Инфракрасная фотопленка – Инфракрасная фотография на чёрно-белую плёнку

Содержание

Инфракрасная фотография на чёрно-белую плёнку

Плёнка Efke Aura 820

В этой статье вы узнаете всё об ИК-фотографии: что это такое, как выбрать технику, фотографировать и проявлять фото.

Инфракрасная фотография — один из самых редких и технических сложных приёмов фотосъёмки. Те, кто хочет пропустить теорию и сразу перейти к практике, нажмите сюда.

Теория ИК-фотографии

Введение

Инфракрасное излучение было открыто в 1800 году У. Гершелем при экспериментах с призмой и градусниками.

Инфракрасная съёмка активно применялась при аэросъёмке, в геодезии, криминалистике, медицине и архивных работах в музеях, когда другие виды плёнки были бессильны — ИК-излучение помогало обнаружить слои краски на картинах, чернила, вытравленные химическим способом на документах и прочее.

История создания и развития ИК-материалов

Инфракрасным излучением принято считать весь спектр излучения больше 720 нм, самый удобный и наиболее информативный составляет до 950–1050 нм, так как дальнейшая сенсибилизация материала к ИК-спектру приводит к очень быстрому вуалированию материала от внешнего излучения.

О том, зачем вообще снимать на инфрахроматические материалы. Снимки на ИК-плёнку выходят очень драматичными: чёрное тёмное небо, белые облака и ярко-белая листва — это очень необычно, согласитесь. А происходит это потому, что каждый материал, который существует в природе, имеет разные свойства по количеству отражённого и поглощённого излучения. Например, вода имеет степень поглощения ИК-излучения от 660 нм до 1300. И поэтому при съёмке на поверхности земли она выходит чёрной. Кора деревьев тоже имеет почти полное поглощение изучения, а листва, напротив, выходит белой, потому что хлорофилл имеет очень сильное отражение после 650–690 нм. У зелёных листьев отражение составляет около 5–10% при 540–560 нм и имеет минимум при 640 нм, потом идёт резкий подъём к отражению, близкому к 90%.

Также съёмка с оранжевым, красным и чёрными светофильтрами увеличивает видимость в дымке. Но смею вас разочаровывать: ИК-плёнка не пробивает туман, туман — это физическое явление, а плёнка не умеет обманывать законы физики, она лишь способна немного увеличить расстояние видимости. В среднем на 10–15%.

Истории ИК-красителей, и как появилась инфраплёнка

В 1873 году Герман Фогель установил, что при добавлении к эмульсии некоторых красителей она становится чувствительной к жёлтым и зелёным лучам. Процесс очувствления эмульсии к лучам, к которым она сама нечувствительна, называется сенсибилизация. Фотографические материалы, очувствленные к жёлто-зелёной части спектра, были названы ортохроматическими, а к красной части спектра — панхроматическими.

В 1906 году Филипсом был синтезирован дицианин — первый инфрахроматический краситель, сенсибилизирующий (увеличивающий чувствительность плёнки) до 800 нм. Но, к сожалению, из-за ничтожно малой чувствительности и склонности к вуалированию этот материал нашёл применение только в научной фотографии.

В 1919 году в лабораториях компании Eastman Kodak синтезировали криптоцианин — краситель, обладающий очень сильным действием между 730 и 800 нм. С максимумом сенсибилизации в 730 нм при его помощи были получены материалы, на которые можно производить не только съёмку на поверхности, но и воздушные съёмки.

В 1925 году был синтезирован неоцианин, который очувствлял эмульсию от 650 до 900 нм с максимумом при 830–840 нм.

В 1931–1935 годах было получено значительное число новый инфрахроматических сенсибилизаторов, которые по свойствам превышали все полученные ранее.

После этих открытий съёмка стала такой же простой, как на другие типы плёнок.

В конце 1950-х годов Agfa производила пластинки с сенсибилизацией до 1050, 980, 850, 720 нм. Срок годности был от 1 месяца до 6 при -23 градусах. Чувствительность была от 0,5 до 8 единиц ISO!

Оборудование для съёмки в ИК-диапазоне

Выбор плёнки

Для съёмки нужна ИК-плёнка. Сейчас из всех производятся только Rollei Infrared 400S, Agfa PAN400, Agfa PAN80, ILFORD SFX (условно ИК).

Плёнка Rollei Infrared 400S

Раньше производилась также лучшая, на мой взгляд, плёнка Kodak HIF/HIE, которая воспринимала излучение до 900–950 нм и позволяла снимать с красным фильтром с рук! С таким же эффектом, как на плотный фильтр (Hoya R72). Не могу обойти стороной и плёнку Efke Aura 820HM, которая, на мой взгляд, была наиболее близкой к плёнке Kodak, но, к сожалению, всё, что нам теперь доступно, требует штатива и длинных выдержек.

Все ИК-плёнки обладают зернистостью, и чем глубже и плотнее фильтр — тем сильнее этот эффект, который можно усилить при печати.

Фильтры для ИК-съёмки

Светофильтр HOYA Infrared R72

Для фотографирования нужен фильтр с длинной волны около 720 нм (отсекает видимый свет) — например, Hoya R72, B+W, Heliopan 715.

Фильтры и систему Cokin я бы не рекомендовал из-за возможной засветки при боковом свете через крепление фильтра к камере и между стеклом и держателем, что сильно снижает контраст сцены. И ещё эти фильтры имеют явный недостаток — они очень быстро пачкаются и царапаются.

Так как плёнка имеет расширенную чувствительность к красному свету, это позволяет снимать с рук с плотным красным фильтром (например, Hoya 25A) при ISO 100 для 400S и ISO 200 для плёнки Agfa Pan 400.

Также могу посоветовать снимать со связкой «поляризационный фильтр + красный или оранжевый». Потери в экспозиции составляют около 5–6 стопов, снимать лучше в солнечную погоду или в день, когда много мелких облачков.

Если нет фильтра, то можно взять широкий неэкспонированный слайд Velvia 50 и проявить, а потом использовать как фильтр.

Для съёмки нужен штатив, так как выдержки днём доходят до 10–20 минут! Также нужен пульт ДУ или тросик с фиксацией.

Выбор камеры для ИК-съёмки

Nikon F4

Для ИК-фотографирования пригодна любая камера без ИК-датчика (например, Canon 1N, A-1, Nikon F4, Contax rts 3) или механическая, а при съёмке на «любитель» 166в возможна засветка через окошко на задней крышке, находящейся под красным стеклом, чтобы можно было видеть номер кадра.

Если у вас на камере на задней крышке есть окно для просмотра типа плёнки, его надо заклеить чёрной изолентой, иначе при выдержке более 30 секунд будет засветка, особенно если свет будет за спиной. Также обязательно нужно закрывать наглазник платком или шторкой (есть на камере Nikon F4, Canon 1N, Contax и других) при выдержках более 1 секунды.

Фокусировка при ИК-съёмке

Инфракрасные и красные лучи по-разному отражаются в объективе. Поэтому нужна коррекция фокуса при съёмке. На некоторых объективах есть риска красного цвета с буквой (R), фокус следует наводить по ней. Есть ещё одна хитрость: можно наводить фокус при надетом красном фильтре (red 25 или любом другом кратностью х8 или х16) — тогда коррекция практически не нужна, но надо 2 раза надевать и снимать фильтр, что не очень удобно.

При съёмке на грани бесконечности я бы порекомендовал чуть-чуть не доводить фокус, т.е. фокусироваться ближе. И использовать закрытые диафрагмы от f/8 – f/11, чтобы практически исключить промахи фокуса. Оптика при съёмке в ИК-диапазоне сильнее подвержена бликам, но это ничуть не портит картинку, в творческой части статьи я опишу, как это можно применять.

Как снимать ИК-фото

Подбор экспозиции, и как получать результат

Съёмка ИК-фото больше похожа на лотерею, но за 3 года я научился — и хочу рассказать, как можно получить результат.

Расскажу на примере плёнки Rollei Infrared 400S. Согласно спецификации производителя, плёнка без фильтра имеет чувствительность 400 единиц. С красным чувствительность выходит около 125–200 единиц.

С ИК-фильтром Hoya R72 или аналогичным РЕАЛЬНАЯ чувствительность составляет около 6–25 единиц ISO. С более плотными фильтрами чувствительность будет ещё ниже.

Ориентировочные цифры:

  • Солнечный день, дерево против солнца 12 единиц, замер по листьям, делаем 3 кадра — один +2 стопа экспозиции, нормальную (что показывает камера без фильтра) и -2 стопа. Все данные записываем, проявляем, сканируем или печатаем.
  • В пасмурный день (солнечный диск в дымке или вообще не виден) ISO, как ни странно, составляет около 25 единиц, свет будет мягким без резких теней.
  • Выдержки в лесу или при рассеянном свете часто выходят за 10–15 минут. Я бы рекомендовал не бояться пересветить кадр: как ни странно, плёнка очень хорошо и без заметных потерь терпит пересвечивание на 2–3 стопа. При экспозиции более чем 1 секунда выдержку следует увеличивать в 2 раза: т.е. вместо 15 секунд мы ставим 30, вместо 30 — 60 и так далее.

Я бы рекомендовал не бояться сильно менять экспозицию, особенно в плюс.

Чтобы усилить ИК-эффект, можно и нужно использовать разные экспериментальные объективы: монокли, триплеты, пинхолы и т.п. Применять разные связки фильтров и мультиэкспозицию, а также альтернативные технологии печати.

