очень корректное. Например, после регулировки, снизилось в феврале по сравнению с январем, а в марте по сравнению с февралем почти не изменилось (рост на 1-5%, несмотря на морозы).
Помните, что по нормативам температура в комнатах должна быть от +19°С до +22 °С. Каждый дополнительный градус приводит к увеличению потребления тепла в целом по всему дому от 3 до 8%.

Давайте рассмотрим конкретный пример. К нам обратился житель дома по ул. Цюрупы 41/1 с вопросом по начислениям.

В феврале 2021г.  в этом доме снимались показания с 14 января по 13 февраля, период — 31 день, средняя температура за период — 10,1°С. В марте 2021г.  — с 14 февраля  по 16 марта, период  31 день, средняя температура за период — 13,94°С.
Мы провели расчет процента увеличения потребления тепловой энергии из-за снижения средней температуры наружного воздуха в марте 2021г. для этого дома:    
                        
Qмарт/Qфевр = (tвн-tнв март) / (tвн-tнв февр), где                                                                    
Qмарт — количество тепла на отопление в марте 2021г.                                
Qфевр — количество тепла на отопление в феврале 2021г.                                    
tвн — температура внутри помещения, принимается 20 °С.                                
tнв март — средняя температура наружного воздуха в периоде снятия показаний за март 2021г.                                    
tнв февр — средняя температура наружного воздуха в периоде снятия показаний за февраль 2021г.                                        
Qмарт/Qфевр = (tвн-tнв март)/(tвн-tнв февр)  = (20-(-13,94))/(20-(-10,1)) = 33,94/30,1 = 12,76%
                                    
Из представленного расчета можно сделать вывод, что температурно-обоснованный рост потребления тепла  в периоде снятия за март по сравнению с периодом снятия за февраль составляет 12,76%. Если рост потребления свыше данного значения, это значит, что есть другие причины.

В данном доме рост составил 22%. Почему на 9,24% больше?  Совместно с УК проверили  исправность ОДПУ с составлением акта: прибор учета тепловой энергии работает в штатном режиме, пломбы не сорваны. Совместно с УК несколько раз провели замеры теплоносителя на вводе в дом. Установили, что МУП УИС производит отпуск коммунального ресурса «тепловая энергия» в многоквартирный дом по ул. Цюрупы, д. 44/1 в соответствии с температурным графиком теплоисточника.

А вот с качественной регулировкой внутридомовой системы отопления в этом доме есть проблемы. О том, что идет перегрев сетевой воды МУП УИС неоднократно в актах указывал и призывал УК решить этот вопрос.

Какие можно сделать выводы? Рост размера платы в марте относительно февраля на 12,76% вызван фактором более низкой температуры наружного воздуха. А рост размера платы в марте относительно февраля на 9,24% (22%—12,76%) вызван, предположительно, фактором некачественной наладки внутренней системы отопления. Потому что других факторов роста платы за отопление не выявлено.  

Мы неоднократно обращались и обращаемся к жителям: своевременно сообщайте управляющим компаниям как о повышенной, так и о пониженной температуре в квартирах. Это нужно, чтобы выполнить наладку оборудования. Иначе бывают такие случаи, когда к нам приходят и говорят: «Мы всю зиму мерзли!». Спрашиваем: «Что в управляющей компании вам сказали?». И в ответ:  «Мы туда не обращались».  УК не может знать о том, что у вас холодно или жарко, пока вы об этом не скажите! Если же и после обращения ничего не меняется, обращайтесь свою ресурсоснабжающую организацию. Только совместная работа жителей-управляющих компаний-ресурсоснабжающих организаций поможет стабилизировать ситуацию в сфере теплоснабжения.

Фотографии

Теплоноситель для солнечных систем отопления —

Теплоноситель для гелиосистемы.

Теплоноситель для гелиосистемы выполняет очень важную роль. Он обеспечивает транспортировку тепловой энергии от солнечного коллектора в бак аккумулятор. В трубках абсорбера коллектора теплоноситель нагревается, а затем отдает тепло водонагревателю через теплообменник.

Очень важно использовать в гелиосистемах качественный теплоноситель, поскольку он продлит срок службы всей гелиоустановки.

Принцип работы теплоносителя в гелиосистеме.

Гелиосистема (система солнечного горячего водоснабжения) включает в себя основные компоненты:

1. солнечные коллекторы;

2. насосный модуль с группой безопасности;

3. контроллер;

4. бак аккумулятор;

5. дублирующий источник энергии.

В солнечных коллекторах циркулирует теплоноситель или вода (циркуляция в контуре гелиосистемы обеспечивается за счет насоса или за счет естественной циркуляции возникающей при разнице температуры). Нагреваясь в солнечном коллекторе, теплоноситель передает тепловую энергию баку аккумулятору по средствам теплообменника (теплообменник может быть встроен в бак в виде змеевика или может использоваться наружный теплообменник). Вода в баке накапливает тепловую энергию. Этот процесс происходит автоматически благодаря контроллеру, регулирующему работу насоса в гелиосистеме. В случае необходимости автоматика запускает дублирующий источник энергии.

Свойства пропиленгликоля как теплоносителя для гелиосистем

Наиболее подходящим теплоносителем для гелиосистем является вода. Она имеет высокую теплоёмкость и общедоступность. Однако использование воды в чистом виде ограничено климатическими зонами, в которых не бывает отрицательных температур. В других же климатических условиях необходимо предусмотреть предотвращения замерзания воды, поскольку это может разгерметизировать гелиоконтур и привести к поломки солнечных коллекторов. Для этого воду смешивают с пропиленгликолем. В центральной Европе обычно используют 40%-ю концентрацию пропиленгликоля. Эта концентрация соответствует температуре -30˚ С как температура начала кристаллизации теплоносителя для гелиосистем.

Пропиленгликоль представляет собой трудновоспламеняемую, нетоксичную жидкость. Его безопасность свидетельствует применение пропиленгликоля в кондитерской и косметической промышленности. Температура кипения около 188˚ С, плотность – 1,04 г/см³. Пропиленгликоль – это органическая жидкость имеющая обычные свойства. Поэтому из-за воздействия высоких температур, которые возникают во время перегрева (стагнации), теплоноситель подвержен окислению. Это может вызвать появление коррозии на некоторых узлах гелиосистемы тем самым вывести ее из строя. Так же, если в жидкости содержится кислород, то это способствует разложению теплоносителя и образованию твердых отложений. Исследования показали, что в негерметичных системах с постоянным поступлением кислорода этот процесс возникает гораздо чаще, чем вследствие стагнации при высоких температурах.
Для увеличения срока службы теплоносителя, а как следствие всей гелиосистемы в жидкость добавляют специальные антиокислительные присадки. Это обеспечивает поддержание pH-среды в щелочном диапазоне (≥ 7,0). Это гарантирует длительную защиту от коррозии. Однако слишком большое количество добавок в теплоноситель гелиосистемы приводит к ухудшению теплоемкости, поэтому основной задачей производителей является достижения оптимального баланса физических свойств жидкости.>


На изображении показан начальный вид теплоносителя с (pH 8,2) и после эксплуатации (pH 6,7), а так же твердые отложения.

Теплоноситель для гелиосистем, подвергающийся незначительным термическим нагрузкам, может прослужить до 10 лет. В солнечных системах с возможными длительными периодами стагнации (например, если гелиосистема спроектирована с возможностью поддержки отопления) теплоноситель может прослужить значительно меньше. Рекомендуется после первых двух-трех лет эксплуатации гелиосистемы проверять показатели кислотности и темперературу замерзания при помощи рефрактометра теплоносителя каждый год.

Расход теплоносителя в солнечном коллекторе.

В гелиосистемах с принудительной циркуляцией теплоносителя основополагающим фактором является удельный расход теплоносителя. Этот параметр измеряется в литрах/час на 1 м² площади абсорбера солнечных коллекторов. Гелиосистема может работать с различными значениями удельного расхода теплоносителя. Значение может зависеть как от конструкции гелиосистемы и солнечных коллекторов, так и географического места эксплуатации гелиосистемы.

Циркуляция теплоносителя в солнечном коллекторе.

Во время циркуляции, увеличение расхода теплоносителя при одинаковой производительности солнечного коллектора уменьшает разность температур в контуре гелиосистемы (разница между температурой подачи теплоносителя в солнечные коллектора и температурой выхода), а уменьшение расхода ведет к увеличению разности температур.

При высоком значении разницы температур (т.е. при уменьшении расхода) средняя температура солнечных коллекторов будет возрастать, соответственно КПД падает. Однако, в таком режиме циркуляции требуется меньшее электроэнергии при работе циркуляционного насоса и можно использовать магистральные трубы меньших диаметров. Значительное увеличение расхода (Снижение разницы температур) с целью повышения коэффициента полезного действия нецелесообразно, поскольку это повлечет за собой необходимость использования более мощного насоса с высокой производительностью, поэтому эти затраты не будут компенсированы. Так же потребуется использовать трубопроводы с более высокими диаметрами. Это повлечет за собой удорожание все системы и повышение значения тепловых потерь из-за увеличения площадей трубы.

Различают три основных режима циркуляции:
  • режим с расходом до 30 л/(ч · м2).

