Расчет фундамент столбчатый фундамент: Столбчатый фундамент — расчет и строительство своими руками.
Столбчатый фундамент: применение, расчет и монтаж
Столбчатый фундамент – фундамент в виде столбов расположенных под углами и несущими стенами здания.
Предназначен столбчатый фундамент для строительства
- легких домов типа дачных домиков;
- домов не больших размеров;
- сараев различного назначения;
- бань;
- хозяйственных построек;
- гаражей;
- везде где ленточный фундамент делать не целесообразно;
- Во всех постройках, в которых не предусмотрено использование подвального помещения.
Столбчатый фундамент применяется там, где промерзание грунта зимой значительное. В виду малой площади фундамента удается избежать его деформации. В условиях вечной мерзлоты здания строятся исключительно на сваях.
Столбчатый фундамент уместен там, где грунт слишком подвижный из-за близости водных потоков и на легких песчаных почвах.
Расчет столбчатого фундамента
Перед тем как приступить к работе производится расчет столбчатого фундамента.
В основу расчета берется нагрузка будущего строения на фундамент. Нагрузка определяется проектом здания.
Для того чтобы рассчитать количество столбов надо учесть следующие факторы:
- Вес всей конструкции здания стены: внутренние стены и перегородки, пол, перекрытие потолка и сам потолок, стропила, материал кровли, а также нагрузки связанные с отоплением и водоснабжением.
- Характеристика грунта. От нее зависит, какой фундамент подойдет под здание.
Рассчитав количество столбов, можно рассчитать, требуемый объем бетона. Этот расчет не сложен, и мы его приведём здесь:
Формула расчета объема бетона на один столб, высотой 1,5 м.:
V = S x 1.5 – где S – площадь поперечного сечения столба при радиусе столба 15 см.
S = 3, 14 x R2 = 3.14 x 0.075 = 0.2355(м2)
V = 0.2355 x 1.5 = 0.353(м3)
Теперь легко вычислить количество бетона на все столбы, умножив полученный объем на количество столбов.
Столбчатый фундамент можно сделать:
- Из кирпичной кладки
- Из бетонной заливки
- Из готовых бетонных блоков
- Из металлических труб
- Из асбестобетонных труб
- Из дерева
- Комбинированные
Все виды материала имеют свои преимущества и применяют тот или иной только из расчета доступности в данной местности. Понятно, что деревянные столбы служат гораздо меньше других, но простота и скорость строительства фундамента на деревянных столбах имеют свои преимущества.
Комбинированные столбы для фундамента делают таким образом:
- подземную часть заливают бетоном,
- верхнюю часть выкладывают кирпичом.
Начало строительства столбчатого фундамента начинается с:
Это делаем при помощи двух параллельно натянутых шнуров. Расстояние между шнурами должно соответствовать диаметру столба.
Сначала определяем положение первого углового столба. От него устанавливаем положение всех четырех угловых столбов. Это будет периметр будущего фундамента.
Далее в соответствии с чертежом находим положение всех остальных столбов:
- Под основные и несущие стены через 2 метра
- Под перегородки
- Под печи
- Под террасу
- Под крыльцо
- Под гараж.
Устройство столбчатого фундамента
Все начинается с отверстия в земле, которое надо выкопать или просверлить специальным буром на глубину определенную проектом.
Для того чтобы сделать столбчатый фундамент нам потребуется:
- специальный бур или лопата
- песок и гравий, желательно мелкий
- рубероид или пленка
- цемент
- вода
- емкость для приготовления смеси
- металлическая арматура
Порядок работы
На дне делаем подушку из песка или мелкого гравия.
Чтобы края ямы не осыпались и лишний песок не смешивался с раствором, а вода из раствора не уходила в стенки ямы, ее выстилаем рубероидом или пленкой.
Для усиления столбов фундамента в середину вставляем металлическую арматуру.
Готовую таким образом яму заливаем раствором бетона до края земли. Ждем полного застывания бетона.
Верхнюю наземнуюю часть выкладываем кирпичом или готовыми блоками, либо делаем опалубку и заливаем ее бетоном.
Столбчатый фундамент из труб
В строительстве столбчатого фундамента выгодно использовать асбестовые трубы:
- трубы производятся различного диаметра;
- под них удобно высверлить ямы, заданного размера;
- фундамент получается идеально ровный;
- расходование бетона значительно экономнее.
Подготовка участка под фундамент производится так же:
При помощи лопаты или бура делаем ямы на двадцать сантиметров ниже промерзания почвы. Глубину промерзания почвы в любой местности можно узнать из специальных справочников.
Достоинство столбчатого фундамента — экономичность:
- Экономия на материале
- Экономия на затратах, связанных с наймом рабочих
- Экономия на механизмах
- Экономия на времени (столбы сохнут быстрее всего ленточного фундамента)
Для строительства дома – это не мало. Столбчатый фундамент под домможно сделать своими руками, по крайней мере, большинство работ.
Или пригласить бригаду, которая:
- Вычистит участок от кустарника или деревьев
- Выровняет участок
- Сделает разметку под фундамент
- Выкопает или высверлит ямы под столбы фундамента
- Сделает в каждой яме подушку
- Уложит арматуру
- Зальет бетоном
В это случае ваша задача – контроль за этими действиями. Мастера компании «Элит» из Нижнего Новгорода знают свое дело.
При помощи столбчатого фундамента строить можно на участке любой ландшафтной сложности. Если достался неровный участок то, при помощи столбов он отлично выравнивается. Как видно на картинке вверху.
После того как столбы залиты и бетон застыл, строим наземную часть столбчатого фундамента нужной высоты, определяемой проектом строительства.
Для наземной части фундамента используем любой подходящий материал:
- Кирпич
- Бетонные блоки
- Построить опалубку и залить ее бетоном
Деревянный столбчатый фундамент
Самый дешевый и доступный в лесистой части страны деревянный строительный материал. При наличии топора и пилы можно быстро соорудить жилище. Предки наши так и делали.
Деревянные столбы нарезаем или пилим необходимой длины, вкапываем в землю и все – возводи стены.
Недостаток деревянного столбчатого фундамента в его недолговечности. Но если это дерево мореное (хвойная древесина, пролежавшая несколько лет в воде, приобретает определенные свойства), и обработанная антисептиками может прослужить долгое время.
Под деревянные столбы, так же как и в предыдущих случаях, делаем подушку из песка и гравия на дне ямы. Далее выполняем следующие действия:
Все деревянный столбчатый фундамент готов. Можно продолжать строительство.
Фирма «ЭЛИТ» направит к вам профессионалов по стоительству столбчатого фундамента.
Звоните:
г. Нижний Новгород 8(831)414-63-18
г. Ворсма +7 960 161 95 55
Мы работаем в городах:
г. Павлово
г. Богородск
р.п. Сосновское
г. Выкса
г. Горбатов
Расчета свайного фундамента, столбчатого фундамента
Онлайн калькулятор по расчету буронабивных свайно-ростверковых и столбчатых фундаментов. Определение нагрузки на свайный фундамент.
Выберите тип ростверка:
Параметры ростверка:
Параметры столбов и свай:
Расчет арматуры:
Расчет опалубки ростверк:
Рассчитать
Результаты расчетов
Фундамент:
Общая длина ростверка: 0 м.
Площадь подошвы ростверка: 0 м2.
Площадь внешней боковой поверхности ростверка: 0 м2.
Общий объем бетона для ростверка и столбов (с 10% запасом): 0 м3.
Вес бетона: 0 кг.
Нагрузка на почву от фундамента в местах основания столбов: 0 кг/см2.
Расчет арматуры ростверка:
Минимальный диаметр поперечной арматуры (хомутов): 0 мм.
Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.
Общий вес хомутов: 0 кг.
Опалубка:
Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.
Максимальное расстояние между опорами: 0 м.
Количество досок для опалубки: 0 шт.
Периметр опалубки: 0 м.
Объем досок для опалубки: 0 м3.
Примерный вес досок для опалубки: 0 кг.
Дополнительная информация о калькуляторе
Онлайн калькулятор монолитного буронабивного (свайного и столбчатого) ростверкового фундамента предназначен для расчетов размеров, опалубки, диаметра арматуры, ее количества и объема расходуемого бетона. Для определения подходящего типа конструкции фундамента обязательно проконсультируйтесь со специалистами.
Обратите внимание! В расчётах используются нормативы, приведенные в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Данный тип фундамента основывается на сваях или столбах, поэтому его также часто называют столбчатым либо свайным. Глубина установки и несущая способность отличает сваи от столбов.
Вершины столбов или свай связывают между собой сплошной железобетонной лентой, так называемым ростверком. Между ростверком и поверхностью земли остаётся воздушная прослойка некоторой высоты.
Основная причина для выбора ростверкового фундамента – глубокое промерзание или слабость грунта. Этот тип фундамента востребован в местах, где из-за погодных условий другие виды фундамента создавать проблематично. Забивка свай не зависит от климата, что является несомненным преимуществом ростверковой технологии. Другой её плюс – высокая скорость возведения сооружений, поскольку сваи можно подготовить заранее, а их вбивание – ускорить, пробурив в земле отверстия.