Проявка

Оговорюсь сразу, что проявка ИК-плёнки дело сложное и не безопасное учитывая химию с которой приходится работать. Если вы не уверены в себе, лучше доверьтесь профессионалу.

Вы можете обратиться к автору статьи за консультацией и проявкой: https://vk.com/miracle570.

Так как ИК-плёнка обладает большой чувствительностью к свету, её зарядку необходимо производить в полной темноте. Перед проявкой плёнок Efke, Agfa, Rollei необходимо их замочить в чистой (!) воде, равной температуре проявителя, на 5 минут, чтобы удалить ореольный слой. Невыполнение этого пункта приведёт проявитель в негодность и очень сильно ухудшит резкость изображения. Нежелательно оставлять непроявленную плёнку в проявочном бачке с открытой крышкой больше чем на 10–15 минут даже при слабом свете — можно получить засветку по краям (бачок Paterson).

О выборе проявителя

Подойдёт любой проявитель, который для вас привычен, но лучше всего подходят Agfa Rodinal, D-23, Kodak HC-110, D-76, Kodak T-Max.

Штатный проявитель Rollei rhs следует разводить 1:14 или 1:7. Но он очень нестабилен, и я запорол в нём пару плёнок. Он очень быстро деградирует, поэтому не рекомендую к применению.

Время проявки можно найти в инструкции производителя. Или воспользоваться тестом с тремя кусочками плёнки: на свету опустить их в проявитель и записать время, за которое они почернеют, потом это число умножить на 17,5 и разделить на 60.

Плёнка техническая, перед ответственной съёмкой настоятельно рекомендую проверить связки «плёнка + фильтр + проявитель». Также на англоязычных сайтах указывается время проявки, от которого можно отталкиваться.

Моё время проявки широкой плёнки составляет около 20–25 минут в проявителе Kodak HC-110 при разведении 1:63 (H) или 1:79 (F) или 20–30 минут в Agfa родинал 1:93. Агитация раз в 4–5 минут при температуре 20 градусов. В Kodak T-Max 1:4 — около 10 минут.

Творческая часть и примеры снятых фотографий

Плёнка Rollei Infrared 400sПлёнка Rollei Infrared 400s

Из-за больших выдержек кроны деревьев и высокая трава на полях выходят смазанными, из-за них же при пасмурной погоде идёт смаз неба во что-то подобное течению реки — мне очень нравятся такие фотографии.

Вода в мелких речках и прудах выходит чёрной, а поверхностные слои при определённом угле прозрачны.

Выдержка 10 минут, лес, пасмурный день. Базовая экспозиция была около 2 минут. ISO 16.

Далее будут примеры, снятые на плёнку Konica 750NM и EFKE (не выпускается). Автор — Егор Никифоров.

Плёнка Konica 750NMПлёнка Efke Aura 820

Эта плёнка славится тем, что вокруг ярких объектов образуется «свечение», или «ореолы». Особенно при съёмке в контровом свете.

Плёнка Efke Aura 820

Ниже примеры ручной печати с инфраплёнки Agfa Pan 400. По альтернативному процессу лит-печати. Проявитель Kodak D-9, rollei superlite.

Плёнка Agfa Pan 400Плёнка Agfa Pan 400Плёнка Agfa Pan 400

Вот, пожалуй, и всё, что я хотел бы рассказать вам о съёмке на инфракрасную чёрно-белую плёнку. Если кому-то интересно узнать больше о печати, истории инфракрасной фотографии или просто как быстро научиться снимать — можете написать. Контакты и магазины, где можно достать, я напишу чуть ниже.

В следующей статье я опишу свой опыт съёмки на цветную инфрапленку Kodak aerochrome или Kodak EIR.

Фотоматериалы и все химикаты можно купить в магазине: Фотофрейм.

Что-то в небольших количествах есть у меня, ещё, если интересно, могу помочь с проявкой. vk.com/market-63428046.

fototips.ru

Среднеформатная пленочная фотография в близком инфракрасном спектре / Habr

Фотографией я увлекаюсь с раннего детства. Поскольку от цифровой фотографии я получил все что хотел, у меня возникла идея попробовать восстановить дома процесс обработки ЧБ пленки.



Пару месяцев ушло на поиск среднеформатной камеры за разумные деньги (под узкую у меня есть полшкафа, от Зенита до Nikon F100, но она не дает того качества). В результате стал обладателем Киев-88СМ с хорошим набором оптики. Что немаловажно, в комплекте с камерой шел телефон человека который ее собрал.

В отличие от цифровой фотографии, в пленочной очень важен правильный выбор пары «пленка-проявитель». На eBay я закупился образцами почти всей доступной пленки. Проявитель же, T-Max, и промывка достались в комплекте с камерой.

Оптики мне досталось много, но лучший результат я пока получил только вот с таким объективом.

Где-то на полпути мне попалась вот такая пленка.

Эта пленка чувствительна к близкому инфракрасному спектру в диапазоне 720-800нм.
Вот спектр воспринимаемый человеческим глазом:

Вот чувствительность этой пленки в зависимости от длинны волны:

Если ее использовать без специального фильтра, результат будет мало отличаться от обычной ЧБ пленки. Для получения чего-то интересного, ее рекомендуют использовать со светофильтром IR720. Вот его спектр пропускания в зависимости от длины волны:

Я обзавелся тремя такими светофильтрами:

Крайний правый это светофильтр для объектива рыбий глаз Зодиак-8 30мм F3.5. В нем крепление для фильтров находится со стороны пленки. Фильтров, кроме четырех что идут в комплекте, для него вы не найдете. Мне пришлось разобрать один из комплектных фильтров и подобрать стекло от фильтра купленного на eBay с другой оправой.

На фотографии выше кажется что, фильтры непрозрачные. Это не так. На этой фотографии у меня случайно получилось поймать отражение проходящее через фильтр.

За исключением объектива Зодиак-8, можно обойтись одним фильтром для всех объективов.
Покупаете фильтр на самый большой диаметр и к нему стопочку повышающих колец.

Собрав все фентифлюшки вместе мы можем заглянуть в видоискатель! Для того чтобы почти ничего не увидеть! 😉 Поэтому для съемок рекомендую выбирать солнечные, безоблачные дни.

А что вы хотели? Мы же собираемся снимать в невидимом глазу диапазоне! Ну почти не видимом! Что интересно, TTL экспонометрия в этом диапазоне работает очень хорошо.
Для того чтобы воспользоваться встроенным экспонометром на Киев-88СМ, вам нужно выставить внутренний (черный круг) на ISO 400. Повернуть металлическое кольцо таким образом, чтобы красная стрелка указывала на текущую максимальную светосилу объектива.

Нажать красную кнопку (быдыщь). Навести камеру на объект съемки и провернуть внешнее черное кольцо до тех пор пока не увидим в видоискателе два светящихся светодиода. Ну или почти два. Нужно поймать момент когда выключается один и включается второй. После этого с внешних колец выбираем понравившуюся нам эскпопару. Например в случае на фотографии ниже это будет выдержка 1/60 с диафрагмой 4. Или 1/125 с диафрагмой 2.8. После этого взводим затвор. Выставляем выдержку на камере и диафрагму на объективе.

Если же у вас есть внешний экспонометр, то его можно использовать не откручивая фильтр с камеры для каждого замера. Для этого на нем нужно выставить ISO 25. Экспозамер будет корректным. Не забывайте только выставлять обратно ISO 400 когда снимаете с камеры фильтр для того чтобы сделать фотографию в обычном спектре.

И вот пленка отснята! Как нам хочется увидеть что же получилось! Для этого нам понадобится варить мет химия. Слева направо — проявитель, промывка, фиксаж:

Разводим их как написано на банках. Нам понадобится по пол-литра каждого раствора:

Разводить лучше всего с дистиллированной водой. Ее можно найти в хозмаге или на заправке.
Чтобы точно отмерить нужное количество ингредиентов воспользуемся химической посудой. В принципе можно обойтись одним поллитровым мерным стаканом:

Процессы рассчитаны на температуру 20 градусов Цельсия. Для других температур есть формулы корректировки, но я таким не заморачиваюсь.

Нам понадобится термометр с делением 1 градус. Я нашел на OLX. Для того чтобы прогреть или остудить растворы, ставим их в водяную баню. Небольшие отличия от 20 градусов не смертельны. Я не заметил разницы в результате при 19 или 21-ом.

Пока банки с растворами купаются, мы заряжаем пленку в бачок. У меня вот такой. Его преимущество в том что в него можно заряжать сразу две узкие пленки. Средний формат, к сожалению, только одну. Внимание! Руки и бачок должны быть сухие!

Для того чтобы не засветить пленку, все прячем вот в такое китайское изделие. Все делаем на ощупь. Для первого раза рекомендую испоганить одну пленку и сделать это на свету. Это лучше чем испортить отснятую пленку.

Уголки пленки я подрезаю маникюрными ножницами. Так она легче заходит в бобину.
Если у вас электронные часы, не забудьте их снять.

Если у вас нет такого китайского изделия, пленку можно зарядить в бачек замотав руки в куртку
и закрывшись в ванной с выключенным светом.

Проявитель нужной температуры. Пленка заряжена. Наступает ответственный момент — проявка. Идем на сайт. Выбираем нашу пленку и проявитель. Смотрим время проявки. В моем случае, для Rollei Infrared IR400 и проявителя T-Max (не RS!) разбодяженого 1+4, это будет 12 минут.

