Где ноль и фаза в патроне: Где в патроне фаза и ноль — Ремонт в квартире

Содержание

Как правильно подключить патрон для лампочки к проводам.

Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества.

Да что говорить, иногда сами электрики делают это не правильно. Чем это может обернуться для вас при дальнейшей эксплуатации?

Например тем, что при очередной замене сгоревшей лапочки, вы элементарно попадете под напряжение и вас ударит током. Чтобы этого избежать, давайте рассмотрим все возможные ошибки при выполнении данной работы.

Виды патронов

Наибольшее распространение на нашем рынке получили 3 вида патронов:

  • карболитовые советского образца
  • пластиковые самозажимные

Подключение карболитового старого образца

Начнем с карболитовых. Данный патрон является разборным и состоит из трех частей:

  • цилиндрический корпус с резьбой
  • керамический вкладыш с контактами

Чаще всего в наших квартирах используются патроны имеющие маркировку:

Значение в цифрах обозначает диаметр цоколя лампы в миллиметрах, которая подходит для этого патрона.

Буковка «E» говорит о том, что он относится к винтовой серии с резьбой Эдисона.

Бывают еще штыревые, серии G и некоторые другие, представленные ниже.

Такие изделия рассчитаны на ток не более 4А. То есть, в сети 220В к ним можно подключить нагрузку до 900Вт.

Подключение проводов — фаза и ноль

Подключение кабеля производится в следующей последовательности.

Перво-наперво перед началом работ нужно выяснить, какая из жил в кабеле является фазой. Это главный момент отвечающий за безопасность всей дальнейшей сборки.

Делается это при помощи обыкновенной индикаторной отвертки. 

Фаза в патроне должна приходить только на нижнюю центральную часть цоколя, и более никуда.

Контакт для подключения представлен на фото ниже.

Почему это так важно? Дело в том, что в патроне у вас никогда не должна быть под напряжением резьбовая часть. Не многие знают, но выключатель света (одноклавишный, двухклавишный) при отключении разрывают только один из проводников.

Второй, так и продолжает напрямую поступать на патрон. А теперь представьте, что электрик случайно перепутал фазу с нолем и пустил через выключатель нулевую жилу.

В итоге, в один прекрасный момент, лампочка в люстре может не просто перегореть, а лопнуть с разрушением стеклянной колбы.

Вы отключите свет чтобы ее заменить, и при такой замене, вам по любому придется соприкоснуться с цоколем.

И если на него будет приходить фаза, а не ноль, то вы гарантировано попадете под напряжение.

Есть вообще светильники полностью с металлическим корпусами патронов. Стоит здесь перепутать подключение проводов, и при нештатной ситуации весь светильник целиком окажется под напряжением.

Еще часто можно наблюдать ситуацию, когда при заворачивании лампочки в патрон, она почему то не светится. Причина здесь кроется в отгибании центрального контакта. Он просто не достает до пятачка цоколя.

Чтобы исправить этот дефект, достаточно его подогнуть обратно. Многие делают это неизолированными отвертками, либо ножом.

В результате неаккуратных действий, вы обязательно заденете боковые контакты, а они у вас будут под напряжением.

Как итог — удар током вам обеспечен. Опытные электрики в этом случае советуют вообще не применять отвертки или посторонние инструменты, а воспользоваться самим патроном.

Выкручиваете цилиндрический корпус с резьбой и вставляете его боковой гранью между двух контактных площадок.

Далее краешком цепляете центральный пятачок и отгибаете его к верху. Никаких КЗ при этом вы не создадите, да и сами под напряжение не попадете.

И не важно на стене этот патрон или на потолке. Делается все в обоих случаях аналогично.

Поэтому запомните — нулевой проводник всегда должен приходить только на резьбовую часть цоколя.

Как подключать кабель с тремя проводами

У многих возникает вопрос, а куда подключать провод заземления, если у вас 3 провода в кабеле? Ведь на вкладыше с контактами больше нет свободных разъемов.

Данный третий провод, должен подключаться к корпусу самого светильника. Обычно на люстре или бра, всегда есть заводское место, куда и должна подсоединяться «земля».

Поэтому непосредственно в сам патрон, третий провод не заводится. При зачистке кабеля всегда делайте этот проводник желто-зеленого цвета большей длины, как минимум в два раза.

Хотя надо сделать замечание, что на некоторых видах керамических цоколей, есть подобные разъемы.

Они представляют из себя металлическую пластину, размещенную по центру изделия. Если позволяет место, можете сделать соединение на ней.

Преимущества и недостатки

Достоинства данного патрона:

  • простота разборки и сборки
  • надежность проверенная временем
  • контактные площадки фиксируются винтами

Во-первых, при необходимости (выгорание, оплавление) их можно заменить. Либо просто поджать при ослаблении контактов и нагреве соединения.

Кстати, данные винты нужно подтягивать изначально, еще перед непосредственным подключением проводов. Этим вы продлите срок службы патрона и лампочки в разы.

В 90% случаев лампочка и перестает светить, потому что центральный контакт греется и его площадка в виде пластинки начинает отгибаться, постепенно отходя от цоколя лампы.

Недостатки:

  • неудобство подключения к винтовым зажимам

Для обеспечения хорошего контакта, вам придется их выкручивать целиком из своего посадочного места.

При этом если у вас отвертка не марки Wera, с кучей дополнительных «фишек», то этот винтик часто выпадает и закатывается в самые неподходящие места.

Хотя опытные электрики обходятся без полного выкручивания винтов и выгибания аккуратных колечек на медных жилах. Все подключение делается гораздо проще.

Жилы зачищаются немного больше обычного (сантиметра на 2-3), а винты только ослабляются. Далее жилку заводите под шайбу с винтом и делаете оборот строго по направлению закручивания резьбы.

Это необходимо для того, чтобы при затягивании винта, колечко не разогнулось, а наоборот затянулось еще лучше.

После этого все излишки выступающие за болтиком откусываете бокорезами. У вас должно получится некое полукольцо.

Все что остается — это дожать его утконосами до полноценного колечка.

Затягивать такое соединение пока еще нельзя. Оно должно «играть» на своем посадочном месте.

Берете второй провод и проделываете с ним ту же самую процедуру. Только после этого можно затягивать винты до упора. В итоге такого подключения, не нужно ничего откручивать, заранее делать какие-то колечки, угадывая диаметр болтиков.

Все это подгоняется непосредственно на самом патроне. Экономия времени и трудозатрат что называется на лицо.

Единственный минус такого способа — расход провода будет больше на пару сантиметров чем обычно.

Подключение многожильного провода

Если же у вас многожильные провода, то здесь никак не обойтись без предварительного формирования колечка и его пропайки. Иначе 100% надежности и долговечности от такого соединения не добиться. Контакт будет просто раздавлен шляпкой винта.

Жилки в этом случае предварительно разделяются пополам и скручиваются.

После чего формируется свободное кольцо вокруг болтика.

Его то и нужно пропаять с последующим подключением.

Лишние хвосты после кольца откусываются.

Еще не забывайте перед всеми этими процедурами, изначально одеть «жопку» от патрона на сам кабель.

Иначе собрать его после этого не получится и придется перекручивать патрон по второму разу.

Второй недостаток карболитовых изделий — время подключения.

На весь процесс разборки-сборки, отвинчивание-завинчивание винтиков, уходит от 5 до 10 минут. Поэтому процедуру «заряжания» карболитового патрона, быстрой никак не назовешь.

Соединение проводов в керамическом патроне

Керамический девайс является не разборным изделием, как и его контакты. Отсюда и вытекают главные недостатки.

Данные контакты завальцованы и со временем рано или поздно ослабляются. В результате чего происходит нагрев, с последующим выгоранием или слишком частым выходом из строя самих лампочек.

Еще такие патроны грешат выкручиванием самой юбки вместе с лампочкой. После такого дефекта, его уже лучше заменить целиком.

Конечно, можно изначально пропаять контакты в местах завальцовки или обжать заново выкрутившуюся юбку, но подавляющее большинство этим не заморачиваются, а просто покупают новый.

Главным преимуществом керамического патрона является упрощенная система подключения. Здесь все происходит гораздо быстрее.

Во-первых, не нужно разбирать на три части само устройство. Во-вторых, полностью выкручивать винтики.

Достаточно их слегка ослабить и вставить в контактное пространство зачищенную жилу провода.

После чего затянуть винт с максимальным усилием.

Быстрозажимной патрон

На сегодняшний день распространение получили также и пластиковые быстрозажимные патроны.

Они работают по принципу знаменитых зажимов Wago. 

Чтобы разобрать такой патрон, необходимо шлицевой отверткой аккуратно отжать защелки с двух сторон.

При снятии крышки вы обнаружите, что внутри вообще нет никаких винтиков, куда можно было бы присоединить провода. Человек далекий от электромонтажных работ сразу и не разберется с такой конструкцией.

Как же его подключать? Делается все очень просто.

Нужно зачищенные концы проводов, засунуть до щелчка в маленькие отверстия. При этом большинство моделей имеют сразу две пары контактов. И соответственно не два, а сразу четыре отверстия.

Они предназначены для удобной сборки лампочек в гирлянды. В одно отверстие вставляете подходящий провод, а в другое — отходящий на следующую лампочку.

Только не вздумайте воткнуть фазу и ноль в соседние отверстия, иначе создадите короткое замыкание!

Внутри таких контактов находятся подпружиненные металлические пластинки, которые и обеспечивают соединение.

Здесь также не забывайте про правильное подключение фазы и ноля.

Провода в таких зажимах держатся достаточно надежно, и даже применив небольшое усилие, вырвать их не получится.

Чтобы его все-таки вытянуть от туда, придется во время тяжения проворачивать жилу по кругу.

Ошибки при монтаже и эксплуатации

В конце кратко подведем итог и сделаем выборку частых ошибок, которых вам следует избегать при подключении и обслуживании патрона от лампочки.

1Подключение фазного проводника к резьбовой части цоколя.

Чем это все заканчивается подробно описывалось выше.

2Не забывайте подтянуть в самом начале винты, которыми крепятся контактные пластины к керамическому вкладышу.

Вы можете супернадежно пропаять все провода, но если эти винтики у вас будут ослаблены, то нагрев соединения все равно неминуем.

3Подключение многожильных проводов без пайки и лужения. 4Подключение фазы и ноля на два соседних контакта быстрозажимного патрона и создание КЗ. 5Отжатие-регулировка центральной пластинки в карболитовом патроне при ее изгибе, неизолированным инструментом.

Блин, фаза-ноль есть, света нет. 🙂

Joker12

Соседи сверху затопили немного. Люстра на кухне погасла.
Разобрал, прозвонил. Все нормально, повесил назад. Не горит.
Померил напряжение тестером, 220 есть. Не горит. Откопал фазовый пробник, все как положено фаза есть, ноль есть. Не горит. Что за полтергейст, млять ? Не пойму, никак.

Drakar76

Подключите люстру в другом месте, может косяк в ней ?

вячко

Если напряжометр показывает 220 В, да и пробник подтверждает, ИМХО, косяк в самой люстре.
Подключить обычную лампочку на кухне, для проверки, либо люстру подключать в гарантированно рабочем месте (хоть в розетку провода засунуть).

x32

выкрутите лампочку и померяте напряжение на контактах патрона)))

krysoboj

напряжение может быть, а тока не быть. странно только на первый взгляд. представьте что напряжение это перепад высот-давление воды в трубочке, а ток-это расход-толщина струи. напряжение есть а через маленькую дырдочку не текёт. вот такая хрень может быть, если залили выключатель. чё тут думать-проверяйте контрольной лампой начиная от люстряных проводов из потолка и далее-распаечная коробка в стене под потолком-вскройте, просушите, выключатель, далее -по коробкам до щитка. провод в стене перегорает-но редко. обычно в коробке- при вскрытии сразу запах палёного. обратите внимание-к двухклавишному выключателю подходит один фазный провод, раздвояяцца и к люстре подходит уже три провода- два фазных от выключателя и один ноль из коробки. может вы подключили оба фазных к лампочке?

x32

krysoboj
странно только на первый взгляд

электричество было всегда за гарнцами моего понимая. особенно ток «текущий» по проводам. спасибо за пояснение 😊

Joker12

обычная у меня люстра, там один патрон. В принципе нечему ломаться, а вот поди ты. Я ее когда разобрал/собрал она нормально работала. В смысле днем, а вечером капут, не горит. По всей видимости выключатель навернулся, т.к. 220 присутствует на патроне в любом положении оного. Под нагрузкой с лампочкой, видимо фаза куда-то девается с контакта выключателя.

Drakar76

два фазных от выключателя и один ноль из коробки. может вы подключили оба фазных к лампочке?

Между 2 фазными будет нуль по тестеру (т.к. фаза одна и та же )!

220 присутствует на патроне в любом положении оного.

220 по индикатору(фазному пробнику) или по тестеру? Если на патроне всегда фаза по индикатору- оборван нуль , если по тестеру то

напряжение есть а через маленькую дырдочку не текёт

ищите место с контактом в виде «маленькой дырдочки»

Lat.(izvinite) strelok

Скорее всего где-то слабый контакт. Типо провод оборван но по «угольной дорожке» напряжение поступает. Попробуйте замерить все то же самое но под нагрузкой- то есть при включенном переключателе и вкрученной лампочке. Картина будет ясна.

Drakar76

Скорее всего где-то слабый контакт. Типо провод оборван но по «угольной дорожке» напряжение поступает. Попробуйте замерить все то же самое но под нагрузкой- то есть при включенном переключателе и вкрученной лампочке. Картина будет ясна.

+100

Joker12

фазу кажет при любом положении выключателя, по индикатору фазному. Видимо совпадение, сначала нагнулась люстра (ее я починил) потом сразу выключатель. Поэтому я запутался. Ладно, вечером разберу все еще раз, причина вылезет.

Прохожий

Joker12
фазу кажет при любом положении выключателя, по индикатору фазному. Видимо совпадение, сначала нагнулась люстра (ее я починил) потом сразу выключатель. Поэтому я запутался. Ладно, вечером разберу все еще раз, причина вылезет.

Ну тогда все может быть так — выключатель доблестные строители обычно вешают не на фазу, а на ноль (почему так — фиг знает, второй такой казус — всегда перепутают выключатели у туалета и ванной — ближний к ванной всегда включает свет в туалете 😊) Поэтому при любом положении выключателя тестер покажет фазу, а лампа не загорится. Посмотрите контакт в выключателе.

Allour

Индикатор то у вас какой — одно или двух полюсной? Активный или простой через резистор просто неонка включена? Возьмите вместо него лучше цешку. И как написано ранее — от вывода на люстру до распредкоробки прозвонить всю цепочку по учсаткам. Кстати патрон сам в люстре смотрели? Часто или язычок может отойти, контакта на лампочку не будет, или контакты просто сильно могут окислиться, тоже не очень хорошо. Индикатор или тестер-то при этом наличие напряжения покажут.

Joker12

И как написано ранее — от вывода на люстру до распредкоробки прозвонить всю цепочку по учсаткам. Кстати патрон сам в люстре смотрели? Часто или язычок может отойти, контакта на лампочку не будет, или контакты просто сильно могут окислиться, тоже не очень хорошо.

Патрон еще вчера был зачищен шкуркой 😊 А индикатор пес знает какой, я не электрик. Старинный советский синий, вот.

tricky

Прозвоните омметром люстру на целосность цепи. Или прикрутите другой потребитель к проводам вместо люстры(патрончик с проводами и лампой например).Получите место косяка. Удивляюсь людям которые орудуют запросто мультиметром, а с пустяком типа люстры и однофазной эл.сети им не разобраться.

выключатель доблестные строители обычно вешают не на фазу, а на ноль (почему так — фиг знает, второй такой казус — всегда перепутают выключатели у туалета и ванной — ближний к ванной всегда включает свет в туалете
Вредители!Такие казусы легко решаются при любых косметических ремонтах. Нормальному электрику достаточно вскрыть коробки где надо и помелочи покувыряться.

krysoboj

а лампочка то целая?

Joker12

Прозвоните омметром люстру на целосность цепи. Или прикрутите другой потребитель к проводам вместо люстры(патрончик с проводами и лампой например).Получите место косяка. Удивляюсь людям которые орудуют запросто мультиметром, а с пустяком типа люстры и однофазной эл.сети им не разобраться.

Ну вот, не разберусь никак. Люстра прозвонена, тыщу раз. Проверена. Все нормально. Херня какая-то. Фаза звонится с выключателя до места подключения на потолке. Ноль, а хрен знает как его прозвонить… не на площадку же тащить провода. Звонил при выключенных автоматах.
Ради интереса прозвонил фазу на потолке с розеткой над плитой, бодро звонится с обеими клеммами ? Чей-то я совсем запутался. Розетка работает. Из всего произошедшего, подтопили маленько и в этот же день меняли счетчики электрические, может там чего перепутали ?

tricky

не на площадку же тащить провода.
На батарею попробуйте, или водопровод.
бодро
всмысле пищит?Выдерните все вилки эл.приборов из розеток-потребители соединяют фазу с нулем(нейтралью).

Joker12

всмысле пищит?Выдерните все вилки эл.приборов из розеток-потребители соединяют фазу с нулем(нейтралью).

Во, спасибо за советы.

Нуль с водопроводом не звонится.

tricky

Внимание!Гарантии на 100% что трубы имеют контакт с нулем нет. Наверное придется коробку ковырять…

Joker12

Наверное придется коробку ковырять…

Нет у меня коробки в этой квартире. Хрущевка.
Выключатель кстати снял, работает он… На столе звонится нормально, в одну сторону. Под напругой в обе, при любом положении переключателя.

tricky

Нет у меня коробки в этой квартире.
Разветвительная коробка у есть и не одна. Где-то же соединены провода питаюшие, на светильник, на выключатель, на розетку?Находятся обычно над выключателем(и),розетками под самым потолком. У вас там пара выключателей и розетка на одном пятачке?Над ними и коробка. Если теребить, то надо осторожно, провода в хрущевках минимально короткие и ломкие. Наверное она и была залита
На столе звонится нормально, в одну сторону. Под напругой в обе, при любом положении переключателя
К сожалению, не понимаю в таком изложении. Провода на выключателе медь или аллюминий?

Joker12

Разветвительная коробка у есть и не одна

Нашел вроде, еле-еле. Жена прибьет, резать обои надо.

К сожалению, не понимаю в таком изложении.

На столе без проводов прозванивается, как нормально работающий. Вкл- пищим, выкл — не пищим. При прикручивании проводов к выключателю, что вкл-пищим, что выкл-пищим. Как-то так. Провода и там (на выкл) и там (под потолком), люминь.

