Люминесцентных ламп – принцип работы, устройство, маркировка, типы и виды, срок службы

Содержание

Люминесцентная лампа — подробно о главном

Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.

В каких областях применяются?

Раньше основное целевое назначение подобных осветительных приборов сводилось к организации систем освещения административных и общественных зданий (больниц, магазинов, школ, офисных помещений), что было связано с довольно массивной конструкцией. Сегодня люминесцентные лампы характеризуются более совершенным устройством (компактные размеры, электронное пускорегулирующее устройство в качестве замены устаревшего магнитного варианта).

Дополнительно к этому упрощает эксплуатацию и стандартный цоколь, который позволяет устанавливать такие источники света вместо аналога с нитью накаливания.

Люминесцентная лампа в современном исполнении широко применяется в быту (освещение частных домов, квартир), рекламе (вывески, щиты). Еще одно направление – фасадная подсветка. Больше прочих разновидностей источников света люминесцентные лампы также подходят для освещения крупных территорий и масштабных объектов.

Строение и принцип работы

Основные конструкционные элементы: трубка или колба (в зависимости от исполнения), один или два цоколя, что также определяется моделью изделия, внутри установлены электроды. Люминесцентная лампа с внутренней стороны покрыта люминофором, без которого было бы невозможно преобразовать затрачиваемую энергию в световое излучение. Внутри колбы/трубки находится инертный газ, ртутные пары.

При подаче электричества между электродами образуется тлеющий разряд. Идеальные условия для такого явления: невысокий уровень давления в колбе наряду с малым значением тока. В результате прохождения электрического тока через газообразную среду возникает ультрафиолетовое излучение.

Для того чтобы люминесцентная лампа обеспечивала видимый глазу свет, используется явление люминесценции. Как раз для этого внутренние стенки трубки или колбы источника света покрываются люминофором.

Принцип действия данного вида лампы описан не полностью, так как для полноценной работы необходимо обеспечить еще и нормальные условия эксплуатации. Речь идет о дополнительной аппаратуре, которая снижает значение тока до нужного уровня, чтобы осветительный прибор не вышел из строя. Раньше для этой цели применялись электромагнитные пускорегулирующие элементы (их еще называют балластом), сегодня более популярны электронные аналоги.

Если подключать люминесцентные лампы при помощи второго из вышеназванных вариантов балласта, в результате можно добиться значительного снижения шумового эффекта (гула) во время работы, а еще источники света в таких условиях перестают мерцать.

Какие бывают разновидности ламп

Существует несколько исполнений, которые отличаются по спектру излучения. Выделяют всего три вида:

  • стандартные;
  • специальные;
  • лампы люминесцентные с улучшенной светопередачей.

Излучение первого варианта характеризуется различными оттенками белого цвета. Это обусловлено тем, что конструкцией предусмотрено однослойное покрытие люминофора. В результате область применения таких источников света несколько сужается. Их обычно используют при организации осветительных систем производственных, административных и общественных объектов (офисы, магазины и прочее).

Различные формы исполнения

Исполнения специального типа характеризуются разным спектром излучения. Их главная задача – обеспечение максимально естественных условий для пребывания в различных помещениях. Например, существуют люминесцентные лампы дневного света, а также варианты конструкций, предназначенные для установки в аквариумах специально для растений или животных.

Существуют еще исполнения, которые используют в помещениях, где разводят птиц. Дополнительно к тому встречаются источники света декоративного целевого назначения. Их главное отличие от прочих вариантов – разноцветное свечение.

Лампы с улучшенной светопередачей имеют одно главное преимущество перед остальными видами, о нем довольно красноречиво говорит название таких источников света – более качественная передача цветов. Это достигается путем нанесения многослойного покрытия (3-5 слоев люминофора) на внутреннюю поверхность колбы/трубки.

Классификация по виду цоколя

Классификация данного вида осветительного прибора осуществляется еще и на основании отличий в конструкциях:

  1. Линейные исполнения.
  2. Компактные люминесцентные лампы.

Первый вариант называется еще трубчатым. А, кроме того, эта разновидность бывает прямой и U-образной конструкции. Линейные источники света подразделяются на группы еще и на основании отличий в размерах (длина и диаметр). Причем наблюдается прямая зависимость между габаритами изделия и его мощностью: чем длиннее лампа, тем выше значение данного параметра. Диаметр колбы также отличается: Т4, Т5, Т8, Т10, Т12. Из обозначения можно узнать размер изделия в дюймах. Тип цоколя для таких источников света – G13.

Подразделяются на исполнения по конструкции колбы

Люминесцентные лампы компактного типа подразделяются на исполнения по конструкции колбы (она может быть изогнута в разных вариантах) и цоколю: E14, E27, E40, а также 2D, G23, G27, G24, G53 и несколько подвидов (G24Q1, G24Q2, G24Q3). Первые три из вышеназванных конструктивных элементов дают возможность устанавливать осветительный прибор вместо исполнений с нитью накаливания.

Обзор плюсов и минусов

Если более подробно изучить характеристики основных вариантов источников света (галогенные, лампы накаливания, люминесцентные и светодиодные аналоги), то можно выделить их сильные и слабые стороны. Например, по интенсивности нагрева из всех существующих конструкций выигрывают лишь светодиодные исполнения, тогда как люминесцентные лампы все же греются, хоть и в несколько меньшей мере, чем источники света с нитью накаливания.

По степени хрупкости газоразрядные приборы уступают варианту на базе диодов. Зато уровень мощности у люминесцентных исполнений и светодиодных источников света находится почти на одном уровне. Для примера, оба исполнения обеспечивают примерно одинаковую интенсивность освещения (700-800 лм) при мощности с разницей всего в 5 Вт. Больше всех потребляют энергию лампы накаливания.