Заливаем проявитель. Первую минуту болтаем секунд 45-ть. Потом ждем. Потом опять болтаем. Потом опять ждем… и так далее. Главное не забыть включить какой-нибудь таймер 😉
У ортодоксов есть свои паттерны болтания. Но, я вам скажу, что самое главное это болтание на первой минуте. Оно необходимо чтобы убрать пузырьки воздуха с пленки.

12 минут истекли. Выливаем проявитель в унитаз обратно в банку. В T-Max-е можно проявить много пленок и он хорошо хранится в холодильнике.

Заливаем промывку. Перемешиваем одну минуту и сливаем промывку обратно в банку.

После этого я промываю пленку проточной водой. (Открывать бачек еще рано!) И заливаем фиксаж на 5 минут. Периодически помешиваем. Сливаем фискаж обратно в банку.

Теперь бачек можно открывать. Ставим его на десять-пятнадцать минут под проточную воду.
Пока с пленки вымывается вся химия, которой мы её накормили, можно спрятать банки в холодильник и повытирать лужи с пола и кухонного стола (+100 в отношениях с женой, смотри — я полы помыл!).

Перед тем как достать пленку я делаю еще один шаг. Добавляю каплю ополаскивателя для посудомоечной машины. Это мое ноу хау. Никаких разводов на пленках от высохшей воды!

И наконец разворачиваем пленку и вешаем сушиться. Я делаю так:

Современные пленки имеют хорошую подложку и мало скручиваются.

Что же делать дальше с негативами? Пленку можно отдать на сканирование. Они вам её поцарапают. Я сканирую сам. Для этого приобрел сканер Canon 9000F. Сканировать средний формат он умеет из коробки. Правда если у вас пленка скручивается по ширине (нет параллельности стеклу сканера) рекомендую приобрести вот такое изделие с антиньютоновским стеклом:

Для хранения негативов после сканирования существуют вот такие файлики. Их тоже можно найти у китайцев.

Сканы с резкой оптики соответствуют примерно 30-40 мегапикселям.

Но что же у нас получилось? Зачем этот весь сыр-бор? Внимание! Спойлеры!

Объектив MC Biometar 2.8/80
Объектив Зоркий-8 3.5/30



Теперь у меня в планах восстановить дома процесс ЧБ печати. Увеличитель уже лежит, осталось дело за разной мелочью. Кюветы, красный фонарь, глянцеватель, таймер, бумага и химия.

habr.com

Инфракрасная Kodak Aerochrome · Lomography

19 Share Tweet

С тех пор, как я опубликовал свои фотографии с пленки Aerochrome, меня буквально засыпали вопросами о различных аспектах, связанных с ней. Ниже я попытаюсь рассказать о некоторых из них.

Credits: lazybuddha

Если бы не огромная популярность моих альбомов с этими фотографиями, я бы никогда не решился написать эту статью. Ведь я — все еще новичок в Ломографии. Есть другие люди, с большим опытом работы с Aerochrome, я спрашивал у них советы и они с радостью делились ими со мной. Теперь я делюсь ими с вами.

Немного истории.

Kodak Aerochrome была разработана для использования в аэрофотографии. Чтобы фотографировать леса, создавать карты местности и использовалась в военных целях. Соответственно, эта пленка, в основном, идет в формате для аэрофотокамер- 9.5 дюймов на 400 футов. Такую пленку трудновато будет засунуть в вашу 135 или 120 камеру. Однако, существуют 120 и 135 ролики такой пленки, они невероятно дорогие и их очень трудно найти, ведь ее перестали выпускать довольно давно. Но деньги и усилия, потраченные на нее, того стоят.

Фильтры

Aerochrome, как и другие пленки, чувствительна ко всему видимому спектру света. Единственное отличие — в том, что эта чувствительность выходит за рамки 730нм (длина волны обозначается в нанометрах) и захватывает невидимый инфракрасный спектр. Aerochrome и другие инфракрасные пленки более чувствительны к синему цвету, поэтому для получения настоящего ИК эффекта, вам понадобится фильтр. Без него у вас получатся просто контрастные фотографии, без какого-либо эффекта. В основном люди рекомендуют оранжевые либо желтые фильтры, однако вы можете использовать красный или зеленый на свое усмотрение. Чем темнее ваш фильтр, тем темнее красные цвета, небо и жестче контраст. Чем светлее, — тем красный цвет становится розовее, а контраст менее заметным. Ниже приведены примеры фотографий, снятых с разными фильтрами.

Красный фильтр

Credits: lazybuddha

Оранжевый фильтр

Credits: lazybuddha

Желтый фильтр

Credits: lazybuddha

Зеленый фильтр

Credits: shoujoai

Примечание: на ваше изображение влияет еще множество факторов, помимо фильтров.

Экспозиция

Aerochrome при использовании с желтым фильтром снимается как 400ISO. Однако, Aerochrome разработан для проявки в химии AR-5, самой близкой к которой является процесс E-6. Если вы хотите проявить ее по кросс-процессу, то ISO падает до 320. Все мои фотографии были проявлены по C-41, а для замера я пользовался следующими направлениями(для солнечной погоды) :

Желтый фильтр – f22 1/125 сек
Оранжевый фильтр– f16 1/125 сек
Красный фильтр – f11 1/125 сек

Если немного пересветить кадр, то вы потеряете цвет неба, но добавите прорисовки деталей. Если же его сильно передержать, то изображение просто выгорит. Ниже вы найдете примеры. Первая фотография немного недосвечена, а вторая — слегка пересвечена.

Проявка
Так как Aerochrome разработан под проявку в химии AR-5, эта пленка ведет себя иначе, чем другие слайдовые пленки. Обычно кросс-процесс слайдовой пленки придает ей самую сильную возможную насыщенность, но в этом случае как раз Е-6 процесс придает самую сильную насыщенность. Кросс-процесс же дает большее количество деталей. И, учитывая что Aerochrome и так перенасыщена цветом, я предпочитаю проявлять ее по С-41. Оценить все за и против процессов вы можете здесь

Источник света

Цвет, который видит камера, зависит от двух вещей: от цвета, который поглощает/отражает снимаемый объект, а также от самого источника света. Чтобы передать определенный цвет объекта, освещающий его источник света должен содержать в себе этот цвет. Так же дело обстоит и с инфракрасным светом. Лучше всего для источника ИК света подходит солнце, однако, вольфрамовые и галогеновые лампы также подходят как источники инфракрасного излучения. Большинство других искусственных источников излучения излучают свет в видимом спектре и и не придают никакого эффекта. На самом деле, большинство домашних источников света излучают минимальную широту света (для экономии электричества). Короче говоря, Aerochrome не следует использовать в помещении.

Листва

Многие виды растений, включая деревья и траву, отражают инфракрасный свет, но все — в разной степени. Это означает, что разные растения будут иметь разный оттенок красного. Чем светлее фильтр, тем очевиднее будет эта разница. Светло-желтый фильтр, например, придаст вашему изображению намного больше оттенков розового и красного, ведь красный фильтр попросту заблокирует розовый цвет.

Фокусировка

Когда свет проходит через стекло, он преломляется, и так как разные цвета имеют разную длину, они преломляются под разными углами. Обычные объективы откалиброваны для фокусировки всех волн, кроме инфракрасных. Таким образом, имея увеличенную длину волны, инфракрасный свет фокусируется за пленкой, и поправить это трудно, учитывая, что наш глаз его не воспринимает. Некоторые объективы имеют красную метку, которая указывает на фокусировочную точку для таких пленок. Но если вам не повезло, то просто фокусируйтесь на 1\4 ближе от вашего расстояния. Конечно же, закрытая диафрагма тоже помогает попасть в резкость, так что не забывайте о ней.

Другие факторы типа погоды также влияют на ваше изображение. С такой пленкой даже высота над уровнем моря влияет на кадр. С инфракрасной пленкой каждая фотография превращается в эксперимент, поэтому, не жалейте ее и снимайте, пока это возможно.

Хранение и перевозка

К хранению инфракрасных фотоплёнок предъявляются сверхжёсткие требования.Прежде всего, инфракрасные плёнки должны храниться при низкой температуре. Отснятая плёнка не терпит долгого лежания, её надо скорее проявлять. Образно говоря, после экспонирования плёнки счёт идёт на часы. Естественно, будет лучше, если плёнка всё это время проведёт в холодильнике.

Другим капризом ИК пленки является то, что заряжать и разряжать камеру следует в кромешной темноте, иначе плёнка засветится. Вплоть до зарядки проявочного бачка, нельзя вынимать кассету с 35-мм плёнкой из коробочки-контейнера. Дело в том, что полимерная подложка плёнки является своего рода световодом для инфракрасных лучей, и поэтому торчащий из кассеты хвост, играющий роль светоприёмника, засвечивает плёнку аж до 12-18 кадра, то есть наполовину её длины.

Для путешествующих фотографов общение с этими нежными плёнками предоставляет дополнительные трудности. Во-первых, большинство из них очень неравнодушны к сухой атмосфере. В сухих условиях они накапливают заряды статического электричества, что приводит к локальной засветке.