Пошел вскрывать коробку. Причина явно там.

Lat.(izvinite) strelok

Joker12
Пошел вскрывать коробку. Причина явно там.
возьми лампочку вкрути в патрон и выведи 2 провода- будет пробник для проверки напряжения под нагрузкой. Тестер не всегда показывает «истинное» положение вещей. ну, и тыркай от автоматов и далее к нагрузке…

kosti87

А вы лампу с вкрученой лампочкой прозванивать пытались?

Joker12

На сегодня хватит. Лампочкой уже пробовал, то горит, то не горит. Бессистемно как-то. Распредкоробку я расковырял, завтра буду возиться.

Lat.(izvinite) strelok

Joker12
то горит, то не горит
скорее всего плохой контакт где-то, или в коробке или в выключателе. Как вариант ( ну это писец, конечно, хотя и маловероятно) где-то гвоздиком был перебит провод, пока было сухо- контакт был, залило- окислился и «почти пропал».

Allour

Нуль (или она же «земля») проверяем просто — тем же тестером на омики, в разрыв включаем проверяемый провод, покажет замыкание (сопротивление близкое к нулю) провод живой, нет — ищите обрыв. А индикатор у вас похоже обычный однополюсной, неонка и резистор, только и всего, он будет светиться даже от наводки, правда слабее чем от нормальной фазы, неточная вещь. Коробку посмотрите, скорее всего там проблема.

Прохожий

tricky

Вредители!Такие казусы легко решаются при любых косметических ремонтах. Нормальному электрику достаточно вскрыть коробки где надо и помелочи покувыряться.

Дык понятно, что это все просто устраняется … Просто отметил, что во всех практически квартирах, которые знаю, строители упорно подключают выключатели ванны и туалета «наоборот»… Почему так — фиг знает, но факт.

Drakar76

Просто отметил, что во всех практически квартирах, которые знаю, строители упорно подключают выключатели ванны и туалета «наоборот»..

Такие электрики-у родителей на кухне и в ванной пропал свет ,стали разбираться, нашли обрыв в коридоре . Оказалось, Что кто-то срастил алюминиевый провод куском медного на скрутку, сверху замазал пластилином и заляпал краской и мы получили это от строителей. В другом новом доме где меня попросили » помочь по электричеству » все розетки и выключатели ставили шуруповертом- в итоги половина резьб сорвана, шлицы сорваны почти везде, винтовые крышки раздавлены. Заземление в том доме выведено от розеток в ванную комнату на трубу холодной воды, а вот ванна вообще не заземлена. Чтобы вывести провода в потолке (для люстр )пробиты дыры 10-15 см., это заклеено бумагой и забелено!Дом считается элитным)))

Monolit-kbf

Drakar76, жестоко однако 😊 Хотя что говорить — застройщики хотят сэкономить на квалифицированых рабочих, нанимают всяких равшанов с джамшутами, и вот результат.

Прохожий

Drakar76

Такие электрики-у родителей на кухне и в ванной пропал свет ,стали разбираться, нашли обрыв в коридоре . Оказалось, Что кто-то срастил алюминиевый провод куском медного на скрутку, сверху замазал пластилином и заляпал краской и мы получили это от строителей. В другом новом доме где меня попросили » помочь по электричеству » все розетки и выключатели ставили шуруповертом- в итоги половина резьб сорвана, шлицы сорваны почти везде, винтовые крышки раздавлены. Заземление в том доме выведено от розеток в ванную комнату на трубу холодной воды, а вот ванна вообще не заземлена. Чтобы вывести провода в потолке (для люстр )пробиты дыры 10-15 см., это заклеено бумагой и забелено!Дом считается элитным)))

Это не шуруповертом ставили 😊,это строители дрелью крутили — она не тормозится сразу как шуруповерт и прожимает шуруп дальше.

Drakar76

Это не шуруповертом ставили ,это строители дрелью крутили — она не тормозится сразу как шуруповерт и прожимает шуруп дальше.
+100

krysoboj

ребят, я раньше пропаивал скрутки посом и промывал их от остатков флюса из клизмы и тряпочкой вытирал. а кабели сращивал- с эпоксидкой.. но клиенты- пизнесмены норовят заплатить- даже на автобус иногда не хватало. или вообще не заплатить. старался объяснить- что без меня будет как у дракаровских родителей. не понимают. или делают вид. а самое интересное-учитывая мою репутацию- зовут и теперь иногда-очень редко правда- исправлять чужие сопли- и всё равно не платят. не, парни -для наших людей можно делать только дрелью, молотком и задницей. в бытность мою энергетиком жэу вызвали на квартиру. половина квартиры запитана от другой половины-посредством перекидки двужильного б.у.шного провода из действующей розетки в недействующую. провод лежит на полу, здесь же ползает ребёнок. хозяин-мент. работу делал жкошный электрик как шабашку. я по дурости начал объяснять хозяину что прошлый электрик сидит за оскорбление мента. провод просто оторвал. бумеранг вернулся

Drakar76

Недавно был в одной квартЕре , хозяЯва вешали пАтрет-перебили провод к выключателю, чтобы СВЕТ БЫЛ поверх обоев от коробки до выключателя бросили соплю телефонным проводом, и самое забавное работает! Только надолго ли хватит?!!!)))

ребят, я раньше пропаивал скрутки посом и промывал их от остатков флюса из клизмы и тряпочкой вытирал

Надежно, только че-то я ленюсь , все либо в клеммники под винт , либо в гильзу под клещи.

пизнесмены норовят заплатить- даже на автобус иногда не хватало

+много

krysoboj

да я уж старый- клеммники тогда были только совковые фенолоформальдегидные, с винтами без шлицов и резьбы. на старых дырявых складах в расползшихся картонных коробках. а на импортные пиздесмены денег не давали. а уж клещи и тем более гильзы- уууууу.

Allour

Кусок алюминиевой трубки и горячая обжимка холодными пассатижами — наш ответ требованиям ПУЭ на опресовку гильзами соединений проводов в коробке.
Объяснять кому-что либо бесполезно — пока работает и ладно, там посмотрим что делать — девиз большинства. По оплате — брать заранее вперед перед исполнением работы договорную сумму, иначе идите к другому мастеру.

krysoboj

ув. джокер если вы можете соединить лампочку и батарейку куском провода, и до сих пор не разобрались- предлагаю нарисовать схемку вашей проводки, отключить автомат в щитке, отсоединить квартирный ноль- с этим чуть сложнее-он в хрущовке присоединяется к каркасу самого этажного щита-там их 5-6 винтов. повторного заземления в квартире нет. если целый пакетник-всё просто-он отключает и ноль и фазу. и начать прозвонку- вытаскиваете всё из розеток, выключаете светильники, меряете фазу-ноль в щите- далее думайте головой и промериваете по участкам омметром

kosti87

а вот ванна вообще не заземлена
не хотел бы лезть в чюжой монастырь, но например в германии ванны больше не зазимляют, по той причине что если например сидя в ванне туда падает фен то ток остаётся в ванной а не уходит через зазимление.

Drakar76

не хотел бы лезть в чюжой монастырь, но например в германии ванны больше не зазимляют, по той причине что если например сидя в ванне туда падает фен то ток остаётся в ванной а не уходит через зазимление.

То в Германии, а у нас :

ПУЭ 7 рис. 1.7.7 Заземление ванн

ПУЭ 7 пункт 7.1.48 Розетки в ванной

Если в ванную упал фен (а ванна не заземлена) при прикосновении например к полотенцесушителю шансов выжить мало!ИМХО

kosti87

шансов выжить мало
это точно

Joker12

ув. джокер если вы можете соединить лампочку и батарейку куском провода, и до сих пор не разобрались- предлагаю нарисовать схемку вашей проводки,

товарищ Джокер, на работе с 8 до упора. Сегодня доплелся домой, сил нет. Купил два пробника по дороге. Попробую завтра вечером починить, все это электрическое безобразие. Чудес не бывает, видимо просто кучка совпадений, в моем случае.

Drakar76

Joker , что с проводкой? Народ волнуется!)))

Joker12

Joker , что с проводкой? Народ волнуется!)))

Замкнуло, где-то в плите потолочной. Жопа.

Monolit-kbf

Joker12
Замкнуло, где-то в плите потолочной. Жопа.
Попробуйте провод подергать. Если идет — к концам старого провода новый привязывайте и тяните. А если не идет — то тут варианты. От кинуть соплю в кабель-канале пластиковом до штробления плиты с полседующей штукатуркой.

Drakar76

Замкнуло, где-то в плите потолочной. Жопа.

Не айс , будете делать сами или позовёте спеца? Дальнейшие советы нужны?

Joker12

Не айс , будете делать сами или позовёте спеца? Дальнейшие советы нужны?

Мыслю к концу старого провода, привязать новый и тянуть в щиток. Если не получится, то фиг знает чего делать. Тросик пытаться протянуть, потом опять по новой. Штробить не хочется. Провода там в плите конечно ветхие, надежды не внушают.

Drakar76

Мыслю к концу старого провода, привязать новый и тянуть в щиток. Если не получится, то фиг знает чего делать. Тросик пытаться протянуть, потом опять по новой. Штробить не хочется. Провода там в плите конечно ветхие, надежды не внушают.

Так и надо (монолит кстати это и советует ) только сначала надо провод в потолке слегка обдолбить ,чтобы он свободно ходил! Заодно проверишь ,есть ли в плите пустота , а то изредка бывает ,что провод проводят по полу этажом выше и заливают стяжкой, тогда только штробить!(сам такое не встречал но в литературе описано)!

krysoboj

в плите на вводе в квартиру из этажного щита?? вот повезло. коверяясь в щите ни в коем случае нельзя замонолитить воровскую отпайку мимо счётчика. это очень плохо незаконно и бессовестно- воровать у чубайса. не делайте так никогда

Drakar76

Мыслю к концу старого провода, привязать новый и тянуть в щиток.
в плите на вводе в квартиру из этажного щита?? вот повезло. коверяясь в щите ни в коем случае нельзя замонолитить воровскую отпайку мимо счётчика. это очень плохо незаконно и бессовестно- воровать у чубайса. не делайте так никогда

Я так понял ,что «щиток»-это распредкоробка на кухне, тогда все не так страшно!ИМХО

tricky

Joker
У вас есть электрики знакомые есть?Самая пора к ним.

Joker12

Электрики знакомые есть, думаю сам справлюсь. Разобрался же я с частотниками для станков, с двумя проводами и подавно разберусь. Купил два пробника специально для этого, не пропадать же добру 😊

Monolit-kbf

Joker12, удачи. Сложного на самом деле ничего нет, единственно — если повреждение не в распредкоробках, а где то в потолочной плите или еще где то. Уже говорил, что если провод не дергается — то либо с геммором, грязью, пылью, матами штробить и проложить в гофре провод и забыть, либо кабель-канал снаружи — проще, быстрее, но не совсем эстетично.

Drakar76

Ну , если постараться можно и канал в плите найти, тогда штробить не надо, только у стены немного, там,где будет выходить провод из потолка и уходить в стену!

А для начала, я бы, попробовал временно запитать контрольку (патрон с лампочкой и 2 проводами)прямо с того места, откуда поведете новый провод! Работает и выключается через выключатель-значит угадал и все о-кей можно долбить потолок ,не работает беда, надо думать дальше!

И пара моментов, на всяк случай(Если знали не ругайтесь)
1)медь с алюминием соединять скруткой нельзя!
2)иногда имеет смысл(если соединения проводов на простой скрутке) сразу перебрать всю коробку и поставить все соединения на клеммники!

Drakar76

У вас есть электрики знакомые есть?Самая пора к ним.

Если есть хоть какие-то сомнения используйте этот вариант!

Monolit-kbf

Drakar76
Если есть хоть какие-то сомнения используйте этот вариант!
Глаза боятся — руки делают. Самое главное — обеспечить везде нормальный контакт, сейчас есть клеммники, проблем быть не должно.

Патрон для лампы электрический – как подключить, закрепить и отремонтировать

Электрический патрон – это установочное электротехническое изделие, служащее для разъемного подключения электрических лампочек и других искусственных источников света к электропроводке.

Электрический патрон является неотъемлемой частью любого светильника или люстры и зачастую выполняет задачу не только передачи электрического тока, а и держателя абажура, плафона, других предметов эстетики и устройств управления освещением.

Виды, маркировка и технические характеристики


электрических патронов

Все электрические патроны по принципу работы устроены одинаково и отличаются только габаритными размерами, материалом из которого они изготовлены и конструктивным исполнением.

На корпусе электрического патрона обычно нанесена маркировка, где указаны его технические характеристики. Если они не указаны, то можно узнать их из таблицы по присоединительным размерам цоколя лампы.

Таблица видов популярных электрических патронов


для подключения искусственных источников света к сети

Электрические патроны по способу подключения цоколей ламп выпускаются двух разновидностей: винтовые серии Е и штыревого типа серии G.

На электрические резьбовые патроны для ламп распространяется ГОСТ Р МЭК 60238-99, согласно которого патроны для сети 220 В выпускаются трех типов. Е14 – в быту именуемый миньон, Е27 и Е40 – для уличных светильников.

На штыревые патроны для ламп распространяется ГОСТ Р МЭК 60400-99, нормирующий технические требования на патроны типа: G4, G5.3, G6.35, G8, GR8, G10, GU10, G10q, GR10q, GX10q, GY10q, G13, G20, GX23, G24, GX24, GY24, G32, GX32, GY32, GX53, 2G7, 2G11, 2G13, Fa6, Fa8 и R17d, предназначенные для работы в сети 220 В. Стоит отметить, что в маркировке штыревых патронов число обозначает расстояние в патроне между контактными отверстиями для установки штырей ламп.

Как видите, согласно ГОСТ модельный ряд электрических патронов довольно широкий, поэтому в таблице перечислены только популярные виды, которые наиболее часто устанавливаются в люстры и светильники для освещения помещений и улицы.

В таблице максимальный ток нагрузки и мощность подключаемых ламп являются справочными и зависят от материала, из которого изготовлен патрон. Например, керамические патроны в отличие от пластмассовых, выдерживают больший ток и допускают подключение более мощных ламп.

Электрический патрон на три лампочки

В китайских люстрах встречаются нестандартные электрические патроны E27, предназначенного для вкручивания сразу двух, трех и более лампочек.

Патрон на три лампочки устроен, и подключается следующим образом. В контактирующих пластинах есть отверстия, и к ним можно подсоединить провода винтами с гайками М3, если есть под рукой паяльник, то можно провода к пластинам присоединить пайкой. Красной стрелкой указана пластина, к которой нужно подключать фазный провод. Нулевой провод подключается к месту направления синей стрелки. Пунктирной синей линией показано соединение между контактами. Эту перемычку можно и не делать, так как пластины будут соединены между собой через цоколь вкрученной лампочки, на фото зеленая линия. Но тогда, если правая лампочка не будет вкручена, то на левую лампочку тоже не будет поступать питающее напряжение.

Устройство и принцип работы электрического патрона

Рассмотрим устройство электрического патрона на примере широко распространенных патронов с резьбой Эдисона серии Е.

Патрон состоит из трех основных деталей. Наружного цилиндрического корпуса, в котором закреплена резьбовая гильза с резьбой Эдисона, донышка и керамического вкладыша. Для передачи тока от подходящих проводников на цоколь лампочки имеются 2 латунных контакта и крепежные планки с резьбой.

Перед Вами на фотографии патрон Е27, полностью разобранный на составные части.

На фото хорошо видно как прикасаются латунные контакты с цоколем лампочки. Справа фото демонстрирует, как передается ток при закреплении латунных контактов на керамическом вкладыше.

Фаза, для повышения эксплуатационной безопасности, должна приходить на центральный контакт цоколя лампочки. При таком подключении к минимуму сводится вероятность соприкосновения человека с фазой.

Электрические патроны серии G по принципу работы не отличаются от серии Е, но более простые по конструкции и отличаются по способу передачи электрического тока на выводы цоколя ламп.

Как подключить электрический патрон

Для подключения электрических патронов в светильнике или люстре к электропроводке, в зависимости от их конструктивного исполнения используются разъемные и не разъемные способы.

При разъемном способе провода электропроводки к патрону присоединяются с помощью винта с резьбой, клеммами или фиксаторами (безвинтовой способ).

К неразъемному способу относится присоединение с помощью пайки или способом запрессовки к контактам патрона проводов изготовителем, например как в патронах серии G4-G10. Из них просто выходит два изолированных проводника длиной около 10 см. Такие патроны к электропроводке обычно подключаются с помощью клеммных колодок, например Ваго.

Подключение электрического патрона с помощью винтов

Для того, чтобы в деталях освоить технологию подключения электрического патрона к проводам рассмотрим процесс сборки патрона с нуля. Этот навык пригодится и при ремонте электрических патронов.

К керамическому вкладышу прижимается латунная пластина центрального контакта. С помощью винта, закрученного в стальную пластину, расположенную на противоположной стороне вкладыша, контактная пластина фиксируется на вкладыше. Винт не только выполняет задачу крепления центрального контакта, во время работы патрона через него подается ток на центральный контакт. Затягивать винт нужно с достаточным усилием, так как он участвует в передаче тока от провода к цоколю лампы. Далее таким же образом крепится вторая латунная пластина. Центральный контакт подгибается до уровня боковых контактов.

Формируются в обязательном порядке колечки на проводниках. Продеваются через донышко проводники и прикручиваются к стальным пластинам. Если электрический патрон предназначен для подключения через стационарный выключатель, то фазный провод подключается к центральному контакту. Желательно проверить надежность прилегания центрального контакта. Для этого нужно приложить лампочку цоколем и убедиться, что при упоре цоколя в боковые контакты, центральный контакт прогибается не менее чем на пару миллиметров. Если прогиб меньше, то нужно контакт отогнуть немного вверх.

Осталось накрутить цилиндрический корпус на донышко и патрон готов к эксплуатации. Осталось подобрать подходящую лампочку. На сайте в научно популярной форме представлена статья «О лампах накаливания и люминесцентных светодиодных лампах и лентах», ознакомившись с которой Вы сможете легко ориентироваться в существующем разнообразии изделий светоизлучающей техники.

Подключение электрического патрона с резьбовыми клеммами

Более современными являются электрические патроны, провода к которым подключаются с помощью винтовых зажимов, напоминающие зажимы клеммных колодок. Такой вид подключения электрического патрона значительно ускоряет работу по его подключению к электропроводке при монтаже.

Пластмассовый корпус этих патронов монолитный, а контакты, подводящие электроэнергию к цоколю лампочки, закреплены в корпусе патрона заклепкой. Поэтому такой патрон ремонту не подлежит и в случае выхода его из строя подлежит замене целиком.