Еще один параметр для сравнения – срок функционирования. Безусловно, лидируют светодиодные исполнения (в среднем до 50 000 часов работы). Однако из всех остальных аналогов люминесцентные лампы выделяются довольно продолжительным периодом эксплуатации (от 4 000 до 20 000 часов), на что оказывают влияние условия работы.

Каким производителям отдать предпочтение?

Одни из наиболее известных марок на сегодняшний день: Philips, Osram, General Electric. Ассортимент осветительной техники очень широк и порой довольно трудно разобраться в том, какой производитель надежнее и ответственнее подходит к работе. Ведь стоимость люминесцентных источников света довольно большая, поэтому важно сразу сделать правильный выбор и купить лампу высокого качества.

Условные обозначения от производителей

Особого доверия заслуживают изделия первых двух из вышеназванных марок, так как они занимаются производством разнотипных источников света, включая и светильники с люминесцентными лампами, и по каждому направлению отмечается высокое качество продукции. Кроме того, все три завода-изготовителя на рынке уже довольно давно.

Эксплуатация

Значительные перепады напряжения в сети оказывают негативное воздействие на такие источники света. Особенно нежелательна перегрузка в большую сторону (выше 240 В). Рекомендуется также включать лампу лишь после ее полного остывания. Допустимые значения температуры окружающей среды для эксплуатации источника света лежат в пределах диапазона: от -15 до +40 градусов.

Маркировка российской продукции

Запрещено использовать люминесцентные лампы наряду со стандартными светорегуляторами (диммерами).

Еще одно ограничение в эксплуатации заключается в том, что данный вид источника света несовместим с электронными коммутирующими устройствами типа датчика движения, освещенности или таймера.

Степень безопасности, утилизация

В полностью исправном состоянии такие лампочки не представляют угрозы жизни и здоровью человека или животного. Но внутри колбы содержатся пары ртути, хоть и в небольших количествах. А, кроме того, встречаются более безопасные исполнения, содержащие амальгамы (ртуть растворяется в металлах), но данный вариант встречается реже.

Сегодня существуют специализированные организации, которые официально занимаются утилизацией токсичных отходов. Поэтому в случае нарушения целостности корпуса лампы в первую очередь необходимо покинуть помещение, затем вызвать соответствующее подразделение.

Таким образом, люминесцентные лампы во многом превосходят более простые аналоги (например, с нитью накаливания). В чем-то данный вид изделий уступает светодиодным источникам освещения. Но важно подбирать лампу на основании соответствия ее основных параметров условиям работы, а не подбирать наиболее популярный вариант.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

proosveschenie.ru

Люминесцентные лампы — это… Что такое Люминесцентные лампы?

Различные виды люминесцентных ламп

Люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Область применения

Коридор, освещенный люминесцентными лампами

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000[1]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.

Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненой газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Особенности подключения

С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).

В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Электромагнитный балласт
Произведёный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.

Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

Электронный балласт

электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

подключение 58-ваттных ламп классическим способом в рекламном щите

стартер

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.

В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе что и вызывает зажигание лампы, это явление основано на самоиндукции. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного. В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно выского напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Типичный спектр люминесцентной лампы.

Многие люди считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.

Также существуют люминисцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей[2].

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Колбные лампы

Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W

Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).
Применение

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

Компактные лампы

Универсальная лампа Osram для всех типов цоколей G24

Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

G23

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

G24

Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы. Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.

Источники

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Принцип работы люминесцентной лампы

Категория: Источники освещения

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

simplelight.info

Люминесцентные лампы — это какие? Типы люминесцентных ламп

В январе нынешнего года компания General Electric (GE) объявила о прекращении выпуска в США компактных люминесцентных ламп к концу 2016-го. Новая светодиодная технология смела со своего пути успевшую стать привычной люминесцентную, как когда-то она сама свергла «правление» ламп накаливания, изобретённых основателем GE Томасом Эдисоном.

Так что же собой представляет люминесцентная лампа?

Люминесцентные лампы – это ртутные газоразрядные осветительные приборы низкого давления, в которых для излучения видимого света используется флюоресценция. Электрический ток в газе возбуждает пары ртути, которые начинают излучать свет в ультрафиолетовом диапазоне, что вызывает свечение внутреннего фосфорного покрытия.

Различают следующие типы люминесцентных ламп: с холодным катодом, горячего запуска и электролюминесцентные.

Горячий запуск

Наиболее распространёнными являются лампы горячего запуска. Источник света такого типа состоит из стеклянной колбы, наполненной инертным газом (как правило, аргоном) низкого давления. С каждой стороны колбы расположен электрод из вольфрама. Балласт регулирует мощность электродов. В старых лампах для их запуска использовался стартёр. В современных используются электронные пускорегулирующие аппараты.

Они в чём-то напоминают лампы накаливания. Начальное свечение производится разогретой спиралью из вольфрама, но затем электрический разряд в смеси паров ртути и инертных газов вызывает ультрафиолетовое излучение. Особый состав, который покрывает стенки колбы, поглощает ультрафиолет и излучает видимый свет. Называется он люминофором и является смесью соединений на основе фосфора. Благодаря ему световой поток таких ламп превосходит мощность излучения ламп накаливания в несколько раз. Нить накаливания продолжает светиться и по окончании розжига, но только для поддержания разряда.

Для создания электрического разряда необходимо высокое напряжение. Чем холоднее колба, тем выше этот параметр. Но, поскольку высокие показатели опасны, были разработаны средства «разогрева» колбы для снижения напряжения.

