Транзистор проверка: Как проверить транзистор простым мультиметром
Как проверить транзистор?
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ.
слова common – «общий»), а плюсовой щуп (красный) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный (+) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток.
Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора.
Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Какие бывают припои?
Как сделать печатную плату маркером?
Зачем нужен супрессор?
NPN, PNP без выпаивания с платы
Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя.
Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.
Содержание статьи
- 1 Необходимый минимум сведений
- 2 Цоколевка
- 3 Как проверить транзистор мультиметром со встроенной функцией
- 4 Проверка на плате
- 4.1 Проверка биполярного транзистора PNP типа
- 4.2 Тестируем исправность NPN транзистор
- 4.3 Как определить базу, коллектор и эмиттер
Необходимый минимум сведений
Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.
Виды транзисторов и принцип работы
Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ.
Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.
Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.
Цоколевка
У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.
Внешний вид биполярного транзистора средней мощности и его цоколевка
То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку.
Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.
Как проверить транзистор мультиметром со встроенной функцией
Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.
Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.
Мультиметр с функцией проверки транзисторов
Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.
Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.
Проверка на плате
Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов.
Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).
Как проверить транзистор мультиметром не выпаивая
Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.
Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять
Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.
Проверка биполярного транзистора PNP типа
Итак, начнём с проверки биполярника PNP типа.
Вот что у нас должно получиться:
Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.
Тестируем исправность NPN транзистор
Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:
- Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
- Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
- При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.
Проверка работоспособности биполярного NPN транзистора мультиметром
Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.
И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.
Как определить базу, коллектор и эмиттер
Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.
Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять
Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN.
Если на базу подаём плюс — это NPN тип, если минус — это PNP.
Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.
Как проверить транзистор мультиметром: инструкции, видео
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики.
Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.
д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npnПрисоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами.
На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе.
Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистораОбозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.

- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схемаПроверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
Как проверить транзистор с помощью мультиметра (DMM+AVO)
Как запомнить направление транзистора PNP и NPN и идентификацию контакта, проверить, хорошо это или плохо.
Следующее базовое руководство, основанное на использовании цифрового (DMM) или аналогового (AVO) мультиметра, поможет вам:
- Запомнить направление транзисторов NPN и PNP
- Определите базу, коллектор и эмиттер транзистора
- Проверьте состояние транзистора.
Похожие сообщения:
- Биполярный переходной транзистор (BJT) | Строительство, работа, типы и применение
- Типы транзисторов – BJT, FET, JFET, MOSFET, IGBT и специальные транзисторы
Содержание
Как запомнить направление PNP и NPN транзистора?- PNP = Указано
- NPN = не указано.

Если вы думаете, что это немного сложно, попробуйте более простой способ, как показано ниже.
Нажмите на изображение, чтобы увеличить его.
PNP NPN
- P = баллы N = никогда
- N = IN P = Баллы
- P = постоянно N = iN
Теперь давайте перейдем к пошаговому руководству, чтобы узнать, как проверить и проверить транзистор?
Проверка транзистора с помощью цифрового мультиметра в режиме диодов или в режиме проверки целостности цепиДля этого следуйте приведенным ниже инструкциям.
- Удалите транзистор из схемы, т.е. отключите питание транзистора, который необходимо проверить. Разрядите все конденсаторы (замкнув выводы конденсатора) в цепи (если есть).