  • режим с расходом более 30 л/(ч · м2).

  • режим с регулируемым расходом теплоносителя.

Оптимальный расход теплоносителя в солнечных коллекторах.

При проектировании гелиосистемы с принудительной циркуляцией теплоносителя очень важно добиться оптимального значения расхода. Удельный расход должен быть таким, чтобы была обеспечена надежная циркуляция по всему гелиоконтуру и наиболее эффективный теплосъем солнечной энергии. Различные производители указывают различные значения удельного расхода для своих солнечных коллекторов.

Оптимальным значением для гелиосистем с плоскими коллекторами считается значение 25 л/(ч · м²) при полной мощности насоса.

Для некоторых типов вакуумных трубчатых солнечных коллекторов (коллекторы с прямоточным каналом) значение 40 л/(ч · м²) считается оптимальным.

Для солнечных вакуумных коллекторов с тепловой трубкой «Heat pipe» значение такое же, как для плоских коллекторов 25 л/(ч · м²).

Что характерно, что с развитием гелиотехники оптимальное значение расхода теплоносителя изменялось, так, например, 5 лет назад для плоских коллекторов оптимальным считалось значение 40 л /(ч · м²).

Наиболее эффективными являются системы с регулируемым (переменным) расходом теплоносителя. Значение расхода устанавливается автоматически посредствам контроллера и зависит от температуры в баке аккумуляторе и уровня солнечного излучения. Контроллер меняет значение расхода от 100% (максимальное значение) до 20%, регулируя в реальном времени мощность, подаваемую на насос, тем самым ускоряя или замедляя циркуляцию теплоносителя.

Однако в системах с использованием трубчатых солнечных коллекторов с прямоточным каналом режим с регулируемым расходом не рекомендуется, поскольку это нарушает равномерную циркуляцию теплоносителя через солнечный коллектор. При сложной гидравлической схеме коллекторного поля с несколькими параллельно подключенными коллекторными группами режим с регулируемым расходом требует особо точного проектирования и настройки.

Внимание!

На российском рынке сейчас достаточно большое количество незамерзающих теплоносителей. Но, не все теплоносители одинаково полезны. Дело в том, что химический состав большинства теплоносителей очень вреден как для котлов, так и для резиновых прокладок в системе. Со временем уплотнения начинают разъедаться, и зарастают накипью. Чтобы таких проблем не было Производственная компания «АНДИ Групп» рекомендует использовать Теплоноситель Antifrogen SOL HT компания Clariant – мирового лидера в области специализированных химических реагентов.


Antifrogen SOL HT / Антифроген SOL HT
Готовый к применению теплоноситель с антифризными и ингибирующими свойствами для солнечных систем отопления, работающих при повышенных тепловых нагрузках.

Центральная система отопления

Центральная отопительная система предназначена для того, чтобы отапливать сразу несколько помещений или зданий из единого теплового центра. Тепловой центр представляет из себя сооружение, в котором располагается теплогенераторы это может быть государственное теплоснабжение — Теплоэлектроцентраль (ТЭЦ) и промежуточные центральные тепловые пункты (ЦТП), так же тепловой центр может быть выполнен в виде отдельной автономной котельной, для общего или частного использования.

В деловых, жилых и промышленных районах городов умеренного и холодного климата экономически выгодно использовать тепло от централизованного источника тепла (ТЭЦ). В таких районах прокладывается сеть трубопроводов (тепловая сеть) и устанавливаются снабженные счетчиками распределительные тепловые пункты, которые снабжают индивидуальных потребителей паром или горячей водой.

Централизованные системы более экономичны и имеют то преимущество, что освобождают место для производственных целей, которое в противном случае потребовалось бы для размещения собственной котельной и хранения топлива. Для небольших зданий центральное отопление имеет дополнительное преимущество стабильного теплоснабжения без необходимости постоянного контроля за работой собственной отопительной системы.

Теплоэлектроцентраль (ТЭЦ) — разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).

ТЭЦ конструктивно устроена как конденсационная электростанция. Главное отличие состоит в возможности отобрать часть тепловой энергии пара, после того, как он выработает электрическую энергию. Отобранный пар конденсируется в сетевых подогревателях и передает свою энергию сетевой воде, которая направляется на пиковые водогрейные котельные и тепловые пункты. На ТЭЦ есть возможность перекрывать тепловые отборы пара, в этом случае ТЭЦ становится обычной электростанцией. При строительстве ТЭЦ необходимо учитывать близость потребителей тепла в виде горячей воды и пара, так как передача тепла на большие расстояния экономически нецелесообразна.

Coolant vs Antifreeze, в чем разница?

Возможно, вы слышали, что вам нужен антифриз, охлаждающая жидкость или и то, и другое, и задавались вопросом: «Какая разница ?!» Эти термины часто используются как синонимы, что может вызвать путаницу. Эта путаница проблематична, потому что использование неправильного продукта может иметь пагубные последствия для вашего автомобиля.

Давайте подробнее рассмотрим каждый и какой из них вам нужно использовать.

В чем разница между охлаждающей жидкостью и антифризом?

Проще говоря, охлаждающая жидкость — это продукт, который вы заливаете в автомобиль, а антифриз — это активный ингредиент охлаждающей жидкости, который требует разбавления.

Что такое антифриз?

Антифриз — это вещество, понижающее температуру замерзания воды. Активным ингредиентом обычно является этиленгликоль или пропиленгликоль. Это полезно, потому что может предотвратить замерзание жидкостей в системе и ее повреждение. Как? Когда вода замерзает, она расширяется и кристаллизуется. Антифриз затрудняет соединение и кристаллизацию молекул, в результате чего точка замерзания падает.

Что такое охлаждающая жидкость?

Охлаждающая жидкость представляет собой смесь антифриза и воды, часто в соотношении 50/50.Он прокачивается через двигатель и сердцевину обогревателя автомобиля, чтобы поглотить избыточное тепло. Затем он проходит через радиатор и отводит тепло наружному воздуху. Охлаждающая жидкость постоянно проходит через систему, но со временем выходит из строя. Его следует менять каждые 30 000 миль или около того, чтобы предотвратить коррозию и обеспечить надлежащий контроль температуры.

Зачем нужно разбавлять антифриз?

Антифриз необходимо разбавить перед заливкой в ​​автомобиль по нескольким причинам.

Нижняя точка замерзания

Во-первых, несмотря на название, 100% антифриз фактически замерзнет раньше охлаждающей жидкости при температуре от 0 до -5 градусов по Фаренгейту.Охлаждающая жидкость со смесью 50/50 имеет температуру замерзания -35 градусов по Фаренгейту. Кроме того, смесь антифриза и воды в соотношении 70/30 снижает температуру замерзания до -84 градусов по Фаренгейту.

Более высокая способность к теплопередаче

Во-вторых, чистый антифриз не так эффективен при отводе тепла от двигателя и сердечника нагревателя. Когда вы едете в жаркий летний день, это становится более важным, чтобы избежать перегрева автомобиля. Температура кипения охлаждающей жидкости при смеси 50/50 составляет 223 градуса по Фаренгейту, что выше, чем у воды.

Улучшенная суспензия присадок

В-третьих, антифриз содержит такие добавки, как силикаты, нитраты и фосфаты, для защиты от коррозии. Вода помогает приостановить действие этих добавок. Без воды присадки часто попадают в систему вашего автомобиля. Когда это происходит, вы теряете защиту от коррозии.

Можно ли использовать воду вместо охлаждающей жидкости?

Вода помогает охладить двигатель, но она не работает так же хорошо, как охлаждающая жидкость. Вода закипает быстрее и при более низкой температуре, чем охлаждающая жидкость, и замерзнет при гораздо более высокой температуре.Хотя дистиллированная вода может стать повязкой в ​​чрезвычайной ситуации, всегда лучше использовать подходящую охлаждающую жидкость, чтобы избежать дорогостоящих проблем.

Оставайтесь на дороге, заботясь о своем автомобиле

Теперь, когда вы знаете разницу между антифризом и охлаждающей жидкостью, всегда проверяйте, что ваш автомобиль работает с охлаждающей жидкостью, подходящей для вашей системы. Это поможет поддерживать его в рабочем состоянии на долгие годы.

Хотите узнать больше о безопасном вождении? I Drive Safely предлагает онлайн-курсы водителей, курсы дорожного движения и курсы безопасного вождения, которые вы можете пройти, не выходя из дома.Независимо от того, являетесь ли вы новым водителем или опытным водителем, ищущим скидку на страхование или отказ от билета, мы можем помочь. Зарегистрироваться Сегодня!

Пройдите онлайн-курс безопасного вождения

Подробнее

Поток охлаждающей жидкости — обзор

Если бы вместо этого осевое усилие было выполнено в виде функции косинуса, см. Рис. 17.3A, с q ′ ( z ) = q max cos ( πz / H ), применение соотношений для теплопроводности и конвекции даст температурные кривые, как показано на рис.17.3B. Поверхность и центральная температура топлива получены с использованием формул. (17.4) и (17.6) в сочетании с распределением температуры охлаждающей жидкости

Рис. 17.3. Распределение температуры (B) вдоль канала с синусоидальным профилем мощности (A).