На тип ростверкового фундамента влияет материал и форма свай, характер действия на грунт, способы установки и виды непосредственно ростверка. Трудно давать типовые рекомендации, не зная самого сооружения и специфики местности, где оно строится. Перед началом проектирования следует учесть климат местности, свойства грунта, расчётные нагрузки. Безусловно, лучше всего обратиться к специалистам и последовать их рекомендациям, так как есть риск «доэкономиться» до деформации или разрушения будущего строения. Чтобы этого избежать, советуем внимательно ознакомиться с данным калькулятором.
Он поможет вам рассчитать расходы при возведении стандартных конструкций и обдумать составляющие будущего фундамента.Вы можете задать вопрос или предложить идею по улучшению данного калькулятора. Будем рады вашим комментариям!
Пояснения к результатам расчетов
Общая длина ростверка
Внешний периметр ростверка, включая длину внутренних перегородок
Площадь подошвы ростверка
Площадь нижней поверхности ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь наружной поверхности фундамента, которая нуждается в утеплении специальными материалами.
Общий объем бетона для ростверка
Суммарный объём бетона, нужный для полной заливки фундамента с обозначенными вами параметрами. При заказе бетона возьмите запас приблизительно в 10%. При заливке могут возникнуть уплотнения, ведущие к повышенному расходу, а доставка может привезти несколько меньший объём, чем вы заказали фактически.
Вес бетона
Примерный вес бетона, который понадобится вам для фундамента. Рассчитан для бетона средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
Давление, которое фундамент оказывает на почву в основании свай или столбов.
Минимальный диаметр продольных стержней арматуры для ростверка
Рассчитывается с учётом содержания продольной арматуры в площади сечения ростверка и нормативов СНиП.
Минимальное количество рядов арматуры для ростверка
Количество стержней продольной арматуры в верхнем и нижнем поясах ленты ростверка, необходимое для предотвращения естественной деформации ленты силами растяжения и сжатия.
Общий вес арматуры
Вес арматурного каркаса.
Величина нахлеста арматуры
При креплении отрезков стержней внахлест следует использовать данное значение.
Длина продольной арматуры
Общая длина арматуры для всего каркаса (с учетом нахлеста).
Минимальное количество продольных стержней арматуры для столбов и свай
Число продольных стержней арматуры располагаемое в каждом столбе или свае.
Минимальный диаметр арматуры для столбов и свай
Предельный минимальный диаметр арматуры столбов, исчисляется в соответствии с нормативами СНиП.
Минимальный диаметр поперечной арматуры (хомутов)
Минимально допустимый диаметр поперечной арматуры в соответствии с нормативами СНиП исходя из заданных параметров.
Максимальный шаг поперечной арматуры (хомутов)
Максимальный шаг хомутов, при котором арматурный каркас будет должным образом выполнять свою функцию. Следует использовать данное значение, либо уменьшить шаг хомутов.
Общий вес хомутов
Общий вес хомутов, необходимых при строительстве фундамента.
Минимальная толщина доски опалубки (при опорах через каждый метр)
Расчетная толщина досок опалубки в соответствии с ГОСТ Р 52086-2003, для заданных параметров фундамента и при заданном шаге опор. Опалубка рассчитывается для ростверка.
Количество досок для опалубки
Количество материала для опалубки заданного размера. За основу берется доска длиной 6 метров.
Периметр опалубки
Общий периметр опалубки для ростверка, включая внутренние перегородки.
Объем и примерный вес досок для опалубки
Требуемый объем пиломатериала для опалубки в кубических метрах и килограммах.
Расчет фундамента – Онлайн калькулятор
Онлайн калькулятор расчета фундамента KALK.PRO позволяет заниматься полноценным проектированием фундаментов, облегчает вычисления и способствует экономии на материалах, без пренебрежения строительными нормами. Методика расчета основана на продвинутом алгоритме математической модели с учетом нормативных документов СНиП 2.02.01-83 (СП 22.13330.2011), СНиП 3.03.01-87 (СП 70.13330.2011), СНиП 52-01-2003 (СП 63.13330.2010), СНиП 23-01-99 (СП 131.13330.2012).
По результатам работы калькулятора вы получите подробную смету на строительство фундамента под ключ, удобный и наглядный чертеж конструкции, простую и понятную схему вязки арматуры, а также интерактивную 3D-модель для оценки получившегося сооружения. Мы даем доступ к скачиванию всех материалов в форматах OBJ, PNG и PDF.
Вам будут известны следующие параметры:
- Характеристики фундамента. Ширина, толщина, объем, глубина заложения, допустимые нагрузки на грунт.
- Материалы. Количество арматуры, вязальной проволоки, досок для опалубки, бетона, цемента, щебня, песка.
- Объем земляных работ. Необходимая кубатура грунта, которую придется освободить под фундамент.
На данный момент доступен расчет ленточного фундамента (полноценный) и монолитной плиты (упрощенный). В скором времени должны появиться калькуляторы для вычисления свайного, столбчатого и винтового фундаментов. Добавьте наш сайт в закладки и не пропустите их появление!
Калькулятор фундамента KALK.PRO на основании встроенного расчета материалов и арматуры продемонстрирует вашу будущую конструкцию. С помощью 3D-визуализации вы сможете посмотреть, как должен выглядеть ваш армокаркас, вплоть до мельчайших деталей.
Содержание
Расчет фундамента
Возведение любого дома начинается с расчета фундамента, он является опорой для всей вышележащей конструкции и оттого насколько качественно его смонтировали, зависит долговечность всего сооружения. Принимая решение о выполнении работ по созданию основания своими руками, важно не допустить ошибок при начальных вычислениях и тем более не нужно пытаться сэкономить на материалах. Помните, что грамотно спроектированный фундамент — залог вашей безопасности.
Инструкция
Рядовому пользователю необязательно быть специалистом в строительстве для того, чтобы пользоваться нашим сервисом. Интерфейс интуитивно понятен, а любое недопустимое значение программа обозначит красной подсветкой.
В большинстве случаев, от вас требуется лишь ввести минимальное количество информации:
- предполагаемые габариты фундамента;
- марку арматуры на выбор;
- марку бетона.
В процессе расчета фундамента под дом, вам может быть потребуется ввести некоторые дополнительные величины, но их также можно рассчитать на наших калькуляторах:
Мы подготовили для вас ознакомительное видео, в котором поэтапно рассказывается весь функционал и принцип работы калькулятора фундамента онлайн.
Наш калькулятор также позволяет произвести расчет объема (кубатуру) фундамента в м3, для того чтобы заранее знали, какой объем земляных работ предстоит выполнить.
Расчет бетона на фундамент
Бетон является важнейшим компонентом фундамента, по сути это его «плоть» и от того насколько качественная смесь используется, зависит большинство характеристик основания. При выборе раствора особое внимание стоит уделять показателю класса (марки) прочности, который определяет предельно-допустимые нагрузки на сжатие полностью сформировавшейся смеси. Выражается в кгс/см², т.е. сколько кг способен выдержать 1 см2 поверхности.
По большей части, марка бетона определяется пропорциями цемента, песка (щебня, гравия) и воды, а также условий при которых раствор затвердевал Всего существует около 15 классов прочности о тМ50 (В3,5) до М800 (B60), но в частном строительстве наиболее распространены марки М100-М400. Соответственно, бетон М100 подходит для легких сооружений – гаражей, бань, оборудования, а М400 – для многоэтажных тяжелых зданий, например, из кирпича. Но в абсолютном большинстве случаев, выбирается бетон марки М300.
С помощью нашего калькулятора, вы получите расчет бетона на фундамент (объем, масса). Все значения будут доступны прямо в интерфейсе – вам не нужно переключаться на другие вкладки. Однако от вас требуется ввести, используемую марку бетона.
Расчет цемента на фундамент с помощью нашего онлайн-калькулятора никогда не был таким простым. Просто заполняйте поля в инструменте и в результатах расчета вы получите необходимые значения!
Расчет арматуры для фундамента
Арматура – второй по важности компонент фундамента (его «кости»), который позволяет компенсировать и нивелировать воздействующие нагрузки на расстяжение и изгиб. Всеизвестный факт, что бетон не отличается гибкостью и пластичностью, однако он обладает высокой прочностью на сжатие. Для того чтобы объединить эти качества и повысить эксплуатационные характеристики основания, а также недопустить деформации после возведения сооружения – фундаменты армируют.
Армирование фундамента представляет собой создание определенный типа каркаса из соединенных горизонтальных, вертикальных и поперечных стержней. Наиболее значимой характеристикой арматуры является ее диаметр и ее выбор зависит от типа грунта, температурных особенностей, стеновых материалов и габаритов возводимой конструкции. Считается, что для легких построек оптимально применять 10 мм стержни, 12 мм – для одноэтажных и малоэтажных зданий из пористых материалов, 14 мм – для малоэтажных из тяжелых материалов, 16 мм – для многоэтажных сооружений и сложных грунтов.
