Двигатель вентиляционный – канальный, осевой, вытяжной, промышленный, радиальный, бытовой, тепловентиляторы для дома, видео-инструкция по монтажу своими руками, фото и цена

Содержание

Вентиляция электродвигателей-полное описание охлаждения электромашин

Приветствую вас, читатели,  на страницах сайта Электронщик. В данный момент, хочу подробно поговорить о таком значимом факторе работе электрических машин — вентиляция.

Чтобы предотвратить чрезмерный нагрев эл.машин надобно обеспечить подобающие условия отвода выделяющихся в моторах тепла.

С увеличением мощности электромашин условия удаление тепла утяжеляется, и поэтому в больших машинах необходимо использовать усиленные способы охлаждения. Способы охлаждения  зависят от конструкции исполнения электромоторов, из которых я хочу указать самые распространенные.

Итак, в мире электромашин есть три вида, это открытые,  закрытые и брызгозащищенные виды эльмашин отличающихся по конструкции.

Начнем с открытых.

Эти машины не располагают спец. приспособами для предотвращения от случайного прикосновения к токовым и крутящимся частям. Такие машины вы можете увидеть только в лабораториях.

Ну а закрытые, логически подумав, имеют все приспособления, которые предотвратят прикосновение ко всем опасным участкам электромашины.

И на последок, это брызгозащищенные. Такие же по конструкции, как и закрытые, только дополнительно на них устанавливают жалюзи и крышки с прорезями прикрытые козырьками на все отверстия электромашины. Эти детали не дадут попасть каплям влаги под углом 450.

Можно так же упомянуть взрывонепроницаемые и герметические . Сами названия говорят за конструкцию машин, так что не будем заострять на них внимание, а плавно перейдем к способам охлаждения электрических машин.

Способы охлаждения электрических машин.

Давайте сразу рассмотрим различные способы охлаждения:

Первое, конечно, машины с естественным охлаждением. В этих агрегатах нет никаких спец. приспособлений для охлаждения.

Второе, электромашины с внутренней самовентиляцией. В этих агрегатах охлаждение происходит с помощью вентиляторов (крыльчатка), которая закрепляется на вращающем элементе машины и обдувает внутренние полости электродвигателя.

Третье, электромашины с наружной самовентиляцией. Ну здесь и так понятно, агрегат охлаждается с внешней стороны ,а внутренняя площадь закрыта от поступления воздуха.

И последнее, четвертое- электромашины с независимым охлаждением. В эти агрегаты охлаждение подается независимым вентилятором или компрессором.

Примеры электромашин по способу охлаждения

Начнем с машин естественного охлаждения. Это обычно маленькие электродвигатели порядка несколько десятка ватт. Конечно, могут повстречаться электродвигатели и до нескольких сотен ватт, но тогда в конструкции внешней площади машины будут присутствовать ребра для усиления отдачи тепла.

Самые распространенные являются электродвигатели с внутренней вентиляцией. На практике вы наверно довольно часто встречали постоянные двигателя (электродвигатель работающий от постоянного тока) с крыльчаткой закрепленной на роторе расположенной внутри корпуса , так вот, это они и есть.

Но не забывайте, что они так  же различаются по способу системы вентиляции: радиальная и аксиальная. В аксиальном способе тепло передается воздуху при его движении вдоль охлаждаемой поверхности в аксиальном направлении, другой способ, в радиальном направлении. Честно сказать, я сам недавно узнал об этом из книжки и полноту этого момента полностью не смогу раскрыть.

Продолжим. Электродвигатели с наружной вентиляцией . Это когда крыльчатка обдувает наружную часть машины. В таких электродвигателях обязательно в конструкции должны присутствовать ребра увеличения поверхности охлаждения.

И последние, электромашины с независимым обдувом . Такие электромашины часто распространены на производстве. Обычно на корпусе электромашины крепиться независимый привод  вентилируемого агрегата.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Охлаждение электродвигателя переменного и постоянного тока

 

Для повышения надежности и увеличения сроков эксплуатации электродвигателя в его конструкции предусмотрено наличие эффективной системы охлаждения.

Классификация типов охлаждения электродвигателей

Вентиляция электродвигателя подразделяется на два типа, это:

  1. Замкнутый цикл вентиляции, в паспортных данных электродвигателя обозначен индексом – ICW37.
  2. Разомкнутый цикл – индекс IC31.

В обоих циклах подача воздуха осуществляется в оболочку или камеру электродвигателя, но в замкнутом цикле выброс воздуха наружу не производится, а по воздуховоду поступает в охладитель, после чего, при помощи добавочного вентилятора, охлажденный воздух подается обратно в двигатель.

Замкнутый охлаждающий цикл

Замкнутый цикл можно охарактеризовать тем, что воздух циркулирует в системе воздушного охлаждения. Воздухоохладитель, в котором осуществляется теплообмен между воздухом и охлаждающей водой, устанавливается перед электродвигателем. В воздушном пространстве перед вентилятором наблюдается воздушное давление равное атмосферному давлению. Температура охлаждающей жидкости на входе в охлаждающее устройство не должна превышать +30о С, а давление воды внутри воздухоохладителя не должно превышать 300 кПа. Согласно договоренности с изготовителем в воздухоохладителях может применяться морская вода.