Один из методов разогрева заключается в использовании стартера. При подаче напряжения зажигается разрядная лампа, нагревающая биметаллические контакты. Контакты замыкаются, шунтируют её, и электрический ток нагревает вольфрамовые электроды, которые, в свою очередь, нагревают и ионизируют инертный газ. Остыв, биметаллические контакты размыкаются, подавая всё напряжение, а также энергию дросселя на электроды. Если разряда не произойдёт, то процесс повторится снова. После зажигания лампы стартер отключится, так как его сопротивление намного превышает сопротивление плазмы.

В современных системах быстрого старта электроды постоянно подогреваются, а дуга инициируется заземлённым рефлектором или стартовой полосой.

Люминесцентные лампы с холодным катодом

Холоднокатодные люминесцентные лампы – это приборы, температура катода которых не превышает 150 °C по сравнению с 900 °C ламп горячего запуска. Рабочее напряжение – 600-900 В, пусковое — 900-1600 В. Свет излучается ионизированным газом, для создания которого необходимо высокое напряжение. Разряд возникает при пробое пространства между электродами. Газ в лампе в нормальных условиях является диэлектриком, но в электрическом поле ионы и электроны приходят в движение. При подаче высокого напряжения электрическое поле настолько разгоняет заряженные частицы, что они, сталкиваясь с молекулами газа, выбивают из них электроны. Вновь созданные ионы и электроны также задействуются в ионизации: процесс становится лавинообразным.

В лампах горячего пуска разряд является дуговым, а источниках света холодного разряда — тлеющим. Постепенно ртуть переходит из жидкого состояния в газообразное. Электроны, сталкиваясь с атомами ртути, инициируют выделение энергии и интенсивное излучение в ультрафиолетовой области. Свет излучается люминофорным покрытием внутри колбы. Ртуть излучает фотоны, которые возбуждают атомы фосфора, увеличивая энергию его электронов. При возвращении электронов в начальное состояние атомы фосфора излучают световую энергию.

Электролюминесцентные лампы

Излучение света в электролюминесцентных лампах происходит благодаря прохождению электрического тока прямо через фосфоросодержащие материалы с эффектом нетермического преобразования электроэнергии в световую. Данный эффект также используется в светодиодах (LED) и органических светодиодах (OLED). Электролюминесцентные лампы отличаются от светодиодов тем, что в последних свет излучается в p-n переходе – месте соединения двух полупроводников, а у первых свет излучается всем слоем-активатором.

Высоковольтный переменный электрический ток проходит через тонкий слой фосфора или полупроводника, что имеет следствием излучение им света. Два слоя твёрдого вещества, один из которых прозрачен, действуют подобно электродам, а порошкообразный фосфор или проводник между ними светится, когда электроны проходят сквозь него.

Аргументы за

  • Такие осветительные приборы могут служить в десятки раз дольше ламп накаливания при условии стабильного питания без значительных колебаний напряжения и ограничения количества включений. При включении на электродах выгорает и осыпается специальный состав, предохраняющий вольфрамовую нить от перегрева и обеспечивающий стабильность разряда, что уменьшает срок службы источника света. Концы колбы темнеют, и лампа начинает мерцать.
  • Светоотдача люминесцентных ламп на единицу потребляемой мощности примерно в 3-4 раза больше, чем у ламп накаливания.
  • Они разнообразны по цвету, их спектр излучения ближе к солнечному.
  • Рассеянное свечение со всей поверхности колбы, а не вольфрамовой нити.

Минусы

  • Относительно большая стоимость.
  • Люминесцентные лампы – это потенциальный источник опасности, так как каждая колба содержит до 5 мг ртути, которая очень токсична и может нанести вред здоровью и окружающей среде.
  • Газоразрядные лампы чувствительны к пониженным и повышенным температурам. Могут не работать при температуре воздуха ниже -20 °C и выше +50 °C.
  • Чувствительны к влажности.
  • Задержка включения, так как требуется время для разогрева лампы.
  • Непривычный для зрения световой спектр, следствием чего является искажение цветовосприятия. Мерцание с частотой вдвое выше частоты электросети.

Критерии выбора

1. Форма и размеры. Стеклянные колбы и патроны сильно отличаются по этим параметрам. Обычной формой люминесцентных светильников является прямая трубка. Диаметр ее кратен одной восьмой дюйма. Так, размер лампы диаметром в 1 дюйм – T8. Размер варьируется от T2 до T17. Компактные люминесцентные лампы, как правило, имеют форму U-образную и спиралевидную. Конечно, внешний вид не оказывает влияния на работу лампы, но спиральные модели стоят немного дороже, так как их производство сложнее.

2. Старт. Возможен со стартером, электронным или с электромагнитным балластом.

3. Мощность. Колеблется от 3 до 85 Вт. Световой поток ламп накаливания в 3-4 раза ниже, чем у люминесцентных, поэтому выбирать необходимую мощность следует, исходя из требуемой яркости. Люминесцентные лампы, мощность которых равна 25-30 Вт, заменят обычнгые 100-ваттные электроприборы. Для замены 75-ваттной достаточно энергосберегающего источника света в 9 Вт. А люминесцентные лампы, мощность которых составляет 15 Вт, смогут заменить лампу накаливания мощностью 60 Вт.

Таблица отношения светового потока и потребляемой мощности ламп разных типов поможет разобраться во всех нюансах.

Световой поток

Светодиодная лампа

Лампа накаливания

Люминесцентная лампа

люмен

ватт

ватт

ватт

450

4-5

40

9-13

800

6-8

60

13-15

1,100

9-13

75

18-25

1,600

16-20

100

25-30

2,600

25-28

150

30-55

4. Цоколь. Распространены следующие типы:

  • байонет B;
  • винтовой (эдисоновский) цоколь E;
  • односторонние двухконтактные G.