В этом случае самые высокие температуры поверхности топлива и топливного центра возникают между средней точкой и выходом охлаждающей жидкости. При проектировании реактора большое внимание уделяется определению того, какие каналы имеют самую высокую температуру теплоносителя и в каких точках на топливных стержнях возникают горячие точки .В конечном итоге мощность реактора ограничена условиями в этих каналах и точках.

Пример 17.4

Используя данные из предыдущих примеров в этой главе, мы определим температуру центральной линии топлива на трех четвертях ее высоты для синусоидального распределения мощности. Если средняя скорость тепловыделения q ′ avg составляет 157 Вт / см, то максимальное значение (см. Упражнение 17.12) составляет

qmax ′ = qavg′π / 2 = 157Вт / смπ / 2 = 247Вт / см

С высота сердечника 3.6 м, количество твэлов

NR = QRq = QRqavg′H = 3000 × 106W157W / cm360cm = 53,080тр.

Следовательно, расход теплоносителя через каждый канал составляет

ṁ = ṁR / NR = 19,800 кг / с / 53,080 шт. = 0,373 кг / с

Температура охлаждающей жидкости в интересующем месте, z = H /4, составляет

TCH / 4 = TC, in + qmax′Hπm˙cp1 + sinπ / 4 = 300 ° C + 247W / см360 см1,707π0,373 кг / с6,06 × 103 Дж / кг ° C = 321 ° C

В этом осевом положении линейная плотность мощности составляет

q′z = qmax′cosπz / H = 247 Вт / смcosπ / 4 = 175 Вт / см

Таким образом, разница температур пленки на поверхности оболочки твэла составляет

ΔTS = q ″ zh = q′z2πRh = 175 Вт / см2π0.5 см3,3 Вт / см2 ° C = 17 ° C

Повышение температуры топливной таблетки составляет

ΔTF = q′z4πk = 175 Вт / см4π0,062 Вт / см ° C = 225 ° C

В целом, температура в центре топлива в этом положении определяется из

T0 = TC + ΔTS + ΔTF = 321 + 17 + 225 ° C = 563 ° C

Для сравнения, равномерное распределение дает более низкую температуру центральной линии топлива в 534 ° C в этом месте (см. упражнение 17.13). Гликоль

или вода — какая охлаждающая жидкость лучше?

Удельная теплоемкость водных растворов на основе этиленгликоля меньше, чем у чистой воды; в 50-процентном растворе удельная теплоемкость этиленгликоля по сравнению с чистой водой уменьшается по крайней мере на 20 процентов при 36 градусах и примерно на 17 процентов при 200 градусах.Еще одна распространенная охлаждающая жидкость — пропиленгликоль — имеет еще более низкую удельную теплоемкость. Предполагая расход охлаждающей жидкости 100 галлонов в минуту и ​​потери энергии через систему охлаждающей жидкости 189,5 л.с., повышение температуры воды составит 10 градусов, смесь этиленгликоля и воды повысится на 20 градусов, а пропиленгликоль — на 33,3. градусов.

Для компенсации пониженной теплоемкости смесей охлаждающая жидкость / вода потребуется циркуляция большего количества жидкости через систему. При фиксированном количестве циркулирующей жидкости и емкости радиатора проточная 100-процентная вода будет наиболее эффективной охлаждающей жидкостью с точки зрения ее способности проводить тепло с минимальным повышением температуры.Другими словами, из всех обычных жидкостей воде требуется больше всего тепловой энергии для изменения своей температуры.

Однако есть также различия в точке парообразования трех разных охлаждающих жидкостей. Этиленгликоль и пропиленгликоль имеют более высокие точки парообразования и поэтому могут поглощать тепло при более высоких температурах без кипения. Но даже с более низкой точкой парообразования вода по-прежнему несет больше тепла на единицу.

Не забывайте, что охлаждающая жидкость — это лишь часть общей системы охлаждения.«Вы можете повысить эффективную точку парообразования воды, используя крышку радиатора с более высоким давлением. На каждый фунт повышенного давления в системе точка кипения воды повышается на 3 градуса. Более высокие точки кипения также снижают потери на испарение, кавитацию водяного насоса и теплоотдачу. вымачивание после закипания. Вы можете обойтись без более высокого давления в системе, используя качественный алюминиевый радиатор, который рассчитан на более высокое давление, чем латунный / медный радиатор. Алюминиевые радиаторы могут выдерживать большее давление, потому что их прочность на разрыв выше, чем у латуни — это позволяет В алюминиевом блоке используются трубы с большим поперечным сечением и более тонкими стенками.Трубка большего размера также имеет большую площадь поверхности стенки, что приводит к улучшенной теплоотдаче.

Итог: алюминиевый радиатор с большой трубкой, заполненный чистой водой и использующий колпачок с давлением не менее 20 фунтов на кв. Дюйм, безусловно, является лучшей системой теплопередачи, при условии, что автомобиль не подвергается воздействию низких температур. При работе с чистой водой обязательно добавляйте ингибитор коррозии.

Общие типы охлаждающей жидкости и их использование в системах жидкостного охлаждения

Введение

Использование жидкостей для передачи тепла является важным методом охлаждения во многих отраслях промышленности.Выбор лучшего теплоносителя для системы охлаждения включает рассмотрение факторов производительности, совместимости и технического обслуживания. Вода обладает превосходными свойствами теплопередачи, что делает ее своего рода стандартом для сравнения с другими охлаждающими жидкостями. Среди теплоносителей вода имеет превосходные свойства во многих отношениях, с высокой удельной теплоемкостью около 4200 Дж / кг · К, низкой вязкостью и отсутствием температуры вспышки. С другой стороны, он имеет относительно узкий диапазон действия, поскольку температура жидкости делает обычную воду чувствительной к замерзанию или кипению.

Чистота воды

Качество уличной (водопроводной) воды зависит от ее хранения, доставки и конечного источника (грунтовые воды в сравнении с поверхностными водами). Он может содержать коррозионные примеси, такие как хлорид, щелочные карбонатные соли или взвешенные твердые частицы. Для систем охлаждения с рециркуляционным потоком воды в систему можно заправлять уже фильтрованную или очищенную воду. В то время как некоторых примесей следует избегать из-за потенциального коррозионного воздействия, полностью чистая вода жаждет ионов и считается агрессивным растворителем.Загрязненная вода также является электролитическим мостиком, способствующим гальванической коррозии, если в системе присутствуют разнородные металлы.

Вода как охлаждающая жидкость в системе рециркуляции также подвержена биологическому загрязнению. Вероятность образования водорослей, бактерий или грибков зависит от воздействия на систему света и тепла и наличия питательных веществ в смачиваемых компонентах. Образовавшаяся слизь или биопленка могут препятствовать теплопередаче между жидкостью и влажными поверхностями. Следует учитывать достаточную концентрацию присадки.Например, гликоль в качестве добавки обычно используется в качестве средства контроля против биологического роста, но при концентрациях менее 20% эффективность ограничена; Фактически, менее 1% пропиленгликоль и этиленгликоль действуют как питательные вещества для бактерий.

Есть несколько сложных и взаимосвязанных факторов при выборе различных типов воды и воды / смесей, а также некоторые императивы конструкции, которые вызывают потребность в других теплоносителях. Рассмотрим сравнение пропиленгликоля (PG) с этиленгликолем (EG).Пропиленгликоль намного менее токсичен, чем этиленгликоль, что упрощает обращение и утилизацию, чем этиленгликоль. Он также имеет более высокую удельную теплоемкость, чем этиленгликоль. Однако его теплопроводность ниже, а вязкость выше, чем у этиленгликоля, что приводит к лучшим общим характеристикам EG по сравнению с PG. В большинстве случаев используется смесь гликоля и воды с более низкой концентрацией гликоля из-за более высоких характеристик воды по сравнению с любым типом гликоля. EG требует более низких концентраций, чем PG для эквивалентного понижения точки замерзания, повышения температуры кипения и понижения температуры взрыва.

Совместимость с рабочими температурами

Пригодность жидкости для работы в диапазоне рабочих температур имеет первостепенное значение. Это должно включать рассмотрение фазовых переходов жидкости (кипение и замерзание), химическое разрушение химического состава жидкости и снижение смазывающих свойств и свойств теплопередачи. Замораживание жидкости приведет к уменьшению теплопередачи на поверхности, в то время как кипение опасно для систем, не предназначенных для выдерживания избыточного давления в резервуаре для жидкости.Взрыв кипящей жидкости при расширении пара (BLEVE) — потенциально опасное явление, которое может произойти в случае внезапного разрыва защитной оболочки, даже если рабочие условия по расчетной температуре и давлению должны удерживать жидкость в жидком состоянии. Также необходимо учитывать температуры воспламенения летучих жидкостей.

Большинство жидкостей можно оценить на предмет температурной совместимости с доступными печатными спецификациями, а также с другими материалами, необходимыми для определения ситуаций, связанных с другим давлением или необычной рабочей средой.В случаях, когда конкретная комбинация жидкостей подбирается для использования пользователем, например, комбинации вода / гликоль, обычно требуется небольшая прямая тестовая работа со стороны пользователя, учитывая доступность данных от производителей.