- Установите мультиметр в режим «Проверка диодов», повернув поворотный переключатель мультиметра.
- Подсоедините черный (общий или -Ve) щуп мультиметра к 1-й клемме транзистора, а красный (+Ve) щуп — ко 2-й клемме (рис. ниже). Вы должны выполнить 6 тестов, подключив черный (-Ve) щуп и красный (+Ve) щуп к 1 к 2, 1 к 3, 2 к 1, 2 к 3, 3 к 1, 3 к 2 соответственно. просто замените измерительные провода мультиметра или поменяйте местами клеммы транзистора, чтобы подключить, проверить, измерить и записать показания в таблице (показано ниже). Цифры красного цвета обозначают красный щуп, а цифры черного цвета подключены к черному (-Ve) щупу мультиметра.
- Проверьте, измерьте и запишите показания дисплея, показанные на мультиметре в таблице ниже.
У нас есть следующие данные из таблицы, приведенной ниже.
Из 6 тестов мы получили данные и результаты только по двум тестам, т. е. точки 2 к 1 и 2 к 3. Где мы получили в точках 2 к 1 0,733 В постоянного тока и 2 к 3 0,728 В постоянного тока.
Теперь мы можем легко найти тип транзистора, а также его коллектор, базу и эмиттер.
- Точка 2 — база транзистора в транзисторе BC55.
- BC 557 представляет собой PNP-транзистор, в котором 2 -й -й (средний вывод является базовым) подключен к красному (+Ve) измерительному проводу мультиметра.
- Вообще, Клемма 1 = Эмиттер, Клемма 2 = База и Клемма 3 = Коллектор (транзистор BC 557 PNP), поскольку результат проверки для 2-1 = 0,733 В постоянного тока и 2-3 = 0,728 В постоянного тока, т. е. 2-1 > 2-3.
| БК 557 ПНП | Точки измерения | Результат |
| 1-2 | ОЛ | |
| 1-3 | ОЛ | |
| 2-1 | 0,733 В постоянного тока | |
| 2-3 | 0,728 В постоянного тока | |
| 3-1 | ОЛ | |
| 3-2 | ОЛ |
Как упоминалось в приведенном выше руководстве, общее число, найденное в приведенных выше тестах, является базовым.
В нашем случае 2 терминала и является Базовым и 2 является общим из 1-2 и 2-3.
2
nd Метод с использованием цифрового мультиметра для определения основания транзистора.Если вы будете следовать той же схеме и методу подключения проводов мультиметра и выводов транзисторов один за другим на рисунке выше, на рис. «c» и «d», красный (+Ve) измерительный провод подключается к среднему. т. е. 2 и вывод провода, а черный (-Ve) щуп подключается к 1 st одному выводу транзистора.
Опять же, красный (+Ve) щуп подключен к среднему, т.е. 2 и клемма провода, а черный (-Ve) измерительный провод подключен к 3 rd , одна клемма транзистора, и мультиметр показывает некоторые показания, т. е. 0,717 В постоянного тока и 0,711 В постоянного тока соответственно в случае BC 547 NPN.
Общий провод: 2 и , один из которых подключен к красному (+Ve) тестовому проводу (т.е. P и да, два других провода — N), который является базовым.
В случае транзистора BC 557 PNP ситуация обратная.
Все просто. Если черный (-Ve) щуп мультиметра подсоединить к базе транзистора (2 и клемма в нашем случае), то это PNP-транзистор , а когда красный (+Ve) щуп подключен к базе клеммы, это NPN-транзистор .
Похожие сообщения:
- Разница между транзисторами NPN и PNP
- Разница между BJT и FET транзисторами
Прямое смещение EB (эмиттер – база) больше, чем CB (коллектор – база), т.е. EB > CB в транзисторе PNP, например. BC557 НПН. Следовательно, это резистор типа PNP. В транзисторе NPN прямое смещение BE (база — эмиттер) больше, чем BC (база — коллектор), т. е. BE > BC, например. 547 г. до н.э. ПНП.
Вот вывод.
- Точка 2 — база транзистора в BC547 Транзистор
- BC 547 представляет собой NPN-транзистор, в котором 2 и (средний вывод — база) подключены к красному (+Ve) щупу мультиметра.