Охлаждающий цикл разомкнутого типа

Разомкнутый цикл подразумевает удаление отработанного воздуха при помощи отверстий жалюзи в корпусе статора электродвигателя. Разомкнутый цикл выполняется двух типов:

  1. Исполнение системы с забором воздуха в двигатель из машинного зала и выбросом воздуха наружу из зоны обслуживания.
  2. Забор воздуха из специального помещения (подвала) и выбросом его внутрь машинного зала.

Разомкнутый цикл подразумевает использование для электродвигателей большой мощности — от 6300 до 8000 кВт. Для этого типа охлаждения непременным является наличие воздушных фильтров, предназначенных для получения чистого воздуха. Обязательно использование фильтров грубой и тонкой очистки, они используются совместно с коробами для отвода отработанного воздуха за границы рабочей зоны, где установлено оборудование. Выброс воздуха при разомкнутом цикле не должен происходить во взрывоопасное помещение. Для осуществления нормального режима охлаждения, расход воздуха должен быть не менее 3 м3, для этой цели предназначен специально установленный вентилятор.

Конструктивные особенности системы охлаждения асинхронного двигателя

Вентиляция асинхронного электродвигателя осуществляется по замкнутому циклу за счет использования специально для этого предназначенных воздухоотделителей. Вентиляторы располагаются на валу ротора электродвигателя. Отработанный воздух высокой температуры подвергается охлаждению в трубчатых воздухоохладителях, монтаж которых в двигателях со значением мощности до 2000 кВт выполнен в специальном туннеле фундамента. Асинхронные машины с более высокой мощностью располагают воздухоохладителями, расположенными в верхней части статорного корпуса.

Система охлаждения синхронного двигателя

Синхронные электродвигатели выполняют, как правило, продуваемого типа. Для продувки используется исключительно чистый воздух, согласно требованиям правил эксплуатации электроустановок. Нормальное исполнение двигателя подразумевает наличие замкнутого или разомкнутого охлаждающего цикла. В случае с синхронными машинами, охлаждение происходит за счет вентиляторов, установленных на валу двигателя, между наружными щитами и специальными защитными кожухами, прикрывающими контактные кольца. Воздухоохладители представляют собой трубки с проволочным оребрением. Давление в системе охлаждения контролируется приборами типа СПДМ.

Система вентиляции машин постоянного тока

Существует два типа охлаждения машин, это:

  1. Естественная вентиляция, без применения специальных устройств охлаждения.
  2. Машины с внутренней и наружной самовентиляцией.

Внутренняя самовентиляция заключается в прохождении воздушного потока во внутренней части машины, при наружном охлаждении, вентилятор расположен вне двигателя, он обдувает ребристую поверхность двигателя.

Внутренняя вентиляция подразделяется на нагнетательный или вытяжной тип, это зависит от установки вентилятора относительно к воздушному потоку, задействованному в охлаждении.

Вытяжная вентиляция аксиального или осевого типа, осуществляется за счет создания внутри машины разряженного воздуха. В этом случае воздух из атмосферы нагнетается в машину, а затем выбрасывается наружу. Осевая или аксиальная нагнетательная вентиляция работает на основе забора вентилятором воздуха, нагнетании его в машину с последующим удалением. Аксиальная вентиляция осуществляется при помощи вентиляционных каналов, расположенных внутри корпуса, параллельно валу.

При использовании радиальной вентиляционной конструкции, воздушный поток движется по каналам, расположенным перпендикулярно валу.

Недостаток самовентиляции заключается в том, что в следствии уменьшения скорости вращения, падает производительность вентилятора.

Для машин постоянного тока используется независимая вентиляция. Она бывает протяжного и замкнутого вида. Протяжная вентиляция, несмотря на свою эффективность, обладает существенным недостатком, на внутренних поверхностях машины происходит скопление грязи и пыли, что ведет к ухудшению охлаждения и может привести к аварии. Фильтры в этом случае использовать неэффективно, они слишком быстро засоряются и требуют частой замены.

Использовать замкнутый цикл более рационально, загрязнения отсутствуют, кроме воздуха можно использовать водород. Водородное охлаждение способствует десятикратному снижению вентиляционных потерь, повышается срок службы изоляции, так как отсутствуют окислительные процессы. Для предупреждения взрыва и скопления гремучих газов, по воздуховодам предварительно пропускают углекислый газ. Заполнение машины постоянного тока осуществляется под давлением выше атмосферного, что не дает воздуху попасть внутрь машины.

Требования к системе вентиляции

Для эффективности системы вентиляции, при необходимости в одновременном применении нескольких электродвигателей, предусматривается использование индивидуальной или групповой системы охлаждения. В том случае, когда первый вариант невозможен, используют систему вентиляции общую для всех электродвигателей.