Совместимость материалов

Нержавеющая сталь

, и в частности нержавеющая сталь серии 300 (аустенитная нержавеющая сталь), инертна почти ко всем теплоносителям из-за природы пассивирующего слоя оксида хрома (III), покрывающего поверхности таких сталей.При использовании деионизированной воды нержавеющая сталь и никель считаются подходящими для влажных поверхностей. Хотя нержавеющая сталь в большинстве случаев отлично подходит для защиты от коррозии, ее использование влечет за собой довольно низкую теплопроводность по сравнению с другими металлами, такими как алюминий или медь.

Алюминий и его сплавы обладают хорошей теплопроводностью в пределах 160–210 Вт / мК. Однако алюминий склонен к коррозии или точечной коррозии из-за примесей в неочищенной воде.Даже с раствором гликоля в дистиллированной воде как EG, так и PG образуют кислые соединения при окислении. Это может вызвать коррозию влажных поверхностей и образование побочных продуктов органических кислот. Способы предотвращения включают добавление в жидкость ингибиторов коррозии или нанесение поверхностной обработки на смачиваемые поверхности, например анодирование алюминия.

Медь и медно-никелевые сплавы обладают хорошей устойчивостью к коррозии и естественной устойчивостью к биологическому росту. Как и в случае с алюминием, следует использовать ингибиторы коррозии, чтобы избежать кислотной коррозии.

Смачиваемые поверхности насоса, включая уплотнения, должны быть совместимы как с жидкостью, так и с ожидаемыми условиями эксплуатации. Гальваническая коррозия в системах с использованием различных металлов, контактирующих со средой, может создать дополнительные проблемы.

Диэлектрические свойства

Охлаждение мощного трансформатора предъявляет особые требования к электропроводности охлаждающих жидкостей, которые не могут способствовать возникновению дуги от высокого напряжения к земле или другим поверхностям. Аналогичные требования к низкой электропроводности жидкости обусловлены напряжениями в десятки киловольт в таких приложениях, как охлаждение рентгеновской трубки.Прямое иммерсионное охлаждение электроники для работы или строгого контроля температуры в целях тестирования, очевидно, требует низкой электропроводности. Для этих целей используются диэлектрические жидкости, такие как XG Galden или Fluorinert, с диэлектрической прочностью в десятки киловольт на 1/10 дюйма. Можно использовать воду высокой степени очистки, хотя первоначальное удельное сопротивление воды может изменяться с течением времени без необходимости постоянного обслуживания. Минеральные масла или углеводороды, такие как гексан или гептан, могут использоваться, но воспламеняемость может быть проблемой.

Эти органические жидкости часто имеют более высокую вязкость, чем вода, поэтому полезно получить данные поставщика для характеристик потока и давления потенциального насоса при работе с желаемой вязкостью жидкости.

Жидкость с низкой электропроводностью может накапливать статический заряд в результате электризации потока. Считается, что этому эффекту подвержено сопротивление 2 × 1011 Ом · см или больше (50 пСм / м или меньше). Для сравнения, деионизированная вода имеет более низкое удельное сопротивление, чем это.Чтобы избежать накопления статического электричества, необходим заземленный шланг или металлический трубопровод. В антистатическом шланге могут использоваться проводящие добавки к полимерному материалу, или он может иметь провод, намотанный через трубу, с заземляющими соединениями через определенные промежутки времени.

Деионизированная вода

Деионизированная вода имеет очень низкий уровень минеральных ионов, влияющих на электрическую проводимость воды. Производство деионизированной воды высочайшей чистоты включает использование слоя смешанных ионообменных смол для удаления минеральных катионов и анионов из воды и замены их ионами водорода и гидроксида.

Даже при соблюдении мер предосторожности, обеспечивающих пассивирование смачиваемых поверхностей через контур охлаждающей жидкости, со временем в воде будут развиваться ионные примеси. Природа воды состоит в том, чтобы поглощать ионы из минералов, с которыми она контактирует, а деионизированная вода, не содержащая ионов, жаждет их и агрессивно поглощает их с контактных поверхностей.

Чтобы сохранить первоначальные диэлектрические свойства воды, ее необходимо постоянно пропускать через слои смолы. Эти кровати будут постепенно терять свою эффективность, и придется проводить регенерацию постели, если ее не нужно периодически заменять.Для регенерации смешанных слоев требуются сложные системы, и для этого требуются различные регенерирующие агенты для анионных и катионных смол. Масла, ил или металлические частицы (либо от операций механической обработки, либо осадки в результате химического воздействия, такого как загрязнение железом) также уменьшают срок службы слоя смолы.

Производительность

Существует ряд различных теплофизических свойств, которые можно использовать для оценки тепловых характеристик жидкости, включая теплопроводность, удельную теплоемкость, плотность и вязкость.Конечная цель максимизации этих свойств — улучшить теплопередачу между жидкостью и поверхностями теплообмена, с которыми она контактирует. Непосредственная оценка коэффициента теплопередачи в этих случаях требует использования корреляций, разработанных для расчета коэффициента для различных конкретных геометрических условий.

В этих соотношениях два безразмерных параметра зависят от свойств жидкости. Число Рэлея связано с потоком, управляемым плавучестью, также известным как свободная конвекция или естественная конвекция.Число Прандтля — это отношение коэффициента диффузии по импульсу к коэффициенту температуропроводности. Они определяются следующими уравнениями:

Число Рэлея (например, для вертикальной конвекции стен)

Число Прандтля

Корреляция теплопередачи имеет тенденцию к некоторой форме:

Значение C — это эмпирически определенная корреляция, где число Рэлея занимает позицию в положительном числителе в корреляции, в то время как число Прандтля имеет тенденцию занимать обратную позицию в знаменателе; таким образом, оба имеют положительный вклад в теплопередачу.Однако теплопроводность занимает позицию в числителе с прямой положительной зависимостью первого порядка от коэффициента теплопередачи. Определение положительного или отрицательного воздействия использования конкретной жидкости в приложении может быть обременительным, поскольку рассматриваются несколько видов и ориентаций конвективных поверхностей теплопередачи.

Если не считать полного термического анализа, менее строгий подход, включающий показатель качества, такой как число Муромцеффа, может дать более простую основу для сравнения жидкостей с учетом некоторых или всех физических свойств, упомянутых ранее.

Число Муромцева образует:

Значения a, b, d и e представляют положительные значения, специфичные для типа приложения.

В целом, из числа Муромстеффа, а также из полного анализа различных корреляций для коэффициентов конвективной теплопередачи между жидкостью и твердыми поверхностями видно, что теплопроводность, плотность и удельная теплоемкость положительно влияют на рабочие характеристики теплоноситель, а вязкость — отрицательный фактор.

К отрицательному эффекту увеличения вязкости при теплопередаче добавляется влияние на производительность насоса жидкостей различной вязкости, так как скорость жидкости будет иметь значительное положительное влияние на коэффициент теплопередачи. Насосы также имеют графики зависимости расхода от давления, чтобы показать ожидаемую производительность с различными типами жидкостей и смесями, которые могут создавать отклонения от поставляемых кривых. Работа при различных температурах также повлияет на вязкость жидкости, что окажет дополнительное влияние на скорость потока.Скорость или расход жидкости важны для понимания ожидаемых характеристик системы. Теплообменники и холодные пластины часто рассчитаны на определенный расход определенного типа жидкости. Отклонение от жидкости, используемой для построения диаграмм прогнозируемых характеристик, приведет к изменению чисел.

Конечно, объемный поток жидкости должен быть достаточным для удовлетворения требований к отводу тепла, как ожидается, исходя из удельной теплоемкости жидкости и допустимого повышения температуры:

Согласно часто используемому уравнению Дарси-Вейсбаха,

с корреляциями для коэффициента трения fD, доступного для различных условий потока и поверхностей труб и шлангов.Коэффициент трения обычно принимает форму, зависящую от числа Рейнольдса, так что вязкость жидкости имеет положительную связь с коэффициентом трения. Если система предназначена для работы с насосом, производительность которого чувствительна к противодавлению системы, вязкость предполагаемой жидкости может иметь значение.

Анализ затрат

Водопроводная вода, очевидно, является самым дешевым вариантом, а очищенная вода для охлаждающей жидкости будет дороже в зависимости от типа и требуемого уровня чистоты.

Следует отметить затраты на техническое обслуживание, связанные с определенным типом охлаждающей жидкости. Это будет включать фильтрацию, ионизационные слои, катодную защиту и долив испарившейся или просочившейся жидкости. Утилизация — еще один фактор — водопроводную или очищенную воду, как правило, можно утилизировать в обычную канализацию, но для воды, смешанной со спиртами или другими органическими веществами, и для любой органической жидкости обычно требуются другие методы. Растворы охлаждающей жидкости, которые требуют периодической промывки и перезарядки в течение срока их службы, а также растворы, с которыми необходимо обращаться в конце срока службы системы, могут иметь затраты на утилизацию, которые превышают первоначальную стоимость охлаждающей жидкости.

Со временем можно ожидать снижения уровня жидкости в недостаточно замкнутой системе (утечки в швах или уплотнениях). Добавление смеси вода / охлаждающая жидкость для доведения уровня жидкости должно включать специально контролируемые концентрации охлаждающей жидкости, чтобы соответствовать существующей системной жидкости. Однако со временем гликоли могут распадаться на органические кислоты — измерение pH жидкости в системе и проверка на твердые и биологические загрязнения могут быть индикатором того, что требуется замена охлаждающего раствора.