Вторым важным показателем является шаг вязки арматуры. Обычно он подбирается на глаз, на основании общей массы конструкции и типа подстилающего грунта, величина должна находится в пределах 200-600 мм. Стандартный интервал, который применяют в частном строительстве – 500 мм.
Встроенный калькулятор расчета арматуры на фундамент позволяет получить посчитать количество стержней, их общую длину, массу и объем. Результат предоставляется, как при расчете ленточного фундамента, так и монолитной плиты.
Наш калькулятор будет полезен при расчете фундамента для дома из газобетона, пенобетона, кирпича и других строительных блоков!
Рассчитать фундамент под дом
В современных реалиях рассчитать фундамент под дом может практически каждый — вам не нужно обладать специальными знаниями и необязательно пользоваться дорогостоящими услугами специалистов. Однако перед тем, как начать строительство необходимо понимать, какой вид фундамента будет наиболее рациональным для вашего участка. Напомним, что физико-географическое положение и геоморфологические условия местности, оказывают непосредственное влияние на тип и стоимость будущей конструкции.
Факторы выбора типа основания
Почва — важнейший фактор при строительстве дома, от ее состава напрямую зависит, трудоемкость процесса и затраты на сооружение фундамента. В некоторых случаях доходит до того, что выгоднее купить новый участок, чем вкладываться в преобразование существующего. Поэтому самое первое, что вам необходимо сделать на новом участке – это определить тип грунта.
Если у вас нет лишних денег, то вам необходимо научиться определять почвы самостоятельно. Важно знать, что все виды грунтов делятся на скальные, глинистые и песчаные. Каждый тип обладает своим набором уникальных свойств, самыми важными из которых являются несущая способность, пучинистость и глубина промерзания.
Грунтовые воды — второй коварный спутник любого строителя. Если у вас высокий уровень залегания водоносного горизонта, то это очень плохие перспективы в будущем. В теплых регионах будут беспокоить бесконечные подтопления, сырость, плесень и грибки. Растворенные агрессивные химические соединения будут медленно убивать ваше основание, разрыхляя и растворяя бетон.
В холодных областях предыдущие факторы действуют в меньшей степени, зато силы морозного пучения с легкостью разорвут неправильно построенное основание за несколько зим. Поэтому крайне важно строить дом на возвышенностях и избегать низменностей, особенно если рядом находится водотоки и водоемы.
Провести анализ грунта и узнать уровень грунтовых вод, вам помогут наши статьи в разделе «Фундаменты, грунты, основания». Рассчитать нагрузки и остальные важные параметры, согласно СНИП, вы сможете с помощью соответствующих калькуляторов нашего проекта KALK.PRO.
Температура – объединяет два предыдущих фактора в единое целое. Она является последним решающим фактором, который может повлиять на выбор основания.
При строительстве фундамента наиболее важными показателями являются глубина промерзания грунта и уровень залегания подземных вод. В условиях континентального климата (при низких температурах зимой и высоких летом), который встречается на большей части территории России, ежегодно почвы промерзают на значительную глубину, а затем оттаивают.
В случае, если УГВ находится выше отметки промерзания, то начинают действовать силы пучения. Вода, содержащаяся в грунте, замерзает и превращается в лед, тем самым увеличивая свой объем.
Мощь этого процесса нельзя недооценивать, силы с которой они могут давить на фундамент составляют десятки тонн на квадратный метр. Такое внушительное воздействие с легкостью деформирует любую конструкцию и приведет ее в движение.
Поэтому очень важно знать нормативную глубину, на которую ежегодно промерзает грунт. Закладывая фундамент ниже этого уровня, вы оберегаете его от этих разрушительных сил, но одновременно с этим пропорционально возрастает стоимость основания.
Виды фундаментов для дома
Отталкиваясь от этих «входных» условий, теперь можно перейти к обзору видов фундаментов. Их классификация основывается на конструктивных особенностях и технологии возведения. Наибольшей популярностью пользуются ленточные, монолитные, столбчатые, свайные основания и их комбинации.
Ленточный фундамент
Ленточный фундамент – свое название получил из-за внешнего сходства с лентой. Монолитная или сборная железобетонная полоса проходит под всеми несущими стенами здания, оказывая равномерное давление на грунт.Один из самых простых и доступных в частном строительстве.
Трудоемкость процесса минимальна, технология монтажа не отличается особой сложностью и обходится относительно недорого. Подходит для большинства случаев при сооружении малоэтажных зданий, легко выдерживает большие нагрузки. При низком уровне грунтовых вод используется мелкозаглубленный ленточный фундамент, при высоком – заглубленный.
При крайне проблематичных почвах, когда ленту приходится очень сильно заглублять на 2 м и более, целесообразность использования данного вида основания пропадает и следует рассмотреть другие варианты.
Монолитная плита
Плитный фундамент – монолитная железобетонная плита, расположенная под всей площадью здания. За счет большого объема земляных работ и огромных затрат на бетон, стоимость конструкции возрастает в разы, по сравнению с лентой. Это один из самых дорогих, но в то же время эффективных видов оснований.
Из-за однородности и большой площади соприкосновения с грунтом, этот вид фундамента легко переносит значительные вертикальные и горизонтальные нагрузки. ;Ему не страшны силы морозного пучения и высокий уровень грунтовых вод. Он стабильно проявляет себя на слабонесущих почвах, а также выдерживает тяжелые дома из кирпича и камня.
Столбчатый фундамент
Столбчатый фундамент – это конструкция из столбов и перекрытий, которая применяется при возведении сооружений из легких материалов. ;Устройство фундамента крайне незамысловато. По периметру и в местах повышенной нагрузки (чаще всего это пересечении стен), ставятся столбы, которые сверху соединяются балками из дерева или металла.
Данное основание приобрело широкую популярность из-за активного строительства домов из бруса и СИП-панелей. Оно экономично, надежно и не требует работ по гидроизоляции. Защищает ваш дом от плесени и преждевременного разрушения древесины. Тем не менее, фундамент крайне требователен к грунту, ему категорически запрещены подвижки и пучения.
Свайный фундамент
Свайный фундамент – представляет собой комплекс из многочисленных свай, которые создают устойчивый каркас для равномерного распределения нагрузки по всем элементами конструкции. Основания данного типа являются спасением для обладателей участков с неустойчивыми грунтами и сложным рельефом местности. Помимо того, что они позволяют надежно закрепить здание, так они еще и укрепляют саму почву, предотвращая подвижки и оползни.
Существует три основных вида свайных фундаментов:
- На винтовых сваях;
- На буронабивных сваях;
- На забивных сваях.
Каждый из них имеет свои плюсы и минусы, но наиболее распространенным является первый тип, так как сочетает в себе низкую стоимость и отвечает всем стандартам частного строительства.
Спасибо, что пользуетесь нашим калькулятором фундамента, с уважением команда KALK. PRO!
Способы и пример армирования столбчатого фундамента, видео
Основным конструкционным материалом столбчатого фундамента является бетон. Он прочен, надежен, долговечен. Он выдерживает значительные нагрузки на сжатие, а потому основание дома остается целым на протяжении всего времени эксплуатации здания, независимо от давления грунта на него. Однако существуют еще нагрузки на растяжение и изгиб. Они возникают при давлении всей конструкции на подземную часть постройки. Кроме того в холодное время года, когда грунт промерзает на значительную глубину, заледенелая земля пытается вытолкнуть из себя столбы фундамента, когда как не промерзший грунт удерживает его внутри. Чтобы под подобными нагрузками основание дома не потеряло своей целостности, используется армирование столбчатого фундамента.
Способы армирования столбчатого фундамента
Сегодня в строительном мире существуют следующие виды армирования столбчатого фундамента:
- вертикальное – оно же и основное. Выполняется из ребристой арматуры, класса не ниже А-III. Толщина материала может лежать в пределах 10-15 мм. Данный показатель зависит от предполагаемых нагрузок на фундамент и вычисляется, исходя из табличных данных нормативной документации и полевых исследований. Фактурная поверхность арматуры обеспечивает улучшение ее степени сцепления с бетоном, что только усилит конструкцию. Вертикальная арматура проходит вдоль всего столба фундамента. В зависимости от площади сечения последнего вертикальных армирующих прутов может быть от 2 штук до 6 штук. Чем больше количество армирующих прутков содержит столб, тем равномернее распределится нагрузка на изгиб и растяжение, а следовательно долговечнее будет фундамент. Однако здесь нужно выполнять определенные требования к армированию столбчатого фундамента: армирующий каркас не должен проходить ближе, чем на 5 см к краю бетонного столба;
- горизонтальное – считается вспомогательным. Выполняется из гладкой арматуры, диаметром не более 6 мм. Она необходимо лишь для обвязки каркаса.