Электрические патроны с зажимными клеммами встречаются типоразмеров Е14 и Е27 и вполне подходят для замены традиционных разборных патронов, устройство которых описанных выше, при ремонте светильников и люстр.

Как вставить провода в безвинтовой электрический патрон

Последней новинкой в разновидности патронов Е14 и Е27, это патрон с безвинтовым подключением. На корпусе патрона имеются отверстия, обычно две пары. В них с небольшим усилием вставляются провода. Установленные внутри латунные пружинные контакты защемляют провода и надежно удерживают.

Контакты в отверстиях 1-2 и 3-4 попарно соединены (на фотографии соединение обозначено красными линиями). Это сделано для удобства подключения параллельно патронов в люстрах и светильниках с несколькими лампочками. На один из патронов подается питающее напряжение, а уже к нему с помощью перемычек подключается следующий патрон.

Так как современные энергосберегающие и светодиодные лампы потребляют мало электроэнергии, то количество соединенных таким способом патронов может достигать десяти и более. Подключать бесконтактные электрические патроны легко и быстро. Достаточно вставить освобожденный от изоляции на длину одного сантиметра провод в предусмотренное для этого отверстие.

Но тут есть особенность, которую нужно учесть. Провода при изготовлении люстр обычно используются многожильные, и надежно зафиксировать их в контактах электрического патрона, особенно если жилки провода тонкие, практически невозможно. Поэтому на заводах изготовителях люстр концы проводов, подключаемые к патрону, облуживаются. В результате многожильный провод на конце становиться одножильным. Залуженный конец провода легко вставляется в пружинный контакт патрона и надежно фиксируется.

На фотографии продемонстрирована последовательность подключения патрона к электропроводке. При замене патрона в люстре бывает невозможно подобраться к проводам пальцами руки, тогда выручает пинцет.

Но не всегда имеется под рукой паяльник, да и не у каждого он дома есть. В таком случае при подключении патрона можно обойтись без паяльника. Нужно перед заправкой провода в пружинный контакт патрона, вставить в отверстие металлический стержень, диаметром чуть больше диаметра провода, например, гвоздь или, как на фотографии, часовую отвертку. Тогда пружинящий контакт отойдет и в образовавшийся зазор провод легко войдет. После изъятия гвоздя пружинящий контакт надежно зажмет провод. Таким приемом, в случае необходимости, легко и вынуть провода из патрона.

После заправки провода в пружинящий контакт патрона, нужно обязательно за провод несильно потянуть, чтобы проверить надежность его фиксации.

Как вынуть провода из безвинтового электрического патрона

При ремонте светильников иногда требуется вынуть провод из самозажимных клемм патрона. Обычно провод удерживается пружинной клеммой крепко и простым вытягиванием не вынимается.

Вынуть провод можно только, если с небольшим усилием тянуть за него с одновременным возвратно поступательным вращением.

В случае, если есть возможность вставить в клемму, как показано на фотографии выше, гладкий стальной стержень диаметром чуть больше провода, например, сверло, гвоздь или отвёртку, то таким способом тоже можно вытащить провода.

Как подключить к электрическому патрону розетку

Иногда возникает потребность установить розетку, а до ближайшей распределительной коробки далеко. С таким случаем, я столкнулся, когда делал ремонт в ванной комнате. У зеркала нужно было установить дополнительный светильник и обеспечить возможность подключения электроприборов, например электробритвы.

В ванной комнате уже был установлен настенный светильник – шарик. Подсоединил к контактам в электрическом патроне параллельно еще два провода и подключил к ним параллельно розетку. Правда, когда выключен свет в ванной комнате, то розетка тоже обесточена, но в этом есть и положительная сторона. В случае протечки воды с верхнего этажа, не будет короткого замыкания, даже если в розетку попадет вода.

Устанавливать розетку в ванной или душевой комнате нужно на максимально возможном удалении от ванны или душа, чтобы исключить попадание брызг воды. Я установил стандартную розетку, служит более 17 лет без проблем. Хотя лучше установить герметичную, предназначенную для помещений с повышенной влажностью.

Еще раз мне приходилось подключаться к электрическому патрону розетки в туалетной комнате, когда устанавливал автоматический датчик включения света и дооснащал унитаз функцией биде.

В давние времена, когда оплата за электроэнергию бралась за количество лампочек и розеток в квартире, широко применялось устройство, прозванное в народе «жулик».

В электрический патрон ввинчивался переходной патрон, который вы видите на фотографии. С одной стороны на нем внешняя резьба как у лампочки, а с другой – внутренняя резьба, как у обыкновенного патрона. В этом жулике были вмонтированы две латунные трубки, как в розетке. Жулик позволял подключать к люстре любые электроприборы. Такой жулик можно сделать и самому из обыкновенного электрического патрона.

Способы крепления электрических патронов


в люстрах и светильниках

При замене или ремонте неисправных электрических патронов в люстрах и светильниках их приходится снимать. Для этого необходимо знать, как крепится патрон к основанию люстры.

Крепится патрон в люстрах и светильниках, как правило, за донышко. В отверстии ввода провода в патрон есть резьба. У Е14 – М10×1. У Е27 может быть одна из трех: М10×1, М13×1 или М16×1. Светильники бывают подвешены непосредственно на электропроводе и на металлической трубке любой длины и формы с резьбой на конце.

Крепление электрического патрона в светильнике


за токоподводящий провод

Крепление патрона за токоподводящий провод без его дополнительного закрепления не допустимо. В донышко вворачивается пластмассовая втулка с отверстием в центре для прохождения электропровода, в которой предусмотрен фиксирующий пластмассовый винт.

После подключения проводов к контактам патрона и его сборки, пластмассовым винтом зажимают провод. Часто втулкой еще закрепляют декоративные элементы светильников и детали для крепления плафона. Таким образом, обеспечивается надежность подключения электрического патрона, подвески светильника и крепление плафона. Фото отчет о том, как я крепил патрон за токоподводящий провод при изготовлении бра для прихожей. Провод применяется специальный с повышенной механической прочностью.

Крепление электрического патрона в люстре на трубке

Крепление электрического патрона на металлической трубке самое распространенное, так как позволяет подвешивать тяжелые плафоны и дает простор дизайнерской фантазии. На трубку часто навинчивает дополнительные гайки и с помощью них, непосредственно на трубке крепят любую арматуру люстр, декоративные колпаки, сами плафоны. Всю нагрузку уже несет не электрический патрон, а металлическая трубка. Провод для подключения патрона пропускается внутри трубки.

Есть электрические патроны, у которых на наружной части цилиндрического корпуса есть резьба, на которую можно накрутить абажурное кольцо и с помощью него закрепить плафон или другой элемент дизайна и направления светового потока.

Крепление электрического патрона втулкой

В настольных лампах и настенных светильниках электрические патроны часто закрепляются металлическими или пластмассовыми трубчатыми втулками к деталям из листового материала. Такой способ крепления расширяет возможности конструкторов светильников, так как достаточно просверлить в любом месте детали, сделанной из листового материала отверстие и закрепить патрон втулкой.

Неоднократно приходилось ремонтировать светильники с таким креплением электрического патрона втулками из пластмассы по причине ее деформации. От нагрева лампочкой накаливания, пластмасса деформировалась, и электрический патрон начинал болтаться.

Заменял расплавленную втулку металлической. Брал от переменного резистора типа СП1, СП3. У них крепежная резьба М12×1. Обращаю внимание, что резьба может быть и другой. Дело в том, что присоединительная резьба патронов Е27 не нормирована, и каждый изготовитель патрона делал резьбу по своему усмотрению. Если надумаете использовать втулку от резистора, то прежде, чем ломать резистор, обязательно проверьте, подходит ли резьба к патрону. Резистор полностью разбирается и из пластмассового основания извлекается втулка.

Крепление электрического патрона в люстре


с безвинтовыми контактными зажимами

Крепление электрического патрона с безвинтовыми контактными зажимами несколько отличается от крепления традиционного по причине того, что соединение корпуса с донышком осуществляется с помощью двух защелок, а не резьбы.

Сначала на трубку с резьбой в люстре накручивается донышко, затем в патрон заправляются провода и в завершение цилиндрический корпус защелкивается в донышко. На фотографии защелки у донышка отломаны, с такой неисправностью люстра попала мне в ремонт. Такой патрон можно отремонтировать, технология ремонта описана в статье ниже.

Поэтому если Вам придется менять такой патрон в люстре, то для того, чтобы не испортить провода, сначала отведите с помощью отвертки в стороны защелки, тем самым освободив корпус от донышка.

На этой фотографии изображен патрон с безвинтовыми контактными зажимами, установленный при ремонте люстры взамен патрона, вышедшего из строя. В данной люстре патрон выполняет и крепежную функцию, фиксирует декоративную металлическую чашку, к которой в собранной люстре прилегает стеклянный плафон.

Ремонт электрических патронов

Электрические патроны серии Е можно успешно ремонтировать, так как есть возможность их разобрать. В патронах серии G части соединены с помощью заклепок и в случае поломки их приходится заменять новыми.

Ремонт разборного электрического патрона Е27

Если в светильнике начали часто перегорать лампочки или лампочки начинают при работе менять яркость свечения, то одной из причин, помимо плохого контакта в выключателе или распределительной коробке, является плохой контакт в электрическом патроне. Иногда при этом патрон при включении светильника, начинает издавать специфический жужжащий звук, в дополнение от патрона может плохо пахнуть гарью. Проверить это не сложно. Достаточно выкрутить лампочку и заглянуть в патрон. Если контакты почернели, значит нужно их зачистить. Причиной почернения может быть и плохой контакт в месте подсоединения патрона к проводам.

Для качественного ремонта электрического патрона нужно его полностью разобрать, проверить надежность подсоединения проводов и зачистить до блеска латунные контакты. Иногда их требуется немного подогнуть в сторону контакта с цоколем лампы.

Иногда при попытке выкрутить лампочку ее колба отклеивается от цоколя. В таком случае нужно попытаться вывернуть оставшийся в патроне цоколь, открутив цилиндрический корпус электрического патрона, удерживая его за донышко. Если корпус открутить не получается, то можно попробовать ухватить цоколь лампочки за край плоскогубцами и таким образом вывернуть.

Ремонт разборного электрического патрона Е14

Пришлось ремонтировать люстру из пяти рожков, в которой светились только две лампочки. Люстра была старая, советского производства с разборными патронами Е14 с винтовым креплением проводов.

Люстра эксплуатировалась много лет с лампочками накаливания и в результате от высокой температуры и ослабления проводов они местах зажима винтами окислились и обгорели.

Винты прикипели в резьбе и отвинтить их с помощью отвертки не получилось. Пришлось воспользоваться плоскогубцами и в результате в одном из патронов отломалась крепежная часть для фиксации провода от боковых контактов патрона. Под рукой не оказалось подобного патрона для замены и пришлось придумывать как его отремонтировать.

Для этого крепежную часть контакта был завинчен винт до упора и вставлен кусок медной проволоки, предварительно покрытый оловянно-свинцовым припоем, как показано на фотографии.

Далее обе детали были установлены обратно в корпус патрона и смазаны флюсом ФИМ.

После сборки место установки медной проволоки было залито с помощью паяльника большой каплей припоя. Электрический патрон после ремонта стал даже надежнее, чем был до этого.

Для профилактики были проверены все пять патронов и зачищены контакты с помощью наждачной бумаги. Провода были освобождены, подгоревшие концы откусаны, снята изоляция и залужены припоем. Но попался один электрический патрон, в котором при откручивании винтов у них сорвались головки.

Отремонтировал патрон с помощью пайки, припаяв токоподводящие проводники к месту облома винтов. Теперь качество соединения будет сохраняться многие годы.

После такого технического обслуживания и ремонта люстра прослужит еще не один десяток лет, тем более, что в патроны теперь вкрутили светодиодные филаментные лампочки.

Ремонт электрического патрона


с безвинтовыми контактными зажимами

При ремонте квартиры соседке пришлось снять люстру с потолка. Кода она, откручивала накидные гайки с электрических патронов с безвинтовыми контактными зажимами, чтобы снять плафоны, то все цилиндрические части патронов отсоединились от донышек и повисли на проводах. Люстра провисела всего шесть лет с лампочками накаливания. Стало очевидно, что в результате теплового воздействия пластмасса стала хрупкой, и защелки отломались. Решил электрические патроны отремонтировать.

Сначала спилил остатки защелок до уровня площадок в цилиндрическом основании электрического патрона. На фотографии слева обломанная защелка, а справа – подогнанная в требуемый размер.

Новые защелки были сделаны из листовой латуни толщиной 0,5 мм. Отрезанная полоска латуни шириной, равной ширине отломавшейся защелки, была согнута по форме, как на фотографии. Защелку можно сделать из любого листового металла, например, железа или алюминия.

Загнутой стороной полоска была заведена в донышко патрона со стороны закругленной части. После этого прямой участок полоски был загнут вокруг оставшегося держателя обломившейся защелки, как показано на фотографии.

После установки самодельных защелок донышко патрона было накручено на декоративную трубку в люстре.

После подключения электро поводов к цилиндрической части патрона, она была с помощью новых защелок закреплена на донышке. Изготовленные своими руками защелки отлично выполняли задачу, крепко удерживая цилиндрическую часть патрона. Теперь защелка никогда не отломается.

Что будет, если перепутать фазу и ноль при подключении люстры?

Монтаж осветительных приборов является неотъемлемой частью любого ремонта в доме или квартире. Но, несмотря на то, что установка выключателей и люстр является довольно простой задачей, все же при выполнении монтажа может возникнуть множество вопросов. Например: что будет, если перепутать фазу и ноль?

Если перепутать фазу и ноль

Как гласят ПУЭ, фаза «L» должна быть прерванной через выключатель и направляться к главному контакту патрона, в который будет вкручена лампочка. При этом ноль является общим для всех источников света и не должен прерываться. Он подходит к боковому цоколю патрона. Поэтому в случае с использованием обычных лампочек, если фаза и ноль будут перепутаны, не произойдет ничего катастрофического, но это только для самих лампочек! А вот для человека это очень опасно, так как в случае, когда он будет менять сгоревшую лампочку, то получит удар от не отключенной фазы!

Что касается люстр, в которых будут вкручены галогенные или диодным лампочки «экономки» проблема будет еще существеннее. Из-за перепутанных проводов лампочки будут работать с мерцанием и вскоре выйдут из строя. В свою очередь, если люстра дополнительно комплектуется вентилятором, то обмотки его электродвигателя при неправильном подключении просто сгорят.

Как определить ноль и фазу

Перед началом монтажа любого осветительного прибора первым делом следует разобраться со свободными концами проводов, которые торчат. На потолке их обычно 2, 3 или 4. Для того чтобы понять, какой провод куда идет, необходимо иметь инструмент электрика. Например:

  1. Если на потолке 2 провода, то понадобится простой индикатор. С его помощью можно определить назначение каждого проводника, поочередно прикоснувшись к нему индикатором при включенном выключателе. Если лампочка индикатора загорелась, то это провод фазы. Второй, соответственно, будет нулевым.

  2. Прозвон трех проводов осуществляется точно так же: с помощью индикатора определяют 2 провода фаз и провод ноль. При этом выключатель в таком случае будет двойным, поэтому нужно будет определить привязанность фаз к каждому из них.

  3. Если на потолок выходит сразу 4 провода, то это говорит о том, что четвертый является заземлением. Чаще всего он имеет маркировку желто-зеленого цвета, но все 4 провода также могут иметь и один цвет. В таком случае также нужно будет использовать индикатор. Фазы определяют индикаторами, а отличить провод заземления от ноля можно с помощью мультиметра. Тот провод, который покажет сопротивление, является заземляющим.

Важно: после того как фаза, ноль и заземление будут определены, эти провода необходимо пометить маркером, чтобы не перепутать при монтаже люстры.

Особенности монтажа люстры

Крепление люстры к потолку может осуществляться двумя основными способами: с помощью крюка или монтажной планки. Если люстра будет устанавливаться на натяжной или подвесной потолок, то закладные или подвесы должны быть подготовлены заранее.

При монтаже люстры с вентилятором необходимо придерживаться инструкции, которая прилагается к ней. Обычно в инструкции указывается схема подключения к электрической сети. Выключатель можно использовать одно или двухклавишный. В первом случае при его включении загорятся лампочки, и включится вентилятор. В случае двухклавишного выключателя можно освещение и вентиляцию включать по отдельности.


Если люстра предусмотрена для использования нескольких лампочек, все они будут соединяться с помощью одного нулевого провода. При этом фазу необходимо подключить от провода, идущего от выключателя.

Еще более сложным будет монтаж люстры с пультом, работа которой не ограничивается одним освещением. Она может использоваться в качестве декоративной подсветки или выключаться сама по таймеру. Работой всех систем люстры с пультом управления управляет специальный контроллер.

Правила безопасности при монтаже люстры

Важно: перед началом монтажных работ необходимо обесточить электросеть! Это можно сделать с помощью отключения пакетного выключателя или посредством выкручивания пробок в щитке.

При работе с электрической сетью необходимо использовать только профессиональными электротехническими инструментами, имеющими изоляцию, рассчитанную на 1000 В. При этом выполнять электротехнические работы на высоте необходимо только на устойчивой опоре, на которой не будет риска потери равновесия. И последнее – проводка, характеризующаяся поврежденной изоляцией, не должна быть использована!


Как определить фазу, ноль и заземление

Как узнать в домашних условиях, где фаза, ноль и заземление?
В наших инструкциях есть схемы подключения электроприборов к сети в домашних условиях, для чего и нужно знать, где у Вас фазный провод, рабочий ноль и заземление.
Безопасным методом определить заземление, фазу и ноль, можно с помощью цветов электрических проводов в соответствии с принятым стандартом IEC 60446 2004 года. Где синий, бело-синий провод означает рабочий ноль, зелено-желтый провод – защитный ноль (заземление). Другие цвета обозначают фазу.

 

Определяем, какой из проводов будет фазой возможно с использованием мультиметра.

 

С помощью индикаторной отвертки можно определить фазный провод. При прикосновении концом этой отвертки проводника под напряжением к контакту, на задней ее стороне, загорится индикаторная лампа и показывает напряжение. Таким способом определяется провод с фазой.
В отвертке индикаторной встроены лампа и резистор, при замыкании цепи загорится лампочка. Недостаток этого метода заключается в вероятности срабатывания отвертки, реагируя на наводки, определяя ток в том месте, где его нет.

