Термометр электронный принцип работы: Принцип работы и описание моделей электронных термометров

Содержание

Электронный термометр

Можно ли доверять электронному медицинскому термометру?
В аптеке на прилавках появилось множество различных электронных термометров. И уже многие российские покупатели уверены, что электронный термометр врет. Так в чем же дело? Попробуем разобраться…

Принцип действия электронного термометра:
Медицинский электронный термометр имеет металлический наконечник, который меняет свою электропроводимость в зависимости от температуры тела человека. Затем эти изменения фиксируются устройством(датчиком), переводя их в привычные нам градусы Цельсия.
Заявленные производителям плюсы: высокая точность измерения (погрешность 0,1 градус). Более быстрый результат, в сравнении с ртутным термометром. Простота и удобство использования. Безопасность. Доступная цена. Дополнительные функции (память, подсветка, звуковой сигнал и так далее).
Минусы: Есть особенности измерения, при несоблюдении которых, результат сильно искажается.

Поэтому крайне необходимо предварительное изучении инструкции перед использованием. Неудобством можно назвать зависимость от элементов питания, другими словами, если села батарейка, а под рукой не оказалось новой, то измерение невозможно.

Почему при измерении мы можем получить не точность?
Многие читатели могут не согласится с таким плюсом, как точность измерения. Но дело не в том, что термометр плохой, а в том, что люди не привыкли приспосабливаться под определенные условия для правильной работы термометра.

Вся сложность заключается в том, что в России и странах бывшего СССР все мы привыкли измерять температуру подмышкой, тогда как во многих других странах измерение температуры производится во рту или ректально. Как правило, все подобные термометры импортного производства. А это значит, что производитель ориентируется не на нашу традицию измерения температуры, а на традицию жителей своей страны. Во многих странах измерение у маленьких детей производится ректально, а у всех остальных орально.

Кровь и наконечник как в полости рта, так и в прямой кишке отделены друг от друга тонкой прослойкой слизистой, потому и нагревание наконечника происходит быстро.
Основной тепло несущий средой организма является кровь. Чем меньше тканей отделяет ее от наконечника термометра, тем быстрее произойдет выравнивание их температур, т.е. быстрее нагреется наконечник.

Именно поэтому измерение температуры подмышкой электронным термометром занимает в среднем 4-5 минут. В инструкции к термометрам написано все правильно о скорости измерения и о точности, НО! только для потребителя, привыкшего измерять температуру орально или ректально. Когда производитель пишет от 10 секунд, то это действительно от, а не 10 секунд. А не потому, что термометр бракованный и врет. Кожа значительно толще слизистой, поэтому и измерения должны длиться дольше. Электронные термометры по точности не уступают ртутному – это факт.

Первый звуковой сигнал не означает, что измерения закончены, он означает, что скорость измерения температуры снизилась и теперь прирост температуры происходит более плавно. Значение температуры тела после первого звукового сигнала является приблизительной и измерение нужно продолжить.
И еще нюанс!
— Оральная температура больше подмышечной (или аксилярной, если говорить медицинским термином) на 0,3-0,6 градуса.
— Ректальная температура больше аксиллярной на 0,6-1,2 градуса. (Опять же не забываем у женщин учитывать период цикла. В овуляцию температура выше в ректальной области).

Нюансы, при соблюдении которых вам гарантирована ваша правильная температура на дисплее электронного термометра.

Итак, после еды, принятия ванны, душа, физической активности измерение производить через 30 минут.
После возвращения с улицы в холодное время года так же измерение производить через 30 минут.
Грудным детям так же эти правила нужно соблюдать .
Подмышечная впадина должна быть абсолютно влажная, если вы решили произвести измерение именно так.
После первого звукового сигнала необходимо продолжить измерение. Время измерения варьируется от 15-2 минут до 4-5 в зависимости от области измерения.
При измерении в подмышечной впадине ВАЖНО, чтобы рука была плотно прижата к туловищу. Малейшее ослабление контакта с кожей может привести к неточности измерения. И преждевременному сигналу. Производители так же рекомендуют термометр в подмышку вставлять не перпендикулярно тела, а вдоль.
Наконечник должен быть строго в подмышечной ямке.
Так же для точности измерения можно поставить термометр подмышку в выключенном состоянии и прижать его рукой, чтобы наконечник нагрелся и через 30 секунд включить термометр.
Для долговечности батарейки старайтесь сразу после измерения выключать термометр
Состояние батарейки можно определить по значку на дисплее (как с телефонами мобильными, все просто)
Нельзя хранить термометр при повышенной влажности (ванна и так далее)
Исходя из этого, можно смело говорить, что в большинстве случаев мы неправильно измеряем температуру этим термометром, отсюда и неточные значения, и разочарования от покупки.

Характеристики электронных термометров
Так же в числе ряд характеристик указывается некоторыми производителями водонепроницаемость. Это означает, что термометр можно опускать в дезсредства и не более того.

Так же встречаются модели без возможности смены батарейки, на этот факт необходимо обращать внимание перед покупкой. Если вы приобретете именно такой термометр, то он будет работать пока не сядет батарейка и все.
Так же есть модели с гипоаллергенным наконечником. Удобен для людей с аллергией на металлы. Такой наконечник выглядит позолоченным и убирает риск развития аллергии в месте измерения температуры.
Автовыключение удобно тем, что если вы забыли выключить, то через 10 секунд он выключится сам. Позволяет дольше сохранить срок службы батарейки.
Гибкий наконечник так же встречается во многих моделях. Зачем это? В первую очередь для удобства ректального измерения, не травмирует слизистую, не скользит по телу, так как слегка прорезинен. По этой же причине наконечник не такой холодный, как металлический.
Гибкий наконечник может подстраиваться под изгибы тела, как следствие более плотное прилегание и как опять же следствие точность измерения.
Так же есть практически у каждого производителя термометры для маленьких детей. Они яркого дизайна, на некоторых изображены фигурки животных (зайчик, уточка).
Термометры-соски. Не совсем уверена, что они удобны. Во-первых детки, как правило, во время болезни капризничают. Есть риск, что сока вылетит изо рта раньше, чем термометр сделает свое дело. Во-вторых, зачастую у деток и начинается заболевания с насморка. 