Чаще всего столбчатый фундамент заканчивается горизонтальным ростверком. Данная конструкция также подлежит армированию, так как на нее действуют переменные нагрузки. С одной стороны от тяжелых несущих и ограждающий конструкций здания, а с другой – от вспучивания грунта. Последние передаются от столбов основания строения. Армирование ростверка проходит по принципу усиления армирующим каркасом ленточного конструкции.
Совет!!! Диаметр лучей арматуры рассчитываются исходя из относительного содержания железных прутьев в бетонном столбе. Так, общее сечение арматуры не должно быть меньше 0,1% от общего сечения столба основания дома.
Нормативная документация по армированию столбчатого фундамента
Армирование столбового фундамента проходит согласно следующего ряда нормативных документов:
- СНиП 52-01-2003 о бетонных и железобетонных конструкциях;
- СНиП 2. 01.07-85 о нагрузках и воздействии;
- СП 50-101-2004 проектирование и устройство различных оснований здания;
- СНиП 3.02.01-87 основания и фундаменты, другие земляные сооружения.
Пример расчета армирования столбчатого фундамента
Примерный расчет армирования столбчатого фундамента:
Согласно СНиПу 52-01-2003, для армирования стандартного двухметрового столба, диаметром 200 мм необходимо 4 стальных прута с площадью поперечного сечения каждого до 10 мм. Согласно стандартам такой каркас должен закрепляться в минимум четырех местах горизонтальным армирование. Оно выполняется проволокой 6 мм в диаметре.
Итак, для одного столба для вертикального армирования нужно 8 м ребристой арматуры, для горизонтального армирования 1,2 м обычной стальной проволоки. Если фундамент е из приведенных значений умножаем на 30. Получаем необходимую для армирования столбчатой основы длину стальной проволоки.
Вывод
Итак, для усиления столбчатого фундамента необходимо вертикальное и горизонтальное армирование. Усилению стальной проволокой подлежит и горизонтальный ростверк. Армирование проводится только в полном соответствии с нормативной документацией. Согласно установленным нормам проводятся и предварительные расчеты относительно требуемого количества арматуры.
Видео-обзор заливки столбчатого фундамента:
Столбчатый фундамент, столбчато ленточный фундамент, расчет столбчатого фундамента и цена
Средняя продолжительность службы столбчатых фундаментов 30-50 лет. Почему и с чем это связано вы узнаете, прочитав данную статью. В ней подробно будет рассказано про столбчатый фундамент, а также про:- устройство столбчатых фундаментов
- устройство опорно столбчатый фундамент
- устройство ленточно столбчатый фундамент
- устройство столбчатого фундамента с ростверком
- как производят расчет столбчатого фундамента
- цена на столбчатый фундамент
Устройство столбчатых фундаментов
Когда возводят столбчатый фундамент дома, то в отличие от ленточного фундамента и любого другого возведение не возможно без предварительного плана дома. В начале берется план будущего дома, потом отмечаются места пересечения несущих стен и все углы здания, и в соответствии с отмеченными местами устанавливаются столбы под фундамент. Дальше в зависимости от тяжести будущего дома устанавливаю дополнительные столбы на расстоянии 1.5 – 3 метра друг от друга. По устройству столбчатые фундаменты делятся на 5 различных типов, в зависимости от материала из которого изготовляются столбы для фундамента. Минимальное сечение столба:- из бетона – 400мм
- из бутобетона- 400 мм
- из естественного камня – 600 мм
- из бута-плитняка – 400 мм
- из кирпича выше уровня земли – 380 мм
- в подготовленные траншеи насыпается песчаная подушка в 40-50 см
- песчаную подушку заливают бетоном или устанавливают монолитную железобетонную ленту
- сверху на ленту на расстоянии 2. 5 – 3.5 метров ставят кирпичные или бетонные столбы
- между столбами засыпают забивку из кирпича, благодаря этому загородный дом будет надежно защищен от продувания снизу
Устройство опорно-столбчатых фундаментов
Устройство столбчатых фундаментов должно включать обязательную предварительную опору под каждым из столбов. Варианты опоры делятся на две категории: целиковая опора для всех столбиков, представляет собой монолитный столбчатый фундамент (см. Ленточно-столбчатый фундамент) и частичная опора. Частичная опора состоит из четырех бетонных блоков. Размер каждого из блоков должен быть минимум 200*200*400. В зависимости от габаритов будущего загородного дома кладут нужное количество столбов. Некоторые люди разделяют столбчатый фундамент и опорно столбчатый фундамент, но это не совсем правильно. Столбчатый фундамент с ростверком. Для большей устойчивости столбов фундамента и и опоры целиком при строительстве дома после выверки верхнего обреза основных столбов фундамента делают ростверк из либо из монолитного железобетона, либо из отдельных сборных железобетонных элементов.Устройство ленточно-столбчатых фундаментов
Ленточно-столбчатый фундамент при неоднородных и очень слабых грунтах. Технология заливки столбчатого фундамента такая же, как и при установке ленточного фундамента. Отсюда и двойное название. Укладывают ленточно-столбчатый фундамент по следующей технологии:Расчет столбчатого фундамента
Главная задача, которую решают перед тем, как начать возводить столбчатый фундамент — это расчёт столбчатого фундамента. Глубина заложения зависит от грунта, который в будущем будет служить основой фундаменту, поэтому важна его прочность. Когда готовят котлованы под строительство загородных домов, то снимают весь грунт, пока не будут достигнуты несжимаемые слои. Обычно эта глубина определяется глубиной промерзания. Если столбчатый фундамент заложить на недостаточную глубину, то из-за промерзания грунта возможны деформация фундамента. Также следствием этого будет возникновение трещин в фундаменте. Поэтому перед укладкой необходимо произвести расчет столбчатого фундамента.Цена на столбчатый фундамент
Стоимость на столбчатый фундамент определяется технологией укладки фундамента и глубиной заложения. Средняя стоимость такого фундамента близка к стоимости свайного фундамента. Для дома 6*6 составляет 40000 т.р.Проектирование и расчет фундаментов — НТЦ «АПМ»
Особенности расчёта фундаментов
Подобно проектированию стальных и железобетонных конструкций в APM Civil Engineering, расчёт фундаментов предполагает выполнение либо проектировочного, либо проверочного расчёта, на основании имеющихся исходных данных об инженерно-геологических условиях строительной площадки и внешних термосиловых воздействиях на сооружение.
Выполнение проектировочного расчёта фундаментов в программе APM Civil Engineering предполагает получение в качестве результатов габаритов фундаментов (геометрических размеров), требуемое армирование, значения осадок и давления под подошвой фундамента.
Проверочный расчёт позволяет сформулировать выводы о соответствии применяемого фундамента и его конструктивных особенностей требованиям нормативных документов по прочности, трещиностойкости, деформациям и пр.
Независимо от выполняемого расчёта и типа фундамента, предполагается на начальном этапе построение адекватной расчётной модели, учитывающей только существенные особенности рассчитываемого объекта, который может быть смоделирован с применением различных типов конечных элементов (стержневые, плоские, объёмные), с последующим анализом параметров напряжённо-деформированного состояния. Затем, на основании полученных силовых факторов и известных параметров основания, выполняется расчёт фундаментов зданий и сооружений.
Стоит отметить, что расчёт фундаментов с применением параметрических моделей упругого основания требует выполнения итерационной процедуры расчёта. Как правило, такой подход применяется в случае описания механического поведения грунта в виде граничных условий, представленных коэффициентами постели – механическими характеристиками основания, жёсткость которых оказывает существенное влияние на результаты расчёта. Другой подход основан на использовании пространственных конечно-элементных моделей грунта с соответствующим математическим описанием. Последний подход позволяет дать достоверное описание поведения грунтовых массивов послойно, оценить характер распределения напряжений в грунтах, а также значения осадки при действии внешних нагрузок.
Проектирование фундаментов в APM Civil Engineering реализовано в виде расчётов конструктивных элементов, а также с помощью стандартного конечно-элементного моделирования.
В качестве конструктивных элементов могут быть рассмотрены столбчатые, плитные и свайные фундаменты. Функциональные возможности APM Civil Engineering позволяют сформировать инженерно-геологические элементы и скважины, с заданными параметрами грунтов, на основании данных об инженерно-геологических условиях строительной площадки. Скважины располагаются с привязкой к рассчитываемому зданию и сооружению согласно полученным исходным данным. На основании заданной системы скважин с соответствующими инженерно-геологическими элементами, программа APM Civil Engineering выполняет визуализацию напластований грунтов. Данные результаты при необходимости можно использовать для формирования объёмной-конечно элементной модели грунтового массива.
По выполненным скважинам APM Civil Engineering в автоматическом режиме выполняет расчёт жёсткости упругого основания. После завершения итерационной процедуры по вычислению жёсткости упругих опор, моделирующих деформацию основания, инженер с использованием диалога работы с конструктивными элементами, имеет возможность осуществить подбор геометрических размеров фундамента, его армирование и получить результаты расчёта осадки и крена.