- Во всех случаях Клемма 1 = Эмиттер, Клемма 2 = База и Клемма 3 = Коллектор (транзистор BC 547 NPN), поскольку результат теста для 1-2 = 0,717 В постоянного тока и 2-3 = 0,711 В постоянного тока, т. е. 1-2 > 2-3.
| ВС 547 НПН | Точки измерения | Результат |
| 1-2 | 0,717 В постоянного тока | |
| 1-2 | ОЛ | |
| 1-3 | ОЛ | |
| 1-3 | ОЛ | |
| 2-3 | ОЛ | |
| 2-3 | 0,711 В постоянного тока |
Шаги:
- Отключите питание схемы и удалите транзистор из схемы.
- Поверните селекторный переключатель и установите ручку мультиметра в положение диапазона Ом (OHM)
- Подсоедините черный (общий или -Ve) щуп мультиметра к 1-му выводу транзистора, а красный (+Ve) щуп — ко 2-му выводу (рис.
1 (a). (Необходимо выполнить 6 тестов, подключив черный (-Ve) щуп к 1 к 2, 1 к 3, 2 к 1, 2 к 3, 3 к 1, 3 к 2 соответственно, просто заменив измерительные провода мультиметра или поменяв местами клеммы транзистора для подключения, проверки, измерьте и запишите показания в таблице (показаны ниже) (цифры красного цвета показывают выводы транзистора, подключенные к Красный (+Ve) измерительный провод мультиметра, а цифры черного цвета показывают транзисторные выводы, подключенные к черному (-Ve) измерительному проводу мультиметра. (Лучшее объяснение в таблице и на рисунке ниже) - Если мультиметр показывает высокое сопротивление как в первом, так и во втором тесте при изменении полярности транзистора или мультиметра, как показано на рис. 1 (а) и (б). (Обратите внимание, что результат будет показан только для 2 тестов из 6, как указано выше). т. е. В нашем случае 2 -я клемма транзистора является БАЗОВОЙ, поскольку она показывает высокое сопротивление в обоих тестах 2 на 3 и 3 на 2, где Красный (+Ve) измерительный провод мультиметра подключен к 2 -й клемме транзистора .
Другими словами, обычное число в тестах — это База, которая равна 2 из 1, 2 и 3.
Нажмите на изображение, чтобы увеличить
PNP или NPN?Теперь это NPN-транзистор, потому что он показывает показания только тогда, когда КРАСНЫЙ (+Ve) измерительный провод (т. е. клемма P, где P = положительный) подключен к базе транзистора (см. рис. ниже). Если вы сделаете наоборот, т.е. черный (-Ve) измерительный провод (т.е. N = где N = отрицательный) мультиметра, подключенный к транзисторной клемме в последовательности (1 к 2 и 2 к 3) и показывает показания в обоих тестах, как указано выше , 2 и Клемма по-прежнему BASE, но транзистор PNP (см. рис. ниже).
Проверка транзистора с помощью цифрового мультиметра в режиме транзистора или hFE или бета-режиме hFE, также известном как коэффициент усиления по постоянному току, означает «гибридный параметр усиления по прямому току, общий эмиттер», используемый для измерения hFE транзистора, который может найти по следующей формуле.
h FE = β DC = I C / I B
Его также можно использовать для проверки транзистора и его контактной клеммы, как показано на рис. 1.
Для проверки транзистора в режиме hFE в мультиметре имеется 8-контактный разъем, обозначенный PNP и NPN, а также E C B ( Эмиттер, коллектор и база). Просто поместите три контакта транзистора в слот мультиметра один за другим в разные слоты, например, ECB или CBE (поворотная ручка должна находиться в режиме hFE).
Если они отображают показания (это будут показания транзистора h FE ), в нашем примере мы использовали транзистор BC548, который показывает бета-значение 368 (позиция CBE) текущее положение на C, B, Слот E — это точные клеммы транзистора (коллектор, база и эмиттер), и транзистор находится в хорошем положении, в противном случае замените его новым.
Related Posts:
- Как проверить конденсатор с помощью цифрового и аналогового мультиметра — 8 методов
- Как проверить диод с помощью цифрового и аналогового мультиметра — 4 способа.