Принято считать, что счётчики кадров современных фотоаппаратов засвечивают инфракрасную фотоплёнку. Обычно (например, на Nikon N65) он светит на длине волны, примерно равной 850нм и длиннее. Поэтому для плёнок Maco, Koniсa и уж тем более, Ilford, он не представляет никакой опасности. А вот плёнку Kodak (например, HIE) он действительно засвечивает, но только вверху, в районе перфорации, не оказывая никакого влияния на качество изображения.

И наконец, даже если вам посчастливилось где-то достать пару катушек этой редкой пленки, самую большую трудность при перевозке ее из другой страны представляют попытки объяснения работнику службы безопасности аэропорта, что эту плёнку не только нельзя пропускать внутрь рентгеновского аппарата, но даже вынимать из упаковки. Некоторые говорят, что в редких случаях могут помочь только надписи на упаковке и чек на приобретенные катушки.

written by lazybuddha on 2014-02-06 #gear #tutorials #film #infrared #tutorial #filters #tipster #aerochrome #cir #ir #eir-color-color-kodak #kodak-aerochrome #top-tipster-techniques

www.lomography.com

Инфракрасная фотосъемка | БЛОГ ДМИТРИЯ ЕВТИФЕЕВА

Здравствуйте, друзья!

Я давно хотел написать на эту тему, но всё как-то казалось, что материала маловато и сейчас, спустя год кажется также. Процесс набора материала очень долгий и если быть к себе очень критичным, то можно и одной теме всю жизнь посвятить.

к содержанию ↑

Давно вы занимаетесь фотографией или начали недавно, скорее всего, вы обратили внимание, что многие достопримечательности уже сфотографированы со всех сторон. Видов природы столько, что сервера Амазон и Гугл уже не вмещают, а фотостоки не принимают. Проблема заключается в том, что мало просто сфотографировать. В наше время когда вы вряд ли будете первым в месте съемки, нужно сфотографировать как-то по особенному.

И здесь нам приходят на помощью необычные способы съемки и экзотические светофильтры.

к содержанию ↑

Видеоролик интервью со мной для канала Наука 2.0 про инфракрасную фотосъемку

Единственное замечание к ролику — я всё-таки снимаю инфракрасные фото как раз на коротких выдержках. На длинных снимал когда у меня не было модифицированной камеры.

к содержанию ↑

Современные фотокамеры устроены так чтобы инфракрасный спектр, который попадает в объектив не влиял на изображение. Для того, чтобы он не влиял в фотокамеру ставят фильтр, которые этот спектр отсекает.

На приведённом ниже графике вы можете увидеть, что кремний из которого сделан сенсор камеры вполне себе пропускает излучение с длиной волны до 300нм и до 1100нм. Далее он становится «прозрачным» для излучения (за ИК излучением начинаются радиоволны).

На самом деле сенсор фотокамеры, это не просто кремний, а целый «бутерброд», в котором возникает масса дополнительных проблем с правильным распознаванием цвета.

На каждом этапе прохождения излучения через границу между слоями электромагнитная волна может менять амплитуду и направление. Часть излучения отражается обратно, часть переходит на следующий слой «бутерброда». Из отразившейся обратно части излучения, часть переотражается в предыдущем слое и переходит на следующий слой изменённой, а часть выходит за пределы сенсора (полностью отражается обратно). Т.к. степень отражения излучения зависит от его длины волны, то влияет этот процесс на спектральную чувствительность сенсора нелинейно. Особенно это касается лучей, приходящих на сенсор под углом (помните колоршифт?)

Обычно с «лишним» спектром ЭМ волн борются с помощью специального фильтра, который отсекает инфракрасный и ультрафиолетовый спектр, чтобы получить чистую картинку с видимым спектром. Иначе мы имеем искаженные цвета (красные цвета усиливаются, черный становится тёмно-фиолетовым) и т.д.). Такую проблему имела, например, камера Leica M8.

Собственной картинки снятого ИК/УФ фильтра у меня пока нет (донорская камера лежит и ждёт пока я её разберу), так что вы можете посмотреть процесс разборки и как выглядит сам фильтр на сайте компании Lifepixel, известного американского модификатора камер.

к содержанию ↑

Я не занимался инфракрасной фотографией на пленочных камерах. В теории тут есть свои плюсы и минусы. Есть плюс в том, что вы можете купить инфракрасную плёнку любого производителя и начать снимать, никакие фильтры вам не мешают. А минус в том, что единственный доступный способ фокусировки это ставить на объективе шкалу дистанций на специальную красную метку. С одной стороны это просто, а с другой... Разные длины волн фокусируются в разных местах и потому с одними инфракрасными фильтрами вы будете попадать точно в фокус, а с другими снимки будут нерезкими. Придётся экспериментально искать правильное положение фокуса для конкретного инфракрасного фильтра.
Еще есть один плюс... Плёночные камеры дешевые и пленка для них тоже недорогая.

к содержанию ↑

Инфракрасный спектр не блокируется стеклом объектива, так что подойдет любой объектив. Если на нём есть специальная красная метка для занятий инфракрасной фотографией — вообще здорово, может облегчит работу с некоторыми инфракрасными светофильтрами, не нужно будет тщательно фокусироваться.

к содержанию ↑

Для инфракрасной фотографии существуют специальные фильтры с разным пропускаемым спектром. Дело в том, что диапазон инфракрасного спектра большой, а нас интересует только определенный участок, плюс если к инфракрасному спектру подмешивать видимый спектр, то будет иногда интереснее, чем просто инфракрасный спектр.

Я использую светофильтры B+W 092, B+W 093, но существует еще много других инфракрасных светофильтров которых у меня нет или они уже не производятся.

к содержанию ↑

Типы инфракрасных фильтров B+W

к содержанию ↑

Инфракрасный фильтр 092 (=89 B)

к содержанию ↑

Внешний вид

Почти непрозрачный инфракрасный фильтр B+W 092, который выглядит темно-красным с фиолетовым оттенком (dark purplish red), если смотреть на просвет.

к содержанию ↑

Кривая пропускания

Блокирует видимый спектр до 650нм
Пропускает только 50% с 650нм до 730нм (отсюда тёмно-красный цвет)
730-2000нм — пропускает более 90% спектра

Это светофильтр в основном используется пейзажными фотографами для фотосъемки на чёрно-белую инфракрасную плёнку и на модифицированную для инфракрасной съемки цифровую камеру.
Фактор фильтра 20-40.

кадр инфракрасного фото со светофильтром B+W 092 и балансом белого по-умолчанию

кадр инфракрасного фото со светофильтром B+W 092 с другим балансом белого

пример обработанной инфракрасной фотографии, сделанной со светофильтром B+W 092

Обработка может быть совсем разной, цвета неба, деревьев и прочего здесь условны и вы выбираете такие, которые вам нравятся. Чаще всего небо и здания лучше сделать естественных цветов. А вот листья деревьев, трава и проч. могут быть какие угодно.

к содержанию ↑

Попытка имитировать работу инфракрасного фильтра 092 в фотошопе

Раньше инфракрасное изображение всегда переводили в ч.б., но сейчас появилась мода и на цветные инфракрасные фотографии.

Уверен, что вы снимите что-то более интересное т.к. это просто тестовый снимок, чтобы показать как работает фильтр.

Такое ч.б. изображение не получить имитацией в фотошопе или в настройках камеры — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Обратите внимание, что на настоящем инфракрасном фото чёрные фары стали белыми, листья деревьев белые даже снизу. На снимке появились тучи на небе. И это с фильтром, где всё-таки есть примесь видимого спектра.

к содержанию ↑

Примеры снимков

к содержанию ↑

Инфракрасный фильтр 093 (=87 C)

к содержанию ↑

Внешний вид

Инфракрасный фильтр 093 — с бликом от мощного источника света. По блику его иногда называют тёмно-зелёным. Такой блик получается потому что фильтр пропускает только ИК спектр (красный) и отражает синий и зеленый, которые мы и видим

Фильтр B+W 093 полностью блокирует видимый спектр, таким образом фильтр выглядит как полностью непрозрачный.
Этот светофильтр делает возможными инфракрасные фотографии без примешивания красной составляющей, в отличие от предыдущего светофильтра (092).

к содержанию ↑

Кривая пропускания

Результирующее изображение обычно переводят в черно-белое.

Такое ч.б. изображение не получится имитацией в фотошопе — проверено. Потому как все объекты отражающие ИК (листья деревьев и трава, например) получают бОльшую яркость, а поглощающие (вода, например) становятся темнее.

Пропускание B+W 093 начинается с 800 нм, поднимается до 88% на 900 нм и остается таким высоким далеко за пределы чувствительности инфракрасной плёнки. Этот фильтр редко используется для пейзажной съемки т.к. вынуждает снимать на очень чувствительные пленки (высоком ISO). Но в научном плане, судебной экспертизе и проч. ограничение спектра только инфракрасным особенно важно. Фактор фильтра очень зависит от освещения и характеристик светочувствительного материала (плёнка, сенсор).

пример инфракрасного фото снятого с фильтром B+W 093 с балансом белого по-умолчанию

пример ифракрасного фото, снятого со светофильтром B+W 093 с другим балансом белого

пример инфракрасного фото, снятого со светофильтром B+W 093 и переведённого в черно-белое

к содержанию ↑

Примеры снимков с инфракрасным фильтром B+W 093

>

Попытка имитировать работу инфракрасного фильтра 093 в фотошопе

Как видите, разница очень большая. Кроме белых листьев деревьев видно фасад, который становится особенно контрастным в инфракрасном спектре, окна и крыши становятся черными (поглощают ИК спектр), а небо темнеет.