Жидкость Теплопроводность (Вт / мК)

Удельная теплоемкость
(Дж / кг · К)

Вязкость
(сП)

Плотность
(кг / м 3 )


Стоимость
Точка кипения
(° C)
Температура замерзания
(° C)
Вода 0,58 4181 1,00 1000 $ 100 0
50-50 Вода / этиленгликоль 0.402 3283 2,51 1082 $$ 107 -37
50-50 Вода / пропиленгликоль 0,357 3559 5,20 1041 $$ 106 -45
Динален HC-30 0,519 3100 3,70 1275 $$$ 112 -40
Galden HT200 0.065 963 4,30 1790 $$$ 200 -85 *
Флюоринерт FC-72 0,057 1100 0,64 1680 $$$ 56 -90 *

Заключение

Существует множество типов охлаждающих жидкостей, удовлетворяющих требованиям применения. Выбор подходящей охлаждающей жидкости для конкретного применения требует понимания характеристик и теплофизических свойств жидкости, включая характеристики, совместимость и факторы технического обслуживания.В идеале охлаждающая жидкость представляет собой недорогую и нетоксичную жидкость с исключительными теплофизическими свойствами и длительным сроком службы. Каждый вариант охлаждающей жидкости предлагает разные свойства, такие как теплопроводность, удельная теплоемкость и термическая стабильность, но их использование в конечном итоге будет зависеть от их надежности и экономики.

Отходы тепла — Energy Education

Рис. 1: Электростанции производят отходящее тепло, которое рассеивается в атмосфере или в близлежащий водоем. Отработанное тепло отводится градирнями (белые облака водяного пара), и его не следует путать с выхлопным газом (содержащим CO 2 и другие вредные химические вещества), выделяемым дымовой трубой. [1]

Отработанное тепло — это неиспользованное тепло, отдаваемое окружающей среде (в форме тепловой энергии) тепловым двигателем в термодинамическом процессе, в котором он преобразует тепло в полезную работу. Второй закон термодинамики гласит, что при преобразовании разницы температур в механическую энергию (которая часто преобразуется в электрическую энергию на электростанциях) должно образовываться отходящее тепло. Отработанное тепло неизбежно для любого теплового двигателя, и количество, которое он производит, по сравнению с количеством подводимого тепла, является факторами, определяющими его тепловой КПД. [2]

Отработанное тепло часто рассеивается в атмосферу или большие водоемы, такие как реки, озера и даже океан. Поскольку отработанное тепло является необходимым продуктом тепловых двигателей, эффективность электростанций ограничена (см. КПД Карно), и поэтому они должны сжигать больше топлива, чтобы достичь желаемого выхода энергии. Это увеличивает выбросы парниковых газов и больше способствует глобальному потеплению.

Рисунок 2: Отработанное тепло от автомобиля выводится через радиатор.Автомобиль преобразует энергию своего источника тепла в полезную работу с коэффициентом полезного действия, равным η. [3]

Отходы тепла находятся в уравнении сохранения энергии для теплового двигателя [2]

[математика] Q_H = Q_L + W [/ math]

Где

  • [math] Q_H [/ math] — это количество тепла, поступающее в систему от заданного топлива,
  • [math] W [/ math] — полезная механическая работа, выполняемая системой, и
  • [math ] Q_L [/ math] — это отработанное тепло.

Зная входное тепло и работу, производимую системой, легко найти отходящее тепло. Тепловой КПД ([math] \ eta [/ math]), который описывает отношение полезной работы к затраченной энергии, можно найти в терминах этого отходящего тепла по уравнению:

[математика] \ eta = 1- \ frac {Q_L} {Q_H} [/ математика]

Автомобили выделяют примерно в 2 раза больше тепла, чем фактическая полезная работа (с [математикой] \ eta \ приблизительно 25 \% [/ математикой]) [4] , от которого необходимо избавиться, чтобы двигатель оставался при безопасной температуре чтобы гарантировать, что он не разрушит себя.Это не технический сбой, а ограничение, обусловленное Вторым законом термодинамики (определяемым эффективностью Карно). В большинстве автомобилей используются системы жидкостного охлаждения, которые направляют охлаждающую жидкость через каналы в блоке двигателя и забирают тепло от двигателя. Когда он нагревается, он попадает в радиатор (как показано на рис. 2), расположенный на передней решетке автомобиля. Горячая охлаждающая жидкость охлаждается воздушным потоком, втекающим в решетку, и после достаточного охлаждения возвращается в двигатель для повторения процесса. [5]

Использование отработанного тепла

Почти во всех промышленных процессах более половины потребляемой энергии превращается в отходящее тепло. [6] В усилиях по уменьшению изменения климата процессы, использующие отходящее тепло для других нужд, становятся все более актуальными. Улавливание отходящего тепла позволяет перенаправить его на функцию, которая в противном случае использовала бы энергию из сети, и это, в свою очередь, предотвращает потребление энергии, используемой для противодействия самим эффектам самого отходящего тепла (т. Е.необходимость кондиционирования воздуха). [6] Существует множество методов утилизации отходящего тепла, например:

Когенерация

основная статья
Рис. 3. Цикл когенерации использует отходящее тепло, генерируемое термодинамическим процессом, для обогрева домов, автомобилей и других приборов.

Когенерация, или комбинированное производство тепла и электроэнергии (ТЭЦ), используется в системах, чтобы использовать как тепло, так и электричество для полезных задач. Это очень эффективное использование топлива, поскольку оно использует часть или даже все отходящее тепло, которое образуется.Такие системы потенциально могут достигать КПД до 80%. [7] Поскольку отходящее тепло имеет очень небольшой потенциал для выполнения работы, существует множество практических ограничений с точки зрения экономической эффективности при попытке построить такие типы установок. [8]

Отходы тепла в электроэнергию

Существует множество известных способов преобразования разницы температур в электрическую энергию. Один из подходов заключается в использовании термоэлектрического устройства, в котором изменение температуры полупроводникового материала создает напряжение, которое вызывает прохождение электричества, что иногда называют эффектом Пельтье-Зеебека. [9] Это устройство все еще подчиняется ограничениям, налагаемым вторым законом термодинамики. Другими словами, это способ приблизиться к пределу двигателя Карно, но не превзойти его.

Теплицы

Отработанное тепло можно использовать для обогрева теплиц в более холодном климате, уменьшая количество энергии, необходимой для их обогрева.

Список литературы

  1. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/d/d6/Coal_power_plant_Datteln_2_Crop1.PNG
  2. 2,0 2,1 Р. А. Данлэп, «Тепловые двигатели и тепловые насосы», в Sustainable Energy , 1-е изд. Стэмфорд, Коннектикут: Cengage Learning, 2015, глава 1, раздел 1.5, стр. 16-17
  3. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/a/ad/Automobile_radiator.jpg
  4. ↑ Р. А. Ристинен и Дж. Дж. Краушаар, «Бензиновые двигатели», в Энергия и окружающая среда 2-е изд. Хобокен, Нью-Джерси: Wiley, 2006, глава 3, сек.6.2, стр.74-76
  5. ↑ Г. Прудви, Г. Винай и Г. Бабу. (2013). Системы охлаждения в автомобилях [Онлайн], Доступно: http://www.ijeat.org/attachments/File/v2i4/D1447042413.pdf
  6. 6,0 6,1 Как все работает. (4 апреля 2015 г.). Почему так важен улавливание отходящего тепла? [Интернет]. Доступно: http://science.howstuffworks.com/environmental/green-science/waste-heat-capture.htm
  7. ↑ Energy.gov. (4 апреля 2015 г.). Развертывание ТЭЦ [Онлайн].Доступно: http://www.energy.gov/eere/amo/chp-deployment
  8. ↑ Forbes. (4 апреля 2015 г.). Самые эффективные электростанции [Интернет]. Доступно: http://www.forbes.com/2008/07/03/energy-efficiency-cogeneration-biz-energy_cx_jz_0707efficiency_horror.html
  9. ↑ MIT News. (4 апреля 2015 г.). Объяснение: термоэлектричество [Online]. Доступно: http://newsoffice.mit.edu/2010/explained-thermoelectricity-0427

Основные сведения о охлаждающей жидкости двигателя

Охлаждающая жидкость (или антифриз) защищает двигатель от замерзания, а компоненты от коррозии.Он играет решающую роль в поддержании теплового баланса двигателя за счет отвода тепла.

В сверхмощном дизельном двигателе только одна треть всей производимой энергии работает на продвижение автомобиля. Дополнительная треть отводится выхлопной системой в виде тепловой энергии. Оставшаяся треть произведенной тепловой энергии забирается охлаждающей жидкостью двигателя.

Это тепло, отводимое охлаждающей жидкостью, обеспечивает баланс отвода тепла от двигателя, что имеет решающее значение для обеспечения правильной работы двигателя.Перегрев может привести к ускоренному ухудшению качества масла и самого двигателя.