 

Использование контрольной лампы.
Можно использовать устройство контрольная лампа. Используется патрон, в который вкручена лампочка, а в клемму патрона нужно прикрепить провода без изоляции на концах.
Как из двух проводов определить фазу и ноль.

 

Распознать с использованием контрольной лампы провод фазный из двух проводов можно только узнать есть ли фаза или нет. Подключив один конец, идущий от контрольной лампы, к уже определенному нулю, при прикосновении со вторым концом фазного провода, лампа загорится. Ноль соответствует последнему проводу.
Как определить из трех проводов фазу и ноль.

 

Нужно поочередно соединить контакты, которые идут от контрольно лампы к жилам кабеля. Исключения определяем положение, когда лампа загорается. Один провод фаза, а другой ноль. Изменяем положение контактов. Лампа загорается — свободный провод фаза, а остальные значит ноль и земля.
 

Если при изменении положения лампа ненадолго засверкает, а при реагировании УЗО или дифференциального автомата, значит оставшийся провод ноль, а проверяемые являются фазой и заземлением.
 

При загорании лампочки в двух положениях, а линия без защиты УЗО или дифференциального автомата, тогда определить какой провод рабочий ноль, а какой является заземлением, нужно отключив в щитке электричества вводный кабель от клеммы заземления. Проверяем контрольной лампой жилы и методом исключения определяем заземление, распознаем проводник заземления.

Как подключить люстру. Ошибки подключения.

Здравствуйте, уважаемые читатели сайта sesaga.ru. После выхода статьи о подключении люстры от Вас в комментариях стали приходить вопросы, связанные с ошибочным подключением люстры. В этой статье я попытаюсь разобрать самые распространенные ошибки в подключении люстры.

Вначале разберем стандартное подключение люстры, а затем, используя эту схему, рассмотрим основные ошибочные ситуации, возникающие при монтаже люстр.

1. Стандартная монтажная схема подключения люстры.

В схему входят: двойной выключатель, трехрожковая люстра, распределительная коробка и три отрезка монтажного кабеля, которыми коммутируются элементы схемы. Точка на схеме указывает на соединение между двумя и более проводами. Соединение проводов, как правило, производится скруткой, спайкой, сваркой, болтовым или клеммным соединением.

Рассмотрим схему.
Фаза L заходит в распределительную коробку и в точке (1) соединяется с проводом, который приходит от нижнего (входного) контакта выключателя. На верхних (выходных) контактах выключателя фаза размножается на L1 и L2, заходит в распределительную коробку и в точках (2, 3) соединяется с проводами, уходящими к месту размещения люстры. В точках (5, 6) люстра подключается своими фазными проводами к проводам, пришедшим от распределительной коробки.

Ноль N заходит в коробку и в точке (4) соединяется с проводом, уходящим на потолок. В точке (7) ноль соединяется с нулевым (общим) проводом люстры, к которому подключены по одному выводу от каждой лампы

При нажатии правой клавиши выключателя фаза L2 с верхнего контакта уходит в соединительную коробку, проходит точки (3, 5) и через фазный вывод люстры попадает на левый вывод лампы HL1 — лампа загорается.

Аналогично работает и левая клавиша. При нажатии клавиши фаза L1 уходит в коробку, проходит точки (2, 6) и через второй фазный вывод люстры попадает на левые выводы ламп HL2 и HL3 – лампы загораются.

2. Ошибки подключения двойного выключателя.

Самой простой и в тоже время распространенной ошибкой является неправильное подключение двойного выключателя. Как правило, входящий фазный провод L подключают к левому или правому выходному контакту выключателя, отчего нарушается нормальная работа люстры и включение одной группы ламп возможно при условии, что на другую группу напряжение подано заранее.

Например. При ошибочном подключении входящей фазы L к левому контакту выключателя L1 левая клавиша будет работать в обычном режиме: при нажатии клавиши фаза через нижний (входной) контакт заходит в распределительную коробку, затем через точки (2, 6) попадает на люстру и зажигает пару HL2 и HL3. При размыкании левой клавиши лампы гаснут.

Работа правой клавиши выключателя целиком зависит от положения левой клавиши. Если левая клавиша включена, то и правая работает как положено: при нажатии правой клавиши фаза через верхний контакт L2 и точки (3, 5) попадает на люстру и включает лампу HL1. При отключении правой клавиши лампа гаснет.

Но если мы захотим оставить включенной только лампу HL1 и разомкнем левую клавишу, то погаснут все три лампы. Это объясняется тем, что левой клавишей мы отключаем не только пару ламп HL2 и HL3, но и разрываем входящую фазу L, которая через эту клавишу питает схему освещения. Если же левая клавиша будет выключена, то мы вообще не сможем включить лампу HL1.

Аналогичным образом будет работать и левая клавиша выключателя, если входящую фазу подключить на выходной контакт L2 правой клавиши. В этом случае левая клавиша сможет зажигать лампы HL2 и HL3 только при включенной правой клавише.

Вывод: при подключении входящей фазы L на верхние контакты выключателя L1 или L2 вся работа выключателя будет зависеть от той клавиши, к выходу которой подключена фаза L.

Чтобы устранить подобные неисправности достаточно на выключателе поменять местами входящую и выходящую фазы.

Совет. Перед тем как вешать люстру проверьте правильность подключения выключателя.

Проверяем правильность подключения выключателя:

1. При отключенной люстре индикаторной отверткой проверяем наличие фазы L на входном контакте выключателя. Если она подключена на один из выходных контактов, то меняем ее местами с проводом, подключенным на входной контакт выключателя. Перед тем как менять местами провода не забываем отключать напряжение 220В.

2. Включаем обе клавиши и индикаторной отверткой проверяем наличие фазы на потолочных проводах в точках (5) и (6). В точке (7) индикаторная отвертка ничего не должна показать, так как это нулевой провод.

3. Выключаем обе клавиши и индикаторной отверткой проверяем отсутствие фазы на потолочных проводах в точках (5, 6, 7). На всех трех проводах ничего не должно быть.

4. Подключаем люстру к потолочным проводам.

5. При наличии в люстре желто-зеленого провода скрутите его с заземляющим проводом, выходящим из потолка, и заизолируйте. Как правило, заземляющие проводники выполняются желто-зеленого цвета. Если заземляющего провода на потолке нет, то провод в люстре просто заизолируйте и уберите. А если заземляющий провод в люстре не предусмотрен, значит, изолируете защитный проводник на потолке и убираете в сторону.

3. Подключение выключателя при перепутанных в распределительной коробке фазы с нулем.

До сих пор можно встретить квартиры, в которых фаза и ноль перепутаны в распределительной коробке. На работе освещения это не сказывается, но и правильным не является, поэтому в технической литературе такой вариант подключения проводки не рассматривается.

Мы разберем такую схему, но имейте в виду, что так делать нежелательно. И если Вы стали «счастливым» обладателем такой проводки, то пугаться не надо, так как страшного в этом ничего нет. Но если появится возможность исправить, то это обязательно нужно сделать.

И так. Ноль N заходит в распределительную коробку и в точке (1) соединяется с проводом, который приходит от нижнего (входного) контакта выключателя.

Фаза L заходит в коробку и в точке (4) соединяется с проводом, уходящим на потолок. В точке (7) фаза соединяется с нулевым (общим) проводом люстры, к которому подключены по одному выводу от каждой лампы. Затем через нити накала ламп HL1, HL2 и HL3, левые выводы ламп и фазные выводы люстры фаза уходит в распределительную коробку и через точки (2, 3) попадает на верхние контакты L1, L2 выключателя. Это легко увидеть, если при выключенных клавишах выключателя измерить фазу на его верхних контактах.

Работает схема так: при нажатии левой клавиши контакт замыкается и лампы HL2, HL3 включаются. При нажатии правой клавиши включается лампа HL1.

Перепутанные в коробке фазу и ноль можно легко определить еще до подключения люстры. Индикаторной отверткой проверяется наличие фазы на потолочных проводах: при любом положении клавиш выключателя фаза всегда будет находиться в точке (7).

Также при подключенной люстре можно выкрутить лампочки, и на выходных контактах L1 и L2 выключателя фаза пропадет. При любом положении клавиш выключателя фаза всегда будет находиться в точке (7) и на одном контакте каждого патрона люстры.

Также рекомендую посмотреть ролик, в котором все эти моменты разобраны и показаны наглядно

На этом пока закончим, а в следующей части будем разбираться с ошибочным подключением люстры к потолочным проводам.
Удачи!

Как подключить патрон к выключателю

Не нужно иметь семи пядей во лбу, чтобы подключить лампочку и выключатель. Будь то лампочка и выключатель у вас в квартире или, так называемая, «переноска» для гаража, с той лишь разницей, что для «переноски» не надо укладывать проводку по стенам и потолку и подключается она вилкой в розетку.

Разметка

Народная мудрость не зря гласит, что резать нужно только тогда, когда отмерил 7 раз. Поэтому отнеситесь к разметке с должным вниманием, именно в этот момент вы мысленно выполняете работу, которую после останется лишь воплотить в жизнь.

Делаем пометки в тех местах, где будет лампочка и выключатель. Следует заметить, что выключатель, обычно, ставится возле двери на высоте 80-90 см от пола, то есть на высоте свободно опущенной руки. Но не стоит воспринимать всё буквально, если у вас в коридоре все выключатели установлены на высоту 1,7 метра, то ваш на 0,8 будет явно выпадать из общей картины. Следите, что бы при открытии двери, она его не заслоняла выключатель, пользоваться им будет не удобно.

Также пометьте маршруты прохождения будущей проводки. Проводка должна идти от выключателя к распределительной коробке (или розетке, если будете запитывать схему от неё) и от лампочки к той же распределительной коробке (розетке).

Размечая, придерживайтесь важных правил: При расположении проводки рядом с другими стенами и потолком, делайте от них отступ примерно 20 сантиметров.

Следите чтобы провода располагались только горизонтально и вертикально, чтобы перегибались под прямым углом.

Учитывайте, что в несущих стенах штробы должны быть минимальной глубины и размеров.

Следует убедиться, что в ней нету старой проводки, прочитайте как обнаружить ее.

Штробление (если нужно)

Дальше идёт неприятный процесс штробления. Чтобы ваш интерьер в будущем не портили проложенные поверх обоев провода, их можно спрятать в стены, предварительно проделав в последних специальные углубления – штробы. Не буду углубляться в эту тему, т.к. в статье хочу поставить акцент именно на электрической части вопроса. Замечу лишь, что в вашем случае стены могут быть как из разных материалов (бетон или гипсокартон), так и выключатель может быть внутренний, который надо углублять в стену, так и накладной. Всё это будет напрямую влиять на объём и способ штробления. Без наличия должного опыта и инструментов лучше проложить кабель поверх стен, закрепив его пластиковыми скобами.

Монтаж проводки

Теперь нам понадобится двухжильный провод, который мы прокладываем в заранее проделанные борозды. Закрепить их там проще всего будет разведенным раствором алебастра.

Следует помнить, что это вяжущее очень быстро схватывается, так что действовать придется быстро. Провода отрезаем с запасом, укоротить мы их всегда успеем!

Патрон и выключатель

Когда с процессом монтажа проводки покончено, следует подсоединить сам выключатель и патрон. Это не составит особого труда, достаточно всего лишь снять сантиметров пять первичной изоляции и приблизительно на сантиметр зачистить сами жилы. Потом поместить их в специально предусмотренные на выключателе и цоколе разъемы, и дожать отвёрткой. В выключателе на одну лампочку существует всего два контакта, поэтому не ошибётесь. При подключении патрона полярность значения не имеет, т.е. не важно куда вы накидываете фазу, а куда ноль — лампочка работать будет. Однако техника безопасности требует, чтобы фаза была на центральном контакте лампочки, а ноль на резьбовом.

Схема подключения

Подключение к распределительной коробке

Сейчас начинается самый увлекательный процесс — подсоединение вашей проводки к распределительной коробке. Если вы знаете, где находится источник электрического тока к которому можно подключиться, то это уже хорошо, в противном случае поиск распределительной коробки может затянуться.

Для подключения проводки напрямую к электрическому щитку через дополнительный автомат воспользуйтесь инструкцией по установке автомата в щитке и подключите кабель к нему. Кстати, запитать схему можно и от ближайшей розетки, это не запрещается. Если вы запланировали сделать «переноску», то тут, конечно, всё решается подключением вилки к концу провода.

Для начала, при помощи индикаторной отвёртки определим силовой провод (фазу) и ноль в распределительной коробке или розетке. Если вы никогда не держали в руках индикаторную отвёртку, то вот статья о том, как ей пользоваться. Ваш электрик был порядочным? Тогда цвета проводов должны соответствовать: коричневый или белый – фаза, а синий – ноль. Старая проводка, естественно, не содержит цветных проводов и может выглядеть как угодно. В этом случае вам придётся руководствоваться только показаниями индикаторной отвертки. Если у вас нет специальной группы допуска (а её скорее всего нет, иначе бы вы не читали эту статью), работать под открытым напряжением строго запрещено! Поэтому следует выкрутить пробки, выключить автоматы, и при помощи того же индикатора убедится, что силовой провод обесточен.

Выключатель запитываем через фазу, то есть силовой провод соединяем с белой, или коричневой жилой, что идет от выключателя, а ноль соединяем с синей жилой провода, что идёт от лампочки как на схеме. Оставшиеся белую и синюю жилы, что идут, соответственно, к лампочке и выключателю соединяем между собой. Все скрутки тщательно изолируем при помощи изоленты. Если вы захотите расширить свою схему подключением дополнительной лампочки или, например, добавить розетку, то можете использовать двойной или тройной выключатель, здесь описано как это сделать.

Скручивать алюминиевые и медные провода нельзя! Это крайне неустойчивое соединение, которое быстро окисляется и может не только выйти из строя, но и воспламениться. Для соединения таких проводов воспользуйтесь специальными клеммными колодками. В магазине с электрикой они представлены в широком ассортименте. По правилам хорошего тона и из соображений безопасности старайтесь везде вместо скруток проводов пользоваться колодками.

Если вы всё сделали правильно, то можете гордиться своей работой. Если нет… ну что же, позовёте наконец электрика.

Очень надеюсь на то, что статья окажется для вас полезной и у вас всё получится. Возможно я забыл сказать что-то важное, что кажется само-собой разумеющимся для меня и совсем не понятным для вас. Поэтому буду ждать ваших комментариев ниже и с радостью отвечать на вопросы, дополнять и исправлять статью если потребуется. Спасибо за внимание!

Развитие электросети внутри помещения, может быть спланировано как при начальном ее проектировании, так и при эксплуатации уже готовой проводки. В любом случае, соединение между собой распределительных коробок, смонтированных подрозетников, выключателей — хочется выполнить с минимальными затратами на материал. Расключение силового кабеля не обязательно выполняется исключительно в монтажных коробках, которые являются узловыми разветвителями. Например, есть много способов, как подключить выключатель от розетки, и наоборот. Часть коммутации можно выполнить в любой коробочке, главное — чтобы не было опасности замыкания контактов.

Типовой пример объединения розетки и выключателя в одном блоке

Часто в коридоре или прихожей возникает необходимость объединить точку подключения к сети (розетку) и выключатель нескольких групп освещения. Такой способ решает несколько задач:

  • Разветвленная розеточная сеть в коридоре обычно не нужна: нет постоянно используемых электроприборов. Тем не менее есть необходимость подключать пылесос, или зарядное устройство. К тому же, в прихожей может быть установлен базовый блок радиотелефона.
  • Места на стенах в этом помещении мало, установлены гардеробные шкафы, зеркало, вешалка. Часть коридора обычно занята входным распределительным щитом и прибором учета (счетчиком). Поэтому компактное размещение коммутационного оборудования — ключевой вопрос.
  • При объединении розетки и выключателя, экономится проводка, не требуется установка дополнительной распределительной коробки.
  • Если вы дополнительно подключаете второе устройство: выключатель к розетке, или наоборот, нет необходимости портить стену, организовывать маршрут для силового кабеля. Подключение производится с минимальным воздействием на помещение.

Как видно на иллюстрации, для реализации всей схемы потребуется один защитный автомат (в щитке его можно назвать «коридор: освещение, розетка»), и одна распределительная коробка.

Нулевая шина N (голубой цвет) проходит своеобразным транзитом на группы освещения и в розетку. Заземление PE заводится в корпус розетки, и (если одна из групп освещения находится в ванной комнате) в корпус светильника. Фаза после автомата, через распределительную коробку подключается к розетке. Расключение происходит в подрозеточнике. При этом используется любая клеммная колодка: например, WAGO.

Небольшим участком провода соединяется фазная клемма в розетке и входная клемма двухклавишного выключателя. Далее, от выходных клемм прокладывается фаза на каждую группу освещения.

Такая схема обычно применяется при проектировании, поскольку все равно придется прокладывать кабели на разные группы освещения. Если такое решение является дополнительным, вы не устанавливаете дополнительные коробочки. Отверстие для выключателя или подрозетника проделывается рядом с уже смонтированным прибором. Останется лишь проложить дополнительную проводку.

Если есть необходимость развести розетку и освещение на разные автоматы защиты (например, применяется силовая розетка для мощного электроприбора), заведение фазы выполняется по разным силовым линиям.

Использовать дополнительную распределительную коробку не нужно, фазный провод проходит через нее транзитом, без расключения.

Совет: оставьте в распределительной коробке петлю на каждом фазном проводе. При перспективном расширении сети, можно разрезать проводку, и с помощью колодок быстро организовать расключение.

В любом случае, при таком способе монтажа экономится и проводка, и площадь на стене. Для примера, посмотрим классический вариант подключения розетки и выключателя к распределительной коробке.

Проложено два маршрута кабеля, расключение в распределительной коробке. Глядя на схему, становится очевидным, что подключение выключателя напрямую к розетке более рационально.

Как подключить одноклавишный выключатель от розетки

Вариант классический: общая нулевая шина от распределительной коробки заводится на световую точку.

По тому же кабельному каналу заходит заземление (при его использовании). А вот фазный провод напрямую к осветительному прибору не идет. Одноклавишный выключатель (находясь в одном корпусе с розеткой) разрывает цепь между фазным контактом в подрозетнике и светоточкой. Довольно распространенная схема. Такой блок часто можно встретить в магазинах светотехники.

Еще одно применение такого модуля — отключаемая розетка. Допустим, у вас есть электроприбор, который следует выключать на ночь, или при выходе из помещения. Это может быть роутер, раздающий Wi-Fi. Сам блок располагается высоко, не всегда можно воспользоваться штатной кнопкой питания. Щелкнув клавишей выключателя, вы обесточите оборудование, не трогая автомат в распределительном щитке. Или напротив: прибор надо запитать при определенных условиях. Например, питание сигнализации.