Если вы сомневаетесь в выборе или уже определились, не важно, приходите в аптеку нашего центра и мы вам обязательно поможем приобрести именно ваш термометр. Наш адресу: Новая Слобода, 4 (на территории МЦ «Мой Доктор») Вы можете узнать по телефону: 8 (929) 628-34-00, а также заказать необходимые Вам лекарства (включая гомеопатические препараты).

Термометр электронный, цифровой. Сопротивления биметаллические тб манометрические спиртовые, жидкостной электроконтактный газовый электрический воздуха термоэлектрические гильза ткп.

Безупречно — Афризо!
  • Главная
  • Контакты
  • О нас
  • Каталог
  • Заказать
  • Сертификаты
  • Техническая поддержка
  • Информационный каталог

150 лет на рынке!

телефон / факс:

+7 (495) 690-93-87

+7 (977) 877-8524 
+7 (977) 877-8521
e-mail: [email protected]

Представительства AFRISO EURO-INDEX:

Россия: 111024, г. Москва, Золоторожский Вал, дом 11, стр.

21

15.12

Внимание! С 1 января 2023 г. ожидается повышение цен в среднем на 5-10%

Внимание!  С 1 января 2023 г. ожидается повышение цен в среднем на 5-10%.

Каталог продукции
по разделам

(для загрузки нажмите ссылку раздела)



Наше основное оборудование: манометры, термометры и газоанализаторы.

© 2005-2023 Афризо. Все права защищены.

Разработка сайта, поисковое продвижение —

OptimPro.

  • Главная
  •  > 
  • Информационный каталог

Термометр электронный, цифровой.

Сопротивления биметаллические тб манометрические спиртовые, жидкостной электроконтактный газовый электрический воздуха термоэлектрические гильза ткп.

Термометры

Вы находитесь в информационном каталоге нашего сайта, где представлена техническая информация общего характера. Для знакомства и поиска необходимой продукции перейдите на главную страницу или нажмите на данную ссылку для перехода в раздел термометры.

В общем случае, Термометр — устройство для измерения текущей температуры. Изобретателем термометра считают Галилея: в его собственных сочинениях нет описания этого прибора, но известно, что уже в 1597 г. он создал некий прибор, напоминающий термометр. Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления.

В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.
Существует огромное количество видов термометров — электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные — спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.

Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Многие компании занимаются оптовой и розничной продажей термометров российских и иностранных производителей, существуют специализированные магазины и интернет-магазины, реализующие данные приборы и способные удовлетворить потребность в приборах практически любого вида этого типа. Наиболее популярно производство и продажа простых моделей измерительного оборудования. Цены на такие приборы более чем доступны. Широкий ассортимент контрольно-измерительной температурной техники и комплексные решения в области метрологии предлагаются теперь не только в Москве, но во многих крупных городах России.

Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр — прибор инерционный, и время установления его показаний составляет 10 — 20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.