Необходимо использовать вентиляторы для основного рабочего периода с возможностью применения дополнительного (резервного) вентилятора.

Групповая система охлаждения, при замкнутом цикле, подразумевает дополнительное применение самостоятельной, предварительной продувки всех машин перед пуском, в индивидуальном порядке. Это делается с целью обеспечить эффективный воздухообмен, позволяющий увеличить его стандартное значение в контуре электродвигателя в определенное, заданное время в пять раз.

Система вентиляции в обязательном порядке должна быть оборудована:

  1. Клапанами перекидного или лепесткового типа для отключения вентилятора, находящегося в резерве.
  2. В вентиляционной камере должны быть установлены обратные клапаны, они служат для отключения воздуховода от помещения, в котором находится взрывоопасное оборудование на время остановки вентиляционной системы.
  3. Для электродвигателя продуваемого типа должна быть предусмотрена блокировка вентиляционных систем, не разрешающая запуск двигателя без выполнения предварительной продувки и без создания требуемого давления в вентиляционном контуре электродвигателя.
  4. Должен быть выполнен монтаж шибера, который отключит продуваемый электродвигатель от воздуховодовода на время простоя.
  5. Рекомендуется монтаж воздуховодов вести открыто, выполнять его необходимо из сваренных труб с толщиной минимум 1.6 мм. На протяжении всего воздуховода необходимо использовать минимум фланцевых соединений, использовать фланцы допускается только в области подключения к электродвигателю для его последующего демонтажа.
  6. Скрытые воздуховоды разрешаются только в исключительных случаях, при условии наличия засыпных каналов там, где присоединение к электродвигателю выполняется ниже высоты пола. В этом случае фланцевые соединения необходимо исключить из конструкции.
  7. Выброс воздуха для электродвигателей, расположенных во взрывозащищенном помещении, при разомкнутом цикле охлаждения, извне помещения, выше уровня крыши не менее 1 м.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

podvi.ru

Вентиляция картера двигателя – принцип работы системы + Видео » АвтоНоватор

Уменьшение выброса из картера ДВС разнообразных вредных соединений в атмосферу осуществляется посредством специальной системы вентиляции картера.

Особенности системы вентиляции картера ДВС

Отработавшие газы могут попадать в картер из камер сгорания при работе автомобильного двигателя. Кроме того, в картере нередко отмечается присутствие паров воды, топлива и масла. Все эти вещества принято именовать картерными газами.

Их чрезмерное накапливание чревато разрушением тех частей ДВС, которые изготавливаются из металла. Это обусловлено снижением качества состава и эксплуатационных характеристик моторного масла.

Интересующая нас система вентиляции предназначается для того, чтобы предотвратить описанные негативные явления. На современных транспортных средствах она выполняется принудительной. Принцип ее работы достаточно прост. Он базируется на применении разрежения, формирующегося во впускном коллекторе. Когда появляется указанное разрежение, в системе наблюдаются следующие явления:

  • вывод из картера газов;
  • очистка от масла этих газов;
  • движение по воздушным патрубкам соединений, прошедших очистку, в коллектор;
  • последующее сжигание газов в камере сгорания при их смешивании с воздухом.

Конструкция вентиляционной системы картера

На разных моторах, которые производятся различными производителями, описываемая система характеризуется собственной конструкцией. При этом в каждой из таких систем в любом случае имеется несколько общих компонентов. К ним относят:

  • клапан вентиляции;
  • маслоотделитель;
  • воздушные патрубки.

Клапан необходим для корректирования давления газов, которые заходят во впускной коллектор. Если их разрежение является существенным, клапан переходит в закрытый режим, если несущественным – в открытый.

Маслоотделитель, которым располагает система, снижает явление формирования сажи в камере сгорания за счет того, что не позволяет масляным парам проникать в нее. От газов масло может отделяться по двум схемам:

  • циклической;
  • лабиринтной.

В первом случае говорят о маслоотделителе центробежного вида. Такая система предполагает, что газы вращаются в ней, и это приводит к оседанию масла на стенках устройства, а затем и его стеканию в картер. А вот лабиринтный механизм действует иначе. В нем картерные газы замедляют свое движение, благодаря чему и происходит осаждение масла.

Двигатели внутреннего сгорания наших дней, как правило, оснащаются комбинированными системами отделения масла. В них лабиринтное устройство монтируется после циклического. Это обеспечивает отсутствие турбулентности газов. Подобная система на данный момент без преувеличений идеальна.

Штуцер вентиляции картера

На карбюраторах «Солекс», кроме того, всегда имеется штуцер вентиляции (без него система вентиляции не работает). Штуцер очень важен для стабильного функционирования вентиляции картера двигателя, и вот по какой причине. Иногда качественного удаления газов не происходит из-за того, что в воздушном фильтре разрежение имеет малую величину. И тогда с целью увеличения работоспособности системы в нее вводят добавочную ветвь (обычно ее называют малой).