В этом случае, фазный провод внутри блока просто размыкается выключателем, а подключение силовой проводки осуществляется, как на обычную розетку.

Если выключатель добавляется к уже существующей розетке

Минимизация последствий — замена розетки на блок. Сама процедура несложная, сверлим рядом отверстие для коробочки, и аккуратно монтируем новый модуль.

Силовой входящий кабель заводить не нужно, он и так есть в подрозетнике. А вот выходную проводку, до прибора освещения, протянуть придется. Это индивидуальное решение, универсального способа нет. Схема подключения очень простая: и нулевой и фазный провода прокладываются не от коробочки, а от подрозетника.

Естественно, придется установить контактные колодки. Хотя многие соединяют выходной провод прямо с контактами розетки: некоторые модели допускают такое подключение.

Если розеток в группе несколько, заменить на общий блок (розетка — выключатель) можно любую из них. Вы просто выбираете удобное место (от которого можно протянуть провод до светильника), и соединяете выключатель с розеткой.

При необходимости организовать дополнительную световую точку в прихожей, можно использовать настенные бра. Они размещаются в непосредственной близости от блока «розетка — выключатель», и вам не придется разрушать большой кусок стены для проводки.

Общие правила безопасности

Разумеется, перед началом таких работ (особенно на готовой системе электроснабжения), следует обесточить линию и проверить отсутствие напряжения. Подбор силового кабеля не вызовет сложностей: для организации освещения достаточно сечения 1.5 мм². Поскольку мы подключаем выключатель к розетке, а не наоборот, первичный (розеточный) кабель будет более мощным: 2.5 мм².

Можно ли подключить к выключателю розетку

Представьте ситуацию: у вас выполнен ремонт в помещении, вся электропроводка замурована в стены, и нет резервных коробочек или подрозетников. В одном из помещения требуется установить розетку. Разместить ее рядом с распределительной коробкой — нерационально, слишком высокое расположение. А прокладывать открытую проводку (тем более, штробить стену) не хочется.

В удобном месте расположен выключатель, в котором явно есть напряжение. Как сделать розетку от выключателя, если есть возможность эстетически разместить их рядом?

Чтобы ответить на этот вопрос, вспомним: какие бывают схемы освещения с выключателями.

Классическое включение: отвод от распределительной коробки.

Нулевой проводник заводится в светильник из коробки. В самой же коробке организуется разрыв фазного кабеля (он размыкается с помощью выключателя), затем фаза заходит в лампу по тому же пути, что и нуль.

При такой схеме, в корпусе (монтажной коробке) выключателя присутствует только фазный проводник. Организовать замкнутую электрическую цепь для подключения дополнительного электроприбора (через розетку) не получится. Можно использовать фазу от выключателя, но при этом все равно придется вести нуль из распределительной коробки, что делает затею бессмысленной.

Вывод: При такой организации освещения, подключить розетку к выключателю невозможно.

Выключатель находится между источником электроэнергии и осветительным прибором.

Такая схема встречается реже, но в некоторых помещениях она применяется. Если на этапе проектирования было принято решение не использовать в осветительной сети распределительные коробки — вам повезло. В монтажной коробке выключателя есть и нулевой и фазный провода.

Последовательность работ следующая:

  • Демонтируем действующий выключатель, не трогая монтажную коробку.
  • Определяем маршруты прокладки входного и выходного кабелей. Если у вас есть схема и план электроснабжения помещения, сделать это нетрудно.
  • Аккуратно сверлим отверстие для подрозетника.
  • В коробке выключателя монтируем клеммные колодки, и производим подключение розетки по следующей схеме:

Поскольку действующая проводка предназначена для освещения, вероятнее всего, сечение кабеля не более 1.5 мм². Максимально возможная нагрузка для такого кабеля (при условии, что он медный): 3.3 кВт. То есть, в эту розетку можно включать не слишком мощные электроприборы. Максимум — пылесос. Ну а зарядные устройства для телефонов, блок питания роутера или антенного усилителя – без проблем.

Расширение силовой сети в отдельном помещении, за счет расключения в действующих коммутационных устройствах возможно. Как правило, организуется подключение выключателя к розетке. Обратная ситуация возможна лишь при определенной схеме электропроводки.

Видео по теме

Такая казалось бы простая и незамысловатая процедура, как подключение патрона для лампочки, имеет свои нюансы, не всегда знакомые для людей далеких от электричества.

Да что говорить, иногда сами электрики делают это не правильно. Чем это может обернуться для вас при дальнейшей эксплуатации?

Наибольшее распространение на нашем рынке получили 3 вида патронов:

    карболитовые советского образца
    пластиковые самозажимные

Начнем с карболитовых. Данный патрон является разборным и состоит из трех частей:

    цилиндрический корпус с резьбой
    керамический вкладыш с контактами

Чаще всего в наших квартирах используются патроны имеющие маркировку:

Значение в цифрах обозначает диаметр цоколя лампы в миллиметрах, которая подходит для этого патрона.

Буковка «E» говорит о том, что он относится к винтовой серии с резьбой Эдисона.

Бывают еще штыревые, серии G и некоторые другие, представленные ниже.

Такие изделия рассчитаны на ток не более 4А. То есть, в сети 220В к ним можно подключить нагрузку до 900Вт.

Подключение кабеля производится в следующей последовательности.

Перво-наперво перед началом работ нужно выяснить, какая из жил в кабеле является фазой. Это главный момент отвечающий за безопасность всей дальнейшей сборки.

Делается это при помощи обыкновенной индикаторной отвертки.

Контакт для подключения представлен на фото ниже.

Почему это так важно? Дело в том, что в патроне у вас никогда не должна быть под напряжением резьбовая часть. Не многие знают, но выключатель света (одноклавишный, двухклавишный) при отключении разрывают только один из проводников.

Второй, так и продолжает напрямую поступать на патрон. А теперь представьте, что электрик случайно перепутал фазу с нолем и пустил через выключатель нулевую жилу.

В итоге, в один прекрасный момент, лампочка в люстре может не просто перегореть, а лопнуть с разрушением стеклянной колбы.

Вы отключите свет чтобы ее заменить, и при такой замене, вам по любому придется соприкоснуться с цоколем.

Есть вообще светильники полностью с металлическим корпусами патронов. Стоит здесь перепутать подключение проводов, и при нештатной ситуации весь светильник целиком окажется под напряжением.

Еще часто можно наблюдать ситуацию, когда при заворачивании лампочки в патрон, она почему то не светится. Причина здесь кроется в отгибании центрального контакта. Он просто не достает до пятачка цоколя.

Чтобы исправить этот дефект, достаточно его подогнуть обратно. Многие делают это неизолированными отвертками, либо ножом.

В результате неаккуратных действий, вы обязательно заденете боковые контакты, а они у вас будут под напряжением.

Как итог – удар током вам обеспечен. Опытные электрики в этом случае советуют вообще не применять отвертки или посторонние инструменты, а воспользоваться самим патроном.

Выкручиваете цилиндрический корпус с резьбой и вставляете его боковой гранью между двух контактных площадок.

Далее краешком цепляете центральный пятачок и отгибаете его к верху. Никаких КЗ при этом вы не создадите, да и сами под напряжение не попадете.

И не важно на стене этот патрон или на потолке. Делается все в обоих случаях аналогично.

Поэтому запомните – нулевой проводник всегда должен приходить только на резьбовую часть цоколя.

У многих возникает вопрос, а куда подключать провод заземления, если у вас 3 провода в кабеле? Ведь на вкладыше с контактами больше нет свободных разъемов.

Данный третий провод, должен подключаться к корпусу самого светильника. Обычно на люстре или бра, всегда есть заводское место, куда и должна подсоединяться «земля».

Поэтому непосредственно в сам патрон, третий провод не заводится. При зачистке кабеля всегда делайте этот проводник желто-зеленого цвета большей длины, как минимум в два раза.

Хотя надо сделать замечание, что на некоторых видах керамических цоколей, есть подобные разъемы.

Стационарная фаза — обзор

11.2 Модели периодического роста

Когда жидкая питательная среда инокулируется посевной культурой (инокулятами), организмы выборочно поглощают растворенные питательные вещества из среды и превращают их в биомассу. Типичная кривая роста партии включает следующие фазы: (1) фаза задержки, (2) фаза логарифмического или экспоненциального роста, (3) фаза замедления, (4) стационарная фаза и (5) фаза смерти. На рис. 11.1 показан цикл периодического роста клеток млекопитающих (который также типичен для микробной клетки).Хотя показаны несколько параметров, количество клеток (VCD) или биомасса клеток находятся в центре внимания для классификации режима роста.

Рис. 11.1. Типичная схема роста партии. VCD — это плотность жизнеспособных клеток, обычно используемая при культивировании клеток млекопитающих, но для большинства других применений вместо этого можно использовать концентрацию клеточной массы. Глюкозу можно заменить ограничивающим субстратом.

Лаг-фаза возникает сразу после инокуляции и представляет собой период адаптации клеток к новой среде.При переносе в новую среду микроорганизмы реорганизуют свои молекулярные составляющие. В зависимости от состава питательных веществ синтезируются новые ферменты, синтез некоторых других ферментов подавляется, а внутренний механизм клеток адаптируется к новым условиям окружающей среды. Эти изменения отражают внутриклеточные механизмы регуляции метаболических процессов, обсуждаемых в главе 9. Во время этой фазы масса клеток может немного увеличиваться без увеличения плотности числа клеток.Когда посевной материал небольшой и имеет низкую долю жизнеспособных клеток, может иметь место фаза псевдолага, которая является результатом не адаптации, а небольшого размера посевного материала или плохого состояния.

Низкая концентрация некоторых питательных веществ и факторов роста также может вызвать длительную лаг-фазу. Например, лаг-фаза Enterobacter aerogenes (ранее Aerobacter aerogenes ), выращенных в глюкозно-фосфатной буферной среде, увеличивается по мере снижения концентрации Mg 2 + , который является активатором фермента фосфатазы.В качестве другого примера, даже гетеротрофным клеткам требуется фиксация CO 2 (для дополнения промежуточных продуктов, удаляемых из ключевых энергетических метаболических циклов во время быстрого биосинтеза), а чрезмерное барботирование может удалить метаболически генерируемый CO 2 слишком быстро, чтобы клеточная реструктуризация могла быть выполнена эффективно. , особенно с небольшим посевным материалом.

Возраст посевной культуры сильно влияет на продолжительность лаг-фазы. Возраст относится к тому, как долго культура поддерживалась в периодической культуре.Обычно лаг-период увеличивается с возрастом посевного материала. В некоторых случаях существует оптимальный возраст посевного материала, что приводит к минимальному периоду задержки. Чтобы свести к минимуму продолжительность лаг-фазы, клетки должны быть адаптированы к питательной среде и условиям перед инокуляцией, и клетки должны быть молодыми (или клетки экспоненциальной фазы) и активными, а размер инокулята должен быть большим (5-10% по объему). ). Может потребоваться оптимизация питательной среды и включение определенных факторов роста для минимизации лаг-фазы.Многие коммерческие ферментационные заводы полагаются на периодическое культивирование; для получения высокой производительности при фиксированном размере установки задерживающая фаза должна быть как можно короче.

Множественные лаг-фазы могут наблюдаться, когда среда содержит более одного источника углерода. Это явление, известное как диауксический рост, вызвано сдвигом метаболических путей в середине цикла роста (см. Пример 10.1). После того, как один источник углерода истощается, клетки адаптируют свою метаболическую активность для использования второго источника углерода.Первый источник углерода легче использовать, чем второй, а присутствие более доступного источника углерода подавляет синтез ферментов, необходимых для метаболизма второго субстрата.

Фаза максимального роста также известна как фаза экспоненциального роста или фаза логарифмического роста . На этом этапе клетки приспособились к новой среде. После этого периода адаптации клетки могут быстро размножаться с максимальной скоростью, а масса и численность клеток экспоненциально увеличиваются со временем.Это период сбалансированного роста , когда все компоненты клетки растут с одинаковой скоростью (псевдостационарное состояние). То есть средний состав отдельной клетки остается примерно постоянным во время этой фазы роста. Во время сбалансированного роста чистая удельная скорость роста, определяемая либо по количеству клеток, либо по их массе, будет одинаковой. Удельная скорость роста постоянна, на основании чего предлагается феноменологическая модель для экспоненциальной фазы роста:

(11,2) rX = μnetX

с постоянной чистой удельной скоростью роста во время этой фазы роста.Это простое соотношение уравнения. (11.2) называется моделью роста Мальтуса. В периодическом процессе скорость изменения концентрации биомассы такая же, как и скорость образования биомассы (баланс массы). Интегрирование уравнения баланса массы с уравнением. (11.2) как скорость производства биомассы:

(11.3a) lnXX0 = μnett

или

(11.3b) X = X0eμnett

, где X и X 0 — концентрации клеток при время t и начальное время t = 0; соответственно.

Время, необходимое для удвоения микробной массы, можно рассчитать с помощью уравнения. (11.3a) as:

(11.4) td = ln2μnet

Время удвоения — это также время, необходимое для появления нового поколения клеток в период экспоненциального роста.

Фаза замедленного роста следует за фазой максимального роста. На этой фазе рост замедляется из-за истощения одного или нескольких основных питательных веществ или накопления токсичных побочных продуктов роста. Для типичной бактериальной культуры эти изменения происходят в течение очень короткого периода времени.Быстро меняющаяся среда приводит к несбалансированному росту . Во время несбалансированного роста состав и размер клеток изменятся. В экспоненциальной фазе система клеточного метаболического контроля настроена на достижение максимальной скорости воспроизводства. В фазе замедления стрессы, вызванные истощением питательных веществ или накоплением отходов, вызывают реструктуризацию клетки, чтобы увеличить перспективы выживания клетки во враждебной среде. Эти наблюдаемые изменения являются результатом молекулярных механизмов репрессии и индукции, которые мы обсуждали в главе 9.Из-за быстроты этих изменений физиологию клеток в условиях ограничения питательных веществ легче изучать в непрерывном культивировании, как обсуждается далее в главе 12.

Модель роста Мальтуса действительна только в фазе экспоненциального роста. Модификация модели Мальтуса, разработанная Ферхюльстом в 1844 г., включала очевидного ингибирования биомассы -член:

(11,5) rX = kX1 − XX∞

, где X — несущая способность клеток в среде и k — коэффициент грузоподъемности.Для периодического роста постоянного объема культуры клеточный баланс зависит от скорости роста, определяемой уравнением. (11.5) дает

(11.6) X = X0ekt1 − X0X∞1 − ekt

Ур. (11.6), которое также называют логистическим уравнением. Модель Ферхюльста способна описать фазу экспоненциального роста, фазу замедления и стационарную фазу с помощью уравнения. (11.6). Следовательно, модель Ферхюльста (или логистическая модель) является более точной феноменологической моделью, чем модель Мальтуса.

Стационарная фаза начинается в конце фазы замедления, когда чистая скорость роста равна нулю (без деления клеток) или когда скорость роста равна уровню смертности.Несмотря на то, что чистая скорость роста равна нулю во время стационарной фазы, клетки все еще метаболически активны и производят вторичные метаболиты. Первичные метаболиты являются продуктами, связанными с ростом, а вторичных метаболитов не связаны с ростом. Фактически, производство определенных метаболитов усиливается во время стационарной фазы (например, антибиотиков, некоторых гормонов) из-за дерегуляции метаболитов. В течение стационарной фазы может иметь место одно или несколько из следующих явлений:

1.

Концентрация общей массы клеток может оставаться постоянной, но количество жизнеспособных клеток может уменьшаться.

2.

Может произойти лизис клеток и может снизиться жизнеспособная клеточная масса. Может наступить вторая фаза роста, и клетки могут расти на продуктах лизиса лизированных клеток (криптический рост).

3.

Клетки могут не расти, но могут иметь активный метаболизм для производства вторичных метаболитов. Клеточная регуляция изменяется при низкой концентрации определенных метаболитов (например, углерода, азота и фосфата).Вторичные метаболиты образуются в результате нарушения регуляции метаболитов.

Во время стационарной фазы клетка катаболизирует клеточные резервы для новых строительных блоков и мономеров, производящих энергию. Это называется эндогенный метаболизм . Клетка всегда должна расходовать энергию для поддержания заряженной мембраны (т.е. протонодвижущей силы) и транспорта питательных веществ для основных метаболических функций, таких как подвижность и восстановление поврежденных клеточных структур.Эти затраты энергии называются энергией обслуживания . Таким образом, поддерживающая энергия и эндогенный метаболизм не ограничиваются стационарной фазой, но становятся доминирующими в стационарной фазе. Затраты на содержание или эндогенные затраты составляют лишь небольшую часть от общих потребностей клеток во время максимального роста. Когда первичный метаболизм снижается, как в стационарной фазе, эндогенный метаболизм становится доминирующим.

Причиной прекращения роста может быть либо истощение необходимого питательного вещества, либо накопление токсичных продуктов.Если ингибирующий продукт продуцируется и накапливается в среде, скорость роста замедляется, в зависимости от продукции ингибитора, и при определенном уровне концентрации ингибитора рост прекращается. Производство этанола дрожжами является примером ферментации, при которой продукт тормозит рост. Разбавление токсичной среды, добавление комплекса неметаболизируемого химического соединения с токсином или одновременное удаление токсина ослабят неблагоприятные эффекты токсина и приведут к дальнейшему росту.

Фаза смерти (или фаза упадка) следует за стационарной фазой. Однако некоторая гибель клеток может начаться во время или даже до стационарной фазы, и четкое разграничение между этими двумя фазами не всегда возможно. Часто мертвые клетки лизируются, а высвобождаемые в среду внутриклеточные питательные вещества используются живыми организмами во время стационарной фазы. В конце стационарной фазы из-за истощения питательных веществ или накопления токсичных продуктов начинается фаза смерти.Уровень смертности можно рассматривать как реакцию первого порядка. Поскольку S равно нулю, μ G равно нулю, начиная с стационарной фазы:

(11,7) rX = −kdX

, где k d — константа скорости первого порядка гибели клеток. Баланс массы клеточной биомассы в реакторе периодического действия приводит к:

(11,8) −kdXV = rXV = dXVdt

, который может быть интегрирован для получения (для постоянной среды V ):

(11,9) X = XS0e− kdt

, где X S0 — концентрация клеточной массы в начале стационарной фазы.