Число после буквы обозначает либо диаметр цоколя типа B или E, либо расстояние между контактами в мм в цоколях типа G.

В основном в люстрах и бра используются компактные люминесцентные лампы с цоколем Е27 диаметром 27 мм и миньоны Е14 диаметром 14 мм.

5. Цветность света. Соответствует температуре чёрного тела, излучающего с определённой хроматичностью. При повышении температуры синяя часть спектра увеличивается, а красная уменьшается. Измеряется в кельвинах. Субъективное ощущение человека, смотрящего на свет определённой цветности, называется цветовым ощущением. Основные цветности света и соответствующее им цветоощущение:

  • 2700 К – сверхтёплый белый;
  • 3000 К – тёплый белый свет;
  • 3500 K – белый свет;
  • 4000 К – холодный белый свет;
  • 5000 К и больше – дневной свет.

6. Цветопередача. Показывает, насколько естественно выглядят окружающие предметы в свете лампы. Измеряется коэффициентом цветопередачи Ra. Источники света с равной цветностью могут иметь разную цветопередачу по причине разного спектра излучаемого света. Для солнечного света коэффициент равен 100.

Маркировка

Производители светильников отмечают изделия по-разному.

В США люминесцентные лампы обычно маркируются по шаблону FxxTy, где F обозначает тип (англ. fluorescent, люминесцентный), первое число xx – либо мощность в ваттах, либо длину в дюймах, T –форму (англ. tubular, трубчатый) и последнее число y – диаметр в 1/8 дюйма (3.175 мм).

Далее следует буквенное обозначение цветности:

  • WW – Warm White, тёплый белый.
  • CW – Cool White, холодный белый.
  • N – Neutral, нейтральный.
  • D – Daylight, дневной свет.
  • WWX – Deluxe Warm White, тёплый белый с высокой цветопередачей.
  • CWX – Deluxe Cool White, холодный белый с высокой цветопередачей.
  • BLB – Blacklight, ультрафиолет.

В самом конце маркировки обозначены особенности устройства:

  • RS – Rapid Start, быстрый старт.
  • IS – Instant Start, мгновенный старт.
  • HO – High Output, высокая эффективность.

Характеристики люминесцентных ламп

Декоративная лампа General Electric Candle T2 мощностью 9 Вт выпускается с цоколями E14 и E27, номинальным световым потоком 405 люмен, тёплой белой и дневной температурой цвета (2700 К и 6500 К), индексом цветопередачи 82 Ra. Применяется в люстрах и других светильниках с видимой колбой в помещениях, коридорах и холлах торговых залов, гостиниц, ресторанов, жилищ.

Продукция Philips

Master TL-D 90 De Luxe – лампа люминесцентная G13, T8, с индексом цветопередачи 93 Ra8, цветовой температурой 65000 К – холодный дневной свет. Выпускается в трёх модификациях:

  • 18W/965 1SL – лампы люминесцентные 18 Вт с номинальным световым потоком 1150 люмен и номинальной световой отдачей 63,9 Лм/Вт;
  • 58W/965 1SL – 58-ваттные источники света с номинальным световым потоком 4550 люмен и номинальной световой отдачей 77,8 Лм/Вт;
  • 36W/965 1SL – лампы люминесцентные 36 Вт с номинальным световым потоком 2800 люмен и номинальной световой отдачей 77,8 Лм/Вт.

Высокий индекс цветопередачи позволяет увидеть богатые, сочные и натуральные цвета, что делает лампу незаменимой в больницах, типографиях, салонах красоты, музеях, кабинетах стоматологии и магазинах. Лампы отличаются люминесцентным покрытием высокого качества с применением трёхполосного фосфора и почти полным отсутствием снижения уровня освещения.

Master TL-D Xtreme 36W/840 1SL – лампа люминесцентная 36-ваттной мощности, двухштыревая, холодного белого цвета с индексом цветопередачи 85 Ra8, номинальным световым потоком 3250 люмен, номинальной светоотдачей 90 Лм/Вт. Её особенностью является повышенный срок службы, достигающий 66 000 часов, что важно для мест, где высока стоимость замены ламп по причине высоты помещения, необходимости прерывания работы, или там, где свет горит постоянно – в тоннелях, буровых установках, в условиях непрерывного производства.

Master PL-C 18W/830/2P 1CT – двухконтактная люминесцентная лампа 18-ваттной мощности с G24d-2-цоколем, тёплого белого цвета 3000 К, с индексом цветопередачи 82 Ra8, номинальным световым потоком 1200 люмен, номинальной светоотдачей 67 Лм/Вт. Предназначена для общего верхнего освещения в заведениях досуга, розничной торговли и офисных зданиях. Лампа люминесцентная Philips Master Pl-C использует оригинальную технология мостового подключения, гарантирующую оптимальную работу, лучшее освещение и высокую эффективнось. Двухконтактная модель имеет извлекаемый цоколь и используется с ЭМПРА.

Энергосберегающие источники света от Osram

Osram выпускает компактные лампы люминесцентные 18 Вт DSST FCY 18 W/825 E27 тёплого цвета 2500 K, с индексом цветопередачи 80, световым потоком 1050 люмен и патроном E27. Прибор способен выдержать очень большое число пусковых циклов – до 1 млн.