Она как раз и соединяет задроссельную зону со штуцером, по которому осуществляется отвод от ДВС картерных газов. Подобная дополнительная ветвь имеет совсем небольшой диаметр – не более нескольких миллиметров. Сам же штуцер находится в нижней зоне карбюратора, а именно – под насосом ускорения в области дроссельной заслонки. На штуцер натягивают специальный шланг, который выполняет вытяжную функцию.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Вентиляция картера двигателя автомобиля: как правильно организовать

Известно, что в процессе своей работы, двигатель перерабатывает топливную смесь, излишки которой, смешиваясь с воздухом должны выходить в виде отработанных газов наружу. С помощью выхлопной трубы, так все и происходит, но что бы хоть как-то минимизировать вред для окружающей среды, применяют различные фильтры. Есть свои специфические фильтры и непосредственно в двигателе, применяющиеся в системе вентиляции картера.

Картер — главная корпусная деталь двигателя, имеющая самую большую полость, в которой находится коленчатый вал, а ее верхняя часть вмещает в себя блок цилиндров. Картер также можно назвать отдельной деталью (если речь идет об небольших двигателях), такой себе коробкой, объединивший в себе все детали мотора.

При работе двигателя, часть отработанных газов из камер сгорания могут просачиваться в картер и без того уже содержащий пары топлива, масла и воды. В итоге, слившись воедино, эта смесь носит название картерных газов, сильное скопление которых значительно понижает состав и положительные свойства моторного масла, разрушая при этом металлические части двигателя.

Кроме того, эти вредные вещества попадают в атмосферу, тем самым сильно загрязняя ее. Что бы этого не случилось, существует вентиляция картера. Об конструкции и особенностях этой системы, мы расскажем в этой статье.

Особенности системы вентиляции картера ДВС

Как уже говорилось, любой современный двигатель оборудуется специальными фильтрами (можно и так назвать систему вентиляции), которые предотвращают выход из него горючих и токсичных картерных газов, путем их утилизации. Система вентиляции картера, или как ее еще называют «Система отсоса картерных газов» включает в себя большую и малую ветвь. Первая представленная в виде трубы с пламягасителем и маслоотделителем внутри (детальнее о них чуть позже), а вторая являет собой трубку, с помощью которой большая ветвь соединяется с задроссельным пространством.

В прилагающейся к автомобилю технической документации, касающееся его ремонта и обслуживания, не смотря на видимую существенную роль данной системы, ей уделяется мало внимания. А зря, ведь на современных двигателях выход из строя вентиляции картера грозит ему значительным понижением работоспособности.

Что бы система вентиляции исправно работала, необходимо учитывать такие важные моменты как наличие свежего воздуха и забор вредных газов. За способом подвода воздуха все картерные вентиляционные системы можно разделить на открытые и закрытые. Первый вариант базируется на заборе воздушных потоков непосредственно с внешней среды, а второй — использует части системы питания, такие как, например впускной такт.

Открытая вентиляционная система не работает при малых оборотах двигателя и на холостом ходу. Также, она не выполняет свое назначение на больших оборотах, а еще из-за нее возможно засасывание нефильтрированного атмосферного воздуха. Иногда, использование такой системы служит одной из причин слишком большого расхода масла и, соответственно, замасливания мотора.

Закрытая вентиляционная система картера используется в случае необходимости уменьшения степени загрязнения окружающей среды. С этой целью устанавливается специальный клапан, который выводит попавшие от принудительной вентиляции газы, во впускной коллектор мотора. Такая система имеет как плюсы, так и минусы. К первой группе следует отнести сравнительно меньший расход масла, стабильную работу двигателя зимой (входной воздух обогревается картерными газами), стойкость двигателя к детонации, так как топливно-воздушная консистенция разбавляется. Ко второй группе, включающей минусы использования относят: сильное загрязнение входных воздуховодов и карбюратора и возможность влияния на окисление масла.

Существует также классификация подобных систем в зависимости от способа отвода картерных газов. С этой точки зрения выделяют системы принудительного (подводят газы к впускному коллектору) и эжекционного (отводят газы в окружающую среду) действия.

До 1961 года все автомобилестроение применяло в выпускаемых транспортных средствах открытую систему с эжекционным принципом действия, в которых для вывода из картера газов использовали эжекционную трубку, проходящую вдоль всего двигателя к нижнему поддону картера. Когда машина двигалась, возле края трубки образовывалось незначительное разрежение, хорошо влияющее на вентиляцию картера.

Чуть позже результаты, проведенных компанией GENERAL MOTORS исследований доказали, что основное количество вредных веществ, образующиеся в следствии неполного сгорания углеводорода, выбрасывается в атмосферу именно через эжекционную трубку системы вентиляции. В следствии этого открытия, начиная с 1961 года, все автомобили, поступающие в продажу в штат Калифорния (Америка), были обязаны оборудоваться системой вентиляции принудительного действия, а с 1962 года, это требование начало действовать на всей территории США. С тех пор прошло не одно десятилетие, но двигатели именно с этой системой продолжают выпускаться и в наше время.