к содержанию ↑

Инфракрасный фильтр 099 (=16)

Светофильтр B+W 099, к сожалению, больше не выпускается, так что вы можете найти его только б.у.

к содержанию ↑

Кривая пропускания

Оранжевого цвета светофильтр B+W 099 идеален для использования с цветной инфракрасной плёнкой, также известной как «False Color Film» за её чарующие и абстрактные цвета. Этот фильтр блокирует большую часть коротковолнового диапазона спектра до 520нм (голубой, зелёно-голубой), достигает полной пропускной способности около 600нм и сохраняет её далеко за пределами чувствительности подобных плёнок. Это позволяет избежать голубых паразитных оттенков вызванных повышенной чувствительностью в данном спектральном диапазоне и даёт бОльшое разделение цветов.

Очарование снимков с этим фильтром в передаче цветов зелёной растительности в оранжево-красных цветах, которая получается благодаря высокой способности отражать инфракрасный спектр у хлорофилла в растениях.
Фактор этого фильтра очень зависит от светочувствительного материала (плёнка, сенсор) и степени отражения инфракрасного спектра от объекта съемки.

к содержанию ↑

Полезные советы для съемки с инфракрасным светофильтром

к содержанию ↑

Камера

Хорошие инфракрасные фильтры довольно «плотные» (тёмные) и потому обычной камерой приходится снимать со штатива. Например, через B+W 093, который пропускает только инфракрасный спектр вообще ничего не видно глазами. Выдержка при этом становится весьма длинной. В яркий солнечный день параметры съемки могут быть F4 1/4sec iso 1600. По этой причине снимок может иметь довольно сильные шумы, которые впрочем успешно подавляются в RAW-конвертере. Но хуже то, что на длинной выдержке листья деревьев часто получаются размытыми.
Потому я сильно рекомендую купить модифицированную под инфракрасную съемку камеру и снимать на нормальной выдержке. Тогда для инфракрасной съемки в яркий солнечный день параметры могут быть такими: F4 1/200sec iso 100. Как видите, можно вполне нормально снимать что угодно с рук.
Вариантов найти модифицированную камеру или модифицировать свою несколько. Самый простой — купить или модифицировать в американской конторе LifePixel. Второй путь — попытаться сделать это самому. Я отдавал свой Nikon D300 на модификацию специалистам, которые работают с мелкой электроникой. Они успешно разобрали камеру, но рамка на сенсоре по их словам так «закисла» на винтах, что её было не снять. Так что пришлось всё собрать обратно. Третий вариант — найти специалиста там где живёте. Если будет необходимость, обращайтесь ко мне, я постараюсь помочь с камерой модифицированной под инфракрасную съемку.

к содержанию ↑

Фокусировка

При смене фильтров желательно перефокусироваться тщательно, используя LiveView фотокамеры на максимальном увеличении. Причину я уже выше объяснял, фильтр с другим спектром смещает фокусировку. Также имеет смысл использовать шторки на ЖК экран фотокамеры или увеличитель («лупу») на ЖК экран для более точной фокусировки на солнце, иначе экран засвечивает и плохая фокусировка портит хороший снимок.

к содержанию ↑

Какой светофильтр выбрать

При выборе фильтра стоит учесть, что плотные инфракрасные светофильтры, которые отсекают весь видимый спектр оставляют только один по сути канал в цветном изображении и потому оно превращается в черно-белое.
На экране фотокамеры оно чаще выглядит как фиолетовое, но это условно т.к. инфракрасный спектр цвета не имеет и с помощью баланса белого вы можете поставить любой цвет, если хотите оставить изображение цветным.

Другое дело светофильтры где пропускается часть видимого спектра. Он примешивается к инфракрасному и тогда есть некоторая информация в цветовых каналах изображения, это позволяет перекрашивать изображение в разные необычные цвета.

Вы также можете заказать себе установку специального светофильтра прямо на матрицу и тогда у вас будет то цветное изображение, которое вы «заказывали».
В этом есть свой плюс т.к. аналоговое расщепление изображение на цвета не даёт артефактов на изображении, в отличие от цифровой «раскраски». Но есть и минус — ограничение свободы выбора раскраски.

к содержанию ↑

Вариантов съемки много хороших и разных, желаю вам поскорее взять камеру и идти на улицу пока на дворе лето (если вы этого еще не сделали или делаете редко)! Особенно это касается инфракрасной съемки, зимой от которой мало пользы.

Удачных вам снимков! 🙂

P.S. Я еще многое мог бы вам рассказать об инфракрасной фотосъемке, но если буду вдаваться слишком глубоко, то не успею написать другие интересные статьи. Так что позже постепенно буду дополнять эту статью.

evtifeev.com

Инфракрасная фотопленка: фотопроект Даниэла Звереффа

Эта серия фотографий была снята Даниэлом Звереффом (Daniel Zvereff) на инфракрасную фотопленку Kodak Aerochrome, по сути на одну из самых последних катушек этой пленки в мире. Это справедливый финал, проект получился великолепным.

Этот фотопроект охватывает несколько разных стран на разных континентах и документирует изменения, с которыми некоторые из этих стран в настоящее время сталкиваются. Фотографии вызывают сильные эмоции, благодаря использованию инфракрасной фотопленки. В серию вошли не только фотографии, но и авторские рисунки и записи, созданные во время этого исследовательского пути.

Даниэл Зверефф — 32-летний фотограф и иллюстратор. Он живет в Бруклине последние 7 лет, но родился в Портланде. ‘Я начинал свою карьеру как графический дизайнер и иллюстратор, но вот уже два года занимаюсь исключительно фотографией и собираюсь продолжать двигаться в этом направлении.’

Исландия.

Исландия.

Проект ‘Интроспекция’ (Introspective), или самонаблюдение, начался с идеи задокументировать арктические и субарктические регионы шести разных стран на последние в мире катушки инфракрасной пленки Kodak Aerochrome. ‘Благодаря’ политическим и экономическим приоритетам, которые начинают отменять понятия защиты и сохранения окружающей среды, а также климатическим изменениям, связанным с потеплением, совсем скоро арктический регион станет неузнаваемым.

Шпицберген.

Шпицберген.

‘Мое путешествие длилось около трех месяцев и таило в себе несколько неожиданных поворотов. Пришлось пожить неделю в глухой деревне в Кении или наблюдать, как отец с сыном потрошат тюленя в Гренландии. Но чем больше зиг-загов было на моем пути, тем отчетливее я понимал, что все в этом мире взаимосвязано. ‘Интроспекция’ стала моей личной Одиссеей, обретением внутренней ясности посредством наблюдения и фотографирования чудес этого мира.’

Гренландия.

Гренландия.

Гренландия.

Гренландия.

Гренландия.

‘Этот арктический проект был непростым. Он и начался с того, что я лишился своей квартиры и мне пришлось отправлять все вещи на хранение. Кстати сказать, я до сих пор живу «на чемоданах».

Аляска.

Аляска.

Путешествие по всем этим странам за три месяца было довольно амбициозным планом. Добраться в сами страны было просто — сложно было добраться в удаленные районы. Моей единственной возможностью было лето, потому что инфракрасная пленка не даст какого-то интересного результата с пейзажем, покрытым снегом. Поэтому часы тоже тикали.’

 

‘Хотя сам проект завершен, я надеюсь еще раз посетить все эти места и продолжить снимать там. Эти места невероятны, там необыкновенные люди и культура.’

Архангельск.

All photos © Daniel Zvereff

foqusstore.com

Инфракрасная фотография - Мастерок.жж.рф — LiveJournal

 

Инфракрасная фотография позволяет нам увидеть мир, который недоступен нашему глазу.

Сначала эти снимки могут показаться безжизненными, но присмотревшись, в них можно увидеть другое пространство и другую реальность. Картины, полученные с помощью инфракрасной фотографии очень сюрреалистичны: жаркое лето на них превращается в холодную зиму, небо и вода становятся практически черными.

Все это — снимки из других, параллельных миров.

Прогулочные лодки на канале

Это не зима, это лето, здесь деревья и трава зеленые.

 

Что нужно сделать, чтобы запечатлеть этот сказочный, невидимый мир? Первым делом определить, подходит ли ваша камера для съемки в ИК-диапазоне. После чего обзавестить специализированными фильтрами и штативом. Но есть и народный метод.

Один из специалистов поделился своим опытом и несколькими работами в области инфракрасной фотографии:

«Для того, чтобы получить такие снимки, я купила б/у цифровую камеру Canon 350D и „сломала“ ее, заменив hot mirror на обычное стекло. Было очень страшно случайно сломать аппарат окончательно. Но операция прошла удачно, все работает, хотя у меня осталась пара „лишних“ шурупов после сборки.»

 

 

Впервые инфракрасное излучение, находящееся за пределами видимого диапазона, обнаружил англичанин Вильям Гершель еще в 1800-м году. Сначала инфракрасная фотография применялась астрономами, использовалась при аэрофотосъемке, а также военными и реставраторами при работе с полотнами великих живописцев.

Сегодня инфракрасная фотография — это отличный прием для тех фотографов, которые хотят запечатлеть что-то необычное и выделить свои творения из общей массы.