Osram Lumilux T9 C – 29-мм кольцеобразный светильник с патроном G10Q, номинальной мощностью 22 Вт, цветовой температурой 2700 К, индексом цветопередачи 80-89, номинальным световым потоком 1350 люмен и номинальной светоотдачей 61 Лм/Вт. Предназначена для общественных зданий, ресторанов, производств, магазинов, супермаркетов, гостиниц. Его отличают экономичность, хорошее качество света, превосходный световой поток, равномерное освещение без теней. Допускается регулировка яркости.

L 36 W/840-1 – 1-метровые линейные лампы, люминесцентные, 36 Вт, с цоколем G13 base, цветовой температурой 4000 К, номинальным световым потоком 3100 люмен, индексом цветопередачи 80 Ra, номинальной светоотдачей 86 Лм/Вт. Предназначены для освещения общественного транспорта.

Endura 70 W/830 – безэлектродный источник света Osram мощностью 70 Вт, номинальным световым потоком 6200 люмен тёплого белого цвета температурой 3000 К, индексом цветопередачи 80-90 Ra и светоотдачей 80 Лм/Вт. Применяется для освещения туннелей, производств, улиц, спортивных площадок. Отличается высоким сроком службы (до 100 000 ч.), экономичностью, высоким световым потоком, мгновенным запуском.

Безэлектродные люминесцентные лампы – это устройства, у которых разряд происходит в высокочастотном электромагнитном поле, создаваемом магнитопроводами на колбе. Магнитопроводы играют роль первичной обмотки трансформатора, а газовый разряд – вторичной. Характеристики люминесцентных ламп этого типа сводятся к следющему: приборы отличаются стабильностью, они долго служат благодаря отсутствию разрушающихся электродов.

DSST SENSOR CL A 15 W/827 E27 – люминесцентная лампа мощностью 15 Вт, номинальным световым потоком 870 люмен, тёплым белым светом температурой 2700 К. Отличается повышенной эффективностью благодаря автоматическому отключению в светлое время суток. Предназначена только для наружного применения.

fb.ru

Принцип работы люминесцентных ламп

Скорее всего, нам не придется отмечать 200-летний юбилей обычной бытовой лампы накаливания. Государственные программы многих стран Европы уже ставят жесткие ограничения по использованию этих ламп, а сегодня купить обычную лампу накаливания для применения в быту едва ли удастся, если ее мощность превышает 25 Вт. Вполне возможно, что эта тенденция доберется и до нас. Как альтернатива, в странах Евросоюза уже более 10 лет используются люминесцентные осветительные приборы, которые стоят немного дороже, но и ресурс у них гораздо выше. С их устройством и принципом работы, видами и применением более детально познакомимся сегодня.

Содержание:

  1. Что такое лампа люминесцентная
  2. Длина излучаемой  волны
  3. Мощность и характеристики люминесцентной лампы
  4. Светильники для люминесцентных ламп

Что такое лампа люминесцентная

Самая первая промышленная люминисцентнаялампа была представлена публике на всемирной промышленной выставке в Нью-Йорке в 39-м году, но распространялась новинка довольно медленно. В силу привычки, да и по причинам высокой на то время стоимости, люминесцентные лампы практически не использовались в быту, срок их службы был не ахти какой, да и размеры не могли конкурировать с лампой накаливания. Характеристики и продолжительность службы люминесцентных ламп постоянно улучшались, лампа становилась компактнее и доступнее, а уже сегодня свойства и принцип работы люминесцентных ламп позволяют говорить об их явном преимуществе как в плане надежности, так и с точки зрения эффективности излучения светового потока.

В принципе, люминесцентная лампа — это разновидность газоразрядных ламп. Для возбуждения ртутных паров в среде аргона и неона используется электрический ток определенных характеристик. В результате прохождения тока и возбуждения ртутных паров образуется холодное плазменное свечение. Этот разряд способен излучать только коротковолновой ультрафиолетовый свет. Как и любая газоразрядная лампа, люминесцентный источник света имеет катод, в роли которого выступает вольфрамовая спираль со сложным многокомпонентным покрытием, в состав которого входят стронций, барий и двуокись кальция. Когда мы подаем электрический ток на оба конца вольфрамовой спирали, она может нагреваться до температуры, необходимой для излучения электронов. Эти электроны ионизируют газовый коктейль, который находится в колбе и вызывает плазмообразование.

Длина излучаемой  волны

Вот только излучаемый свет с длиной волны, не видимой человеческому глазу, мог так бы и статься предметом изучения для лабораторий, если бы не поверхность колбы, которая имеет особенное внутреннее покрытие. Это покрытие и сделало лампу пригодной к использованию, как источника достаточного количества света. Человеческий глаз способен воспринимать световую волну длиной от 380 нм до 750 нм и без этого покрытия свет плазмы был бы недоступен глазу. Люминофор — флуоресцентное покрытие колбы, преобразует длину волны свечения в диапазоне от 430 до 540 нм и благодаря ему свет становится видимым.

Длина волны, которая излучается лампой, может регулироваться составом люминофора, в который входит масса химических элементов. Благодаря разной процентной доле компонентов удалось достичь и разной длине волны, которая соответствует всем цветам, которые мы различаем. Следовательно, и цвет свечения можно регулировать составом покрытия и составом стекла, из которого выполнена колба лампы. Кроме того, некоторые из элементов предотвращают попадание вредных ультрафиолетовых волн на сетчатку глаза.

Точная регулировка длина волны, которая характерна для дорогих люминесцентных ламп, позволяет передавать цвета практически без искажений, в том диапазоне, к которому глаз привык, а мы сравниваем цветопередачу, как правило с солнечным светом и цвета, воспринимаемые глазом при воздействии этого света, считают базовыми. Таким образом удалось получить довольно широкий диапазон цветовых температур свечения люминесцентных ламп в пределах от 2700К до 6500К и каждая из этих ламп применяется в зависимости от цветовой температуры и интенсивности света.