  • Жидкостные
    Жидкостный термометр — это, как правило, термометр из стекла (стеклянный термометр), увидеть который можно практически везде. Жидкостные термометры бывают как бытовыми, так и техническими (термометр ттж — термометр технический жидкостный). Жидкостный термометр работает по простой схеме — объем жидкости внутри термометра изменяется при изменении температуры вокруг нее. Жидкость, находящаяся в термометре, занимает меньший объем капилляра при низкой температуре, а при высокой температуре жидкость в столбике термометра начинает увеличиваться в объеме, тем самым будет расширяться, и подниматься вверх. Обычно в жидкостных термометрах применяется либо спирт, либо ртуть. Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости, шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Чувствительность термометра зависит от разности коэффициентов объемного расширения термометрической жидкости и стекла, от объема резервуара и диаметра капилляра. Чувствительность термометра обычно лежит в пределах 0,4…5 мм/С (для некоторых специальных термометров 100…200 мм/°С). Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до 600°С. При монтаже стеклянного технического жидкостного термометра его часто помещают в защитную металлическую оправу для изоляции прибора от измеряемой среды. Для уменьшения инерционности измерения в кольцевой зазор между термометром и стенкой оправы при измерении температуры до 150°С заливают машинное масло; при измерении более высоких температур в зазор насыпают медные опилки. Как любые другие точные приборы, промышленные технические термометры требуют проведения регулярной поверки.
  • Манометрические
    Действие манометрических термометров основано на изменении давления газа, пара или жидкости в замкнутом объеме при изменении температуры. Манометрический термометр состоит из термобаллона, гибкого капилляра и собственно манометра. В зависимости от заполняющего вещества манометрические термометры делятся на газовые (термометр ТПГ, термометр ТДГ и др.), парожидкостные (термометр ТПП) и жидкостные (термометр ТПЖ, термометр ТДЖ и др.). Область измерения температур манометрическими термометрами колеблется в диапазоне от -60 до +600°С.
    Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объема увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр обычно представляет собой латунную трубку с внутренним диаметром в доли миллиметра. Это позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты.
    Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40 м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами, речь идет о так называемых дистанционных термометрах.
    Наиболее уязвимы в конструкции манометрических термометров являются места присоёдинения капилляра к термобаллону и манометру. Поэтому устанавливать и обслуживать такие приборы должны специально обученные специалисты.
  • Сопротивления
    Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.
    Металлические термометры сопротивления изготовляют из тонкой медной или платиновой проволоки, помещенной в электроизоляционный корпус . Зависимость электрического со противления от температуры (для медных термометров диапазон от -50 до +180 С, для платиновых диапазон от -200 до +750 С) весьма стабильна и воспроизводима. Это обеспечивает взаимозаменяемость термометров сопротивления. Для защиты термометров сопротивления от воздействия измеряемой среды применяют защитные чехлы. Приборостроительная промышленность выпускает много модификаций защитных чехлов, рассчитанных на эксплуатацию термометров при различном давлении (от атмосферного до 500•105 Па), различной агрессивности измеряемой среды, обладающих разной инерционностью (от 40 с до 4 мин) и глубиной погружения (от 70 до 2000 мм).
    Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.
    Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом — электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
  • Термоэлектрические
    Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения — спая. Проводники в этом случае называются термоэлектродами, а все устройство — термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.
    В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом — автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.
    Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу — сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.
    Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.
    Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.
    В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.
    Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т. п.
  • Электронные
    Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.
    Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно — на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте — стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр — не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.
    Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т. е. падения напряжения на диоде при протекании через него прямого тока — от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.
    Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.
    Электронные термометры способны измерять температуру в диапазоне от -50 до 100 С Питается электронный термометр стабильным напряжением, которое получается благодаря включению в цепь батареи.
  • Электроконтактные
    Электроконтактные термометры предназначены для сигнализации о заданной температуре и для включения или выключения соответствующего оборудования при достижении этой температуры. Электроконтактные термометры могут работать в системах для поддержания постоянной (заданной) температуры от -35 до +300°С в различных промышленных, лабораторных, энергетических и других установках.
    Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:
    термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы).
    Электроконтактные термометры типа ТПК с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.
    Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.
    Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диа¬пазоне всего интервала температур.
    Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая на¬грузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термокон¬такторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
  • Цифровые
    Цифровые, как и любые другие термометры, — это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
  • Конденсационные
    Конденсационные термометры реализуют зависимость упругости насыщенных паров низкокипящей жидкости от температуры. Поскольку эти зависимости для используемых жидкостей (хлористый метил, этиловый эфир, хлористый этил, ацетон и др.) нелинейные, следовательно, и шкалы термометров неравномерны. Однако эти приборы обладают более высокой чувствительностью, чем, например, газовые жидкостные. В конденсационных термометрах измеряют давление насыщенного пара над поверхностью жидкости, неполно заполняющей термосистему, т.к. изменение давления происходит непропорционально — приборы имеют неравномерные шкалы. Пределы измерений от -25 до 300 С.
  • Газовые
    В основу принципа действия газового термометра положена зависимость между температурой и давлением термометрического (рабочего) вещества, лишенного возможности свободно расширяться при нагревании. Газовые манометрические термометры основаны на зависимости температуры и давления газа, заключенного в герметически замкнутой термосистеме. В газовых термометрах (обычно постоянного объема) изменение температуры прямо пропорционально давлению в диапазоне измеряемых температур от — 120 до 600 °С. На измерении температуры газовыми термометрами построены современные температурные шкалы. Процесс измерения заключается в приведении баллона с газом в состояние теплового равновесия с теплом, температуру которого измеряют, и в восстановлении первоначального объема газа. Газовый термометр высокой точности — довольно сложное устройство. Необходимо учитывать не идеальность газа, тепловое расширение баллона и соединительной трубки, изменение состава газа внутри баллона (сорбцию и диффузию газов), изменение температуры вдоль соединительной трубки.
    Достоинства: шкала прибора практически равномерна.
    Недостатки: сравнительно большая инерционность и большие размеры термобаллона.
  • Спиртовые
    Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой — от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ± 0,05° С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
  • Биметаллические
    Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.
    В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
  • Кварцевые
    Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм РТ. Ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.
    Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.
    Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100 С из-за возрастающей невоспроизводимости.

Возврат к списку

Как работают термометры | Сравнение типов термометров

Как работают термометры | Типы термометров в сравнении

Вы здесь: Домашняя страница > Инструменты, инструменты и измерения > Термометры

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Тебе сегодня жарко или мне только кажется? И как мы могу сказать? Если я скажу, что сегодня жарче, чем вчера, а вы не согласитесь, как мы можем решить спор? Одним из простых способов является измерение температуру термометром в оба дня и сравнить показания. Термометры — это простые научные приборы, основанные на идее о том, что металлы изменяются. их поведение очень точным образом, поскольку они нагреваются (получают больше тепловой энергии). Давайте подробнее рассмотрим, как работают эти удобные гаджеты.

Фото: Вот это я называю холодом! Этот циферблатный (стрелочный) термометр показывает температуру внутри моего морозильника: около −30°C (внутренняя шкала) или −25°F (внешняя шкала). Это точно такая же температура, но измеренная двумя немного разными способами.

Содержимое

  1. Жидкостные термометры
  2. Термометры часовые
  3. Электронные термометры
  4. Измерение экстремальных температур
  5. Что такое температурная шкала?
  6. Узнать больше

Жидкостные термометры

Простейшие термометры действительно просты! Они просто очень тонкие стеклянные трубки, наполненные небольшим количеством серебристой жидкости (как правило, ртути — довольно особый металл, который при обычных, бытовых температурах находится в жидком состоянии). Когда ртуть нагревается, она расширяется (увеличивается в размерах) на величину это напрямую связано с температурой. Итак, если температура увеличивается на 20 градусов, ртуть расширяется и движется вверх по шкале вдвое больше, чем если бы температура повысилась всего на 10 градусов. Все, что нам нужно сделать, это отметить шкалу на стекле, и мы сможем легко определить температуру.