Стоит заметить, что расчёт столбчатых фундаментов, может быть выполнен в APM Civil Engineering путём автоматической установки упругих опор, с характеристиками рассчитанными в диалоге конструктивных элементов, и зависящих от заданных габаритов столбчатого фундамента и внешних нагрузок. Такой подход в расчёте позволяет консервативно оценить деформации основания.
Как показывает практика строительного проектирования, зачастую возникает необходимость выполнения расчёта системы «сооружение – фундамент – основание» путём моделирования грунтового массива объёмными конечными-элементами, например, при расчёте подземных сооружений, с использованием массивных фундаментов и пр. В программе APM Civil Engineering для таких целей реализована модель Друкера-Прагера, которая совместно с возможностью моделирования массивных тел, построенных с использованием объёмных конечных элементов, позволяет инженеру проектировщику выполнять требуемые расчёты. Подобный функционал позволяет пользователю решать сложные задачи, учитывающие совместную работу толстых фундаментных плит с основанием, совместную работу свай, ростверка и грунта.
Расчёт нагрузки на фундамент
В данной статье мы рассмотрим особенности расчета нагрузки на фундамент дома. Вы узнаете, зачем необходимо осуществлять данные расчеты и как сделать их самостоятельно. Будет детально изучена технология определения несущей способности грунта, вычисления массы здания и силы снеговых и ветровых воздействий, а также продемонстрирована последовательность таких расчетов на практике.
Нагрузка на фундамент — это допустимые цифровые значения, обозначающие несущую способность. Проведение точных расчётов сопряжено с выполнением геологических исследований и определением степени рыхлости грунта и насыщения его влагой.
Зачем проводятся расчёты нагрузки на фундамент
Расчет нагрузки, которую будет переносить фундамент в процессе эксплуатации, является ключевым этапом проектирования любого основания. Исходя из данных расчетов определяются необходимые несущие характеристики будущего фундамента, его типоразмер и опорная площадь.Определяемые нагрузки веса здания, снегового и ветрового воздействия, а также эксплуатационного давления, также сопоставляются с несущей способностью грунта на строительной площадке, поскольку несущая способность почвы, в некоторых случаях, может быть меньшей, чем несущие свойства самого фундамента.
Рис: Возможный результат неправильного расчета нагрузок на фундамент дома
Ответственное отношение к проведению данных расчетов гарантирует, что фундамент под конкретное здание будет подобран правильно. В противном случае, вы рискуете построить дом на слишком слабом фундаменте, что приведет к его разрушению и деформации, либо обустроить фундамент с недостаточной опорной площадью, который под весом здания просто осядет в грунт. Важно: определение нагрузок на фундамент и сопоставление их с несущей способностью грунта лучше всего доверить профессиональным проектировочным организациям, которые выполнят все расчеты согласно строительных норм. В случае, если вы решились сделать это самостоятельно, крайне важно досконально изучить методику проведения данных расчетов.
Общие правила проведения расчёта нагрузки на фундамент
Определяется нагрузка посредством использования переменных и постоянных величин:- масса здания;
- вес основания;
- снеговые нагрузки на кровлю;
- ветряное давление на здание.
Расчёт нагрузки на ленточный фундамент
Определение нагрузки на ленточное основание начинается с подсчёта массы самой ленты, для чего используется следующая формула:Pфл= V × q.
Расшифровка формулы:V – объём стен;
q – плотность материала основания.
Необходимо произвести суммирование всех типов давления на фундамент, для чего можно воспользоваться следующей формулой: (Pд+Pфл+ Pсн+Pв)/ Sф.
Внимание! Важно, чтобы результат вычислений, выражающийся в удельной нагрузке, был меньше допустимых значений сопротивления почвы. Разница должна составлять порядка 25%, что необходимо для компенсации неточностей.
Получение точных сведений, возможно при учёте видов стен, надо определить, какие из них несущие и выполняют функцию удержания перекрытий, лестничных пролётов, стропил. Выявляются самонесущие стены, выполняющие функцию поддержания исключительно собственной массы. Исходя из этих данных, определяют под какую сторону закладывать стены определённой ширины, с обязательной проверкой допустимых значений.
Расчёты нагрузки в программе «APM Civil Engineering»
Расчёт нагрузки на столбчатый фундамент
Определение нагрузки на фундамент столбчатого типа, осуществляется по одной формуле. Здесь надо учитывать, что воздействие здания будет распределяться между всеми существующими опорами. Требуется умножить площадь сечения столба (Sс) на высоту (H). Результатом вычисления станет получение объёма, который следует перемножить с плотностью материала, используемого для возведения фундамента (q)и общим числом столбиков, заглубляемых в почву.- Вычисления будут проводиться по следующей формуле: Pфc= Sс× H× q×N.
- Определить суммарное сечение, можно по следующей формуле: Sсо= Sс × N.
Важно! Если при проведении расчётов выясняется, что грунтовое давление превышает допустимые значения, то следует изменить используемые параметры и прибегнуть к расширению опорной площади. Требуется увеличить число опор и сделать их большего диаметра, что поможет получить основание с нужными параметрами.
Расчёт нагрузки на свайный фундамент
Особенностью расчёта свайного основания, является необходимость выявления массы здания (P), которая делится на количество опор.Внимание! Требуется подбирать сваи с нужными показателями длины и необходимыми прочностными характеристикам, принимая во внимание геологические характеристики грунта. Так как в процессе эксплуатации свайный фундамент несет те же нагрузки, что и остальные виды фундамента — от массы здания, полезного давления, снежного покрова и ветра.
Рассчитывать нагрузку на свайный фундамент необходимо для того, чтобы в дальнейшем при проектировании ее можно было сопоставить с максимально допустимой нагрузкой на грунт строительной площадки, и при необходимости увеличить число свай либо сечение используемых опор
Чтобы сопоставить допустимые нагрузки на свайный фундамент и грунт необходимо выполнить следующие расчеты:
- Определить вес здания и все сопутствующие нагрузки, просуммировать их и умножить на коэффициент запаса надежности;
- Определить опорную площадь одной сваи по формуле: «r2 * 3.14» (r- радиус сваи, 3,14 — константа), после чего вычислить общую опорную площадь основания, умножив полученную величину на количество свай в фундаменте;
- Рассчитать фактическую нагрузку на 1 см2 грунта: массу здания разделяем на опорную площадь фундамента;
- Полученную нагрузку сопоставить с нормативной допустимой нагрузкой на грунт.
- Фактическая нагрузка на грунт: 95000/35325 = 2,69 кг/см2.
Важно! Если бы нагрузки были больше допустимых, потребовалось бы увеличить опорную площадь фундамента, увеличив количество свай либо их сечение.
Порядок проведения вычислений и расчётов
Независимо от типа основания, расчёты производятся в следующей последовательности:- Необходимо выяснить параметры, касающиеся единицы длины опоры, помимо нагрузок от веса самого строения, которые состоят из массы стен, перекрытий и кровли, также определяется эксплуатационное давление, нагрузки от снегового покрова и ветровые нагрузки;
- Расчет массы фундамента. Основание дома также будет оказывать нагрузку на почву, которую необходимо высчитать и добавить к нагрузкам от массы здания. Чтобы сделать это, нужно исходя из габаритов (высоты, ширины и периметра) определить объем основания, и умножить его на объемную плотность бетона (массу одного кубометра).
- Расчет несущих характеристик почвы — для этого нужно определить тип грунта, и в соответствии с нормативными таблицами вычислить допустимую нагрузку на 1 кв.см. почвы.
- Cверка полученных данных с сопротивлением почвы – если возникает необходимость, то осуществляется корректировка площади опоры, например, в случае с ленточным основанием, увеличивается его толщина. При обустройстве свайных или столбчатых оснований необходимо увеличить количество опор в фундаменте либо площадь их сечения;
- Измерение фундамента – определение размеров;
- Вычисление толщины подушки из песка, формируемой непосредственно под подошвой. Уплотняющая подсыпка из песка и гравия необходима для предотвращения усадки почвы под массой здания и для минимизации вертикальных сил пучения. В нормальных условиях ее толщина составляет 20 см (10 см песка и 10 см гравия), однако при строительстве тяжелых домов в пучинистом грунте она может быть увеличена до 50 см.
Собираем показатели грунта
При проектировании фундамента необходимо проводить геодезический анализ грунта на строительной площадке, который позволяет определить три важных показателя — тип почвы, глубину ее промерзания и уровень расположения грунтовых вод.Исходя из типа грунта вычисляется его несущая характеристика, которая используется при расчете опорной площади основания. Глубина промерзания почвы определяет уровень заглубления фундамента — при строительстве в условиях пучинистых грунтов фундамент необходимо закладывать ниже промерзающего пласта земли. На основании данных о грунтовых водах определяется необходимость обустройства дренажной системы и гидроизоляции фундамента.
Важно: вышеуказанные показатели грунта вы можете собрать самостоятельно, для этого вам потребуется лишь ручной бур и рулетка.