Мощность и характеристики люминесцентной лампы

Когда мы идем в магазин, чтобы купить обычную лампу, нам достаточно знать только ее мощность, да еще маркировку цоколя на всякий случай, поскольку характеристики ламп накаливания особенным разнообразием не отличаются. С люминесцентной лампой такие шутки не проходят. Здесь необходимо знать не просто мощность, которую эта лампа потребляет, но характеристики цвета, обусловленные составом покрытия колбы. К тому же, если мы поставим в один светильник две лампы с разными характеристиками по цвету, результат может быть самый непредсказуемый, а цвет свечения может получиться не самый приятный для восприятия. Поэтому необходимо быть в курсе маркировки, которую производители наносят на колбу ламп и знать, что она обозначает.

Конструктивно лампа может быть выполнена, как угодно, но самый основной показатель — размещение пуско-регулирующей аппаратуры (ПРА), к которой мы еще вернемся. ПРА может быть установлено как в самой лампе (энергосберегающие лампы под стандартный патрон), так и работать в паре с вынесенным ПРА. Трубчатые линейные люминесцентные лампы могут быть выполнены только для подключению к внешней ПРА, а лампы сложных форм, экономки, нестандартные фасонные светильники, могут иметь пусковую аппаратуру в цоколе. Основные размеры колб трубчатых ламп следующие:

  • Т12 соответствует трубе диаметром 38мм;
  • Т8 — 26 мм;
  • Т5 — 16мм.

Последние, самые компактные лампы, разработаны для использования только с электронными пускорегулирующими устройствами. Мощность лампы всегда указана на колбе, также на ней указана цветовая температура в виде индекса и часто в виде расшифровки, к примеру, холодный белый, или теплый желтый. Поэтому кроме мощности лампы необходимо учитывать и эти параметры тоже.

Светильники для люминесцентных ламп

Для работы обычной люминесцентной лампы необходима специальная пускорегулирующая аппаратура, о которой мы говорили. В зависимости от схемы включения лампы, применяют или электронные ПРА, или электромагнитные, которые включают в себя:

  1.  Дроссель для люминесцентной лампы.
  2.  Стартер для люминесцентной лампы.
  3. Гнезда или патроны для фиксации, в зависимости от конструкции лампы.

Схемы включения ламп с электромагнитной ПРА приведены на рисунке и это самая простая и старая схема включения. Сегодня же в энергосберегающих лампах применяются электронные балласты, которые фактически заменяют устаревшую и громоздкую ПРА. К тому же ПРА электромагнитные сильно шумят и могут терять большое количество энергии в зависимости от качества комплектующих, поэтому уже сегодня их стараются заменять на электронную ПРА. В связи с тем, что в колбе такой лампы находятся инертные газы, после выхода из строя люминисцентная лампа подлежит обязательной утилизации.

Таким образом, вкратце мы знаем, что такое люминесцентная лампа и каковы основные ее характеристики. Поэтому применять ее мы станем обдуманно и эффективно.

Читайте также Какие светильники лучше для натяжного потолка

nashprorab.com

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

proprovoda.ru

Люминесцентные лампы — это что такое? Принцип работы :: SYL.ru

Люминесцентные лампы – это газоразрядные источники света. Их световой поток формируется за счет свечения люминофоров, на которые воздействует ультрафиолетовое излучение разряда. Его видимое свечение обычно не превышает 1-2%. Люминесцентные лампы (ЛЛ) получили широкое применение в освещении помещений разного типа. Их световая отдача в разы больше, чем у привычных ламп накаливания. При обеспечении ряда условий (качественное электропитание, использование балласта, соблюдение ограничений по числу коммутаций), такие лампы могут в десятки раз дольше служить, нежели лампы накаливания. Сегодня мы с вами познакомимся с историей люминесцентной лампы и принципом ее работы.

Область использования

Линейные люминесцентные лампы давно зарекомендовали себя как наиболее удобный и экономичный способ освещения общественных помещений: офисов, учебных заведений, магазинов, больниц, предприятий и так далее. С появлением современных технологий, позволяющих создать компактную ЛЛ под обычные патроны марки Е14 или Е27, они быстро завоевали популярность в быту и стали вытеснять лампы накаливания. Чаще всего в обиходе используют экономные люминесцентные лампы на 18 или больше ватт.

Благодаря использованию электронных балластов вместо привычных электромагнитных удается значительно улучшить эксплуатационные характеристики ламп – избавиться от гула и мерцания, повысить экономичность и компактность.

Главными преимуществами люминесцентных ламп по сравнению с привычными всем лампами накаливания являются высокая светоотдача (превышает в несколько раз), и более длительный срок работы (превышает в несколько десятков раз). Их применение особенно актуально в случаях, когда освещение не выключается на протяжении длительного времени, так как именно включение является самым сложным режимом и от количества включений зависит срок работы. Таким образом, несмотря на более высокую стоимость, люминесцентные лампы позволяют значительно сэкономить.