Конструкция вентиляционной системы картера

И так, мы уже выяснили, что в двигателях современных автомобилей применяется картерная система вентиляции принудительного действия, но разные производители, по разному подходят к вопросу ее конструкции. Наиболее сложной (но самой эффективной) является система в которой, воздух попадает в картер через отдельный воздушный фильтр.

В бензиновых двигателях, при условии, что нагрузки небольшие, одна часть разбавленных воздухом газов, попадает в воздушный фильтр, находящийся за фильтрующим эллементом, а вторая часть, через регулирующий жиклер поступает в задроссельное пространство.

Детально разбирать каждый вид вентиляционной системы картера, для отдельно взятых двигателей (бензиновых, дизельных, газовых и т.д.) очень долго, да и сейчас совершенно неуместно, поэтому сосредоточим свое внимание на основных, общих для всех компонентах: маслоотделителе, воздушных патрубках (для циркуляции газов) и вентиляционных клапанах.

Маслоотделитель создан для препятствования попаданию паров масла в полость камеры сгорания. Благодаря ему уменьшается количество образования сажи. Выделяют три способа разделения масла и газа: циклический, лабиринтный и комбинированный, который в настоящее время наиболее часто применяется. Лабиринтный маслоотделитель (успокоитель) нацелен на замедление движения картерных газов. В следствии этого, большие масляные капли стекая по стенкам попадают в картер двигателя.

Дальнейшее очищение масла от картерных газов выполняет центробежный маслоотделитель, проходя через который они начинают вращаться. В итоге, под воздействием центробежной силы, частички масла оседают на стенках, а затем также стекают в картер. Что бы предотвратить турбулентность газов, после прохождения ими центробежного маслоотделителя в ход пускают выходной лабиринтный успокоитель. Именно тут проходит окончательное разделение масла и газа.

Вентиляционный клапан картера нужен для регулировки давления картерных газов, попадающих в колектор. Если разряжение во впускном канале не очень существенное - клапан открыт, но если оно довольно ощутимое, то клапан самостоятельно закрывается.

Вся система вентиляционной работы картера базируется на разряжении, возникающем во впускном коллекторе двигателя. С помощью этого процесса переработанные газы выводятся из картера в маслоотделитель, где очищаются от масла и по специальным патрубкам переходят во впускной колектор. Там, смешавшись с воздухом, они ликвидируются в камерах сгорания. Если двигатель оснащен турбонадувом, то регуляция вентиляции картера может осуществляться с помощью дроссельной заслонки.

Штуцер вентиляции картера

Названием «Штуцер» обозначают патрубки с резьбовым соединением, помогающие объеденить части трубопровода, или соединить вентили, емкости и прочие детали жидкостных и газовых преобразующих систем. Что касается системы вентиляции картера, то тут штуцер просто незаменим, а система вентиляции карбюраторных двигателей «Солекс» без него вообще работать не будет.

Такая его незаменимость объясняется достаточно просто. Бывает, что в процессе качественного удаления газов возникают проблемы. Чаще всего, причина этого кроется в недостаточном разряжении картерных газов, находящихся в воздушном фильтре.

Для того, чтоб увеличить работоспособность системы вентиляции в нее внедряют еще одну, дополнительную ветвь (малая ветвь). Она имеет вид трубки, с помощью которой задроссельная зона соединяется со штуцером, отвечающий за отвод картерных газов от двигателя внутреннего сгорания. Диаметр этой ветви совсем маленький и составляет не больше пары миллиметров. Также, штуцер может помочь в диагностике некоторых причин сбоя в вентиляции картера. Для этого на него надевают трубку, а затем дуют в нее, если воздух не проходит — значит надо прочистить каналы системы, так как они, скорее всего, засорены.

Штуцер располагается в нижней части карбюратора, рядом с дроссельной заслонкой первичной камеры, под насосом ускорения. В случае необходимости, на эту деталь натягивают шланг, выполняющий вытяжную функцию.

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?
Да Нет

auto.today

Вентиляция электродвигателя переменного и постоянного тока

Для повышения надежности и увеличения сроков эксплуатации электродвигателя в его конструкции предусмотрено наличие эффективной системы охлаждения.

Классификация типов охлаждения электродвигателей

Вентиляция электродвигателя подразделяется на два типа это:

  1. Замкнутый цикл вентиляции, в паспортных данных электродвигателя обозначен индексом – ICW37

  2. Разомкнутый цикл – индекс IC31.

В обоих циклах подача воздуха осуществляется в оболочку или камеру электродвигателя, но в замкнутом цикле выброс воздуха наружу не производится, а по воздуховоду поступает в охладитель, после чего при помощи добавочного вентилятора охлажденный воздух подается обратно в двигатель.

Вентиляция электродвигателя

Замкнутый охлаждающий цикл

Замкнутый цикл можно охарактеризовать тем, что воздух циркулирует в системе воздушного охлаждения. Воздухоохладитель, в котором осуществляется теплообмен между воздухом и охлаждающей водой, устанавливается перед электродвигателем. В воздушном пространстве перед вентилятором наблюдается воздушное давление равное атмосферному давлению. Температура охлаждающей жидкости на входе в охлаждающее устройство не должна превышать +30оС, а давление воды внутри воздухоохладителя не должно превышать 300 кПа. Согласно договоренности с изготовителем в воздухоохладителях может применяться морская вода.