- Как проверить реле? Проверка реле SSR и катушки?
- Как проверить и исправить дефекты печатной платы (PCB)?
- Как найти номинал сгоревшего резистора (тремя удобными способами)
- Как проверить целостность электрических компонентов с помощью мультиметра?
- Схема цепи тестера кабелей и проводов
- Как проверить аккумулятор с помощью тест-метра?
- Как проверить электрические и электронные компоненты с помощью мультиметра?
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Как проверить транзистор? (с картинками)
`;
Т. Л. Чайлдри
Проверить работоспособность транзистора можно, выполнив несколько простых процедур с помощью цифрового мультиметра. Большинство мультиметров цифрового типа оснащены функцией проверки диодов, которую можно использовать для проверки транзистора. Если транзистор уже подключен к печатной плате, перед тестированием его необходимо удалить с платы. Электронный транзистор может использоваться в цепи как усилитель или как переключатель. Независимо от области применения, процедура, используемая для проверки транзистора, одинакова, потому что все транзисторы в основном работают как два параллельных диода, которые имеют общий элемент.
Прежде чем приступить к самой процедуре тестирования, вам необходимо определить тип тестируемого транзистора.
Транзисторы, известные как положительно-отрицательно-положительные (PNP), имеют две входные клеммы и одну выходную клемму. Транзистор, который является отрицательно-положительно-отрицательным (NPN), будет иметь одну входную клемму и две выходные клеммы. Оба типа транзисторов имеют в общей сложности три вывода, которые известны как вывод базы, вывод коллектора и вывод эмиттера.
Тип транзистора, а также расположение и идентификация его выводов обычно маркируются на внешней упаковке транзистора. Если тип транзистора не указан на упаковке, для его определения можно выполнить простой тест с помощью мультиметра.
Определите ориентацию трех клемм транзистора и подключите положительный вывод мультиметра к базовой клемме транзистора. Затем подключите отрицательный вывод измерителя к клемме коллектора или эмиттера транзистора. Если мультиметр показывает показания выше нуля, то транзистор относится к типу NPN.
После того, как вы определили тип транзистора и ориентацию его выводов, вы готовы приступить к самой процедуре тестирования. Чтобы проверить работоспособность транзистора, вам нужно будет повернуть шкалу мультиметра на настройку диода. Затем подключите положительный провод мультиметра к базовой клемме транзистора.
Затем вы должны прикоснуться отрицательным выводом мультиметра к клемме коллектора транзистора и проверить сопротивление. Затем прикоснитесь отрицательным проводом к клемме эмиттера и проверьте сопротивление. После того, как вы завершили эту процедуру, вам нужно будет снова выполнить полный тест с отрицательным выводом, подключенным к базовой клемме транзистора.
Если транзистор исправен, показания сопротивления в первой части теста будут очень низкими, а во второй части будут очень высокими. Если транзистор относится к типу PNP, вам нужно будет выполнить первую часть теста с отрицательным выводом, подключенным к базовой клемме, а положительный вывод будет подключен во время второй части.
Если транзистор исправен, первое показание будет высоким, а второе — низким. Транзисторы обычно перестают работать внезапно, а не постепенно. Обычно замена неисправного транзистора обходится дешевле, чем замена самой печатной платы.
Как проверить транзистор NPN и PNP
Введение:
Транзистор – это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии.
Это полупроводниковое устройство с тремя выводами, эти контакты помечены коллектор (C) , база (B) и эмиттер (E) . Теперь я покажу, как проверить транзистор с помощью мультиметра.
метод 1: с использованием мультиметра с NPN транзистором
| (A) |
- Сначала включите цифровой мультиметр и выберите диодный режим .
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как это (A) соединение.
- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое значение мультиметра от 0 до 150, транзистор исправен .
- отображаемое значение мультиметра равно 0 или .0L, транзистор неисправен .

| (B) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как это (B) соединение.
- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое мультиметром значение от 0 выше 150, транзистор исправен .
- отображаемое значение мультиметра равно 0 или .0L, транзистор неисправен .
| (C) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как это (C) соединение.
- Прочитайте отображаемое измерение.
Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора. - отображаемое значение мультиметра равно 1, транзистор исправен .
| (D) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как показано на рисунке (D) .
- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое значение мультиметра равно 1, транзистор исправен .
Метод 2: с помощью мультиметра с транзистором PNP Держите тестовые провода подключенными в течение нескольких секунд, как это (E) соединение.
Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.| (F) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как это (F) подключение.
- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое значение мультиметра равно 1, транзистор исправен .
| (G) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как это (G) соединение.

- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое мультиметром значение от 0 выше 150, транзистор исправен .
- отображаемое значение мультиметра равно 0 или .0L, транзистор неисправен .
| (H) |
- Подсоедините измерительные провода к клеммам транзистора. Держите тестовые провода подключенными в течение нескольких секунд, как показано на рисунке (H) .
- Прочитайте отображаемое измерение. Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
- отображаемое мультиметром значение от 0 выше 150, транзистор исправен .
- отображаемое значение мультиметра равно 0 или .0L, транзистор неисправен .






1 (a). (Необходимо выполнить 6 тестов, подключив черный (-Ve) щуп к 1 к 2, 1 к 3, 2 к 1, 2 к 3, 3 к 1, 3 к 2 соответственно, просто заменив измерительные провода мультиметра или поменяв местами клеммы транзистора для подключения, проверки, измерьте и запишите показания в таблице (показаны ниже) (цифры красного цвета показывают выводы транзистора, подключенные к Красный (+Ve) измерительный провод мультиметра, а цифры черного цвета показывают транзисторные выводы, подключенные к черному (-Ve) измерительному проводу мультиметра. (Лучшее объяснение в таблице и на рисунке ниже)
Другими словами, обычное число в тестах — это База, которая равна 2 из 1, 2 и 3.

Если значение транзистора находится в пределах диапазона измерений, мультиметр отобразит значение транзистора.