Для сбора показателей необходимо с помощью ручного бура по периметру площадки под застройку сделать несколько скважин глубиной 2-2.5 м. Одна скважина должна располагаться в центре участка, еще две — в центральных частях боковых контуров предполагаемого фундамента. Необходимость бурения нескольких скважин обуславливается тем, что на разных участках площадки может наблюдаться отличающийся уровень грунтовых вод.
В первую очередь нужно определить тип почвы: в процессе бурения возьмите изымаемый из скважины грунт (с глубины 2-ух меров) и скатайте его в плотный цилиндр, толщиной 1-2 сантиметра. Затем попытайтесь согнуть цилиндр.
- Если почва рыхлая и цилиндр из нее сформировать невозможно (она попросту рассыпается), вы имеете дело с песчаным грунтом;
- Цилиндр скатывается, но при этом он покрыт трещинами и разламывается при сгибающем воздействии, значит грунт на участке представлен супесями;
- Цилиндр плотный, но при сгибании ломается — легкий суглинок;
- Грунт хорошо скатывается, но при сгибании покрывается трещинами — тяжелый суглинок с большим содержанием глины;
- Почва легко скатывается, не трескается и не ломается при сгибании — глинистый грунт.
Важно: определить фактический уровень промерзания почвы в домашних условиях невозможно. Для этого необходимо специализированное оборудование, при этом сам анализ выполняется на протяжении длительного времени наблюдения за конкретным участком.
Предлагаем вашему вниманию карту расчетной глубины промерзания почвы в разных регионах России, которую нужно использовать при самостоятельном проектировании фундамента.
Рис: Границы промерзания грунтов в разных регионах России
Определяем несущую способность грунта
Ориентировочную несущую способность грунта можно определить на основе проделанных ранее изысканий. Зная тип грунт на участке под застройку сопоставьте его с данными в нижеприведенной таблице.Тип почвы | Несущая способность (расчетное сопротивление) | Тип почвы | Несущая способность (расчетное сопротивление |
Супесь | От 2 до 3 кгс/см2 | Щебенистая почва с пылевато-песчаным заполнителем | 6 кгс/см2 |
Плотная глина | От 4 до 3 кгс/см2 | Щебенистая почва с заполнителем из глины | От 4 до 4. 5 кгс/см2 |
Среднеплотная глина | От 3 до 5 кгс/см2 | Гравийная почва с песчаным заполнителем | 5 кгс/см2 |
Влагонасыщенная глина | От 1 до 2 кгс/см2 | Гравийная почва с заполнителем из глины | От 3.6 до 6 кгс/см2 |
Пластичная глина | От 2 до 3 кгс/см2 | Крупный песок | Среднеплотный — 5, высокоплотный — 6 кгс/см2 |
Суглинок | От 1.9 до 3 кгс/см2 | Средний песок | Среднеплотный — 4, высокоплотный — 5 кгс/см2 |
Насыпной уплотненный грунт (песок, супеси, глина, суглинок, зола) | От 1. 5 до 1.9 кгс/см2 | Мелкий песок | Среднеплотный — 3, высокоплотный — кгс/см2 |
Сухая пылеватая почва | Среднеплотная — 2.5, высокоплотная — 3 кгс/см2 | Водонасыщенный песок | Среднеплотный — 2, высокоплотный — 3 кгс/см2 |
Влажная пылеватая почва | Среднеплотная — 1.5, высокоплотная 2 кгс/см2 | Водонасыщенная пылеватая почва | Среднеплотная — 1, высокоплотная — 1.5 кгс/см2 |
Таблица 1: Расчетное сопротивление разных видов грунтов
Важно! Для последующих расчетов необходимо брать минимальный показатель несущей способности почвы, в таком случае вы обеспечите запас дополнительного сопротивления грунта весу здания
Расчёт нагрузки с учётом площади и региона дома
Все нагрузки на фундамент состоят из двух величин — постоянных и переменных. К постоянным нагрузкам относится вес самого здания, к переменным — сила давления снегового покрова и ветра, величина которой зависит от региона, где ведется строительство.Зная площадь дома и нормативный вес материалов, из которого он будет возводиться, можно рассчитать ориентировочную нагрузку на фундамент, исходящую от массы строения.
Для проведения расчетов воспользуйтесь следующими справочными таблицами:
Таблица 3: Расчетный вес перекрытий
Таблица 4: Расчетный вес кровли
Важно! Определив массу здания вам необходимо добавить к ней полезные нагрузки (вес людей, мебели), которые будет испытывать фундамент в процессе эксплуатации здания. Расчетная величина полезных нагрузок для жилищного строительства на каждый квадратный метр перекрытия составляет 100 кг.
Следующий этап расчетов — определение нагрузок от снегового покрова. Нормативная величина снеговой нагрузки различается в разных регионах России. Для расчета вам необходимо умножить площадь кровли здания на вес 1 м2 снега и коэффициент уклона крыши.
Осталось лишь рассчитать ветровую нагрузку на здание. Делается это по формуле:
- площадь здания * (N +15*высота здания); где N — расчетная ветровая нагрузка для разных регионов России, которую вы можете увидеть на нижеприведенной карте.
Рис: Карта ветровых нагрузок в разных регионах России
Важно! Определив все постоянные и переменные нагрузки вам необходимо их просуммировать, так вы получите совокупную нагрузку на фундамент здания. Для дальнейших расчетов ее необходимо умножить на коэффициент запаса надежности 1,5.
Наши услуги
Компания Установка Свай» занимается погружением железобетонных свай — забивка свай, лидерным бурением и поставкой свай для сооружения свайного фундамента. Если Вас интересует проведение работ, связанных с проектировкой, гео разведкой, либо возведение свайного фундамента, воспользуйтесь формой внизу сайта.Полезные материалы
Несущая способность грунта
Такое свойство грунта как его несущая способность — это первоочередная информация, которую необходимо выяснить на подготовительном этапе строительства фундамента.
Испытания свай
При строительстве часто используют в качестве фундаментов сваи. Но прежде чем вводить такие элементы в работу, должна быть проведена проверка их на прочность.
Несущая способность свай
Несущая способность свайных конструкций – это определение величины нагрузки, которую она способная воспринимать с учётом деформации грунта под её основанием.
(PDF) Проектирование фундаментов, армированных колоннами
Проектирование армированных грунтов колоннами
Мунир Буассида,
Университет Туниса Эль-Манар, Группа инженерно-геологических исследований.
Национальная инженерная школа Туниса, Тунис, Тунис
РЕЗЮМЕ
Проектирование фундаментов на укрепленном грунте с помощью колонн обычно включает две проверки: во-первых, несущую способность
и, во-вторых, расчетную осадку. В этой статье подробно описывается комплексная методология определения оптимизированного коэффициента
улучшенной площади, чтобы избежать завышенных количеств столбцов материала.Основа предлагаемой методики
состоит в оценке, во-первых, минимального коэффициента площади улучшения (IAR), соответствующего допустимой несущей способности армированного грунта
; тогда максимальный IAR выводится из проверки допустимого урегулирования. Проанализирован проект резервуара
, чтобы показать, что использование новой методологии проектирования, которая была включена в недавно разработанное программное обеспечение для
расчет армированного грунта колоннами, позволяет избежать завышенного армирования.
РЕЗЮМЕ
Le Dimensionsnement d’une fondation sur sol renforcé par colnes inclut, en premier lieu, la vérification de la capacity
portante, et, en second replace, la vérification du tassement. Этот вклад представляет собой новый метод
, определение оптимальных постоянных условий для оценки количества составляющих
колонн. Une valeur minimale du taux d’incorporation is идентифицируется как набор проверок портовой емкости
допустимо; Допускается suivie de l’estimation d’une valeur maximale du taux d’incorporation découlant de la vérification du
tassement.Проект резервуара является разоблачением для наблюдения за созданием нового творчества
Методология измерения, используемая в качестве инкорпорированного в логическом канале канала для получения выгоды от обеспечения защиты.
1 ВВЕДЕНИЕ
Хорошо известно, что усиление слабых грунтов колоннами
направлено на увеличение несущей способности, уменьшение осадки на
, ускорение консолидации
мягких грунтов за счет осушенного столба материала и
предотвращение риска разжижения, особенно
насыщенных рыхлых песков.Стоимость схем
фундамента из армированного грунта (RS) с использованием каменных колонн,
уплотняющих свай или метода глубокого перемешивания, по существу, составляет
, контролируемых объемной долей заделанного материала
, как относящейся к коэффициенту площади улучшения (IAR). Коэффициент площади улучшения
(IAR) определяется как общее поперечное сечение колонн
, деленное на площадь нагруженного фундамента
.
Слабые грунты часто имеют очень низкие характеристики прочности и жесткости.
.В эту категорию грунтов в основном входят
высокосжимаемых грунтов с недренированной прочностью на сдвиг менее
более 30 кПа, модулем Юнга менее 2 МПа и
рыхлых песков с углом трения менее 30 ° (т.е. SPT <
10) .