Охлаждающий цикл разомкнутого типа

Разомкнутый цикл подразумевает удаление отработанного воздуха при помощи отверстий жалюзи в корпусе статора электродвигателя. Разомкнутый цикл выполняется двух типов:

  1. Исполнение системы с забором воздуха в двигатель из машинного зала и выбросом воздуха наружу из зоны обслуживания.

  2. Забор воздуха из специального помещения (подвала) и выбросом его внутрь машинного зала.

Разомкнутый цикл подразумевает использование, для электродвигателей большой мощности от 6300 до 8000 кВт. Для этого типа охлаждения непременным является наличие воздушных фильтров, предназначенных для получения чистого воздуха. Обязательно использование фильтров грубой и тонкой очистки, они используются совместно с коробами для отвода отработанного воздуха за границы рабочей зоны, где установлено оборудование.  Выброс воздуха при разомкнутом цикле не должен происходить во взрывоопасное помещение. Для осуществления нормального режима охлаждения, расход воздуха должен быть не менее 3м3, для этой цели предназначен специально установленный вентилятор.

Конструктивные особенности системы охлаждения асинхронного двигателя

Вентиляция асинхронного электродвигателя осуществляется по замкнутому циклу за счет использования специально для этого предназначенных воздухоотделителей. Вентиляторы располагаются на валу ротора электродвигателя. Отработанный воздух высокой температуры подвергается охлаждению в трубчатых воздухоохладителях, монтаж которых в двигателях со значением мощности до 2000 кВт выполнен в специальном туннеле фундамента. Асинхронные машины с более высокой мощностью располагают воздухоохладителями, расположенными в верхней части статорного корпуса.

Система охлаждения синхронного двигателя

Синхронные электродвигатели выполняют, как правило, продуваемого типа. Для продувки используется исключительно чистый воздух, согласно требованиям правил эксплуатации электроустановок. Нормальное исполнение двигателя подразумевает наличие замкнутого или разомкнутого охлаждающего цикла. В случае с синхронными машинами охлаждение происходит за счет вентиляторов установленных на валу двигателя между наружными щитами и специальными защитными кожухами, прикрывающими контактные кольца. Воздухоохладители представляют собой трубки с проволочным оребрением. Давление в системе охлаждения контролируется приборами типа СПДМ.

Система вентиляции машин постоянного тока

Существует два типа охлаждения машин, это:

  1. Естественная вентиляция, без применения специальных устройств охлаждения.

  2. Машины с внутренней и наружной самовентиляцией.

Внутренняя самовентиляция заключается в прохождении воздушного потока во внутренней части машины, при наружном охлаждении, вентилятор расположен вне двигателя, он обдувает ребристую поверхность двигателя.

Внутренняя вентиляция подразделяется на нагнетательный или вытяжной тип, это зависит от установки вентилятора относительно к воздушному потоку, задействованному в охлаждении.

Вытяжная вентиляция аксиального или осевого типа, осуществляется за счет создания внутри машины разряженного воздуха, в этом случае воздух из атмосферы нагнетается в машину, а затем выбрасывается наружу. Осевая или аксиальная нагнетательная вентиляция, работает на основе забора вентилятором воздуха, нагнетании его в машину с последующим удалением. Аксиальная вентиляция осуществляется при помощи вентиляционных каналов, расположенных внутри корпуса, параллельно валу.

При использовании радиальной вентиляционной конструкции, воздушный поток движется по каналам, расположенным перпендикулярно валу.

Недостаток самовентиляции заключается в том, что следствии уменьшения скорости вращения падает производительность вентилятора.

Для машин постоянного тока используется независимая вентиляция. Она бывает  протяжного и замкнутого вида. Протяжная вентиляция, несмотря на свою эффективность, обладает существенным недостатком, на внутренних поверхностях машины происходит скопление грязи и пыли, что ведет к ухудшению охлаждения и может привести к аварии. Фильтры в этом случае использовать неэффективно, они слишком быстро засоряются, и требую частой замены.

Использовать замкнутый цикл более рационально, загрязнения отсутствуют, кроме воздуха можно использовать водород. Водородное охлаждение способствует десятикратному снижению вентиляционных потерь, повышается срок службы изоляции, так как отсутствуют окислительные процессы. Для предупреждения взрыва и скопления гремучих газов по воздуховодам предварительно пропускают углекислый газ. Заполнение машины постоянного тока осуществляется под давлением выше атмосферного, что не дает воздуху попасть внутрь машины.

Требования к системе охлаждения

Для эффективности системы вентиляции, при необходимости в одновременном применении нескольких электродвигателей, предусматривается использование индивидуальной или групповой системы охлаждения. В том случае, когда первый вариант невозможен, используют систему вентиляции общую для всех электродвигателей.