Фото: Типичный термометр состоит из жидкости в трубке, которая поднимается и опускается по линейной шкале. (один с равноудаленными делениями) отмечен температурой.

Как определить масштаб? Изготовление по Цельсию (по Цельсию) термометр легко, потому что он основан на температуре льда и кипяток. Они называются двумя фиксированными точками. Мы Известно, что температура льда близка к 0°C, а вода кипит при 100°C. Если мы окунем наш термометр в лед, мы сможем увидеть, где уровень ртути достигает и отмечает самую низкую точку на нашей шкале, которая будет примерно 0°С. Точно так же, если мы окунем термометр в кипящей воды, мы можем подождать, пока ртуть поднимется, а затем сделать знак, эквивалентный 100°C. Все, что нам нужно сделать, это разделить масштабирование между этими двумя фиксированными точками на 100 равных шагов («градус Цельсия» означает 100 делений) и, вуаля, у нас есть рабочий термометр!

Фото: Спиртовые термометры. Как вы можете видеть по красным линиям рядом с их шкалами, эти исторические термометры Dr Pepper на Dublin Bottling Works и W.P. Музей Клостер в Дублине, штат Техас, также содержит алкоголь. Фото Кэрол М. Хайсмит. Предоставлено: Техасская коллекция фотографий Лиды Хилл в рамках американского проекта Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Ртуть или спирт?

Не во всех жидкостных термометрах используется ртуть. Если линия, которую вы видите на своем термометре красный вместо серебра, как на картинке здесь, ваш термометр заполнен жидкостью на спиртовой основе (например, этанолом). Какая разница? Ртуть токсична, но совершенно безопасно, если он запечатан внутри термометра. Однако если стеклянная трубка ртутного термометра случается сломаться, что потенциально подвергает вас воздействию ядовитой жидкости внутри него. По этой причине спиртовые термометры, как правило, более безопасны, и они могут также можно использовать для измерения более низких температур (поскольку спирт имеет более низкую температуру замерзания). чем ртуть; это около -114 ° C или -170 ° F для чистого этанола. по сравнению с примерно -40°C или -40°F для ртути).

Фото: Этот термометр содержит красную жидкость на спиртовой основе и имеет шкалу Цельсия (слева, внизу рисунка) и Фаренгейта (справа, вверху). Текущая температура составляет около 21°C или около 70°F. Шкала Фаренгейта названа в честь немецкого физика Даниэля Фаренгейта (1686–1736), который изготовил первый ртутный термометр в начале 18 века. Шкала Цельсия названа в честь придумавшего ее шведского ученого Андерса Цельсия (1701–1744).

Рекламные ссылки

Термометры со шкалой

Однако не все термометры работают таким образом. Тот, что показан в нашем На верхнем фото есть металлический указатель, который перемещается вверх и вниз по кругу. шкала. Откройте один из этих термометров, и вы увидите указатель монтируется на спиральном куске металла, называемом биметаллической полосой, которая предназначена для расширения и изгиба по мере того, как она нагревается (см. нашу статью о термостатах, чтобы узнать, как они работают). Чем выше температура, тем больше расширяется биметаллическая полоса и тем больше она давит на указатель вверх по шкале.

Изображение: Как работает циферблатный термометр: Это механизм, приводящий в действие типичный циферблатный термометр, проиллюстрированный в патенте Чарльза У. Патнэма от 1905 года. Вверху у нас есть обычное расположение указателя и циферблата. Нижняя иллюстрация показывает, что происходит сзади. Биметаллическая полоска (желтая) плотно свернута и прикреплена как к корпусу термометра, так и к стрелке. Он состоит из двух разных металлов, связанных вместе, которые при нагревании расширяются в разной степени. При изменении температуры биметаллическая полоска более или менее туго изгибается (сжимается или расширяется), а прикрепленная к ней стрелка перемещается вверх или вниз по шкале. Работа из патента США 798,211: Термометр предоставлен Управлением по патентам и товарным знакам США.

Фото: Вот свернутая биметаллическая полоса от настоящего циферблатного термометра (термометр морозильной камеры на нашей верхней фотографии). Легко увидеть, как это работает: если повернуть стрелку рукой в ​​сторону более низких температур, скрученная полоска сжимается; поверните указатель в другую сторону, и полоска ослабнет.

Электронные термометры

Одна из проблем ртутных и циферблатных термометров заключается в том, что они при этом реагировать на изменения температуры. Электронный термометры не имеют этой проблемы: вы просто прикасаетесь зондом термометра к объект, температуру которого вы хотите измерить, и цифровой дисплей дает вам (почти) мгновенные показания температуры.

Фото: Электронный медицинский термометр 2010 года. Вы ставите металлический щуп во рту или где-то еще на теле и считывайте температуру с ЖК-дисплея.

Электронные термометры работают совершенно иначе, чем механические, которые используют линии ртути или вращающиеся указатели. Они основаны на идее, что сопротивление из куска металла (легкость, с которой электричество течет через него) изменяется при изменении температуры. Чем горячее металлы, тем сильнее вибрируют атомы внутри по ним электричеству труднее течь, и сопротивление увеличивается. Точно так же, когда металлы остывают, электроны движутся более свободно, а сопротивление идет вниз. (При температурах, близких к абсолютному нулю, самая низкая теоретически возможная температура -273,15°C или -4590,67°F, сопротивление полностью исчезает в явлении, называемом сверхпроводимость.)