Хотя вода обеспечивает наилучшую теплопередачу, гликоль также используется в охлаждающих жидкостях двигателя для защиты от замерзания. Добавление гликоля немного снижает теплопередачу воды, но в большинстве климатических условий и применений защита от замерзания имеет решающее значение.

Почти во всех двигателях используются охлаждающие жидкости с аналогичными базовыми жидкостями: смесь этиленгликоля и воды в соотношении 50/50. В некоторых случаях в промышленных двигателях могут использоваться другие базовые жидкости, такие как вода с добавками или смесь пропиленгликоля и воды.

В дополнение к базовой жидкости есть небольшое количество других ингредиентов, включая ингибиторы коррозии, пеногасители, красители и другие добавки. Хотя эти другие ингредиенты составляют лишь небольшую часть охлаждающей жидкости, они именно то, что отличает одну охлаждающую жидкость от другой.

Исторически в Северной Америке обычные охлаждающие жидкости двигателя были зеленого цвета. В настоящее время эти зеленые охлаждающие жидкости обычно используют смесь фосфатов и силикатов в качестве основных компонентов в их системе ингибиторов.Обычные ингибиторы, такие как силикаты и фосфаты, действуют, образуя защитный слой, который фактически изолирует металлы от охлаждающей жидкости.

Эти ингибиторы можно химически охарактеризовать как неорганические оксиды (силикаты, фосфаты, бораты и т. Д.). Поскольку эти системы ингибиторов истощаются из-за образования защитного слоя, обычные зеленые охлаждающие жидкости необходимо заменять через регулярные двухгодичные интервалы, обычно каждые два года.

Для защиты двигателей от коррозии были разработаны разнообразные технологии.В Европе проблемы с минералами жесткой воды вынудили технологии охлаждающих жидкостей отказаться от фосфатов. Кальций и магний, минералы, содержащиеся в жесткой воде, реагируют с ингибиторами фосфата с образованием фосфата кальция или магния, который обычно приводит к образованию накипи на горячих поверхностях двигателя. Это может привести к потере теплопередачи или коррозии под накипью.

Чтобы заменить фосфаты, обычные европейские охлаждающие жидкости содержат смесь неорганических оксидов, таких как силикаты, и ингибиторов, называемых карбоксилатами.Карбоксилаты обеспечивают защиту от коррозии за счет химического взаимодействия в местах коррозии металлов, а не за счет образования слоя ингибиторов, покрывающего всю поверхность.

Смесь карбоксилатов и силикатов также называется гибридной технологией, потому что это смесь традиционной неорганической технологии и полностью карбоксилатной или органической технологии. Европейские охлаждающие жидкости для двигателей существуют в различных цветах; обычно каждый производитель требует другого цвета.


Рисунок 1.Оригинальный водяной насос от
Двигатель Caterpillar с более чем 750,000
Мили с использованием охлаждающей жидкости с увеличенным сроком службы (ELC).

В Азии проблемы с уплотнениями водяных насосов и плохая теплопередача привели к запрету охлаждающих жидкостей, содержащих силикат. Для обеспечения защиты большинство охлаждающих жидкостей содержат смесь карбоксилатов и неорганических ингибиторов, таких как фосфаты.

Эти охлаждающие жидкости являются гибридами. Они отличаются от европейских гибридов отсутствием силикатов.Охлаждающие жидкости от азиатских производителей оборудования могут быть разных цветов, включая красный, оранжевый и зеленый.

Охлаждающие жидкости на основе карбоксилатов с увеличенным сроком службы были разработаны, чтобы быть приемлемыми во всем мире и обеспечивать превосходные характеристики по сравнению с существующими технологиями. Эта технология также известна как технология органических добавок (OAT). Поскольку полностью карбоксилатные охлаждающие жидкости не содержат силикатов, они соответствуют строгим требованиям азиатских спецификаций.

Они также соответствуют европейским требованиям к антифризу, поскольку не содержат фосфатов.Эти охлаждающие жидкости для двигателей приобрели международную популярность благодаря непревзойденной защите от коррозии в течение продолжительных периодов времени.

Стоит отметить, что некоторые люди называют это «технологией органических добавок» (OAT), потому что ингибиторы, обеспечивающие защиту от коррозии, получены из карбоновых кислот. На самом деле защиту обеспечивают нейтрализованные карбоновые кислоты, называемые карбоксилатами.

Это различие важно, потому что все охлаждающие жидкости работают в нейтральном или основном диапазоне pH (pH равен или больше 7).Фактически, большинство охлаждающих жидкостей производятся на основе кислотного предшественника, например, обычные охлаждающие жидкости на основе фосфата начинают свою жизнь как фосфорная кислота.

Ингибиторы карбоксилатов обеспечивают защиту от коррозии за счет химического взаимодействия с металлическими поверхностями там, где это необходимо, а не за счет универсальной укладки слоев, как в случае обычных и гибридных охлаждающих жидкостей.

Последствия этого функционального различия огромны: увеличенный срок службы, непревзойденная защита алюминия при высоких температурах, а также преимущества теплопередачи как на горячих поверхностях двигателя, так и на теплоотводящих трубках радиатора, где теплопередача критична для оптимальной производительности.Высококачественные охлаждающие жидкости на основе карбоксилатов продемонстрировали эффективность более 32000 часов в стационарных двигателях без каких-либо изменений.

Одним из показателей действительно продленного срока службы является то, что по окончании испытаний в парке использованная охлаждающая жидкость может быть удалена из двигателя и при этом успешно пройти испытания, предназначенные для свежих охлаждающих жидкостей!

Техническое обслуживание охлаждающей жидкости двигателя

Послепродажный рынок наполнен охлаждающими жидкостями высокого и низкого качества всех цветов; поэтому цвет — не лучший индикатор типа охлаждающей жидкости.Наилучшая практика технического обслуживания — это знать точную охлаждающую жидкость, которая требуется для двигателя и помещаемая в двигатель, а также контролировать любую жидкость, используемую для доливки оборудования.

Хотя доступно множество методов, для измерения отношения гликоль / вода следует использовать рефрактометр, поскольку он предлагает наиболее надежный метод определения точного содержания гликоля в охлаждающей жидкости. Это определяет уровень защиты от замерзания и обеспечивает надлежащую концентрацию ингибиторов коррозии.

Еще одна мера профилактического обслуживания включает проверку самой системы охлаждения, чтобы убедиться, что она заполнена и работает правильно.Работа с низким содержанием охлаждающей жидкости может привести к множеству проблем, поскольку охлаждающая жидкость не может защитить поверхности, с которыми она не контактирует, а водяные пары гликоля могут вызывать коррозию. Простая проверка резервуара для перелива, который не является частью проточной системы, может ввести в заблуждение, если система не работает должным образом. Кроме того, сама крышка радиатора может быть неотъемлемой частью системы, если она предназначена для выдерживания определенного давления. Эти колпачки можно проверить, чтобы определить, выдерживают ли они надлежащее давление, которое является ключом к бесперебойной работе системы.Если давление в системе ниже расчетного, охлаждающая жидкость закипит при более низкой температуре. Быстрое кипение (известное как пленочное кипение) может привести к серьезной коррозии из-за горячих точек и неправильного контакта с охлаждающей жидкостью двигателя.

В литературе и на рынке существует много дезинформации о совместимости различных типов технологий охлаждения. Хотя смешивание двух разных охлаждающих жидкостей не является хорошей практикой технического обслуживания, это не приведет к проблемам совместимости, если будут использоваться охлаждающие жидкости от высококачественных и надежных поставщиков.

Обычно считается, что охлаждающие жидкости совместимы, однако смешивание охлаждающих жидкостей двух разных качеств приводит к смеси промежуточного качества. Хотя это не беда, смешивание отличной охлаждающей жидкости с посредственной охлаждающей жидкостью приведет к охлаждающей жидкости с невысокими характеристиками.

Избыточное разбавление водой имело бы отрицательный эффект, потому что ингибиторы коррозии будут присутствовать в двигателе в меньших количествах, чем первоначально предполагалось. Охлаждающие жидкости работают в широком диапазоне разбавлений.

Оптимальным вариантом для большинства систем охлаждающей жидкости является 50% охлаждающей жидкости и 50% воды хорошего качества, и в целом охлаждающие жидкости допускают разбавление примерно до 40% концентрата и 60% воды.

Как правило, деградация охлаждающей жидкости учитывается в интервалах, «рекомендованных производителем». Обычные охлаждающие жидкости, содержащие силикаты, разлагаются в первую очередь из-за быстрого истощения ингибиторов. Это связано с тем, что силикаты накладывают защитные слои на компоненты системы как часть их защитного механизма.

Следовательно, ингибиторы охлаждающей жидкости необходимо добавлять или регулярно менять, чтобы гарантировать, что поверхности останутся защищенными в случае нарушения силикатного слоя.

Как правило, охлаждающие жидкости со временем разлагаются, поскольку этиленгликоль распадается в основном на гликолевую и муравьиную кислоты. Разложение происходит быстрее в двигателях, работающих при более высоких температурах, или в двигателях, которые пропускают больше воздуха в системы охлаждения.