Необходимо использовать вентиляторы для основного рабочего периода с возможностью применения дополнительного (резервного) вентилятора.

Групповая система охлаждения, при замкнутом цикле, подразумевает дополнительное применение самостоятельной, предварительной продувки всех машин, перед пуском, в индивидуальном порядке. Это делается с целью обеспечить эффективный воздухообмен, позволяющий увеличить его стандартное значение в контуре электродвигателя в определенное, заданное время в пять раз.

Система вентиляции в обязательном порядке должна быть оборудована:

  1. Клапанами перекидного или лепесткового типа для отключения вентилятора, находящегося в резерве

  2. В вентиляционной камере должны быть установлены обратные клапаны, они служат для отключения воздуховода от помещения, в котором находится взрывоопасное оборудование на время остановки вентиляционной системы.

  3. Для электродвигателя продуваемого типа должна быть предусмотрена блокировка вентиляционных систем, не разрешающая запуск двигателя без выполнения предварительной продувки, и без создания требуемого давления в вентиляционном контуре электродвигателя.

  4. Должен быть выполнен монтаж шибера, который отключит продуваемый электродвигатель от воздуховодовода на время простоя.

  5. Рекомендуется монтаж воздуховодов вести открыто, выполнять его необходимо из сваренных труб, с толщиной минимум 1.6 мм. На протяжении всего воздуховода необходимо использовать минимум фланцевых соединений, использовать фланцы допускается только в области подключения к электродвигателю для его последующего демонтажа.

  6. Скрытые воздуховоды разрешаются только в исключительных случаях, при условии наличия засыпных каналов, там, где присоединение к электродвигателю выполняется ниже высоты пола. В этом случае фланцевые соединения необходимо исключить из конструкции.

  7. Выброс воздуха, для электродвигателей, расположенных во взрывозащищенном помещении, при разомкнутом цикле охлаждения, извне помещения, выше уровня крыши не менее 1 м.

    Пишите комментарии, дополнения к статье, может я что-то пропустил.
    Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
    Всего доброго.
  • Twitter
  • Google
  • Печать
  • Reddit
  • Facebook
  • LinkedIn
  • по электронной почте

elektrik-orenburg.ru

Система вентиляции картера: устройство, виды, принцип работы

В настоящее время, несмотря на стремительное развитие технологий, создать совершенно герметичную пару трения деталей — цилиндра и поршневого кольца - не представляется возможным. Поэтому в ДВС со временем при функционировании скапливаются продукты сгорания.

В поддон картерные газы проходят через поршневые кольца, которые прилегают к цилиндрам неплотно. В результате тепло отводится хуже, сокращается срок эксплуатации смазочной жидкости и образуется чрезмерное давление на все блочные уплотнения. Система вентиляции картера предотвращает чрезмерное картерное давление.

Развитие устройства

В начале механизм выглядел следующим образом: из картера просто выводилась трубка, выпускающая газы в атмосферный воздух и загрязняющая его. Но нормы по выбросу газов от транспортных средств серьезно ужесточались. Поэтому система вентиляции картера была вынужденно разработана производителями.

Принцип действия механизма

В том виде, в котором система известна в настоящее время, газы не просто выбрасываются в атмосферу. Они направляются в мотор посредством выведенной трубки из картера, другой конец которой подсоединен ко впускному коллектору. Оттуда газы направляются в камеру сгорания. В момент вспышки часть из них сгорает, а другая часть выбрасывается через выпускной механизм. Лишь малая доля от этих газов снова попадает в картер. Так процесс происходит без перерыва.

Типы системы рециркуляции картера

Известны два типа системы:

  • открытая;
  • закрытая.

В первом случае, как описано в начале статьи, газы отводятся просто в атмосферу. Во втором они отсасываются во впускной трубопровод. Закрытая система вентиляции картера: ВАЗом и "Ладой", БМВ и "Мерседесом", японцами и американцами применяется в основном в настоящее время.

Помимо этого, закрытые системы бывают с переменным или постоянным потоком. Первый вид более точно способен регулировать рециркуляцию картера. Он меняется в зависимости от количества поступаемых газов.

Устройство

Наверху находится маслоотделитель системы вентиляции картера, а внутри него — масляной отражатель. В его задачу входит освобождение газов от частиц масла. Маслоотделитель системы вентиляции картера имеет выход с трубопроводом. При нормальном функционировании мотора в картере постоянно должно происходить определенное разрежение. Клапан может срабатывать в трех вариантах.

Принудительная система вентиляции картера: клапан

Рассмотрим вкратце все три эти варианта.

1. За дросселем образовывается низкое давление от 500 до 700 мБар. Система вентиляции картера такой режим не выдерживает. И поршень, под действием разрежения, закрывает клапан.
2. Если дроссель открыт полностью, то давление там одинаковое с атмосферным или даже выше. При достижении 500-700 мБар поршень закрывает клапан для прохождения газов.
3. В среднем положении обеспечивается нормальное давление поршня.