Во время фазы смерти клетки могут лизироваться, а могут и не лизироваться, и восстановление культуры может быть возможным в фазе ранней смерти, если клетки переносятся в среду, богатую питательными веществами. Как в фазе смерти, так и в стационарной фазе важно понимать, что существует распределение свойств среди людей в популяции. При узком распределении гибель клеток будет происходить почти одновременно; при широком распространении подфракция населения может выжить в течение длительного периода.Именно эта субфракция будет доминировать при восстановлении культуры из инокулята, полученного из стационарных культур или культур в фазе смерти. Таким образом, использование старого инокулята позволяет отобрать варианты исходного штамма с измененными метаболическими возможностями.

Хотя феноменологические модели могут достаточно хорошо описывать серийные эксперименты по росту клеток, параметры не так значимы для дальнейших генетических и более механистических оценок. Режимы, особенно экспоненциальная фаза, фаза замедления и стационарная фаза, меняются при разной загрузке одних и тех же питательных веществ.Очевидно, что рост клеток связан с доступностью субстратов (или питательных веществ) в среде, что не может быть связано с ингибированием биомассы, как это изображает логистическая модель. Можно представить, что экспоненциальный рост происходит из-за достаточного количества питательных веществ. Стационарная фаза возникает из-за истощения питательных веществ, не обязательно из-за ингибирования биомассы клетки. Поэтому, если не исследовать изменение субстрата, это приводит к неполному описанию роста клеток.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Zero MMX Технические характеристики || МОТОЦИКЛЫ ZERO

Технические характеристики могут быть изменены без предварительного уведомления. Изображения могут не отражать самые последние технические характеристики продукта. Zero Motorcycles оставляет за собой право вносить улучшения и / или изменения в конструкцию без каких-либо обязательств в отношении ранее проданного, собранного или изготовленного оборудования.

Город

Это предназначено для обеспечения разумной оценки диапазона езды, который можно ожидать во время непрерывной работы, обычно встречающейся в городских районах, например, предписанной рабочим циклом «City Test» в рамках SAE. J2982.Фактический диапазон будет варьироваться в зависимости от реальных условий и привычек катания.

79 миль (127 км)
Разведчик 65-175 минут
Агрессивная тактическая езда 45-155 минут
Мотор
Максимальный крутящий момент 78 фут-фунтов (106 Нм)
Пиковая мощность

Пиковая мощность, которую двигатель может производить в течение конечного периода времени. Фактическая выходная мощность может варьироваться в зависимости от ряда условий, включая рабочую температуру и степень заряда.

46 л.с. (34 кВт) при 4300 об / мин
Максимальная скорость (макс.)

Максимальная скорость основана на результатах стандартизированных государственных испытаний, известных как омологация. Фактическая максимальная скорость может варьироваться в зависимости от условий езды и уровня заряда аккумулятора.

85 миль / ч (137 км / ч)
Максимальная скорость (устойчивая)

Устойчивая максимальная скорость — это та скорость, которую мотоцикл может поддерживать в течение продолжительного периода времени. Эта устойчивая максимальная скорость может варьироваться в зависимости от условий езды.

70 миль / ч (113 км / ч)
Тип Z-Force® 75-5 с пассивным воздушным охлаждением, высокая эффективность, радиальный поток, внутренний постоянный магнит, бесщеточный двигатель
Контроллер

Контроллер электрического мотоцикла похож на систему впрыска топлива бензинового мотоцикла. Он точно «измеряет» поток электричества от аккумулятора к двигателю в соответствии с действием дроссельной заслонки водителя и окружающими условиями с помощью сложного алгоритма карты.

Высокоэффективный, трехфазный бесщеточный контроллер, 550 А, с рекуперативным замедлением
Система питания
Блок питания Z-Force® Li-Ion интеллектуальный модульный
Максимальная мощность

Максимальная мощность, как правило, является выбором отрасли электромобилей для сообщения о максимальном количестве энергии, которое может храниться в силовой установке транспортного средства.

О кВтч: В тех случаях, когда бензиновые автомобили используют галлоны, электромобили часто используют киловатт-часы (кВтч) для измерения общей возможной емкости «топлива» или накопления энергии.

Формула:
Максимальное значение кВтч = (количество ячеек) * (номинальная емкость ячейки в ампер-часах) * (максимальное номинальное напряжение ячейки)

7,2 кВтч
Номинальная мощность

Номинальная мощность — это наиболее точная мера количества полезной энергии, которая может храниться в силовой установке транспортного средства. Она отличается от максимальной мощности, поскольку рассчитывается с использованием среднего напряжения, которое чаще является «нормой», а не максимумом, который редко встречается.

О кВтч: В тех случаях, когда бензиновые автомобили используют галлоны, электромобили часто используют киловатт-часы (кВтч) для измерения общей возможной емкости «топлива» или накопления энергии.

Формула:
Номинальная кВтч = (количество ячеек) * (номинальная емкость ячейки в ампер-часах) * (номинальное напряжение ячейки)

6,3 кВтч
Тип зарядного устройства 1 кВт, автономный
Время зарядки (стандарт) 6,0 часов (100% заряда) / 6,5 часов (95% заряда)
»С одним дополнительным зарядным устройством 3,5 часа (100% заряда) / 3,0 часа (95% заряда)
»С макс. Зарядными устройствами 2.0 часов (100% заряда) / 1,5 часа (95% заряда)
Ввод Стандартное 110 В или 220 В
Трансмиссия
Трансмиссия Безмуфтовый прямой привод
Главная передача 65T / 12T, 520 цепь
Шасси / Подвеска / Тормоза
Подвеска передняя Вилка Showa с перевернутым картриджем 41 мм, с регулируемым предварительным натягом пружины, демпфированием сжатия и отбоя
Подвеска задняя Поршень Showa 40 мм, задний амортизатор с регулируемым предварительным натягом пружины, демпфированием сжатия и отбоя
Ход передней подвески

Ход колеса, измеренный по линии вилки.

8,60 дюйма (218 мм)
Ход задней подвески

Ход колеса, измеренный перпендикулярно земле.

8,94 дюйма (227 мм)
Тормоза передние Двухпоршневой плавающий суппорт J-Juan, диск 240 x 4,5 мм
Тормоза задние Однопоршневой плавающий суппорт J-Juan, диск 240 x 4,5 мм
Шина передняя Pirelli MT-21 Rallycross 90 / 90-21
Задняя шина Pirelli MT-21 Rallycross 120 / 80-18
Колесо переднее 1.85 х 21
Колесо заднее 2,50 х 18
Габаритные размеры
Колесная база

Расстояние от места, где передняя шина касается земли, до места, где задняя шина касается земли без дополнительной нагрузки на мотоцикл (без нагрузки).

56,6 дюйма (1438 мм)
Высота сиденья

Расстояние от земли до верха сиденья без дополнительной нагрузки на мотоцикл (без нагрузки).

34,7 дюйма (881 мм)
Грабли

На дорожном просвете (прогиб подвески 1/3)

25,4 °
Trail

На дорожном просвете (провисание подвески 1/3)

104 мм (4,1 дюйма)
Масса
Снаряженная масса275 фунтов (125 кг)
Грузоподъемность 355 фунтов (161 кг)
Экономика
Эквивалентная экономия топлива (город)

Экономия топлива электромобиля измеряется в эквиваленте миль на галлон (MPGe), который указывает с помощью формулы, предписанной Агентством по охране окружающей среды (EPA), как далеко может проехать электромобиль, используя такое же количество энергия, содержащаяся в одном галлоне бензина.Электромобили намного более эффективны, чем их аналоги с двигателями внутреннего сгорания (ДВС). Трансмиссия электромобиля может превратить более 90% подаваемой в него энергии в полезную движущую силу. Трансмиссия ICE может превратить только 25-30% поставляемой энергии в движущую силу. В результате трансмиссия электромобиля может работать более чем в три раза эффективнее, чем его аналоги с ДВС.

Формула:
Эквивалентная экономия топлива, город = (диапазон EPA UDDS) / (номинальная мощность силового агрегата) x 33.7 (EPA кВтч на галлон бензина)

Эквивалентная экономия топлива, шоссе = (диапазон шоссе) / (номинальная мощность силового агрегата) x 33,7 (EPA кВтч на галлон бензина)

420 MPGe (0,56 л / 100 км)
Типичная стоимость подзарядки

Это указывает среднюю стоимость подзарядки полностью разряженного блока питания. Чаще гонщики будут заряжать частично разряженный силовой агрегат и будут иметь более низкую стоимость подзарядки. Фактическая стоимость подзарядки всегда будет зависеть от количества заряда, вложенного в блок питания, и стоимости электроэнергии, поступающей из конкретной розетки.

Формула:
Типичная стоимость перезарядки = (Средняя потребительская стоимость за кВтч) X (номинальная мощность блока питания) / (эффективность зарядки).
Эффективность зарядки составляет 0,94 для всех моделей 2013 года выпуска.

$ 0,81

Твердофазная экстракция — Подготовка образца SPE

Сертифицировано
Использование / применение Лаборатория
Марка A One
Цвет Прозрачный ISO
Шкаф Акрил
Крышка Полипропилен

Это метод, разработанный для быстрой и селективной подготовки проб, очистки перед хроматографическим анализом.

SPE обеспечивает очистку проб, восстановление и концентрацию, необходимые для точного количественного анализа с использованием принципов жидкостной хроматографии для контроля селективности.

Множество доступных фазовых химикатов можно упаковать в массив. Этот массив представлен в виде аппаратных форматов, таких как стеклянные пробирки, 48, 96-луночные, 144, планшеты и картриджные пробирки (дисперсионная ТФЭ). Его можно обработать с помощью специальных принадлежностей для вакуумного коллектора.

( SPE ) — это метод, с помощью которого соединения, растворенные в жидкой смеси, отделяются от других соединений в смеси.Некоторые аналитические лаборатории используют твердофазную экстракцию SPE для концентрирования и очистки образцов для анализа. Хотя включая мочу, кровь, воду, напитки, почву и ткани животных.

Многие адсорбенты / материалы такие же, как и в хроматографических методах. Но твердофазная экстракция SPE отличается от хроматографии. Таким образом, он занимает уникальную нишу в современной химической науке.

SPE и хроматография:

SPE — это метод хроматографии, за исключением самого широкого и простого смысла.Это метод экстракции, использующий большие различия в Keq, или константе равновесия. Он представляет собой смесь компонентов между твердой фазой и полученной подвижной фазой. Это для хорошо продуманного и выполненного разделения при объемном разделении одного или нескольких компонентов смеси.

Дополнительная информация:

  • Условия режима оплаты: L / C (аккредитив), T / T (банковский перевод), D / P

Подготовка никотиновых полимеров с молекулярным отпечатком на поверхности для селективной твердофазной экстракции никотин из жидкостей нулевого уровня для заправки электронных сигарет

Новый метод твердофазной экстракции полимера с молекулярным отпечатком (MISPE) в сочетании с газовой хроматографией-масс-спектрометрией был разработан для определения никотина в жидкостях для пополнения нулевого уровня электронных сигарет.Полимеры с молекулярным отпечатком на поверхности (SMIP) были синтезированы на поверхности наносфер винил-SiO 2 с использованием никотина в качестве шаблона, метакриловой кислоты в качестве функционального мономера и диметакрилата этиленгликоля в качестве сшивающего агента в растворе толуола. Приготовленные SMIP показали высокую адсорбционную способность (247,0 мкмоль г -1 ), отличный импринтинг-фактор (4,40) и высокую селективность в отношении никотина с коэффициентами селективности выше 2,9. Наконец, SMIP были успешно использованы в качестве сорбентов твердофазной экстракции (ТФЭ) для извлечения никотина из жидкостей для пополнения нулевого уровня электронных сигарет (ЭК).Недавно разработанный метод показал хорошую линейность в диапазоне 2,00–40,00 мкг / мл -1 . Предел обнаружения (LOD, S / N = 3) составлял 0,50 мкг · мл -1 , предел количественного определения (LOQ, S / N = 10) составлял 1,66 мкг · мл -1 , а среднее извлечение колеблется от 76,2% до 83,9% с относительными стандартными отклонениями ниже 6,4% ( n = 6). Эти результаты показали, что был разработан возможный и надежный метод определения никотина в жидкостях для пополнения электронных сигарет с нулевым уровнем, который может обеспечить альтернативное решение для контроля качества электронных сигарет.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуйте снова?

ЭЛЕКТРИЧЕСКАЯ БЕЗОПАСНОСТЬ — прикладное промышленное электричество

Важность электробезопасности

С помощью этого урока я надеюсь избежать распространенной ошибки, обнаруживаемой в учебниках по электронике, состоящей в игнорировании или недостаточном освещении темы электробезопасности.Я предполагаю, что тот, кто читает эту книгу, хотя бы мимолетно заинтересован в реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.

Еще одно преимущество включения подробного урока по электробезопасности — это практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и схемы. Чем более актуальной будет техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть важнее приложения для личной безопасности? Кроме того, поскольку электрическая энергия является повседневным явлением в современной жизни, почти любой может ознакомиться с иллюстрациями, приведенными на таком уроке.Вы когда-нибудь задумывались, почему птиц не шокируют, когда они отдыхают на линиях электропередач? Читайте и узнайте!

Физиологические эффекты электричества

Большинство из нас испытали ту или иную форму электрического «шока», когда электричество заставляет наше тело испытывать боль или травму. Если нам повезет, степень этого переживания ограничится покалыванием или приступами боли от накопления статического электричества, разряженного через наши тела. Когда мы работаем с электрическими цепями, способными передавать большую мощность нагрузкам, поражение электрическим током становится гораздо более серьезной проблемой, а боль — наименее значимым результатом поражения электрическим током.

Поскольку электрический ток проходит через материал, любое противодействие току (сопротивлению) приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может обжечься. Эффект носит физиологический характер, такой же, как и повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество обладает способностью сжигать ткани под кожей жертвы, даже обжигая внутренние органы.

Как электрический ток влияет на нервную систему

Еще одно воздействие электрического тока на тело, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма. Мозг, спинной мозг и сенсорные / двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.

Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если электрический ток достаточной силы проходит через живое существо (человека или другое), его эффектом будет подавление крошечных электрических импульсов, обычно генерируемых нейронами, перегрузка нервной системы и предотвращение способности рефлекторных и волевых сигналов действовать. задействовать мышцы.Мышцы, вызванные внешним (шоковым) током, непроизвольно сокращаются, и жертва ничего не может с этим поделать.

Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если оба набора мышц будут пытаться сокращаться из-за электрического тока, проводимого через руку человека, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко ухватиться за провод, тем самым ухудшив ситуацию, обеспечивая отличный контакт с проводом. Пострадавший совершенно не сможет отпустить проволоку.

С медицинской точки зрения это состояние непроизвольного сокращения мышц называется столбняк . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи».Вызванный током столбняк можно прервать, только отключив ток через пострадавшего.

Даже когда ток прекращается, жертва не может восстановить произвольный контроль над своими мышцами в течение некоторого времени, поскольку химический состав нейротрансмиттера находится в беспорядке. Этот принцип был применен в устройствах «электрошокера», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы высоковольтным импульсом, передаваемым между двумя электродами. Правильно нанесенный электрошокер временно (на несколько минут) обездвиживает жертву.

Однако электрический ток может воздействовать не только на скелетные мышцы жертвы электрошока. Мышца диафрагмы, контролирующая легкие, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка электрическим током. Даже токи, слишком слабые для того, чтобы вызвать столбняк, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, что приводит к состоянию, известному как фибрилляция . Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.В любом случае смерть от удушья и / или остановки сердца обязательно наступит из-за достаточно сильного электрического тока, проходящего через тело. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, прикладываемый к груди жертвы, чтобы «подтолкнуть» фибриллирующее сердце к нормальному ритму биений.

Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной коммунальным энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянном токе или электричестве, которое движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток или переменный ток.Технические причины этого предпочтения переменного тока перед постоянным током в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.

Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает продолжительное сокращение мышц (тетанию), которое может прижать руку к источнику тока, продлевая воздействие.Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто заставляет жертву отойти от источника тока.

Переменный характер

AC имеет большую тенденцию приводить нейроны кардиостимулятора в состояние фибрилляции, тогда как DC имеет тенденцию просто вызывать остановку сердца. Как только ток разряда прекращается, у «замороженного» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего сердца. Вот почему «дефибриллирующее» оборудование, используемое врачами скорой помощи, работает: разряд тока, подаваемого дефибриллятором, — это постоянный ток, который останавливает фибрилляцию и дает сердцу шанс восстановиться.

В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное мышечное действие, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, и рассмотрим меры предосторожности против таких случаев.

  • Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеивания мощности через электрическое сопротивление тела.
  • Столбняк — это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что жертва не может отпустить проводник, находящийся под напряжением, жертва считается «замороженной в цепи».
  • Диафрагма (легкие) и сердечные мышцы одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не сильно биться.
  • Постоянный ток (DC) с большей вероятностью вызовет столбняк в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью «заморозит» жертву в случае шока.Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца жертвы, что является более опасным состоянием для жертвы после прекращения действия электрического тока.

Электричество требует полного пути (цепи) для непрерывного потока. Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Подобные самоограниченные шоки редко бывают опасными.

Без двух точек контакта на теле для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередачи, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.

Рисунок 1.1

Для того, чтобы ток протекал по проводнику, должно присутствовать напряжение, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек . Нет такой вещи, как напряжение «на» или «в» одной точке цепи, и поэтому птица, контактирующая с одной точкой в ​​вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, даже если они опираются на две опоры , обе ступни касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе птичьи лапы соприкасаются с одной и той же точкой, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так.В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле. Часто одна сторона энергосистемы будет намеренно подключена к заземлению, поэтому человек, касающийся одиночного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):

Рисунок 1.2

Значок земли представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в нижнем левом углу показанной схемы, а также у ступни человека, подвергающегося электрошоку.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для обеспечения максимального контакта с землей. Этот проводник электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.

В этот момент в уме ученика обычно возникает несколько вопросов:

  • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить удар током, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
  • Человек, которого шокирует, вероятно, не ходит босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
  • Насколько хорошим проводником может быть грязь ? Если вы можете быть поражены током, протекающим через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?

В ответ на первый вопрос, наличие преднамеренной точки «заземления» в электрической цепи предназначено для обеспечения того, чтобы одна сторона была безопасной для контакта.Обратите внимание, что если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще касались земли:

Рис. 1.3

Поскольку нижняя сторона схемы надежно соединена с землей через точку заземления в нижнем левом углу схемы, нижний проводник схемы выполнен с соединением и с землей. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет напряжения, и они не получат удара током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический объект, о который он задевает, будет электрически общим с землей.

Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, касающегося только одного провода, таким же безопасным, как птица, сидящая только на одном? В идеале да. Практически нет.Посмотрите, что происходит без земли:

Рисунок 1.4

Несмотря на то, что ноги человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), проходящего через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека. Однако все это может измениться из-за случайного заземления, такого как ветвь дерева, касающаяся линии электропередачи и обеспечивающая соединение с землей.Такое случайное соединение между проводником энергосистемы и землей называется замыканием на землю .

Рисунок 1.5

Замыкания на землю

Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле во время дождя), проникновением грунтовых вод в подземные проводники линии электропередачи. , и птицы, приземляющиеся на линии электропередачи, перемыкая линию к полюсу своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать , с каким проводом могут касаться их ветви. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным — как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:

Рисунок 1.6

Когда ветвь дерева соприкасается с верхним проводом, этот провод становится заземленным проводником в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветви деревьев являются лишь одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми, касающимися отдельных проводов:

Рис. 1.7

Когда каждый человек стоит на земле и контактирует с разными точками цепи, путь для электрического тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что он в безопасности, только коснувшись одной точки в цепи, их совместные действия создают смертельный сценарий. Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, — это птица, которая вообще не связана с землей! Надежно подключив обозначенную точку цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.

Отвечая на второй вопрос, обувь на резиновой подошве действительно обеспечивает некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала. Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности подошвы или проникающие сквозь нее могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.

Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):

  • Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
  • Контакт ступни через кожаную подошву обуви (сухую): от 100 кОм до 500 кОм
  • Контакт ступни через кожаную подошву обуви (мокрая): от 5 кОм до 20 кОм

Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.

Отвечая на третий вопрос, грязь — не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.

Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).

  • Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда на тело жертвы подается напряжение.
  • Цепи питания
  • обычно имеют обозначенную точку, которая «заземлена»: прочно соединена с металлическими стержнями или пластинами, закопанными в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
  • Замыкание на землю — это случайное соединение проводника цепи с землей (землей).
  • Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточно хороша, чтобы обеспечить защиту от ударов, изолируя ее владельца от земли.
  • Хотя грязь — плохой проводник, она может проводить достаточно тока, чтобы ранить или убить человека.

Распространенная фраза в отношении электробезопасности звучит примерно так: « Убивает не напряжение, а ток ! ”Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица.Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!

Принцип «убивает текущее» по существу верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

[латекс] \ textbf {закон Ома} [/ латекс]

[латекс] Ток = \ frac {Напряжение} {Сопротивление} [/ латекс] [латекс] I = \ frac {E} {R} [/ латекс]

Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление. Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме обеспечивает разное сопротивление: одна переменная влияет на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также варьируется в зависимости от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами. , являясь жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я плотно сжимал щупы, и большее сопротивление, когда я держу их свободно. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за ударов статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

ТЕЛО ВЛИЯНИЕ МУЖЧИНЫ / ЖЕНЩИНЫ ПРЯМОЙ ТОК (DC) 60 Гц 100 кГц
Легкое ощущение под рукой Мужчины 1,0 мА 0,4 мА 7 мА
Женщины 0,6 мА 0,3 мА 5 мА
Порог боли Мужчины 5.2 мА 1,1 мА 12 мА
Женщины 3,5 мА 0,7 мА 8 мА
Болезненный, но произвольный контроль мышц сохраняется Мужчины 62 мА 9 мА 55 мА
Женщины 41 мА 6 мА 37 мА
Болезненно, провода не отпускаются Мужчины 76 мА 16 мА 75 мА
Женщины 60 мА 15 мА 63 мА
Сильная боль, затрудненное дыхание Мужчины 90 мА 23 мА 94 мА
Женщины 60 мА 15 мА 63 мА
Возможная фибрилляция сердца через 3 секунды Мужчины и женщины 500 мА 100 мА

«Гц» означает блок Гц .Это мера того, насколько быстро изменяется переменный ток, иначе известный как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который изменяется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, а затем в другом) в секунду. Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение потребуется на этой чистой, сухой коже, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 M \ Omega) [/ латекс]

[латекс] \ textbf {E = 20 000 вольт или 20 кВ} [/ латекс]

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности, и что это значение напряжения представляет собой величину, необходимую для индукции столбняка.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками , всего лишь .

Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (17 кОмега) [/ латекс]

[латекс] \ textbf {E = 340 V} [/ латекс]

В этих реальных условиях потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии значительно более низкого сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, является отличной точкой контакта для поражения электрическим током) или полного контакта с большим металлическим предметом, таким как труба или металл рукоятки инструмента сопротивление корпуса может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение может представлять потенциальную опасность.

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 к \ Омега) [/ латекс]

[латекс] \ textbf {E = 20 V} [/ латекс]

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести ток в 20 миллиампер через человека; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

[латекс] E = IR [/ латекс]
[латекс] E = (17 мА) (1 кВт) [/ латекс]
[латекс] \ textbf {E = 17 В} [/ латекс]

Семнадцать вольт — это не очень много для электрических систем. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок — ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Research предоставило примерный набор цифр для электрического сопротивления точек контакта человека в различных условиях:

Ситуация Сухой мокрый
Проволока касалась пальцем 40000 Ом — 1000000 Ом 4000 Ом — 15000 Ом
Проволока в руке 15 000 Ом — 50 000 Ом 3000 Ом — 5000 Ом
Ручные плоскогубцы по металлу 5,000 Ом — 10,000 Ом 1000 Ом — 3000 Ом
Контакт ладонью 3000 Ом — 8000 Ом 1000 Ом — 2000 Ом
1.5-дюймовая металлическая труба с захватом одной рукой 1000 Ом — 3000 Ом 500 Ом — 1500 Ом
1,5-дюймовая металлическая труба с захватом двумя руками 500 Ом — 1500 кОм 250 Ом — 750 Ом
Рука погружена в проводящую жидкость 200 Ом — 500 Ом
Опора, погруженная в проводящую жидкость 100 Ом — 300 Ом

Обратите внимание на значения сопротивления для двух состояний с 1.5-дюймовая металлическая труба. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления при захвате трубы одной рукой.

Рисунок 1.8

Двумя руками площадь контакта с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, ток будет иметь два параллельных путей, по которым он протекает от трубы к телу (или наоборот).

Рисунок 1.9

Как мы увидим в более поздней главе, параллельных цепей всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, при работе с электричеством все же отличной идеей является держать руки чистыми и сухими и снимать все металлические украшения.Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью.Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь с 12 вольт электрическим потенциалом.

К счастью, ничего плохого не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (производя большой ток через гаечный ключ с большим количеством искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и летального исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно. При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя ту руку, с которой ему меньше всего комфортно, даже если электрический ток, протекающий через эту руку, может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением — это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи — это функция доступного напряжения, деленная на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены таким образом, что есть только один путь для прохождения тока:

Рисунок 1.10

Человек, находящийся в прямом контакте с источником напряжения: ток ограничен только сопротивлением тела.

[латекс] I = \ frac {E} {R_ {boot}} [/ латекс]

Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

Рисунок 1.11

Лицо в изоляционных перчатках и сапогах;

Ток теперь ограничен сопротивлением цепи:

[латекс] I = \ frac {E} {R_ {glove} + R_ {body} + R_ {boot} +} [/ latex]

Поскольку электрический ток должен проходить через ботинок и тело и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма (, сумма ) этих сопротивлений противодействует протеканию тока в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

Безопасность — одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы непомерно дорого изолировать проводники линии электропередач из-за недостаточной изоляции для обеспечения безопасности в случае случайного контакта. Таким образом, безопасность обеспечивается за счет того, что эти стропы должны находиться достаточно далеко вне досягаемости, чтобы никто не мог случайно их коснуться.

Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.Вы должны обезопасить все источники вредной энергии, прежде чем систему можно будет считать безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называют переводом в состояние нулевой энергии . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

  • Вред для тела зависит от силы электрического тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
  • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
  • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
  • Когда необходимо работать с «живым» контуром, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).
  • Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.

При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из схемы, устройства или системы обычно известно как перевод их в состояние с нулевой энергией . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

Обеспечение безопасности чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:

  • Опасное напряжение
  • Давление пружины
  • Гидравлическое давление (жидкость)
  • Пневматическое (воздушное) давление
  • Подвес
  • Химическая энергия (легковоспламеняющиеся или иным образом реагирующие вещества)
  • Ядерная энергия (радиоактивные или делящиеся вещества)

Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии для потенциальной энергии напряжения, имеющей способность (потенциал) производить ток (поток), но не обязательно осознавая этот потенциал, пока не будет установлен подходящий путь для потока. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не кажется опасной, даже если между ними содержится достаточно потенциальной энергии, чтобы протолкнуть смертоносное количество тока через ваше тело. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал необходимо нейтрализовать, прежде чем можно будет физически контактировать с этими проводами.

Все правильно спроектированные схемы имеют механизмы отключения для снятия напряжения в цепи. Иногда эти «разъединения» служат двойной цели: автоматически размыкаются в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях выключатели-разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они существуют для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отдельно от обычного выключателя, используемого для включения и выключения устройства.Это предохранительный выключатель, который должен использоваться только для защиты системы в состоянии нулевого потребления энергии:

Рисунок 1.12

Когда выключатель находится в «разомкнутом» положении, как показано (нет непрерывности), цепь разомкнута, и ток не будет. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты выключателя. Обратите внимание, что в нижнем проводе цепи нет необходимости в размыкающем выключателе. Поскольку эта сторона цепи надежно соединена с землей (землей), она электрически является общей с землей, и ее лучше оставить таким образом.Для максимальной безопасности персонала, работающего с нагрузкой в ​​этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:

Рисунок 1.13

При наличии временного заземляющего соединения обе стороны проводки нагрузки соединяются с землей, обеспечивая нулевое состояние энергии на нагрузке.

Поскольку заземление с обеих сторон нагрузки электрически эквивалентно короткому замыканию через нагрузку с помощью провода, это еще один способ достижения той же цели максимальной безопасности:

Рисунок 1.14

В любом случае обе стороны нагрузки будут электрически общими с землей, с учетом отсутствия напряжения (потенциальной энергии) между обеими сторонами нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводов в обесточенной энергосистеме очень распространен при техническом обслуживании систем распределения электроэнергии высокого напряжения.

Еще одним преимуществом этой меры предосторожности является защита от возможности включения размыкающего переключателя (включения, чтобы обеспечить непрерывность цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, создавал бы короткое замыкание, когда выключатель был замкнут, немедленно срабатывая любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, что снова отключало бы питание. Если это произойдет, разъединитель вполне может получить повреждение, но рабочие на нагрузке находятся в безопасности.

Здесь было бы хорошо упомянуть, что устройства максимального тока не предназначены для защиты от поражения электрическим током.Скорее, они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно могут вызвать «срабатывание» любых устройств перегрузки по току в цепи, если выключатель должен быть замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочего с установленным закорачивающим проводом.

Структурированные системы безопасности: блокировка / маркировка

Поскольку очевидно, что важно иметь возможность закрепить любые отключающие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время работы в цепи, существует необходимость в структурированной системе безопасности, которая должна быть введена в место.Такая система обычно используется в промышленности и называется Lock-out / Tag-out .

Процедура блокировки / маркировки работает следующим образом: все люди, работающие в защищенной цепи, имеют свой собственный замок или кодовый замок, который они устанавливают на рычаге управления устройства отключения перед работой с системой. Кроме того, они должны заполнить и подписать ярлык, который они вешают на свой замок, с описанием характера и продолжительности работы, которую они собираются выполнять в системе.Если есть несколько источников энергии, которые необходимо «заблокировать» (множественные разъединения, как электрические, так и механические источники энергии должны быть защищены, и т. Д.), Рабочий должен использовать столько своих замков, сколько необходимо для обеспечения питания от системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет снята каждая последняя блокировка со всех устройств отключения и отключения, а это означает, что каждый последний работник даст согласие, сняв свои личные блокировки. Если будет принято решение повторно активировать систему, и замок (и) одного человека все еще остается на месте после того, как все присутствующие снимают свои, метка (и) покажет, кто этот человек и что он делает.

Даже при наличии хорошей программы безопасности по блокировке / маркировке все еще необходимы усердие и меры предосторожности, основанные на здравом смысле. Это особенно актуально в промышленных условиях, когда над устройством или системой может одновременно работать множество людей. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки / маркировки или могут знать о ней, но слишком самоуверенны, чтобы ей следовать. Не думайте, что все соблюдают правила безопасности!

После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны дважды проверить, действительно ли напряжение было зафиксировано в нулевом состоянии.Один из способов проверить — увидеть, запустится ли машина (или что-то еще, над чем она работает), если будет задействован переключатель или кнопка start . Если он запускается, значит, вы знаете, что не смогли обеспечить от него электрическую энергию.

Кроме того, вы должны всегда проверять на наличие опасного напряжения с помощью измерительного прибора, прежде чем касаться каких-либо проводов в цепи. Для большей безопасности вы должны выполнить следующую процедуру проверки, использования, а затем проверки вашего глюкометра:

  • Убедитесь, что ваш измеритель правильно показывает на известном источнике напряжения.
  • Используйте свой измеритель, чтобы проверить цепь блокировки на наличие опасного напряжения.
  • Еще раз проверьте свой измеритель на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает должным образом.

Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был счетчик, который не смог показать напряжение, когда он должен был, при проверке цепи, чтобы убедиться, что она «мертва». Если бы я не использовал другие средства для проверки наличия напряжения, меня бы сегодня не было в живых, чтобы написать это.Всегда есть шанс, что ваш вольтметр окажется неисправным именно тогда, когда он понадобится вам для проверки на наличие опасного состояния. Следуя этим инструкциям, вы никогда не попадете в смертельную ситуацию из-за поломки счетчика.

Наконец, электротехник прибудет к тому моменту процедуры проверки безопасности, когда будет считаться безопасным прикосновение к проводнику (проводам). Имейте в виду, что после принятия всех мер предосторожности возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является кратковременный контакт проводника (проводов) тыльной стороной руки перед тем, как схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-то причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца в результате реакции удара (сжатие в кулак) приведет к разрыву контакта с проводником. Обратите внимание, что это абсолютно последний шаг , который должен выполнить любой электромонтер перед началом работы с энергосистемой, и никогда не следует использовать в качестве альтернативного метода проверки опасного напряжения.Если у вас когда-либо будут основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение».

  • Состояние нулевой энергии: когда цепь, устройство или система защищены таким образом, что отсутствует потенциальная энергия, которая могла бы нанести вред кому-либо, работающему с ними.
  • Разъединительные выключатели
  • должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевой энергии.
  • К обслуживаемой нагрузке могут быть подключены временные заземляющие или закорачивающие провода для дополнительной защиты персонала, работающего с этой нагрузкой.
  • Блокировка / маркировка
  • работает следующим образом: при работе с системой в состоянии нулевого энергопотребления рабочий помещает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Кроме того, на каждый из этих замков навешивается тег, описывающий характер и продолжительность работы, которую необходимо выполнить, и того, кто ее выполняет.
  • Всегда проверяйте, чтобы цепь была зафиксирована в состоянии нулевого потребления энергии с помощью испытательного оборудования после «блокировки». Обязательно проверьте свой глюкометр до и после проверки цепи, чтобы убедиться, что она работает правильно.
  • Когда придет время действительно вступить в контакт с проводником (ами) предположительно неработающей системы питания, сделайте это сначала тыльной стороной руки, чтобы в случае удара током мышечная реакция оттолкнула пальцы от проводника. .

Безопасное и эффективное использование электросчетчика — это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.

Мультиметры

Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть объяснены здесь из-за их сложности.В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.

Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «общую» конструкцию, не специфичную для какого-либо производителя, но достаточно общую, чтобы научить основным принципам использования:

Рисунок 1.15

Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр аналогично цифровым часам. Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которых он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление». Символ «подкова» — это греческая буква «Омега» (Ω), которая является общим символом для электрической единицы измерения Ом.

Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «постоянный ток», а волнистая кривая — «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток). Измеритель использует внутренние методы для измерения постоянного тока, чем он использует для измерения переменного тока, и поэтому он требует от пользователя выбора типа напряжения (В) или тока (А) для измерения.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.

Мультиметр Розетки

На лицевой панели мультиметра есть три разных гнезда, к которым мы можем подключить наши измерительные провода . Измерительные провода — это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а концы зондов представляют собой острые жесткие кусочки провода:

Рисунок 1.16

Черный измерительный провод всегда вставляется в черный разъем на мультиметре: тот, который отмечен «COM» для «общего». Красные измерительные провода подключаются либо к красному разъему с маркировкой напряжения и сопротивления, либо к красному разъему с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.

Чтобы увидеть, как это работает, давайте посмотрим на пару примеров, показывающих, как используется счетчик. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:

Рисунок 1.17

Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе для измерения напряжения, а селекторный переключатель установлен на «V» постоянного тока. Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):

Рисунок 1.18

Единственное отличие в настройке счетчика — это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.В обоих этих примерах настоятельно требует, , чтобы вы не позволяли наконечникам щупов соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи. Если это произойдет, образуется короткое замыкание, вызывающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

Рис. 1.19.

Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.

Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика. Поскольку напряжение между двумя точками всегда является относительным, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.

Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет потенциальную опасность . Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Если можно использовать только одну руку для захвата зондов, это более безопасный вариант. Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.

Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться так же осторожно и уважительно, как и с самим измерителем. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь проявить творческий подход и изготавливать свои собственные испытательные пробники, так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

Кроме того, следует помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти и то, и другое. ! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар точек, о которых идет речь.

Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы дважды проверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.

Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить напряжение между этими тремя проводами в шкафу. Но напряжение измеряется между двумя точками, так где же проверить?

Рис. 1.20

Ответ — проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в в каждом режиме , в общей сложности шесть проверок напряжения для завершения!

Однако, даже несмотря на все эти проверки, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.Итак, чтобы быть в полной безопасности, мы не только должны проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей, и C и заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его с помощью известного источника напряжения, такого как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.

Использование мультиметра для проверки сопротивления

Использование мультиметра для проверки сопротивления — гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, прибор должен правильно отображать сопротивление в омах:

Рисунок 1.21

При измерении сопротивления следует помнить, что это нужно делать только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент. Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который либо помогает, либо противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям.В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.