Электронный термометр работает, подавая напряжение на его металлический щуп и измерение силы тока, протекающего через него. Если вы помещаете зонд в кипящую воду, тепло воды делает электричество проходит через пробник с меньшей легкостью, поэтому сопротивление на точно измеримую величину. Микрочип внутри термометра измеряет сопротивление и преобразует его в измерение температуры.

Фото: Электрический термометр сопротивления 1912 года: Этот пример термометра сопротивления мостового типа был построен Leeds and Northrup. и используется для измерения температуры в Национальном бюро стандартов США. (ныне NIST) в начале 20 века. Несмотря на его коренастый и неуклюжий вид, его точность составляет 0,0001 градуса. Фото предоставлено цифровыми коллекциями Национального института стандартов и технологий, Гейтерсбург, Мэриленд. 20899.

Основным преимуществом таких термометров является то, что они могут мгновенное считывание в любой температурной шкале Например, по Цельсию, по Фаренгейту или как там еще. Кроме одного их недостатки в том, что они измеряют температуру от от момента к моменту, поэтому цифры, которые они показывают, могут сильно колебаться резко, что иногда затрудняет получение точных показаний.

Точные электрические термометры, известные как термометры сопротивления, используют четыре резистора, расположенных в ромбовидной цепи, называемой мостом Уитстона. Если три резистора имеют известные номиналы, сопротивление четвертого легко вычислить. Если четвертый резистор выполнен в виде датчика температуры, подобную схему можно использовать как очень точный термометр: рассчитать его сопротивление (из его напряжения и тока) позволяет нам рассчитать его температуру.

Измерение экстремальных температур

Если вы хотите измерить что-то слишком горячее или холодное для обычного термометра ручки, вам понадобится термопара: хитрое устройство который измеряет температуру, измеряя электричество. И если вы не можете подойти достаточно близко, чтобы использовать хоть термопару, можно попробовать пирометром, своего рода термометр, который измеряет температуру объекта по электромагнитное излучение, которое он испускает.

Что такое температурная шкала?

Фото: Температурные шкалы линейны: определенное повышение температуры всегда перемещает вас на одно и то же расстояние вверх по шкале. Это не означает, что термометры должны быть сделаны прямыми, как линейки: это означает, что каждое деление температурной шкалы занимает точно такое же пространство (или, если хотите, ртутный, стрелочный или другой индикатор температуры должен двигаться так же далеко, чтобы указать каждое новое деление по мере повышения или понижения температуры). Этот циферблатный термометр от газового котла показывает температуру вашего центрального отопления в градусах Цельсия, используя круглую (но все же линейную) шкалу.

Термометру не обязательно нужна шкала или цифры, нанесенные на него. Только представьте, если вы были на необитаемом острове и нашли в песке старый термометр с шкала и цифры стерлись, но в остальном работает отлично. Вы все еще можете использовать это он получить представление о температурах. Вы можете использовать его очень грубо, чтобы сказать что-то вроде: «Уровень ртути поднялся примерно наполовину, что выше, чем было вчера, поэтому сегодня должно быть жарче».

Лучшим способом было бы поставить собственную шкалу на термометр. Во-первых, вам нужно найти что-то очень холодное (например, кусок льда), поместите термометр на нем и поцарапайте стекло, чтобы отметить уровень ртути. Тогда вы могли бы сделать то же самое чем-нибудь горячим (кипятком) и снова отметьте уровень ртути. Мы называем это два опорных уровня температуры фиксированные точки. Чтобы сделать шкалу термометра, все, что нам нужно сделать, это разделить расстояние между двумя неподвижных точек на множество секций равной длины. Вот как стоградусный термометр получил свое название: он имеет 100 («центовых») делений («градусов») между фиксированные точки льда и пара. Чем отличаются температурные шкалы и как они проработаны?

Шкала Фиксированная(ые) точка(и)

по Фаренгейту

Первоначально 32°F (таяние льда в соли) и 96°F (определение температуры тела Даниэля Фаренгейта).

Цельсия

0°C (точка замерзания воды) и 100°C (точка кипения воды).

Кельвин

Определяется в соответствии с тройной точкой воды (где ее твердое тело, жидкость и пар находятся в равновесии), которая составляет 273,16 К.

ITS-90 (Международная шкала температур)

Использует множество разных точек в разных частях своего диапазона. Видеть ИТС-90 подробнее подробности.

Как соотносятся градусы Цельсия и Фаренгейта?

Вы, наверное, знаете, как преобразовать температуру по Цельсию в градусы Фаренгейта: умножьте на 9/5 (или 1,8) и затем прибавьте 32. Чтобы преобразовать Фаренгейты в Цельсия, вы делаете обратное: вычитаете 32 и умножаете на 5/9(или разделить на 1,8, что то же самое). Когда вы слышите, что в прогнозах погоды указываются температуры в градусах Цельсия и их эквиваленты в градусах Фаренгейта, вы можете почувствовать, что взаимосвязь между ними немного странная и запутанная, потому что они кажутся такими разными. Но если вы нанесете их на график (как у меня ниже), вы увидите, что обе шкалы совершенно линейны, и каждое повышение температуры, добавляющее еще 10°C, добавляет 18°F.

Диаграмма: Температурная шкала Цельсия показана синим цветом, а шкала Фаренгейта — красным рядом. Каждая точка на диаграмме показывает два эквивалентных измерения для определенной температуры, например, 20°C. равна 68°F. Обе шкалы явно линейны: увеличение на 10°C такое же, как увеличение на 18°F.

Узнать больше

На этом сайте

  • Отопление
  • Металлы
  • Пирометры
  • Термопары

На других веб-сайтах

  • Введение в температуру: все о температуре и способах ее измерения от Национальной физической лаборатории Великобритании.
  • NIST: Единицы температуры: Описывает различные температурные шкалы и способы их преобразования.