В зависимости от принятой техники армирования колонн
IAR варьируется от:
— от 0,15 до 0,35 для каменных колонн; Прочность материала колонны
в основном характеризуется большим углом трения
(т.е.е. больше 40 °).
— от 0,2 до 0,7 для глубокого перемешивания; Прочность материала колонны
в основном характеризуется повышенной когезией
(в двадцать раз и более, чем у исходного грунта).
— от 0,05 до 0,15 для виброуплотнения, с добавлением материала
или без него; Прочность материала колонны составляет
, характеризуется умеренным сцеплением и повышенным углом трения
.
При проектировании фундаментов на усиленном грунте колоннами
обычно проводятся проверки, во-первых, несущей способности
и, во-вторых, осадки.Конструкция
также может включать ускорение консолидации, когда колонны
ведут себя как вертикальные стоки, и потенциал разжижения в случае
рыхлых насыщенных песков.
Существующие методы часто нацелены на однократную проверку
несущей способности или осадки путем принятия модели ячейки
. Кроме того, существующие методы были сформулированы для
уникального типа техники установки колонн, то есть каменных
колонн (Priebe, 1995), (французский стандарт, 2005) или глубокого перемешивания
(Broms, 2000) и т. Д.
В этих материалах IAR рассматривался только как
данных, поэтому оптимизация количества материала колонки
не обсуждалась. Обратите внимание, что IAR не учитывается французским стандартом
для оценки несущей способности RS
по модели изолированной колонны.
Далее, независимо от способа установки колонны или
моделирования RS, ни один из предыдущих методов расчета
не учитывал как несущую способность, так и проверки осадки
.
Чтобы предложить комплексную процедуру проектирования
, в этом документе представлена новая методология, которая включает в себя проверки несущей способности
и осадки
. Более того, предлагаемая методология
учитывает результаты недавних исследований, которые были получены в рамках четко сформулированных рамок
.
Эта методология проектирования подробно описана для усиленных грунтов
концевыми несущими и плавающими колоннами.Составляющие
армированного грунта, то есть исходный грунт также
, называемый слабым грунтом и армирующими колоннами, идентично
моделируется как трехмерная среда. Армирующие колонны
расположены в произвольном порядке в архиве проекта фундамента
— The Constructor
Имя пользователя*
Электронное письмо*
Пароль*
Подтвердить Пароль*
Имя*
Фамилия*
Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный Территория нг КонгВенгрияИсландияИндияИндонезияИранИракОстров ЧеловекаИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве
Captcha *Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*
Типы фундаментов металлических зданий
Правильно спроектированный фундамент особенно важен для любого металлического здания. Он обеспечивает долговечность и предотвращает большинство форм ухудшения строения в будущем, таких как протечка или затопление, смещение или наклон стен, а также структурные повреждения.
Для стального здания проект фундамента определяет остальную часть процесса планирования и строительства и поэтому приводится в действие задолго до того, как фактическое здание становится доступным.
Существует несколько факторов, влияющих на конструкцию фундамента, которые важно учитывать, прежде чем переходить к процессу планирования.
Земля
Перед началом строительства земля должна быть профессионально обследована и размечена для выравнивания. Строителям необходимо знать границы участка. Измерение земли сильно повлияет на то, как должен быть спроектирован фундамент, а также на качество почвы.
Профилирование формирует почву в соответствии с высотой и формой земли, отмеченной геодезическими кольями.
Плохая почва может привести к смещению и опусканию стальных зданий независимо от конструкции фундамента. Хотя фундамент можно спроектировать вокруг бедной почвы, гораздо дешевле выкапывать существующую грязь и заменять ее более качественной почвой.
Груз
Стальные здания, как правило, имеют более высокую горизонтальную нагрузку, а это означает, что на них больше воздействуют боковые силы, такие как сильный ветер и землетрясения. Подобные силы могут привести к опрокидыванию зданий или их соскальзыванию с фундамента.Фундамент может помочь распределить или противостоять высокой реакции горизонтальных колонн стальных зданий с использованием стальных анкерных стержней, соединенных с анкерными болтами, или с увеличенным размером фундамента, хотя последнее может привести к более высоким затратам.
Ветровой подъемник
Столбчатый подъем возникает, когда сильный ветер создает всасывающий эффект, поднимающий здание с фундамента. Стальное здание подвержено высокому риску столбчатого поднятия, предотвращение которого начинается с фундамента. Более тяжелые фундаменты, фундамент с верхним слоем почвы на нем или более глубокие опоры в фундаменте — все это варианты снижения подъема стального здания.
Дополнительные сведения включают:
- Линии локального промерзания
- Вес оборудования или транспортных средств, которые будут размещены в здании
- Расположение анкерных болтов для крепления колонн стального каркаса
- Размеры и вес здания
Как видите, тип фундамента определяется землей, нагрузкой и ветровой подъемной силой, оцениваемой для здания. В конечном итоге цель фундамента — закрепить колонны здания, придавая устойчивость и прочность.Соответственно, следует выбирать тип фундамента с учетом этих факторов.
Кто проектирует металлические фундаменты зданий?
Обычно вы нанимаете инженера по бетону для проектирования фундамента. Местный инженер будет лучше всего знаком с типами почвы в этом районе и с тем, как местная среда будет взаимодействовать с бетоном и сталью.
Инженеру-бетонщику потребуется копия планов здания, включая планы анкерных болтов. Ваш производитель металлических конструкций может предоставить планы и любую необходимую техническую информацию.Приведены спецификации анкерных болтов, но они приобретаются на месте, а не со строительным комплектом.
Фундамент может быть завершен и отвержден до того, как строительный комплект прибудет на место, и монтаж может начаться немедленно.
Типы фундаментов металлических построек
Плавающий фундамент Плавающий фундамент (также известный как плавающая плита или просто плита) — популярный вариант для большинства коммерческих и промышленных зданий. Представляет собой бетонную плиту с неразрезной балкой.Его заливают и выкладывают под колонну или укрепляют вдоль дна и выдерживают вертикальный вес колонн.По завершении конструкции плита становится полом.
Плавучий фундамент построить проще, быстрее и доступнее, поскольку он не требует много копания, а также не требует опор или опор. Этот тип фундамента также лучше подходит для влажных и прибрежных участков с более мягкими почвами, поскольку он предотвращает проседание и неровности со временем.
Одна вещь, которую следует помнить о плавающем фундаменте, заключается в том, что канализационные трубы и часто большая часть электропроводки должны быть встроены в плиту заранее.
Опора, опора и поперечная балка Этот тип фундамента часто используется для строительства сельскохозяйственных зданий из стали, манежей для верховой езды и открытых павильонов. Фундамент стоит на опорах, которые опираются на квадратные или прямоугольные опоры со стеной из горизонтальных балок. В некоторых случаях вместо фундамента можно использовать просверленные опоры. Каждая опора выдерживает вес колонны, а пол можно оставить в виде грязи или гравия.Опоры и опоры несут большую часть вертикальной нагрузки стального здания.Глубоко просверленные опоры лучше работают с сухой почвой, а глубина также помогает предотвратить поднятие ветра на здание. Между тем, поперечная балка работает против пассивного давления на почву и, следовательно, противостоит реакциям горизонтальной колонны. Под землей опоры можно связать вместе, чтобы исключить смещение.
Хотя опоры, опоры и опорные балки дороже, они также более надежны и универсальны в качестве фундамента.
Стена по периметру Этот фундамент, также известный как опора по периметру, заливается вокруг внешней части конструкции, поддерживая внешние стены стального каркаса.Иногда стены по периметру используют в сочетании с опорами или бетонными плитами. Переносной фундамент Переносной фундамент пригодится для построек, которые необходимо периодически перевозить. Этот тип фундамента обычно представляет собой промышленную плиту, которая крепится по периметру бетона с помощью анкерных болтов. Хотя переносные фундаменты менее надежны, они более гибкие для различных ландшафтов. Переносные фундаменты также устраняют потенциальный риск потери высоты здания.В целом, этот вариант предлагает самый простой, самый быстрый и дешевый процесс строительства, выполняя при этом свою функцию, позволяющую перемещать стальное здание из одного места в другое.Выбор лучшего фундамента для стального здания
Почва, преобладающие ветры и нагрузка на здание — все это определяющие факторы для типа фундамента, необходимого для стального здания.
Самый популярный вариант — плавающий фундамент, потому что он дешевле и быстрее устанавливается, чем другие фундаменты.В сельскохозяйственных зданиях часто используются опоры, опоры и поперечные балки. Если ваше здание необходимо переносить с места на место, лучший вариант — переносной фундамент.
В местных или национальных строительных нормах и правилах строительства металлических фундаментов мало или вообще нет никаких спецификаций. Помощь хорошего инженера по бетону имеет решающее значение для создания подходящего фундамента для вашего металлического здания.