История

Первое подобие светильника с люминесцентной лампой было разработано в далеком 1856 году Генрихом Гайсслером, который добился свечения от стеклянной трубки, заполненной газом и возбужденной с помощью соленоида. В 1893 году на выставке в Чикаго Томас Эдисон впервые продемонстрировал публике люминесцентное свечение. Через год, М.Ф. Моором была создана лампа, наполненная азотом и углекислым газом и испускающая розово-белый свет. Успех этого изобретения был весьма ограниченным. В 1901-м Питер Хьюитт создал ртутную лампу, испускающую сине-зеленый свет. Именно из-за цвета она была непригодна для практического применения. Тем не менее, изобретение Хьитта было близко к современным лампам и имело намного больший потенциал, чем лампы предшественников. В 1926-м Эдмунд Джермер вместе со своими сотрудниками предложил увеличить давление внутри колбы и покрыть ее флуоресцентным порошком, преобразующим ультрафиолетовое цветное излучение в однородное белое. Вскоре компания General Electric купила у изобретателя патент, и под его руководством, к 1938 году вывела ЛЛ на широкий рынок. Таким образом, именно с Джермером часто ассоциируют начало истории люминесцентных ламп.

Принцип работы

Когда люминесцентная лампа подключается к электросети, между двумя электродами, расположенными в ее противоположных концах, возникает электрический разряд. Благодаря прохождению тока через пары ртути, которыми заполнена внутренняя полость лампы, возникает УФ-излучение, которое незаметно для человеческого глаза. С помощью люминофора, нанесенного на стенки, это излучение превращается в видимый свет. Таким образом, люминофор призван поглощать УФ излучение и излучать видимый свет. Меняя его состав можно варьировать оттенок свечения лампы.

Преимущества и недостатки люминесцентных ламп

ЛЛ имеют такие достоинства:

  1. Высокие показатели светоотдачи и КПД.
  2. Разнообразие оттенков свечения.
  3. Рассеянный свет.
  4. Длительный срок службы.

Недостатки люминесцентных ламп:

  1. Химическая опасность. Причина в токсичных парах ртути.
  2. Неравномерный, неприятный для некоторых свет, вызывающих искажение цвета освещенных поверхностей. Лампы, которые лишены этой проблемы, имеют меньшую светоотдачу.
  3. Люминофор со временем «срабатывается», в результате меняется спектр, уменьшается светоотдача и падает КПД.
  4. В случае удвоенной частоты питающей сети, может возникнуть мерцание некоторых ламп.
  5. Наличие пускорегулирующих аппаратов.
  6. Низкий коэффициент мощности.

Подключение

С электротехнической точки зрения, люминесцентная лампа – это устройство с отрицательным сопротивлением. Это значит, что чем более сильный ток через нее проходит, тем больше падает сопротивление. В этой связи при непосредственном подключении лампы к электросети она быстро выходит из строя из-за чересчур сильного тока. Эта проблема решается путем подключения лампы через так называемый балласт.

В простейшем варианте в качестве балласта выступает простой резистор. Его недостаток состоит в потере значительного количества энергии. Избежать потерь можно путем использования в качестве балласта конденсатора или катушки индуктивности, создающих реактивное сопротивление. Наибольшей популярностью в настоящее время пользуются электромагнитные и электронные балласты.

Электромагнитный балласт

Балласты люминесцентных ламп – это пускорегулирующие устройства. Устройства данного типа представляют собой дроссель (индуктивное сопротивление) подключаемый последовательно с лампой. Чтобы запустить лампу с таким балластом, потребуется также стартер. Преимуществом такого подключения является его простота и дешевизна. Главный недостаток – мерцание ламп при удвоенной частоте сетевого напряжения. Из-за этого у людей, находящихся в помещении, повышается утомляемость глаз, что может негативно сказаться на их здоровье. Кроме того, лампы с электромагнитным балластом относительно долго запускаются (от одной до нескольких секунд, в зависимости от их срока службы), издают гул, и потребляют больше энергии, чем аналоги с электронным балластом.

Кроме вышеперечисленных недостатков, стоит также отметить эффект стробирования, возникающий из-за мерцания ламп. Его суть состоит в том, что при наблюдении за вращающимся или колеблющимся предметом, частота движения которого равна частоте мерцания люминесцентной лампы, этот предмет может казаться неподвижным. Подобный эффект может возникнуть, к примеру, при наблюдении за шпинделем токарного или сверлильного станка, мешалкой кухонного миксера, циркуляционной пилой и прочими движущимися приборами. Поэтому, во избежание травмирования, на производстве использование люминесцентных ламп для подсвечивания движущихся механизмов разрешается лишь при условии дополнительной установки ламп накаливания.

Электронный балласт

Этот тип балласта представлен электронной схемой, преобразующей сетевое напряжение в высокочастотный переменный ток, питающий лампу. Достоинством этого балласта является отсутствие мерцания и гула. Кроме того, по сравнению с электромагнитным аналогом, он имеет меньшую массу и размеры.

При использовании такого типа подключения можно добиться так называемого холодного старта – мгновенного запуск лампы. Однако из-за того, что этот режим неблагоприятно сказывается на сроке службы ламп, применяется горячий старт, предполагающий предварительный подогрев электродов. Стоит признать, что на подогрев уходит не более одной секунды, поэтому эта особенность подключения не несет каких-либо неудобств.

Запуск электромагнитного балласта

В классической схеме пуска лампы с электромагнитным балластом используется стартер (пускатель), который представляет собой миниатюрную газоразрядную неоновую лампочку с парой металлических электродов. Один из электродов жесткий и неподвижный, а другой – биметаллический, изгибающийся. Следовательно, в исходном состоянии электроды разомкнуты.

Стартер активируется параллельно с лампой. В момент включения, к электродам стартера и лампы поступает полное напряжение. Это связано с тем, что ток через лампу не идет, а падение напряжения на пускателе равно нулю.

Так как электроды лампы холодные, напряжения сети не хватает для ее зажигания. Благодаря возникновению разряда в пускателе через него и лампу проходит ток, которого достаточно для электродов пускателя, но недостаточно для разогрева лампы. В результате ток в общей цепи растет и разогревает электроды лампы. Когда это происходит, электроды пускателя охлаждаются и размыкаются. Благодаря мгновенному разрыву цепи возникает пик напряжения на дросселе, который и стимулирует зажигание лампы. Электроды тем временем уже достаточно разогреты.