Книги для юных читателей

  • Как мы измеряем температуру? Крис Вудфорд. Gareth Stevens, 2013/Blackbirch, 2005. Одна из моих собственных книг для юных читателей (7–9 лет).). Акцент здесь делается на температуре как на практической, повседневной форме математики.
  • градусов по Фаренгейту, Цельсию и их температурным шкалам Йоминг С. Лин. PowerKIDS Press/Rosen, 2012. Историческое введение, в котором рассказываются истории Дэниела Фаренгейта и Андерса Цельсия наряду с практическим измерением температуры.
  • Измерь это! Температура Кейси Рэнд. Raintree, 2010. Базовое введение для детей в возрасте 7–9 лет, включающее некоторое освещение смежных тем, таких как погода и изменение климата.
  • Температура: нагрев и охлаждение Дарлин Р. Стилл. Picture Window Books, 2004. Альтернативное 24-страничное введение для немного более молодых читателей.
  • Термометры от Адель Ричардсон. Capstone, 2004. 32-страничное введение, охватывающее почти ту же тему, что и эта статья, но предназначенное для младших читателей (в возрасте 6–8 лет или около того).

Книги для читателей постарше

  • Изобретение температуры: измерение и научный прогресс, Хасок Чанг. Oxford University Press, 2004. История о том, как люди научились измерять температуру термометрами. Достаточно философская и научная книга, но тем не менее вполне читабельная.
  • Измерение температуры Л. Михальски. Wiley, 2001. Подробное руководство по точным измерениям температуры для ученых и инженеров.
  • Принципы и методы измерения температуры, Томас Дональд МакГи. Wiley-IEEE, 1988. Подробный (почти 600 страниц) учебник, описывающий температурные шкалы и всевозможные датчики температуры, включая пирометры, термисторы и термопары.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2008, 2022. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оценить эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2008/2022) Термометры. Получено с https://www.explainthatstuff.com/thermometers.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Связь
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда

  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и инструменты
  • Транспорт

↑ Вернуться к началу

Как работают термометры | Сравнение типов термометров

Как работают термометры | Типы термометров в сравнении

Вы здесь: Домашняя страница > Инструменты, инструменты и измерения > Термометры

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Вам сегодня жарко или мне только кажется? И как мы могу сказать? Если я скажу, что сегодня жарче, чем вчера, а вы не согласитесь, как мы можем решить спор? Одним из простых способов является измерение температуру термометром в оба дня и сравнить показания. Термометры — это простые научные приборы, основанные на идее о том, что металлы изменяются. их поведение очень точным образом, поскольку они нагреваются (получают больше тепловой энергии). Давайте подробнее рассмотрим, как работают эти удобные гаджеты.

Фото: Вот это я называю холодом! Этот циферблатный (стрелочный) термометр показывает температуру внутри моего морозильника: около −30°C (внутренняя шкала) или −25°F (внешняя шкала). Это точно такая же температура, но измеренная двумя немного разными способами.

Содержимое

  1. Жидкостные термометры
  2. Термометры часовые
  3. Электронные термометры
  4. Измерение экстремальных температур
  5. Что такое температурная шкала?
  6. Узнать больше

Жидкостные термометры

Простейшие термометры действительно просты! Они просто очень тонкие стеклянные трубки, наполненные небольшим количеством серебристой жидкости (как правило, ртути — довольно особый металл, который при обычных, бытовых температурах находится в жидком состоянии). Когда ртуть нагревается, она расширяется (увеличивается в размерах) на величину это напрямую связано с температурой. Итак, если температура увеличивается на 20 градусов, ртуть расширяется и движется вверх по шкале вдвое больше, чем если бы температура повысилась всего на 10 градусов. Все, что нам нужно сделать, это отметить шкалу на стекле, и мы сможем легко определить температуру.

Фото: Типичный термометр состоит из жидкости в трубке, которая поднимается и опускается по линейной шкале. (один с равноудаленными делениями) отмечен температурой.

Как определить масштаб? Изготовление по Цельсию (по Цельсию) термометр легко, потому что он основан на температуре льда и кипяток. Они называются двумя фиксированными точками. Мы Известно, что температура льда близка к 0°C, а вода кипит при 100°C. Если мы окунем наш термометр в лед, мы сможем увидеть, где уровень ртути достигает и отмечает самую низкую точку на нашей шкале, которая будет примерно 0°С. Точно так же, если мы окунем термометр в кипящей воды, мы можем подождать, пока ртуть поднимется, а затем сделать знак, эквивалентный 100°C. Все, что нам нужно сделать, это разделить масштабирование между этими двумя фиксированными точками на 100 равных шагов («градус Цельсия» означает 100 делений) и, вуаля, у нас есть рабочий термометр!

Фото: Спиртовые термометры. Как вы можете видеть по красным линиям рядом с их шкалами, эти исторические термометры Dr Pepper на Dublin Bottling Works и W.P. Музей Клостер в Дублине, штат Техас, также содержит алкоголь. Фото Кэрол М. Хайсмит. Предоставлено: Техасская коллекция фотографий Лиды Хилл в рамках американского проекта Кэрол М. Хайсмит, Библиотека Конгресса, Отдел эстампов и фотографий.

Ртуть или спирт?

Не во всех жидкостных термометрах используется ртуть. Если линия, которую вы видите на своем термометре красный вместо серебра, как на картинке здесь, ваш термометр заполнен жидкостью на спиртовой основе (например, этанолом). Какая разница? Ртуть токсична, но совершенно безопасно, если он запечатан внутри термометра. Однако если стеклянная трубка ртутного термометра случается сломаться, что потенциально подвергает вас воздействию ядовитой жидкости внутри него. По этой причине спиртовые термометры, как правило, более безопасны, и они могут также можно использовать для измерения более низких температур (поскольку спирт имеет более низкую температуру замерзания). чем ртуть; это около -114 ° C или -170 ° F для чистого этанола. по сравнению с примерно -40°C или -40°F для ртути).