 

 

Инфракрасная фотография началась в пленочную эпоху, когда появились специальные пленки, способные к регистрации инфракрасного излучения. Но, поскольку в наше время цифровые зеркальные фотоаппараты гораздо популярнее пленочных и достать специальную пленку стало достаточно тяжело (к тому же, надо заметить, не каждая пленочная зеркалка позволит снимать на ИК-пленку из-за наличия внутри камеры инфракрасного датчика, который будет засвечивать кадры), в этом фотоуроке мы коснемся только аспектов инфракрасной

 

 

Для начала, чтобы понять процесс получения инфракрасного изображения, необходимо разобраться в теории. Излучение, формирующее цветное изображение, воспринимаемое человеческим глазом, имеет длину волны в пределах от 0,38 мкм (фиолетовый цвет) до 0,74 мкм (красный цвет). Пик чувствительности глаза приходится, как известно, на зеленый цвет, имеющий длину волны примерно 0,55 мкм. Диапазон волн с длиной менее 0,38 мкм называют ультрафиолетовым, а более 0,74 мкм (и до 2000 мкм) — инфракрасным. Источниками инфракрасного излучения являются все нагретые тела.

Отраженное солнечное ИК-излучение чаще всего формирует картинку на пленке или матрице фотоаппарата. Поскольку самое распространенное применение инфракрасная фотография нашла в пейзажном жанре, необходимо отметить, что лучше всего ИК-излучение отражают трава, листья и хвоя, и поэтому они на снимках получаются белыми. Все тела, поглощающие ИК-излучение, на снимках выходят темными (вода, земля, стволы и ветви деревьев).

 

 

Теперь можно перейти к практической части.

Начнем с фильтров. Для получения инфракрасного изображения необходимо использовать ИК-фильтры, обрезающие большую часть или все видимое излучение. В магазинах можно найти, например, B+W 092 (пропускает излучение от 0,65 мкм и длиннее), B+W 093 (0,83 мкм и длиннее), Hoya RM-72 (0,74 мкм и длиннее), Tiffen 87 (0,78 мкм и длиннее), Cokin P007 (0,72 мкм и длиннее). Все фильтры, кроме последнего, являются обычными резьбовыми фильтрами, навинчивающимися на объектив. Фильтры французской фирмы Cokin необходимо использовать с фирменным креплением, которое состоит из кольца с резьбой под объектив и держателя фильтров. Особенность такой системы состоит в том, что для объективов с разным диаметром резьбы нужно приобретать только соответствующее кольцо, а сам фильтр и держатель остаются теми же, что получается гораздо дешевле, чем приобретение одинаковых резьбовых фильтров для каждого объектива. Кроме того, в стандартный держатель можно установить до трех фильтров с разными эффектами.

 

 

Поскольку мы рассматриваем ИК-съемку исключительно при помощи цифровых зеркальных фотокамер, нужно отметить, что у разных моделей камер разная способность к регистрации инфракрасного излучения. Сами по себе матрицы фотокамер достаточно хорошо воспринимают ИК-излучение, однако производители устанавливают перед матрицей фильтр (так называемый Hot Mirror Filter), обрезающий большую часть волн инфракрасного диапазона.

 

 

 

Делается это для минимизации появления нежелательных эффектов на снимках (например, муара). От того, насколько сильно фильтруется ИК-излучение, зависит возможность применения камеры для ИК-съемки. Например, камерой Nikon D70 с фильтром Cokin P007 можно снимать с рук, а для Canon EOS 350D и большинства других камер из-за длинных выдержек всегда потребуется штатив. Некоторые фотографы, увлеченные ИК-фотосъемкой, прибегают к модификации камеры, удаляя инфракрасный фильтр.

 

 

Настало время поговорить о технике съемки в ИК-диапазоне. Композицию снимка нужно выстраивать до установки ИК-фильтра на объектив, поскольку, надев его, в видоискателе вы ничего не увидите (кроме, разве что, солнца, если оно включено в кадр). Для инфракрасной фотографии характерны очень длинные выдержки (увеличивающиеся примерно на 10–12 ступеней по сравнению с обычной фотосъемкой). Это связано с двумя причинами. Во-первых, причиной длинных выдержек, как уже отмечалось выше, является ограниченный диапазон воспринимаемого камерой ИК-излучения. Во-вторых, при съемке в ИК-диапазоне приходится сильно зажимать диафрагму (f8 — f32) для устранения ошибок наведения на резкость путем увеличения ГРИП, поскольку автофокус камеры настроен для наведения в видимом диапазоне. Из-за того, что инфракрасные снимки содержат больше шума, чем обычные, лучше сразу при съемке устанавливать наименьшую возможную чувствительность матрицы. По этой же причине надо избегать коррекции экспозиции в RAW-конверторе или графическом редакторе, вводя нужную поправку перед съемкой, величина которой находится экспериментальным путем. От установки баланса белого в некоторых случаях зависит качество получаемого изображения. Чаще всего я устанавливаю его по небу или листве и никогда не использую автоматический режим. В случае использования фильтра Cokin P007 требуется накрыть сверху щель между ним и объективом, иначе вполне вероятно получение на снимке паразитных бликов от объектива, отражающегося в почти черном фильтре.

 

 

Теперь коснемся обработки снимков в Photoshop. Полученные кадры, в зависимости от установки баланса белого, будут иметь красную или фиолетовую тональность. Для получения классического черно-белого инфракрасного снимка нужно будет обесцветить снимок, например, с использованием карты градиента, предварительно настроив уровни и контраст. Также существует несколько способов получения очень эффектных цветных инфракрасных фотографий. Например, можно воспользоваться инструментом Channel Mixer, установив для начала для красного канала Red — 0%, Blue — 100%, для синего — Red — 100%, Blue — 0%, а затем путем небольших манипуляций с процентным соотношением того или иного цвета в каналах подобрать такие значения, при которых картинка будет выглядеть наиболее привлекательно.

 

 

Человеческий глаз способен воспринимать лучи в диапазоне длин волн от 380 нм до 760 нм (от фиолетового до красного). Все, что выходит за эти рамки, без специального оборудования увидеть невозможно.

Видимый свет — это лишь малая часть широкого спектра волн. Соседние области спектра — ультрафиолетовые и инфракрасные лучи. Они могут быть запечатлены на фотографии, так как преломляются линзами объектива, и изображение может быть сфокусировано на матрицу фотоаппарата. Инфракрасная фотография позволяет запечатлеть длины волн в недостижимом для нашего глаза диапазоне — от 700 до 1100 нм.

 

 

В заключение отметим основные плюсы инфракрасной фотографии: отсутствие дымки на снимках и всегда хорошо проработанное небо, отсутствие мусора, поскольку он не отражает ИК-лучи, и, конечно, важнее всего то, о чем было сказано в самом начале, — возможность увидеть необычный, неповседневный мир, в котором, помимо сказочного цвета, все движущиеся объекты исчезают или превращаются в «призраков».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Подробности инфракрасной съемки читайте тут - http://blyg.livejournal.com/21332.html

 

[источники] источники
http://www.adme.ru/illustration-and-photography/drugaya-realnost-infrakrasnoj-fotografii-461505/
http://prophotos.ru/lessons/6596-osnovyi-infrakrasnoy-s-emki?comment_page=2#opinions_block Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия - http://infoglaz.ru/?p=8933

masterok.livejournal.com

Инфракрасная фотография - Смотритель закатов — LiveJournal

06:43 am - Инфракрасная фотография
Что такое инфракрасная фотография?

Это ещё не тепло, но уже не свет.
Как получить инфракрасное изображение на обычном фото-аппарате. Как сделать ИК-фильтр из подручных материалов. Специализированные камеры. Сложности при съёмке и как их обойти. Выбор объективов, камер и фильтров.
Интересные сюжеты в инфракрасном диапазоне.

На живых примерах инфракрасных снимков попробуем вместе их обработать. Получим готовые решения по обработке снимков и вместе разберём, как эти решения работают.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ


Представление об инфракрасном, видимом и ультрафиолетовом излучении. Различие инфракрасного и теплового излучения.

Инфракрасное излучение ... электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 740 нм) и коротковолновым радиоизлучением (1’000’000 —2’000’000 нм).
Инфракрасную область спектра обычно условно разделяют на ближнюю (740 до 2’500 нм), среднюю (2’500—50’000 нм) и далёкую (50’000—2’000’000 нм). // БСЭ


Инфракрасное излучение было открыто в 1800 английским учёным В. Гершелем, который обнаружил, что в полученном с помощью призмы спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается. Тогда же было доказано, что это излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет.

Рис.1 Разложение в спектр солнечного излучения
С противоположной стороны, за фиолетовой полосой спектра находится ультрафиолетовое излучение. Оно так же невидимо, но так же немного нагревает термометр.

Дальнее инфракрасное излучение (самое длинноволновое) применяют в медицине в физиотерапии. Оно проникает под кожу и нагревает внутренние органы, не обжигая при этом кожу.

Среднее инфракрасное излучение регистрируется тепловизорами. Наиболее популярное применение тепловизоров – это поиск утечек тепла и бесконтактный контроль температуры.


Рис. 2. Тепловизор (средняя инфракрасная область)
Нас же больше всего интересует ближнее (самое коротковолновое) инфракрасное излучение. Это уже не тепловое излучение окружающих предметов комнатной температуры, но ещё не видимый свет.
В этом диапазоне частот довольно сильно излучают предметы, нагретые до заметного красного свечения. Например, гвоздь, нагретый докрасна на пламени газовой плиты в инфракрасном свете – ярко белый (рис.3) Участки более холодные (покраснение которых незаметно в видимом спектре) остаются тёмными в ИК.