Хладагент следует проверять ежегодно, если предполагается, что система будет эксплуатироваться в течение нескольких лет между заменами хладагента, и особенно в тех случаях, когда хладагент используется в тяжелых условиях.Один тест гарантирует, что pH все еще выше 7,0. Некоторые технологии охлаждающей жидкости могут обеспечивать защиту до pH 6,5, однако, как правило, не рекомендуется допускать работу охлаждающей жидкости при pH ниже 7,0.

Продукты распада гликоля являются кислыми и способствуют снижению pH. После разложения охлаждающей жидкости из-за разложения гликоля и падения pH металлы двигателя подвергаются риску коррозии. Разложение охлаждающей жидкости можно замедлить, используя охлаждающие жидкости с ингибиторами продленного срока службы и обеспечивая правильную работу оборудования в установленных проектных пределах.

Тестирование на ингибиторы коррозии — еще один метод проверки состояния охлаждающей жидкости. В то время как ингибиторы с увеличенным сроком службы обычно не нуждаются в тестировании до тех пор, пока для доливки используются правильные рекомендации по использованию и правильные жидкости, обычные ингибиторы истощаются и нуждаются в тестировании.

Помимо тестов на нитир и молибдат, для большинства обычных охлаждающих жидкостей требуется либо постоянное добавление охлаждающей жидкости (SCA), либо лабораторный анализ для обеспечения надлежащей работы.

Различные ингибиторы, такие как нитриты и молибдаты, легко контролировать с помощью тест-полосок. Поскольку нитриты истощаются быстрее по сравнению с другими ингибиторами, тестирование на нитриты позволяет узнать уровень нитритов в охлаждающей жидкости, но ничего больше.

Некоторым двигателям требуются ингибиторы, такие как нитриты, которые необходимо поддерживать на определенном уровне, чтобы обеспечить защиту от кавитационной коррозии, которая может возникнуть в двигателях со съемными гильзами цилиндров. Нитриты в обычных охлаждающих жидкостях быстро истощаются, и их необходимо пополнять через регулярные промежутки времени.

Охлаждающие жидкости ELC на основе карбоксилатов обычно имеют более низкий уровень истощения нитритов, поскольку карбоксилаты обеспечивают необходимую защиту от кавитации и, следовательно, гораздо более длительные интервалы профилактического обслуживания.

Производители оригинального автомобильного оборудования (OEM) теперь рекомендуют использовать либо гибридную охлаждающую жидкость, либо полностью карбоксилатный ELC. Обычные, стандартные зеленые охлаждающие жидкости на этой картинке отсутствуют. Рекомендации производителей оборудования для тяжелых дизельных двигателей имеют широкий спектр возможностей.

В промышленном секторе некоторые производители оригинального оборудования требуют использования силикатной охлаждающей жидкости, в то время как другие требуют использования силикатной охлаждающей жидкости для обеспечения теплопередачи. Точно так же для некоторых требуется отсутствие фосфатов, чтобы избежать отложений накипи от жесткой воды. Эта накипь имеет тенденцию к образованию отложений на самой горячей части двигателя, что снижает теплопередачу и может вызвать коррозию.

Наконец, некоторые производители оригинального оборудования требуют использования нитритов для защиты от кавитации, в то время как у других таких требований нет. Поскольку явление кавитации в гильзе цилиндра зависит от конструкции, все двигатели подвержены неодинаковому воздействию.Важно понимать потребности конкретного оборудования.

Охлаждающие жидкости играют жизненно важную роль в сохранении теплового баланса двигателя и защите компонентов двигателя от коррозии. По оценкам, 60 процентов простоев двигателей в секторе коммерческих грузовых автомобилей связано с охлаждающей жидкостью.

Независимо от рынка, на котором используется охлаждающая жидкость, можно с уверенностью предположить, что обучение охлаждающей жидкости, касающееся химического состава продукта, использования и текущего обслуживания, играет жизненно важную роль в создании производительной и прибыльной среды.

Использование высококачественной охлаждающей жидкости двигателя от надежного поставщика и соблюдение осторожных методов профилактического обслуживания помогут обеспечить надлежащую защиту двигателя.

Обзор жидких охлаждающих жидкостей для охлаждения электроники

Введение

Охлаждение электронных компонентов стало серьезной проблемой в последнее время из-за достижений в разработке более быстрых и компактных компонентов.В результате были разработаны различные технологии охлаждения для эффективного отвода тепла от этих компонентов [1, 2]. Использование жидкого хладагента стало привлекательным из-за более высокого коэффициента теплопередачи по сравнению с воздушным охлаждением. Охлаждающие жидкости используются как в однофазных, так и в двухфазных системах. Однофазный контур охлаждения состоит из насоса, теплообменника (холодная пластина / мини- или микроканалы) и радиатора (радиатор с вентилятором или жидкостно-жидкостной теплообменник с водяным охлаждением) [3 ].Источник тепла в системе электроники прикреплен к теплообменнику. Жидкие охлаждающие жидкости также используются в двухфазных системах, таких как тепловые трубы, термосифоны, системы кипячения с переохлаждением, распылительное охлаждение и системы прямого погружения [2, 4].

Требования к жидкой охлаждающей жидкости для электроники

К жидкостному хладагенту для электроники предъявляется множество требований. Требования могут различаться в зависимости от типа приложения. Ниже приводится список некоторых общих требований:

  • Хорошие теплофизические свойства (высокая теплопроводность и удельная теплоемкость; низкая вязкость; высокая скрытая теплота испарения для двухфазного применения)
  • Низкая точка замерзания и точка разрыва (иногда для транспортировки и / или хранения требуется защита от разрыва при -40 ° C или ниже)
  • Высокая температура кипения при атмосферном давлении (или низкое давление пара при рабочей температуре) для однофазной системы; узкая желаемая точка кипения для двухфазной системы
  • Хорошая химическая и термическая стабильность в течение всего срока службы электронной системы
  • Высокая температура вспышки и температура самовоспламенения (иногда требуется негорючесть)
  • Не вызывает коррозии конструкционных материалов (металлов, а также полимеров и других неметаллов)
  • Нормативные ограничения отсутствуют или минимальны (экологически чистые, нетоксичные и, возможно, биоразлагаемые)
  • Экономичный

Лучшая охлаждающая жидкость для электроники — это недорогая и нетоксичная жидкость с отличными теплофизическими свойствами и длительным сроком службы.Желательны высокая температура вспышки и температура самовоспламенения, чтобы жидкость была менее восприимчива к возгоранию. Хорошие теплофизические свойства требуются для получения высоких коэффициентов теплопередачи и низкой мощности откачки, необходимых для протекания жидкости через трубку или канал.

Электропроводность (не указанная в списке) охлаждающей жидкости становится важной, если жидкость вступает в прямой контакт с электроникой (например, при прямом погружном охлаждении), или если она вытекает из охлаждающего контура или проливается во время обслуживания и поступает. контактирует с электрическими цепями [5].В некоторых приложениях диэлектрическая охлаждающая жидкость является обязательной, тогда как во многих других применениях она не является обязательной из-за очень малой вероятности утечки охлаждающей жидкости (или в случае утечки охлаждающая жидкость не контактирует с электроникой).

Таблица 1: Свойства жидкостей с различными химическими составами при 20 ° C

В следующих разделах различные химические составы охлаждающей жидкости разделены на диэлектрические и недиэлектрические жидкости, и их свойства обсуждаются более подробно (см. Также Таблицу 1).

Диэлектрические жидкие охлаждающие жидкости

Ароматические соединения: Синтетические углеводороды ароматической химии (например, диэтилбензол [DEB], дибензилтолуол, диарилалкил, частично гидрогенизированный терфенил) являются очень распространенными жидкостями для нагрева и охлаждения, используемыми в различных областях [6]. Однако эти соединения нельзя отнести к категории нетоксичных. Кроме того, некоторые из этих жидкостей (например, алкилированный бензол) имеют сильный запах, который может раздражать персонал, работающий с ними.

Сложный силикатный эфир: Этот химический состав (например, Coolanol 25R) широко использовался в качестве диэлектрического хладагента в бортовых радиолокационных и ракетных системах ВВС и ВМФ. Эти жидкости вызывают значительные, а иногда и катастрофические проблемы из-за их гигроскопичности и последующего образования легковоспламеняющихся спиртов и силикагеля. Поэтому эти жидкости были заменены более стабильными и диэлектрическими алифатическими химическими веществами (полиальфаолефины или ПАО) [7].

Алифатика: Алифатические углеводороды парафинового и изопарафинового типа (включая минеральные масла) используются в различных системах прямого охлаждения электронных компонентов, а также в охлаждающих трансформаторах [6].Многие алифатические соединения на нефтяной основе соответствуют критериям Управления по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) и Министерства сельского хозяйства США (USDA) в отношении случайного контакта с пищевыми продуктами. Эти жидкости на нефтяной основе не образуют опасных побочных продуктов разложения. Большинство этих жидкостей имеют незаметный запах и нетоксичны в случае контакта с кожей или проглатывания. Как упоминалось ранее, жидкости на основе алифатических полиальфаолефинов заменили жидкости на основе силикатно-сложных эфиров в различных системах охлаждения военной электроники (и авионики) за последнее десятилетие.