Фото: Этот термометр содержит красную жидкость на спиртовой основе и имеет шкалу Цельсия (слева, внизу рисунка) и Фаренгейта (справа, вверху). Текущая температура составляет около 21°C или около 70°F. Шкала Фаренгейта названа в честь немецкого физика Даниэля Фаренгейта (1686–1736), который изготовил первый ртутный термометр в начале 18 века. Шкала Цельсия названа в честь придумавшего ее шведского ученого Андерса Цельсия (1701–1744).

Рекламные ссылки

Термометры со шкалой

Однако не все термометры работают таким образом. Тот, что показан в нашем На верхнем фото есть металлический указатель, который перемещается вверх и вниз по кругу. шкала. Откройте один из этих термометров, и вы увидите указатель монтируется на спиральном куске металла, называемом биметаллической полосой, которая предназначена для расширения и изгиба по мере того, как она нагревается (см. нашу статью о термостатах, чтобы узнать, как они работают). Чем выше температура, тем больше расширяется биметаллическая полоса и тем больше она давит на указатель вверх по шкале.

Изображение: Как работает циферблатный термометр: Это механизм, приводящий в действие типичный циферблатный термометр, проиллюстрированный в патенте Чарльза У. Патнэма от 1905 года. Вверху у нас есть обычное расположение указателя и циферблата. Нижняя иллюстрация показывает, что происходит сзади. Биметаллическая полоска (желтая) плотно свернута и прикреплена как к корпусу термометра, так и к стрелке. Он состоит из двух разных металлов, связанных вместе, которые при нагревании расширяются в разной степени. При изменении температуры биметаллическая полоска более или менее туго изгибается (сжимается или расширяется), а прикрепленная к ней стрелка перемещается вверх или вниз по шкале. Работа из патента США 798,211: Термометр предоставлен Управлением по патентам и товарным знакам США.

Фото: Вот свернутая биметаллическая полоса от настоящего циферблатного термометра (термометр морозильной камеры на нашей верхней фотографии). Легко увидеть, как это работает: если повернуть стрелку рукой в ​​сторону более низких температур, скрученная полоска сжимается; поверните указатель в другую сторону, и полоска ослабнет.

Электронные термометры

Одна из проблем ртутных и циферблатных термометров заключается в том, что они при этом реагировать на изменения температуры. Электронный термометры не имеют этой проблемы: вы просто прикасаетесь зондом термометра к объект, температуру которого вы хотите измерить, и цифровой дисплей дает вам (почти) мгновенные показания температуры.

Фото: Электронный медицинский термометр 2010 года. Вы ставите металлический щуп во рту или где-то еще на теле и считывайте температуру с ЖК-дисплея.

Электронные термометры работают совершенно иначе, чем механические, которые используют линии ртути или вращающиеся указатели. Они основаны на идее, что сопротивление из куска металла (легкость, с которой электричество течет через него) изменяется при изменении температуры. Чем горячее металлы, тем сильнее вибрируют атомы внутри по ним электричеству труднее течь, и сопротивление увеличивается. Точно так же, когда металлы остывают, электроны движутся более свободно, а сопротивление идет вниз. (При температурах, близких к абсолютному нулю, самая низкая теоретически возможная температура -273,15°C или -4590,67°F, сопротивление полностью исчезает в явлении, называемом сверхпроводимость.)

Электронный термометр работает, подавая напряжение на его металлический щуп и измерение силы тока, протекающего через него. Если вы помещаете зонд в кипящую воду, тепло воды делает электричество проходит через пробник с меньшей легкостью, поэтому сопротивление на точно измеримую величину. Микрочип внутри термометра измеряет сопротивление и преобразует его в измерение температуры.

Фото: Электрический термометр сопротивления 1912 года: Этот пример термометра сопротивления мостового типа был построен Leeds and Northrup. и используется для измерения температуры в Национальном бюро стандартов США. (ныне NIST) в начале 20 века. Несмотря на его коренастый и неуклюжий вид, его точность составляет 0,0001 градуса. Фото предоставлено цифровыми коллекциями Национального института стандартов и технологий, Гейтерсбург, Мэриленд. 20899.

Основным преимуществом таких термометров является то, что они могут мгновенное считывание в любой температурной шкале Например, по Цельсию, по Фаренгейту или как там еще. Кроме одного их недостатки в том, что они измеряют температуру от от момента к моменту, поэтому цифры, которые они показывают, могут сильно колебаться резко, что иногда затрудняет получение точных показаний.

Точные электрические термометры, известные как термометры сопротивления, используют четыре резистора, расположенных в ромбовидной цепи, называемой мостом Уитстона. Если три резистора имеют известные номиналы, сопротивление четвертого легко вычислить. Если четвертый резистор выполнен в виде датчика температуры, подобную схему можно использовать как очень точный термометр: рассчитать его сопротивление (из его напряжения и тока) позволяет нам рассчитать его температуру.

Измерение экстремальных температур

Если вы хотите измерить что-то слишком горячее или холодное для обычного термометра ручки, вам понадобится термопара: хитрое устройство который измеряет температуру, измеряя электричество. И если вы не можете подойти достаточно близко, чтобы использовать хоть термопару, можно попробовать пирометром, своего рода термометр, который измеряет температуру объекта по электромагнитное излучение, которое он испускает.