Рис. 3 Ближний ИК диапазон
Именно этот диапазон излучения «работает», когда предметы нагреваются на солнце или под лампами накаливания. И это же излучение поглощают «термальные» окна автомобилей и домашние энергосберегающие стеклопакеты.
Наиболее популярное его применение – это пульты дистанционного управления (рис.4), инфракрасные камеры наблюдения с инфракрасными прожекторами подсветки.
В своё время была популярна передача данных по стандарту IrDA. Тот самый инфракрасный порт в телефонах и ноутбуках.

Рис. 4. Пульт дистанционного управления
В цифровой, как впрочем и плёночной фотографии чувствительность камеры к инфракрасному излучению нежелательна. Она приводит к искажению цвета - черные велюровые пиджаки смотрятся синими, выборочно теряется насыщенность красного.
Поэтому в современных камерах всячески борются с ней самыми разнообразными методами. Однако остаточная чувствительность всё равно есть, хоть и совсем небольшая.
Различия между чёрно-белым и инфракрасным изображением.

В интернете довольно популярны фильтры, делающие из цветной фотографии подобие инфракрасной. Однако они не могут работать корректно, потому что в цветной картинке нет информации об отражающей способности материалов в инфракрасном спектре. Грубо говоря, они не могут различить зелёный автомобиль и зелёную листву и делают все зеленые объекты в кадре белыми. Точно так же всё синее становится чёрным.
Точно так же не получается инфракрасной фотографии за простым красным фильтром неважно, плёночным или цифровым.
Как получить инфракрасное изображение

Для того чтобы получить настоящее инфракрасное изображение нужно, в простейшем случае, не пропустить в объектив видимое излучение, чтобы остаточная чувствительность камеры к инфракрасному излучению сформировала изображение.
Инфракрасные плёнки

В случае плёночной фотографии это обеспечивается применением специальных плёнок Kodak High Speed Infrared HIE, Konica Infrared 750 и самой популярной – Ilford SFX 200. Однако плёнки недостаточно, нужно ещё установить фильтр, который отсечёт видимый свет. Иначе плёнка превращается в обычную чёрно-белую панхроматическую плёнку с увеличенным зерном. Совершенно неинтересное сочетание.
Инфракрасная плёнка очень требовательна к условиям хранения – настоятельно рекомендуется хранить в холодильнике. Заряжать плёнку в фотоаппарат необходимо в полной темноте, потому что хвостик плёнки работает как световод и засвечивает до полвины плёнки. Плюс счётчики кадров в плёночных фотоаппаратах также засвечивают плёнку. Ни в коем случае нельзя засвечивать плёнку при сканировании багажа в аэропорту, а сделать это в современных мерах безопасности практически нереально – служба безопасности встаёт на дыбы и настоятельно просит показать, что в коробочке.
После экспонирования плёнку нужно проявлять по классическому чёрно-белому процессу в кромешной темноте и желательно в металлическом бачке.
Итого плёночная инфракрасная фотография это занятие скорее героическое, чем практическое.
Цифровые камеры

В цифровой фотографии всё гораздо интереснее. У большинства популярных цифровых фотоаппаратов матрица имеет остаточную чувствительность к инфракрасному диапазону достаточную, чтобы фотографировать на солнце с выдержкой в несколько секунд.

Рис. 5. Инфракрасная фотография. Canon EOS 40D, F8, 30”. Фильтр из слайдовой плёнки.
Несмотря на то, что матрица цифровой камеры чувствительна к инфракрасному излучению, их чувствительность к видимому свету в тысячи раз больше, поэтому, чтобы сделать ИК-фотографию, необходимо блокировать видимый свет специальным фильтром.
Например, камеры Canon EOS 40D и 300D на летнем солнце требовали выдержку 10…15 секунд при диафрагме F5.6 и чувствительности ISO 100. В аналогичных условиях Nikon D70 позволял работать с выдержкой в ½ … 1 секунду (что говорит о значительно более слабом ИК-фильтре в камере).
Если не бояться длительных выдержек, то вполне можно работать и в таком режиме - просто установить перед объективом инфракрасный фильтр и фотографировать со штатива.
Минус такого решения не только в длинных выдержках, но и в невозможности кадрировать картинку – в оптическом видоискателе ничего не видно. Приходится всегда пользоваться LiveView, а он есть не у всех камер.
Камеры с убирающимся инфракрасным фильтром (NightVision)

В своё время, когда цифровые зеркальные камеры ещё не набрали сегодняшней популярности, среди фотографов пользовались авторитетом камеры Sony DSC-F707/717/828.

Рис6. Камеры Sony DSC-F717/828/707
Их особенностью был режим съёмки Night Shot – в нём с матрицы камеры снимался фильтр, поглощающий инфракрасное излучение. Это позволяло установить перед объективом специальный фильтр, пропускающий только инфракрасное излучение и получить честный инфракрасный снимок с относительно короткими выдержками. Пусть и с массой ограничений автоматики, но это позволило фотографировать портреты в ИК-диапазоне.
Существует легенда, что камеры, предназначенные для астрофотографии, Canon EOS 20Da и Canon EOS 60Da приспособлены к инфракрасной съёмке, однако это не так. У них по-другому устроен Low-Pass фильтр и повышена чувствительность в красном диапазоне. Однако к инфракрасному диапазону они так же нечувствительны.
Модификация камеры для инфракрасной съёмки.

Если возможностей обычной камеры с фильтром кажется недостаточно и хочется получать инфракрасные фотографии с короткими выдержками, то можно из камеры убрать фильтр отсекающий инфракрасное излучение (Hot Mirror) и получить камеру с довольно высокой чувствительностью к ИК-диапазону. В обычном видимом свете камера нормально работать перестанет – цвета буду постоянно искажаться, а справиться с этим можно только установив фильтр Hot Mirror уже на объектив. Поэтому для съёмки в ИК-диапазоне часто используют старую камеру, которая уже отслужила своё и её не так жалко сломать.
А раз уж пошло вмешательство в камеру, то можно прямо инфракрасный фильтр поставить прямо перед матрицей. Плюсы этого решения в том, что в видоискателе снова видна картинка, а перед объективом больше не нужно ставить инфракрасный фильтр. А раз не нужен фильтр, то можно использовать объективы с различным диаметром резьбы под светофильтр.
В домашних условиях поменять фильтр перед матрицей теоретически можно, но на практике выгоднее отдать камеру на доработку специалисту – результат получится существенно качественнее, а камера не будет сломана. Опять же, знающий человек оттестирует автофокус камеры под инфракрасную съёмку и внесет поправки, если это надо.
Инфракрасные фильтры

Для съёмки в инфракрасном диапазоне практически всегда необходимо применение инфракрасных фильтров (Infrared passing filter). Фильтров, которые не пропускают видимый свет, однако прозрачны для инфракрасного излучения.
И в этом деле самый простой помощник это фотоплёнка: проявленная цветная плёнка прозрачна в ИК-диапазоне. А это значит, что засвеченная и проявленная негативная или просто проявленная слайдовая плёнка окажется чёрной в видимом диапазоне, но прозрачной в инфракрасном.
Кстати, именно ИК-прозрачностью плёнки пользуются плёночные сканеры с автоматическим удалением пыли. Они делают дополнительный снимок в ИК-диапазоне – пыль остаётся видимой на фоне прозрачной плёнки. А это готовая маска для удаления пыли.

Рис.7. Слайдовая плёнка
А раз так, то можно вырезать из подходящей плёнки кружок нужного диаметра и вложить его между защитным фильтром и объективом. Если эффекта окажется недостаточно – можно вложить несколько слоёв плёнки. Картинка немного потеряет контраст и резкость, но инфракрасная составляющая станет очевидна.

Рис.7A Слайдовая плёнка и ИК излучение
Так же можно поискать чёрные CD-R диски. Они были популярны для записи музыки, но в последнее время, со снижением популярности компакт-дисков, их стало сложно найти. Если с подобного диска смыть обложку, то получится чёрный диск, прозрачный в ИК-диапазоне.

Рис.8. Чёрный компакт-диск.
Производятся множество вариантов готовых фабричных ИК-фильтров. Наиболее популярный в России это фильтр Hoya R72. Он блокирует излучение короче 720 нанометров, а это как раз граница видимого света. Чуть менее популярен фильтр Schneider B+W 093 – он также полностью блокирует видимое излучение.
Фильтры Schneider B+W 092 и Cokin P007 блокируют видимое излучение не полностью, поэтому картинка получается только слегка окрашенной. Слайдовая фотоплёнка показывает промежуточный результат, поэтому её приходится складывать в несколько слоёв.
Объективы

Одного светофильтра для съёмки недостаточно – нужно ещё чем-то сформировать изображение. Сложность инфракрасной фотосъёмки в том, что объектив будет использоваться в ненормальном для него применении. Длина волны света хоть немного, но длиннее видимой, а это значит, что преломление света будет меньше (вспомним призму с рис.1), а это значит, что масштаб картинки изменится. Объектив станет чуть более длиннофокусным. Одновременно с этим возникает и целая россыпь проблем, которые где-то сказываются сильнее, а где – то слабее. Рассмотрим их подробнее
Фокусировка

Если объектив навести на бесконечность в видимом свете, то в ИК-диапазоне он окажется наведённым чуть ближе. Появится фронт-фокус. Но есть и хорошая сторона этой ошибки – она стабильная и достаточно просто довернуть кольцо фокусировки на определенный угол. Именно для этого на советских объективах (например на Юпитер-37А, Юпитер-9, Гелиос 44М-8 и некоторых других) стоит дополнительная красная метка R. Для правильной фокусировки в ИК нужно сначала навести резкость в видимом свете, а потом довернуть кольцо фокусировки на метку R.
У современных объективов эта метка бывает довольно редко и у зум-объективов её положение зависит от фокусного расстояния. Поэтому обычному фазовому автофокусу зеркальных камер особо доверять не стоит. Обойти проблему можно или воспользовавшись Live View и наведясь уже по контрасту или сфокусироваться вручную, контролируя резкость по экрану. Если у камеры нет Live View, то можно просто задиафрагмировать объектив посильнее и тем самым спрятать ошибку фокусировки в глубине резкости.