Силиконы: Другой класс популярных химических охлаждающих жидкостей — это диметил- и метилфенилполи (силоксан) или обычно известное как силиконовое масло [6]. Поскольку это синтетическое полимерное соединение, молекулярную массу, а также теплофизические свойства (точку замерзания и вязкость) можно регулировать, варьируя длину цепи. Силиконовые жидкости используются при температурах от -100 ° C до 400 ° C. Эти жидкости имеют отличный срок службы в закрытых системах в отсутствие кислорода.Кроме того, известно, что нетоксичные силиконовые жидкости практически не имеют запаха и удобны для рабочих мест. Однако низкое поверхностное натяжение придает этим жидкостям тенденцию протекать вокруг трубопроводной арматуры, хотя низкое поверхностное натяжение улучшает смачиваемость. Подобно алифатическим соединениям, силиконовые масла с высоким молекулярным весом также нашли применение в охлаждающих трансформаторах.

Фторуглероды: Фторированные соединения, такие как перфторуглероды (например, FC-72, FC-77), гидрофторэфиры (HFE) и перфторуглероды (PFE), обладают определенными уникальными свойствами и могут использоваться в контакте с электроникой [4, 8].Прежде всего, эти жидкости негорючие и нетоксичные. Некоторые фторированные соединения обладают нулевым озоноразрушающим потенциалом и другими экологическими свойствами. Во-вторых, некоторые из этих жидкостей имеют низкие температуры замерзания и низкую вязкость при низких температурах. Однако эти жидкости очень дороги, имеют плохие термические свойства, некоторые из них обладают потенциалом глобального потепления (парниковый эффект), а из-за чрезвычайно низкого поверхностного натяжения могут возникать утечки вокруг фитингов.

Жидкие хладагенты без диэлектрика
Жидкие хладагенты без диэлектрика часто используются для охлаждения электроники из-за их превосходных тепловых свойств по сравнению с диэлектрическими хладагентами.Не диэлектрические охлаждающие жидкости обычно представляют собой растворы на водной основе. Следовательно, они обладают очень высокими удельной теплоемкостью и теплопроводностью [9]. Деионизированная вода — хороший пример широко используемой охлаждающей жидкости для электроники. Некоторые другие популярные недиэлектрические химические составы охлаждающей жидкости обсуждаются ниже:

Этиленгликоль (EG): Обычно EG используется в качестве антифриза при охлаждении автомобильных двигателей, а также во многих промышленных системах охлаждения. Общие области применения включают технологическое охлаждение при более низких температурах.Этиленгликоль бесцветен, практически не имеет запаха и полностью смешивается с водой. При правильном ингибировании он имеет относительно низкую коррозионную активность. Однако эта охлаждающая жидкость классифицируется как токсичная и требует осторожного обращения и утилизации. Качество воды, используемой для приготовления раствора гликоля, очень важно для системы. Обычно рекомендуется вода с низкой концентрацией хлорид- и сульфат-ионов (<25 частей на миллион). Кроме того, следует поддерживать график мониторинга, чтобы избежать истощения ингибитора и обеспечить постоянство pH раствора.После того, как ингибитор израсходован, рекомендуется удалить старый гликоль из системы и установить новую заправку.

Пропиленгликоль (PG): В ингибированной форме PG обладает такими же преимуществами низкой коррозионной активности, как этиленгликоль. Кроме того, пропиленгликоль считается нетоксичным. Помимо отсутствия токсичности, он не имеет преимуществ перед этиленгликолем, поскольку он дороже и более вязкий.

Метанол / Вода: Это недорогой раствор антифриза, который находит применение в холодильной технике и в тепловых насосах с грунтовым питанием.Как и в случае с гликолями, это можно предотвратить, чтобы остановить коррозию. Эту жидкость можно использовать при температурах до -40 ° C из-за ее относительно высокой скорости теплопередачи в этом диапазоне температур. Его основными недостатками как теплоносителя являются токсикологические соображения. Он считается более вредным, чем этиленгликоль, и поэтому нашел применение только в технологических процессах, расположенных на открытом воздухе. Кроме того, метанол является легковоспламеняющейся жидкостью и, как таковой, представляет потенциальную опасность возгорания там, где он хранится, обрабатывается или используется.

Этанол / вода: Это водный раствор денатурированного зернового спирта. Его главное преимущество в том, что он не токсичен. Таким образом, он нашел применение на пивоваренных заводах, винных заводах, химических заводах, заводах по заморозке пищевых продуктов и тепловых насосах с грунтовым питанием. Как легковоспламеняющаяся жидкость, он требует определенных мер предосторожности при обращении и хранении.

Раствор хлорида кальция: Водные растворы хлорида кальция находят широкое применение в качестве циркулирующих охлаждающих жидкостей на пищевых предприятиях. Он негорючий, нетоксичный и термически более эффективен, чем растворы гликоля.29% (по массе) раствор хлорида кальция имеет температуру замерзания ниже -40 ° C. Основным недостатком этой охлаждающей жидкости является то, что она вызывает сильную коррозию даже в присутствии ингибиторов коррозии.

Раствор формиата / ацетата калия: Водные растворы солей формиата и ацетата калия негорючие и нетоксичные, а также гораздо менее агрессивны и термически более эффективны, чем раствор хлорида кальция [5]. Поэтому, даже имея более высокую цену, чем хлорид кальция, они нашли большое количество применений в последние годы.Хотя в основном эти жидкости используются в пищевых продуктах, напитках, фармацевтике, химических и климатических камерах, недавно эти жидкости были исследованы для однофазного конвекционного охлаждения микропроцессоров.

Жидкие металлы: В последнее время жидкие металлы, относящиеся к химическому составу Ga-In-Sn, были использованы с магнитно-жидкостным динамическим (MFD) насосом [2]. Он использует высокую теплопроводность и плотность металлического сплава для отвода очень высокого теплового потока от микропроцессоров.

Другая химия экзотических охлаждающих жидкостей

Помимо химического состава, описанного выше, есть некоторые новые разработки в области жидкого хладагента. Наножидкости (дисперсии наночастиц, таких как оксид металла, металл, углеродные нанотрубки или алмаз в охлаждающей жидкости для увеличения теплопроводности) были исследованы как метод улучшения тепловых характеристик существующей химии [10].

Количество журнальных публикаций в этой области за последние годы увеличилось в геометрической прогрессии.Однако существует еще большое количество неизвестных факторов (например, долговременная надежность, агломерация, оседание и закупорка микроканалов) при использовании наночастиц в охлаждающей жидкости. Материалы с фазовым переходом (PCM) в их микро- или наноинкапсулированной форме используются в охлаждающей среде для увеличения удельной теплоемкости. Опять же, надежность была проблемой при их использовании.

Ионные жидкости (жидкие соли комнатной температуры) также продемонстрировали некоторый потенциал стать охлаждающими жидкостями следующего поколения на основе их термической стабильности, чрезвычайно низкого давления пара и других свойств.В настоящее время их применение ограничено растворителями в химических реакциях и экстракциях. Потребуется несколько лет, чтобы эти химические соединения стали технически и экономически конкурентоспособными с существующими охлаждающими жидкостями.

Выводы

В продаже имеется несколько охлаждающих жидкостей (как диэлектрических, так и недиэлектрических). Однако выбор лучшей охлаждающей жидкости для конкретного применения требует правильного понимания всех характеристик и теплофизических свойств этих жидкостей.Диэлектрические жидкости могут использоваться в контакте с электроникой, тогда как не диэлектрические охлаждающие жидкости используются с охлаждающей пластиной. В будущем могут появиться охлаждающие жидкости с лучшими свойствами (теплопроводность, удельная теплоемкость, термическая стабильность), но их популярность будет зависеть от их надежности и экономичности.

Список литературы
  1. Incropera, F., Жидкостное охлаждение электронных устройств с помощью однофазной конвекции, Нью-Йорк: John Wiley & Sons, 1999, стр. 1-14.
  2. Ласанс, К. и Саймонс, Р., «Достижения в области высокоэффективного охлаждения для электроники», ElectronicsCooling, Vol. 11, No. 4, 2005, pp. 22-39.
  3. Шмидт Р., «Жидкостное охлаждение возвращается», ElectronicsCooling, Vol. 11, No. 3, 2005, pp. 34–38.
  4. Chrysler, GM, Chu, R., and Simons, RE, «Струйное вскипание диэлектрической охлаждающей жидкости в узких зазорах», IEEE Transactions CHMT-Part A., Volume 18, No. 3, 1995, pp. 527-533 .
  5. Мохапатра, С. и Лойкиц, Д., «Достижения в технологиях жидкого хладагента для охлаждения электроники», Труды 21-го симпозиума IEEE Semiconductor по измерениям и управлению полупроводниками, Сан-Хосе, Калифорния, 2005 г., стр.354-360.
  6. Мохапатра, С., «Выбор теплоносителей для низкотемпературных применений», «Прогресс химической инженерии», август 2001 г., стр. 47-50.
  7. Гаджар, А., Тан, В. и Бим, Дж., «Сравнение гидравлических и тепловых характеристик жидких охлаждающих жидкостей на основе PAO и Coolanol 25R», 6-я Совместная конференция по теплофизике и теплопередаче AIAA / ASME, Колорадо-Спрингс, Колорадо, 20 июня -23, 1994, с.