Что такое температурная шкала?

Фото: Температурные шкалы линейны: определенное повышение температуры всегда перемещает вас на одно и то же расстояние вверх по шкале. Это не означает, что термометры должны быть сделаны прямыми, как линейки: это означает, что каждое деление температурной шкалы занимает точно такое же пространство (или, если хотите, ртутный, стрелочный или другой индикатор температуры должен двигаться так же далеко, чтобы указать каждое новое деление по мере повышения или понижения температуры). Этот циферблатный термометр от газового котла показывает температуру вашего центрального отопления в градусах Цельсия, используя круглую (но все же линейную) шкалу.

Термометру не обязательно нужна шкала или цифры, нанесенные на него. Только представьте, если вы были на необитаемом острове и нашли в песке старый термометр с шкала и цифры стерлись, но в остальном работает отлично. Вы все еще можете использовать это он получить представление о температурах. Вы можете использовать его очень грубо, чтобы сказать что-то вроде: «Уровень ртути поднялся примерно наполовину, что выше, чем было вчера, поэтому сегодня должно быть жарче».

Лучшим способом было бы поставить собственную шкалу на термометр. Во-первых, вам нужно найти что-то очень холодное (например, кусок льда), поместите термометр на нем и поцарапайте стекло, чтобы отметить уровень ртути. Тогда вы могли бы сделать то же самое чем-нибудь горячим (кипятком) и снова отметьте уровень ртути. Мы называем это два опорных уровня температуры фиксированные точки. Чтобы сделать шкалу термометра, все, что нам нужно сделать, это разделить расстояние между двумя неподвижных точек на множество секций равной длины. Вот как стоградусный термометр получил свое название: он имеет 100 («центовых») делений («градусов») между фиксированные точки льда и пара. Чем отличаются температурные шкалы и как они проработаны?

Шкала Фиксированная(ые) точка(и)

по Фаренгейту

Первоначально 32°F (таяние льда в соли) и 96°F (определение температуры тела Даниэля Фаренгейта).

Цельсия

0°C (точка замерзания воды) и 100°C (точка кипения воды).

Кельвин

Определяется в соответствии с тройной точкой воды (где ее твердое тело, жидкость и пар находятся в равновесии), которая составляет 273,16 К.

ITS-90 (Международная шкала температур)

Использует множество разных точек в разных частях своего диапазона. Видеть ИТС-90 подробнее подробности.

Как соотносятся градусы Цельсия и Фаренгейта?

Вы, наверное, знаете, как преобразовать температуру по Цельсию в градусы Фаренгейта: умножьте на 9/5 (или 1,8) и затем прибавьте 32. Чтобы преобразовать Фаренгейты в Цельсия, вы делаете обратное: вычитаете 32 и умножаете на 5/9(или разделить на 1,8, что то же самое). Когда вы слышите, что в прогнозах погоды указываются температуры в градусах Цельсия и их эквиваленты в градусах Фаренгейта, вы можете почувствовать, что взаимосвязь между ними немного странная и запутанная, потому что они кажутся такими разными. Но если вы нанесете их на график (как у меня ниже), вы увидите, что обе шкалы совершенно линейны, и каждое повышение температуры, добавляющее еще 10°C, добавляет 18°F.

Диаграмма: Температурная шкала Цельсия показана синим цветом, а шкала Фаренгейта — красным рядом. Каждая точка на диаграмме показывает два эквивалентных измерения для определенной температуры, например, 20°C. равна 68°F. Обе шкалы явно линейны: увеличение на 10°C такое же, как увеличение на 18°F.

Узнать больше

На этом сайте

  • Отопление
  • Металлы
  • Пирометры
  • Термопары

На других веб-сайтах

  • Введение в температуру: все о температуре и способах ее измерения от Национальной физической лаборатории Великобритании.
  • NIST: Единицы температуры: Описывает различные температурные шкалы и способы их преобразования.

Книги для юных читателей

  • Как мы измеряем температуру? Крис Вудфорд. Gareth Stevens, 2013/Blackbirch, 2005. Одна из моих собственных книг для юных читателей (7–9 лет).). Акцент здесь делается на температуре как на практической, повседневной форме математики.
  • градусов по Фаренгейту, Цельсию и их температурным шкалам Йоминг С. Лин. PowerKIDS Press/Rosen, 2012. Историческое введение, в котором рассказываются истории Дэниела Фаренгейта и Андерса Цельсия наряду с практическим измерением температуры.
  • Измерь это! Температура Кейси Рэнд. Raintree, 2010. Базовое введение для детей в возрасте 7–9 лет, включающее некоторое освещение смежных тем, таких как погода и изменение климата.
  • Температура: нагрев и охлаждение Дарлин Р. Стилл. Picture Window Books, 2004. Альтернативное 24-страничное введение для немного более молодых читателей.
  • Термометры от Адель Ричардсон. Capstone, 2004. 32-страничное введение, охватывающее почти ту же тему, что и эта статья, но предназначенное для младших читателей (в возрасте 6–8 лет или около того).

Книги для читателей постарше

  • Изобретение температуры: измерение и научный прогресс, Хасок Чанг. Oxford University Press, 2004. История о том, как люди научились измерять температуру термометрами. Достаточно философская и научная книга, но тем не менее вполне читабельная.
  • Измерение температуры Л. Михальски. Wiley, 2001. Подробное руководство по точным измерениям температуры для ученых и инженеров.
  • Принципы и методы измерения температуры, Томас Дональд МакГи. Wiley-IEEE, 1988. Подробный (почти 600 страниц) учебник, описывающий температурные шкалы и всевозможные датчики температуры, включая пирометры, термисторы и термопары.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2008, 2022. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оценить эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.