Экспериментальные исследования на месте уплотнения перекрывающих пластов для фундамента из базальтовой колонны с сочленениями
Каменный массив основания плотины на Байхетанской гидроэлектростанции на реке Цзиньша в основном состоит из столбчатого базальта с трещинами и трещинами.Принимая во внимание неблагоприятные факторы, такие как ослабление разгрузки или раскрытие трещин из-за взрывных работ при выемке грунта, для улучшения целостности горной массы фундамента плотины требуется затирка уплотнительного раствора. В соответствии с физико-механическими свойствами столбчатого сочлененного базальта и непрерывностью конструкции экспериментально изучается эффективность цементации перекрывающих пород. Результаты показывают, что эта технология цементации, очевидно, может улучшить целостность и однородность массива горных пород основания плотины и снизить проницаемость массива.После цементирования среднее увеличение волновой скорости горного массива составляет 7,3%. Среднее улучшение модуля деформации после заливки раствором составляет 13,5%. После затирки проницаемость 99% контрольных отверстий в испытательной секции Lugeon имела значения Lugeon не более 3 LU. Это значительное усовершенствование, которое может быть использовано в инженерных приложениях.
1. Введение
Безопасная эксплуатация арочной плотины зависит от безопасности основания плотины, конструкции плотины, гидравлического устройства и водной среды резервуара.Фундамент арочной плотины при нормальной эксплуатации испытывает огромные гидравлические нагрузки. Китай построил много плотин, но с развитием науки и технологий и совершенствованием инженерных технологий многие плотины были построены в сложных геологических условиях [1]. Гидроэлектростанция Сяовань, гидроэлектростанция Ксилуоду и плотина гиперболической арки Катсе высотой 180 метров в Лесото построены на базальте. Однако базальтовый участок Байхетанской арочной плотины более сложен. Базальт на участке Байхетанской плотины характеризуется неравномерными и волнистыми столбчатыми трещинами, неправильным и неполным цилиндрическим сечением, низким уровнем развития неявных трещин и низким модулем деформации, развитием поясов сдвига, низкой прочностью на деформацию и сдвиг, а также плотностью трещин в некоторых литологических сегментах [ 2].Столбчатые соединения и микротрещины в свежих столбчатых сочлененных базальтах представляют собой жесткие структурные поверхности, закрытые под ограничивающим давлением, легко открываемые и расслабляющиеся после сброса ограничивающего давления [3–18]. Он не может удовлетворить требования достаточной несущей способности и устойчивости горного массива основания плотины как арочной плотины. Для увеличения сопротивления деформации фундамента, улучшения сопротивления сдвигу и просачиванию поверхности конструкции, предотвращения релаксации разгрузки коренных пород на поверхности фундамента, уменьшения воздействия раскрытия поверхности трещин взрывных работ при земляных работах и улучшения целостности горной массы фундамента плотины. , необходимо провести испытание на цементный раствор для фундамента плотины, изучить и доказать возможность и надежность горного массива в качестве основания арочной плотины после цементации, а также предоставить рекомендации для разумного проектирования и определения параметров строительства цементного раствора консолидации горного массива в площадь плотины.Типичные базальтовые столбчатые швы типа І показаны на рисунке 1.
Некоторые ученые изучали технологию предотвращения просачивания при армировании фундамента плотины для различных массивов горных пород. Wu et al. [19] изучали деформацию базальтового фундамента арочной дамбы Ксилуоду. Деформация горного массива основания плотины во время земляных работ постоянно отслеживалась, и был сделан вывод об отсутствии длительной разгрузочной деформации горного массива основания плотины. Fan et al.[20] обнаружили, что когда дамба гиперболической арки Катсе, построенная на базальте, была выкопана до русла реки, из-за высокого горизонтального напряжения произошло коробление базальтового слоя и мягкого брекчированного слоя. Develay et al. [21] изучали строительство основной плотины проекта водного хозяйства Байсе на диабазовых дамбах и использовали цементный раствор для укрепления слегка выветрившихся горных массивов. Хомас и Томас [22] провели полевые и лабораторные испытания цементного раствора в трещиноватом массиве горных пород и получили лучшее представление о давлении затирки и затирочных материалах.Чжао [23] использовал методы химической заливки и замены бетона для обработки слабых слоев горных пород в фундаменте гидроэлектростанций Эртан и Шапай. Кроме того, Ли и Тан [24] изучали анкеровку горных пород и заливку цементным раствором. Карл [25] изучал использование чешуйчатого гранита в качестве основания плотины. Туркмен и др. [26] использовали цементный раствор для решения проблемы просачивания карстового известнякового фундамента плотины Каледжик (юг Турции) и построили цементную завесу длиной 200 м и глубиной 60 м вдоль плотины. Kikuchi et al.[27] изучили улучшение механических свойств фундаментов плотин за счет цементации соответствующего массива горных пород и пришли к выводу, что цементация может улучшить однородность и деформацию массивов горных пород. Salimian et al. [28] изучали влияние цементного раствора на характеристики сдвига скальных швов, и результаты показали, что цементный раствор положительно влияет на прочность горных пород на сдвиг. С уменьшением водоцементного отношения прочность цементного раствора на сжатие увеличивается, но его прочность на сдвиг не обязательно увеличивается.
В предыдущих исследованиях это может указывать на то, что столбчато-сочлененный базальт редко упоминается как инженерный случай фундамента высокой арочной плотины, а также мало ученых, которые проводят исследования по технологии армирования столбчато-сочлененного базальта в качестве основания арки. плотина. Столбчато-сочлененный базальт, использованный в качестве фундамента высокой арочной дамбы, встречается редко. Из-за наличия столбчатых швов и при совместном действии удара, падения и напряжения на месте деформация сдвига часто происходит вдоль забоя выемки с увеличением глубины выемки.Для увеличения сопротивления деформации фундамента, уменьшения воздействия взрывных работ, вызванных земляными работами, раскрытие поверхности трещины в основании плотины, а также для повышения сопротивления проницаемости структурной поверхности и целостности горного массива фундамента плотины. В соответствии с физико-механическими свойствами столбчато-сочлененного базальта, которые требуют тщательного исследования, принят метод цементации перекрывающих пород для уменьшения скального массива фундамента плотины и выработки котлована при разгрузке отскока и повреждений.Кроме того, столбчатые швы в мелководном базальте открываются за счет релаксации напряжений, и это также решает проблему растрескивания при использовании цементного раствора бетонного покрытия [29–31], эффективно улучшая сопротивление деформации и сопротивление проницаемости структурной плоскости при сдвиге; кроме того, этот подход подходит для использования при непрерывном строительстве фундамента высокой арочной дамбы.
2. Обзор проекта
2.1. Краткое описание проекта
Гидроэлектростанция Байхетан расположена в округе Ниннань, провинция Сычуань, и округе Цяоцзя, провинция Юньнань, ниже по течению реки Цзиньша, основного притока реки Янцзы.Станция связана с гидроэлектростанцией Удонгде и примыкает к гидроэлектростанции Ксилуоду. Расположение Байхетанской ГЭС показано на Рисунке 2.
Заграждение представляет собой бетонную арочную плотину с двойным изгибом с высотой верхней точки плотины 834 м, максимальной высотой плотины 289 м, толщиной арочной крыши 14,0 м, максимальная толщина торца свода 83,91 м, в том числе максимальная толщина расширенного фундамента 95 м. Длина дуги вершины плотины составляет примерно 209.0 м, разделенный на 30 поперечных стыков, и 31 участок плотины. Бетонная подушка установлена выше отметки 750,0 м, основание участка дамбы расширено, но продольные швы в дамбе не устанавливаются. Нормальный уровень воды в водохранилище составляет 825 м, а общая вместимость высокого водохранилища составляет 20,627 млрд м3 3 . Установленная мощность электростанции — 16000 МВт, среднегодовая генерирующая мощность — 62,521 млрд кВтч.
2.2.Инженерная геология Правобережья
2.2.1. Литология формации
Коренная порода на участке плотины в основном состоит из базальта (P 2 β 3 ~ P 2 β 6 ) формации Эмейшан, которая в основном состоит из микрокристаллических и скрытокристаллических базальтов. Далее следуют порфировидные базальты с миндалевидными кристаллами, с прослоями базальтовых брекчированных лав и туфов. Столбчатые соединения в этом базальте образуют колонны разного размера и длины, которые можно разделить на три типа в соответствии с их характеристиками развития (см. Таблицу 1).Базальты и четвертичные аллювиальные слои в основном обнажаются у основания плотины ниже 600 м на правом берегу. Слои базальта с порами миндалевидной формы выходят на поверхность с P 2 β 3 4 выше отметки 590 м; в P 2 β 3 3-4 , слои обнажения скрытокристаллического базальта на высоте 590 ~ 580 м и ниже на высоте 580 м; в P 2 β 3 3 , слои базальта столбчато-сочлененного типа I с диаметром колонн 13 ~ 25 см и микротрещинами, развитыми внутри колонн.
|