Рис.9 Инфракрасная метка на шкале фокусировки.
На объективах с постоянным фокусным расстоянием эту метку можно установить самостоятельно, сделав несколько снимков и выбрав положение с максимальной резкостью. Положение этой метки не зависит от дистанции фокусировки и диафрагмы, поэтому её достаточно просто один раз нарисовать и в дальнейшем пользоваться этой поправкой.
Качество просветления

Просветляющее покрытие на объективах – это несколько слоёв тонких плёнок, на границе которых луч света отражается, интерферирует с основным лучом и значительно снижает интенсивность отражения. То есть каждый слой просветления рассчитан на определенную длину волны. Однако, для инфракрасного излучения своего слоя просветления может и не быть. Поэтому некоторые объективы начинают «ловить зайцев», показывать довольно сильные блики и терять микрорезкость. А некоторые – нормально работают в инфракрасном диапазоне.
Неравномерность поля, Hot-Spot

Ещё одна проблема с инфракрасной оптикой – это переотражения на стыках линз в объективе. У особо многолинзовых объективов они иногда складываются настолько неудачно, что в середине полученного изображения появляется яркое пятно засветки – Hot-spot (рис.10). Эффект сильнее сказывается на закрытых диафрагмах, и на коротких фокусных расстояниях. Если вспомнить, что на матрице часто стоит фильтр hot-miror, отражающий инфракрасное излучение обратно в объектив, картинка получается совсем безрадостная.

Рис.10 Hot-spot
Обидно, что чаще всего этот эффект возникает у сверхширокоугольных зум-объективов. Именно тех объективов, на которые получаются самые интересные инфракрасные картинки.
Блики

Большинство объективов не предназначено для инфракрасной съёмки. Поэтому чернение внутренних поверхностей, защита от переотражений и расположение приводов внутри объектива может приводить к сильным бликам при попадании прямого солнечного света внутрь объектива. Приходится применять глубокие бленды, снимать из тени или делать несколько снимков с разным положением бликов и собирать из них панорамы-мозаики.

Рис. 11 Блики
Все перечисленные особенности в больше части зависят от типа объектива и могут незначительно меняться в зависимости от экземпляра или камеры. В Сети есть отзывы по различным объективам, таблицы с описанием пригодности и проблем, которые возникают с объективами. Найти их можно по строке поиска «объективы пригодные для инфракрасной съёмки». Но это не значит, что снимки с другими объективами не получатся совсем. Они могут потребовать какого-то дополнительного внимания – например, прикрыть их от солнца, или чуть по-другому кадрировать. Но на моём опыте не было ни одного объектива, который был бы совсем не пригоден.
Единственный случай полной непригодности к ИК-съёмке – это камеры с объективом, установленным на гиперфокальное расстояние (камеры без автофокуса). У них в ИК – диапазоне зона резкости уезжает вперёд, а поправить фокусировку просто нечем. Но такие камеры уже практически не встречаются в виде отдельных фотоаппаратов. Их можно встретить только в самых недорогих телефонах или в роли фронтальной камеры на планшетах. Не думаю, что съёмка в ИК-диапазоне на фронтальную камеру планшета может иметь хоть малейший смысл.

Практическая часть


Инфракрасная фотография хороша своей необычностью, отличием от обычной фотографии. Тем, что привычные предметы начинают выглядеть иначе. Поэтому есть смысл делать акцент на сюжетах, подчёркивающих это различие.
В ИК-диапазоне есть возможность получить картинку с очень большим контрастом. Она чем-то напоминает по контрасту чёрно-белую фотографию за насыщенно красным светофильтром К- 8Х, но картинка ещё контрастнее.
Сюжеты, интересные в инфракрасном диапазоне

В основном инфракрасная фотография хороша в пейзажах. Как городских, так и природных пейзажах. С обилием неба, листвы и простора.

Рис.12 Градиент на небе в контровом свете
Интересным получается небо. Чистое небо смотрится чёрным, поскольку оно не отражает ИК-излучение. Перистые облака в свою очередь очень хорошо отражают солнечное и рассеянное ИК-излучение, поэтому смотрятся ярко-белыми на фоне чёрного неба. А вот грозовые облака, как содержащие крупные капли дождя и большие объёмы воды, уже поглощают ИК. Поэтому грозовые облака смотрятся чёрными. Картинка получается похожей на небо, снятое сквозь плотный красный светофильтр, но гораздо контрастнее. При этом в ИК-диапазоне видны даже малейшие облачка, практически незаметные в видимом диапазоне.

Рис.13 Вода и небо в ИК
В наших широтах практически не бывает сухого и безоблачного неба. Почти всегда есть небольшая дымка в небе и поэтому небо становится очень светлым в контровом свете. Это мешает съёмке круговых панорам, но смотрится вполне естественно на широкоугольных снимках даже с солнцем в кадре, как это показано на рисунках 11 и 12.
Если же солнце спрятать, например, за деревьями, как это сделано на рисунке 12, то получается избавиться сразу от двух проблем – и от бликов от прямых солнечных лучей, и от градиентов на небе.
Очень необычно выглядит водная гладь в ИК-диапазоне (рисунок 13). Вода поглощает ИК излучение лучше видимого и выглядит в ИК диапазоне гораздо темнее, чем в видимом. Однако при этом отражающая способность чуть лучше, чем в видимом свете. Эти факторы вместе создают ощущение тёмного зеркала.
Сильно преображается в ИК-диапазоне листва деревьев и трава. Они становятся очень светлыми, практически белыми. Что, впрочем, вполне логично – листья на солнце не должны нагреваться, а в ИК поступает самое большое количество энергии Солнца. Стволы деревьев и высохшая растительность поглощает ИК-излучение и выглядит значительно темнее. Этой особенностью ИК-снимков пользуются при аэрофотосъёмке для нужд сельского хозяйства, чтобы выделить участки с погибшей растительностью.
Снимки с обилием листвы становятся похожими на зимние пейзажи. Цветы в ИК могут оказаться как светлыми, так и тёмными.
Насекомые чаще всего оказываются очень темными - поскольку они не могут поддерживать температуру своего тела, им выгодно максимально хорошо поглощать солнечное тепло.

Рис. 14 Цветы в ИК
Городской пейзаж также таит в себе неожиданные повороты – яркость пигментов красок в инфракрасном свете может сильно отличаться от видимого, а тёмные окна зданий оказаться прозрачными (или зеркальные – тёмными, как на фото 13). Всё это в сочетании с контрастным небом и белой листвой делает пейзаж необычным и поэтому интересным.
С портретами в ИК всё непросто. Губы по яркости уравниваются с кожей лица, бледнеют брови и ресницы. Кожа выглядит значительно светлее, чем в видимом диапазоне. Теряется объём. Глаза же выглядят очень тёмными на фоне посветлевшей кожи.
У людей со светлой кожей выступают кровеносные сосуды (рис. 15). Добавляет неопределенности и косметика – никогда не получается заранее угадать, тёмной или светлой в ИК окажется помада, тени или тональный крем. Окрашенные волосы тоже становятся непредсказуемыми, но чаще всего становятся тёмными. Неокрашенные же волосы светлеют.
Недорогие пластиковые темные очки чаще всего становятся прозрачными, а одежда меняет яркость. Всё это делает непредсказуемым результат при съёмке крупных портретов, однако съёмка в рост, да ещё и в сочетании с пейзажем может разнообразить фотосессию. За счёт удаленности фигур лица можно спрятать, а необычный контраст и передача тонов останется.
Если предстоит портретная инфракрасная фотосессия, то желательно перед визажем проверить все применяемые средства на адекватность – будет очень грустно, если пудра, которую визажист нанесет на лоб и щёчки внезапно окажется насыщенно чёрной в ИК-диапазоне. Если есть возможность уговорить модель не краситься перед ИК-фотосессией, то лучше так и поступить. Проще нарисовать при обработке светотеневой рисунок, чем пытаться исправить все ошибки, проявившиеся в ИК. Но если не повезло и макияж в ИК не работает, то можно ограничиться общими планами, а недостающие крупные портреты сделать в видимом свете.

Рис. 15 Портрет в ИК.
Дополнительную необычность инфракрасным снимкам даёт возможность работать с очень длинными выдержками. При съёмке на обычную (не доработанную) камеру с ИК-фильтром на объективе есть возможность устанавливать выдержки в несколько десятков секунд д

gummy-beer.livejournal.com