Режим «Сопротивление» Мультиметр

Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы измерительные провода не имели сопротивления, он показывал бы ровно ноль:

. Рисунок 1.22

Если выводы не соприкасаются друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):

Рисунок 1.23

Измерение тока с помощью мультиметра

Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока. Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен пройти через через счетчика.Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать измеритель частью пути тока цепи, исходная цепь должна быть «разорвана», а измеритель должен быть подключен к двум точкам разомкнутого разрыва. Чтобы настроить измеритель на это, селекторный переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с маркировкой «A». На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:

Рисунок 1.24

Сейчас цепь разомкнута при подготовке к подключению счетчика:

Рисунок 1.25

Следующий шаг — вставить измеритель в одну линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи и красный щуп к свободному концу провода, ведущему к лампе:

Рисунок 1.26

Этот пример показывает очень безопасную схему для работы. Напряжение 9 вольт вряд ли представляет опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не голыми руками, не меньше!) И подключить счетчик параллельно с током.Однако с цепями более высокой мощности это действительно может быть опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.

Другой потенциальной опасностью использования мультиметра в режиме измерения тока («амперметр») является невозможность правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью. Причины этого зависят от конструкции и работы амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован так, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока). В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, потому что вольтметры имеют сопротивление, близкое к бесконечному (так что они не имеют сопротивления). t потребляет значительный ток из тестируемой цепи).

При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть, соответственно, переключить положение разъема красного измерительного провода с «A» на положение «V». «V». В результате — если счетчик затем подключить к источнику значительного напряжения — произойдет короткое замыкание счетчика!

Рисунок 1.27

Чтобы предотвратить это, у большинства мультиметров есть функция предупреждения, с помощью которой они издают звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V».Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.

Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «сгорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении. Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерных повреждений и только во вторую очередь для защиты пользователя от повреждений.Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными гнездами следующим образом:

Рисунок 1.28.

. Исправный предохранитель будет указывать на очень низкое сопротивление, в то время как перегоревший предохранитель всегда показывает «O.L.» (или любое другое указание, которое используется в этой модели мультиметра для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, пока оно является произвольно низким.

Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.Ничто не заменит регулярные занятия со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

  • Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
  • Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
  • Не забывайте всегда проверять напряжение переменного и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
  • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
  • Никогда не пытайтесь измерить сопротивление или обрыв цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, полученные от глюкометра, будут неточными, а в худшем случае глюкометр может быть поврежден, а вы можете получить травму.
  • Измерители тока («амперметры») всегда подключены в цепь, поэтому электроны должны проходить через через счетчик .
  • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.

Как мы видели ранее, энергосистема без надежного заземления непредсказуема с точки зрения безопасности.Невозможно гарантировать, сколько или как мало будет напряжения между любой точкой цепи и землей. Заземлив одну сторону источника напряжения энергосистемы, по крайней мере, одна точка в цепи может быть электрически соединена с землей и, следовательно, не представляет опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, соединенный с землей, называется нейтраль , а другой провод называется горячий , также известный как под напряжением или активный :

Рисунок 1.29 Двухпроводная система электропитания

Что касается источника напряжения и нагрузки, заземление не имеет никакого значения. Он существует исключительно ради личной безопасности, гарантируя, что по крайней мере одна точка в цепи будет безопасна для прикосновения (нулевое напряжение относительно земли). «Горячая» сторона цепи, названная в честь ее потенциальной опасности поражения электрическим током, будет опасна прикасаться, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с использованием процедуры систематической блокировки / маркировки).

Этот дисбаланс опасностей между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на распространенных бытовых системах электропроводки (для простоты с использованием источников постоянного напряжения, а не переменного тока).

Если мы посмотрим на простой бытовой электроприбор, такой как тостер с проводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, подающие питание на нагревательные элементы тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.

Рисунок 1.30 Отсутствие напряжения между корпусом и землей

Однако, если один из проводов внутри тостера случайно войдет в контакт с металлическим корпусом, корпус станет электрически общим для провода, и прикосновение к корпусу будет столь же опасным, как прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от , к которому случайно прикоснется провод :

Рисунок 1.31 случайное контактное напряжение между корпусом и землей

Если «горячий» провод касается корпуса, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод касается корпуса, опасности поражения электрическим током нет:

Рисунок 1.32 Случайное отсутствие напряжения между корпусом и землей

Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать приборы таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо из проводов случайно соприкасался с токопроводящим корпусом прибора, но обычно есть способы спроектировать расположение частей, чтобы сделать случайный контакт менее вероятным для одного провода, чем для другого.

Однако эта профилактическая мера эффективна только в том случае, если может быть гарантирована полярность вилки питания. Если вилку можно перевернуть, то проводник с большей вероятностью соприкоснется с корпусом вполне может быть «горячим»:

Рисунок 1.33 Напряжение между корпусом и землей

Устройства, разработанные таким образом, обычно поставляются с «поляризованными» вилками, причем один контакт вилки немного уже, чем другой. Розетки питания также имеют такую ​​же конструкцию, причем один слот уже другой.Следовательно, вилку нельзя вставить «задом наперед», и можно гарантировать идентичность проводника внутри устройства. Помните, что это никак не влияет на основные функции устройства: это делается исключительно ради безопасности пользователя.

Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие приборы называются с двойной изоляцией , поскольку изолирующий кожух служит вторым слоем изоляции над и за пределами самих проводов.Если провод внутри устройства случайно войдет в контакт с корпусом, это не представляет опасности для пользователя устройства.

Другие инженеры решают проблему безопасности, поддерживая проводящий корпус, но используя третий провод для надежного соединения этого корпуса с землей:

Рис. 1.34 Нулевое напряжение корпуса заземления между корпусом и землей

Третий контакт на шнуре питания обеспечивает прямое электрическое соединение корпуса устройства с землей, делая две точки электрически общими друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так оно и должно работать. Если горячий провод случайно коснется металлического корпуса прибора, он вызовет прямое короткое замыкание обратно на источник напряжения через заземляющий провод, сработав любые устройства защиты от перегрузки по току. Пользователь устройства останется в безопасности.

Вот почему так важно никогда не отрезать третий контакт вилки питания, когда пытаетесь вставить его в розетку с двумя контактами.Если это будет сделано, не будет заземления корпуса прибора для обеспечения безопасности пользователя (ей). Устройство по-прежнему будет функционировать должным образом, но если возникнет внутренняя неисправность, в результате которой горячий провод соприкасается с корпусом, результаты могут быть смертельными. Если необходимо использовать двухконтактную розетку , можно установить двухконтактный переходник розетки с заземляющим проводом, прикрепленным к винту заземляющей крышки. Это обеспечит безопасность заземленного прибора, подключенного к розетке этого типа.

Однако электрически безопасное проектирование не обязательно заканчивается нагрузкой. Последнюю защиту от поражения электрическим током можно установить на стороне источника питания цепи, а не на самом приборе. Эта мера защиты называется , обнаружение замыкания на землю , и работает она следующим образом:

В правильно функционирующем приборе (показанном выше) ток, измеренный через провод под напряжением, должен быть точно равен току через нейтральный проводник, потому что существует только один путь для прохождения электронов в цепи.При отсутствии неисправности внутри устройства нет соединения между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.

Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, прикоснувшегося к корпусу, пройдет ток. Наличие тока разряда будет проявляться как разница тока между двумя силовыми проводниками в розетке:

Рисунок 1.35 Разница в токе между двумя силовыми проводниками в розетке

Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если есть ток через заземление, что означает, что в системе есть неисправность.Следовательно, такая разница в токе может использоваться как способ обнаружить состояние неисправности. Если устройство настроено для измерения этой разницы в токах между двумя силовыми проводниками, обнаружение дисбаланса токов можно использовать для запуска размыкания выключателя, тем самым отключая питание и предотвращая серьезный удар:

Рисунок 1.36 Прерыватели тока замыкания на землю

Такие устройства называются Прерыватели тока замыкания на землю , или сокращенно GFCI. За пределами Северной Америки GFCI также известен как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD / MCB в сочетании с миниатюрным автоматическим выключателем или выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко идентифицировать по их характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции устройства. Конечно, использование прибора с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что можно что-то сделать для повышения безопасности, помимо конструкции и состояния прибора.

Прерыватель цепи дугового замыкания (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для размыкания при прерывистых резистивных коротких замыканиях. Например, обычный выключатель на 15 А спроектирован так, чтобы быстро размыкать цепь, если нагрузка намного превышает номинальную 15 А, то есть медленнее, немного превышая номинальную. Хотя это защищает от прямого короткого замыкания и нескольких секунд перегрузки, соответственно, он не защищает от дуги — аналогично дуговой сварке. Дуга представляет собой сильно изменяющуюся нагрузку, периодически достигающую максимума более 70 А, разомкнутую цепь с переходами через ноль переменного тока.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно, чтобы разжечь пожар. Эта дуга может быть создана из-за металлического короткого замыкания, которое сжигает металл, оставляя резистивную распыляющую плазму ионизированных газов.

AFCI содержит электронную схему для обнаружения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги от горячего к нейтральному, так и от горячего к заземлению. AFCI не защищает от опасности поражения электрическим током, как GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем случае, щеточных двигателей, его установка ограничена электрическими цепями в спальнях в соответствии с Национальным электротехническим кодексом США. Использование AFCI должно уменьшить количество электрических пожаров. Однако неприятные срабатывания при работе приборов с двигателями в цепях AFCI представляют собой проблему.

  • В энергосистемах одна сторона источника напряжения часто подключается к заземлению для обеспечения безопасности в этой точке.
  • «Заземленный» провод в энергосистеме называется нейтральным проводником , а незаземленный провод горячим .
  • Заземление в энергосистемах существует ради личной безопасности, а не для работы нагрузки (ей).
  • Электробезопасность прибора или других нагрузок может быть улучшена с помощью хорошей инженерии: поляризованные вилки, двойная изоляция и трехконтактные вилки с «заземлением» — все это способы повышения безопасности на стороне нагрузки.
  • Прерыватели тока замыкания на землю (GFCI) работают, определяя разницу в токе между двумя проводниками, подающими питание на нагрузку.Никакой разницы в токе быть не должно. Любая разница означает, что ток должен входить в нагрузку или выходить из нее каким-либо образом, кроме двух основных проводников, что нехорошо. Значительная разница в токе автоматически откроет размыкающий механизм выключателя, полностью отключив питание.

Обычно допустимая токовая нагрузка проводника — это предел конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае предохранителей .

Что такое предохранитель?

A Предохранитель представляет собой устройство электробезопасности, построенное вокруг токопроводящей ленты, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентами, которые должны быть защищены от перегрузки по току, так что, когда предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток, протекающий через любую из других ветвей.

Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность возникновения дугового разряда в случае прорыва проволоки с большой силой, что может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка является прозрачной, так что плавкий элемент может быть визуально осмотрен. В бытовой электропроводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, показывающая оба типа предохранителей, представлена ​​здесь:

Рисунок 1.37 Типы предохранителей

Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам схемы. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:

Рисунок 1.38 Стеклянный патрон с предохранителями Держатель нескольких предохранителей

Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком.В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изоляционном корпусе:

Рисунок 1.39 Патрон предохранителя закрывает изолирующий корпус

Наиболее распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .

Что такое автоматический выключатель?

Автоматические выключатели — это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Малые автоматические выключатели, такие как те, которые используются в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полосу (тонкую полосу из двух металлов, соединенных спина к спине), несущую ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева полосы), срабатывает механизм отключения, и прерыватель размыкается. Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле ).

Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току — скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага — они с большей вероятностью будут обнаружены подключенными к цепи более прочным образом, чем предохранители. Фотография маленького автоматического выключателя представлена ​​здесь:

Рисунок 1.40. Малый автоматический выключатель

Снаружи он выглядит как выключатель. Действительно, его можно было использовать как таковое. Однако его истинная функция — работать как устройство защиты от перегрузки по току.

Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя надлежащего номинала. Плавкая вставка — это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока.По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.

Обозначение предохранителя на принципиальной электрической схеме представляет собой S-образную кривую:

Рисунок 1.41 S-образная кривая

Номинальные характеристики предохранителя

Предохранители

, как и следовало ожидать, в основном рассчитаны на ток: ампер. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.Это в значительной степени достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдержит ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится. Поскольку длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.

Тем не менее, разработчик предохранителя также должен учитывать, что происходит после сгорания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:

Рисунок 1.42 Принципиальная схема конструктора предохранителей Рисунок 1.43 Принципиальная схема конструктора предохранителей

Следовательно, предохранители рассчитываются с точки зрения их допустимого напряжения, а также уровня тока, при котором они сработают.

Некоторые большие промышленные предохранители имеют заменяемые проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, защищающий провод предохранителя от воздействия и экранирующий окружающие предметы от провода предохранителя.

Номинальный ток предохранителя — это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «срабатывания» или даже на замедленное срабатывание в зависимости от области применения. Последние предохранители иногда называют плавкими предохранителями и из-за их преднамеренной выдержки времени.

Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где пусковых и токов, в десять раз превышающих нормальный рабочий ток, обычно возникают каждый раз, когда двигатель запускается с полной остановки. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока плавкий предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) при любом заданном количестве. тока.

На другом конце диапазона действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.

Предохранители

всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

Рисунок 1.44 Принципиальная схема конструктора предохранителей Рисунок 1.45 Принципиальная схема конструктора предохранителей

В любом случае предохранитель успешно прервал ток нагрузки, но нижняя цепь не может прервать потенциально опасное напряжение с обеих сторон нагрузки на землю, где может стоять человек. . Первая схема намного безопаснее.

Как было сказано ранее, предохранители — не единственный используемый тип устройства защиты от сверхтоков.Переключатели, называемые автоматическими выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, размещение устройства защиты от сверхтоков в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника питания , а не , подключенную к земле.

Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для срабатывания в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводниками), и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже, чем нормальные уровни тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение удара током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.

  • Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью размыкания цепи в случае чрезмерного тока.
  • Автоматический выключатель — это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
  • Предохранители
  • в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
  • Предохранители
  • могут быть спроектированы так, чтобы срабатывать быстро, медленно или где-то посередине при одинаковом максимальном уровне тока.
  • Лучшее место для установки предохранителя в заземленной электросети — на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.
Картриджная фильтрация

— Envirogen Technologies

Картриджи глубинного фильтра Meltblown

Подходящие либо в качестве фильтров предварительной, либо в качестве конечных фильтров, Envirogen предлагает ряд фильтров абсолютной и номинальной номинальной глубины с использованием полипропиленовой среды с продувкой из расплава со степенью удаления от 0.5 — 100 мкм. Глубинные фильтры поставляются в стандартном формате 2,5 дюйма, а также элементы Big Blue диаметром 4,3 дюйма и могут быть оснащены всеми наиболее распространенными типами концов, чтобы обеспечить установку в корпусе фильтра.

Направляющая переключателя глубинного фильтра
DeltaPor V Экономичный цилиндрический выдувной из расплава Полипропилен Coreless Номинал 0,5, 1, 20 3, 50, 10
DeltaPor MB Цилиндрическое выдувание из расплава с КПД 90% Полипропилен Формованный полипропиленовый сердечник Номинал 0.5, 1, 3, 5, 10, 20, 30, 50, 75, 100
DeltaPor MBA Абсолютный номинал Цилиндрический выдувной из расплава Полипропилен Формованный полипропилен Абсолют 0,5 3, 5, 10, 20, 30, 50, 75
Deltapor V-BB Большой синий размер Meltblown большого диаметра Полипропилен Coreless Номинал 0,5, 1, 3, 5, 10, 20

Meltblown Depth Filter Product Datasheets
Deltapor MB
Deltapor MBA
Deltapor V

Гофрированные фильтрующие картриджи

Гофрированные фильтрующие картриджи Envirogen с различными типами фильтрующих материалов, включая полипропилен и стекловолокно от 0.2 — 100 мкм. Фильтры могут поставляться в стандартном формате или в версиях с большим диаметром и высокой пропускной способностью для максимальной эффективности, в зависимости от области применения.

Гофрированная направляющая для выбора фильтра
Poliflo N Economy Полипропилен PP Формованный полипропиленовый сердечник Номинал 0,2, 0,25, 0,45, 0,5 25, 50
Poliflo FP Для более ответственных применений и предварительной фильтрации Полипропилен PP Формованный полипропиленовый сердечник Абсолютный 99.98% / Beta 5000 0,2, 0,45, 1, 2,5, 5, 10, 25, 50, 100
Poliflo LT Для поверхностных вод Полипропилен PP Формованный стержень из полипропилена LT2 рассчитан на уменьшение кисты 1
Poliflo HFC Диаметр 6 дюймов для корпуса с высокой пропускной способностью ПП или стекло ПП, ПЭТ ПП без сердечника Абсолютное 99,9% / бета 1000 — 1, 3, 5, 10, 20, 40, 60, 100 Стекло — 1, 2.5, 4.5, 10, 20

Листы технических данных на гофрированный фильтрующий картридж
Ассортимент Poliflo
Poliflo HFC

Картриджи для мембранных фильтров

Эти картриджи для мембранных фильтров предназначены для субмикронной фильтрации и предназначены для использования в этих картриджах с мембранными фильтрами. потребности конкретных систем очистки воды высокой чистоты и технологических процессов. Мембранные фильтрующие картриджи Envirogen предлагаются для воды и общего качества, а также для специальных сортов напитков, целостность которых может быть многократно проверена, чтобы гарантировать желаемую эффективность фильтрации.Картриджи мембранных фильтров могут использоваться в качестве фильтров предварительной или окончательной очистки и подходят для уменьшения количества твердых частиц или микробов в критических областях применения.

Мы предлагаем гофрированные мембранные фильтрующие картриджи с абсолютным номиналом либо с гидрофильным полиэфирсульфоном (PES), либо с гидрофобным PTFE. Они сопровождаются исчерпывающей технической документацией.

Руководство по выбору мембранного фильтра
, 0,45, 9019
Mempor W Для воды, для чистых помещений Полиэфирсульфон PP Формованный полипропиленовый сердечник Абсолютный.05, 0,1, 0,2, 0,45, 0,65
Mempor G Обычный, для чистых помещений Полиэфирсульфон PP Формованный полипропиленовый сердечник Абсолютный 0,6, Bevflo BH Удержание бактерий, проверка целостности, производство в чистом помещении Полиэфирсульфон PP Формованный полипропиленовый сердечник 7 Логарифмическое уменьшение 0.2, 0,45, 0,65
Bioflo PT Вентиляционный фильтр резервуара, проверяемый на целостность, производство чистых помещений PTFE (тефлон) PP Формованный сердечник из полипропилена Абсолютный 0,1, 0,2 Картридж мембранного фильтра Технические характеристики продукта

Bevflo BH
Bioflo PT
Mempor G
Mempor W

Картриджи с активированным углем

Envirogen поставляет картриджи, содержащие активированный уголь в формате блока из спеченного угля, которые обеспечивают эффективное удаление загрязняющих веществ в чистом виде.