Если работа клапана вызывает вопросы, то его исправность легко проверить. Для этого на холостых оборотах на горловину, куда заливается масло, кладется лист бумаги. Если он будет опускаться и подниматься вместе с мембранным движением, то клапан является исправным.

Нормальное функционирование можно проверить и другим способом. В режиме холостого оборота следует снять шланг вентиляции и закрыть его пальцем: должно чувствоваться всасывание.

Редукционный клапан

Если мотор функционирует на больших оборотах, во впускном коллекторе появляется давление, которое имеет равное значение с атмосферным или превышает его. В этом случае в картер попадает больше газов. Если во впуске имеется турбокомпрессор, то разрежение будет чересчур большим и его следует уравновесить.

Для этого предусматривается редукционный клапан, который срабатывает во впускном коллекторе, когда открывается заслонка. Механизм, состоящий из мембраны и пружины, вставляется в пластиковый корпус, в котором имеются входной и выходной штуцеры.

Работа редукционного клапана

При нормальном разрежении пружина не нагружается. При этом мембрана приподнята и газы пропускаются свободно.

При пониженном давлении диафрагма опускается и закрывает выход, преодолевая действие пружины. Тогда газы начинают движение через обходной путь — канал с калиброванным отверстием.

К сожалению, действуя положительно с одной стороны, система вентиляции картера двигателя создает проблему с другой. Выйдя из поддона, газы захватывают и частички смазки, загрязняя таким образом впускную систему. Кроме того, они оседают на поверхностях каналов выхода и деталях рециркулирующего клапана. Это ведет к сужению каналов и может стать причиной неисправностей в работе впрыска. Если же диафрагма будет заклинивать, то расход масла увеличится. Тогда придется менять клапан.

Также нужно не забывать о другой немаловажной детали и вовремя менять шланг системы вентиляции картера — обычно это делается вместе с рециркулирующими клапанами. В противном случае, на нем образуются трещины и разрывы.

Чтобы предотвратить дорогостоящий ремонт, необходимо обращать внимание на появляющиеся пятна на уплотнениях двигателя, увеличении расхода горюче-смазочной жидкости и нестабильном функционировании мотора. Если вовремя подъехать в сервисный центр, проблему удастся решить в зародыше, пока она не успела нанести существенный вред агрегату.

fb.ru

Электродвигатель для вентиляции в Санкт-Петербурге. Мотор для вентиляции в СПб

Электродвигатель для вентиляция одно из направлений деятельности компании «Нева Климат».

Мы более десяти лет профессионально занимается очисткой или заменой электродвигателя в системах вентиляции в Санкт-Петербурге (СПб) и области.

 

В системах механической вентиляции побудителем движения воздушных масс является электродвигатель. Механическая вентиляция стала активно использоваться к концу XIX века, с тех пор электродвигатель совершенствовался, и сегодня является неотъемлемой частью центробежных, осевых, безлопастных вентиляторов.

Использование электродвигателя помогает вентиляционной системе в любое время передвигать воздушные массы на большое расстояние, направление воздушных масс определяется положением электродвигателя и формой его лопастей.

За движение лопастей, расположенных внутри вентиляционной установки, и отвечает электродвигатель. В зависимости от мощности вентиляционной установки (то есть, от назначения помещения, в котором она будет использована), различают следующие электроприводы вентиляции:

  • трехфазный электродвигатель,
  • электродвигатель переменного тока,
  • электродвигатель постоянного тока.

Используется трехфазный электропривод для вентиляционных систем промышленного назначения (например, в системах с использованием теплообменника). Электродвигатель переменного тока используется в бытовых вентиляционных установках и работает с напряжением сети. Электродвигатель постоянного тока также монтируется в вентиляцию для небольших помещений или компьютерной техники (встроенные в ПК бесщеточные вентиляционные установки, дающие меньшее количество электромагнитных помех), для его работы необходимо небольшое напряжение в 5В, 12В или 24В.

Электродвигатели могут быть выполнены по схеме самовентиляции – на валы электродвигателя (мощностью от 1 кВт) насаживается вентилятор, охлаждающий воздух в таком случае проходит через обмотки. Что создает повышенную вибрацию канала вентиляции – с этим борются с с помощью гибких вставок или тканевых компенсаторов.

Самовентиляция электродвигателя накладывает ограничения на регулирование скорости вращения на низких оборотах и на оборотах, превышающих номинальную частоту вращения. Это обусловлено предотвращением выхода системы из строя – в первом случае ограничение электропривода вызвано его возможным перегревом, а во втором – дополнительным снижением полезного момента на валу электродвигателя.

Выход электродвигателя из строя будет означать прекращение работы всей вентиляционной установки, поэтому для механической вентиляции важны своевременное техобслуживание и ремонт. Даже в этом случае электродвигатель рано или поздно прекратит свою работу, но обслуживание системы вентиляции способно продлить эксплуатацию установок на срок гораздо больший, чем гарантийный. Своевременное техобслуживание системы и соблюдение правил эксплуатации позволит сэкономить средства, которые не придется вкладывать в покупку новых вентиляционных установок или электродвигателей для них.

nevaclimat.com