Во время горения напряжение в лампе составляет примерно половину от сетевого, так же, как и в пускателе. Причина в том, что проходя через дроссель, оно падает, что позволяет устранить повторное срабатывание пускателя.

При зажигании, пускатель может срабатывать несколько раз. Это связано с отклонениями его характеристик от характеристик лампы. В некоторых случаях стартер начинает работать циклически. Если это происходит, то лампа постоянно гаснет и снова вспыхивает. При погасании можно созерцать свечение накаленных током катодов.

Запуск электронного балласта

При использовании электронного балласта, как правило, нет необходимости в отдельном специальном стартере, так как этот балласт способен самостоятельно сформировать нужные последовательности напряжений.

Запуск люминесцентной лампы электронным балластом может производиться по разным технологиям. В наиболее типичной из них пускорегулирующее устройство подогревает катоды лампы и подает на них напряжение, которого достаточно для зажигания. Как правило, это переменное и высокочастотное напряжение. Такое подключение позволяет устранить мерцание ламп, которое является весомым недостатком электромагнитных балластов.

В зависимости от конструктивных особенностей и временных параметров последовательности пуска лампы, такие пускорегулирующие устройства могут обеспечивать как мгновенное включение света, так и плавное, с постепенным нарастанием яркости.

Часто используются комбинированные методы пуска, когда лампа активируется не только за счет подогрева катодов, но и благодаря тому, что цепь, подпитывающая ее, выступает в качестве колебательного контура. Характеристики колебательного контура подбираются таким образом, чтобы в случае отсутствия разряда в лампе, в нем возникало явление электрического резонанса, которое ведет к значительному повышению напряжениям между катодами лампы. Обычно это приводит также к возрастанию тока подогрева катодов. Причина заключается в том, что при использовании такой схемы пуска спирали накала катодов часто соединяются последовательным образом через конденсатор, и выступают частью колебательного контура. В результате из-за подогрева катодов и высокого напряжения между ними лампа быстро и легко зажигается.

После зажигания параметры колебательного контура меняются, резонанс прекращается, а напряжение в контуре значительно снижается, сокращая тем самым ток накала катодов.

Существуют разные вариации данной технологии. К примеру, в предельных случаях, балласт может не подогревать катоды вовсе, а лишь приложить к ним напряжение, достаточно высокое для зажигания за счет пробоя газа расположенного между катодами. Аналогичная технология используется для пуска ламп с холодным катодом. Она пользуется популярностью среди радиолюбителей, благодаря возможности осуществить запуск даже с перегоревшими нитями накала катодов. Обычными методами их запустить нельзя, так как катоды в таком случае не нагреваются. В частности, радиолюбители используют этот способ для восстановления компактных энергосберегающих ламп, представляющих собой обычные люминесцентные лампы с электронным балластом, встроенным в небольшой корпус. После переделки балласта, такая лампа долго работает, несмотря на перегорание спиралей подогрева. Срок ее службы ограничивается разве что временем полного распыления электродов.

Причина поломок

Электроды люминесцентных ламп – это вольфрамовые нити, покрытые активной массой (пастой) из щелочноземельных металлов. Именно эта паста обеспечивает тлеющий разряд. Без нее вольфрамовые нити перегорали бы гораздо быстрее. В процессе работы лампы паста постепенно осыпается, выгорает и испаряется. Процесс ускоряется в случае частых пусков, когда разряд на протяжении короткого промежутка времени проходит не по всей площади электрода, а на малом участке его поверхности. Это приводит к перегреву электрода и возникновению потемнений на концах лампы, которые обычно свидетельствуют о ее скором выходе из строя.

Когда паста полностью выгорает, ток лампы падает, а напряжение – возрастает. В результате стартер начинает срабатывать постоянно, вызывая мигания, которые также свидетельствуют о том, что дни работы лампы сочтены. Электроды находятся в постоянном разогреве и, в конце концов, один из них перегорает. Происходит это через несколько дней после появления мерцания.

В последние минуты работы лампа горит без мерцаний. В этот момент разряд проходит через остатки электрода, на котором уже не осталось активной массы. Когда остатки вольфрама осыпаются или испаряются, разряд поступает на траверсы (крепления вольфрамовых нитей, выполненные из проволоки). После перегорания траверсов лампа вновь начинает мерцать. Если выключить ее и заново включить, она уже не будет светить.

Описанный выше механизм перегорания лампы справедлив для тех моделей, в которых используются электромагнитные балласты. В случае применения электронных балластов, все происходит несколько иначе. Так же, как и в предыдущем случае, все начинается с выгорания активной массы электродов, после которой следует их перегрев и перегорание одной из нитей. Отличие состоит в том, что сразу после перегорания, лампа гаснет без каких-либо мерцаний и миганий. Этим она обязана конструкции электронного балласта, которая предусматривает автоматическое отключение лампы в случае ее неисправности.

Люминофоры и спектр излучения

Многие пользователи считают, что свет люминесцентных ламп грубый и неприятный. Кроме того, цвет предметов, которые освещаются такими лампами, может искажаться. Виной тому синие и зеленые линии в спектре излучения разряда и тип применяемого люминофора.

В дешевых светильниках с люминесцентными лампами используют галофосфатный люминофор, излучающий главным образом желтый и синий свет, и в меньшей мере зеленый и красный свет. Глазу такая смесь цветов кажется белым светом, однако если свет отражается от предметов, его спектр меняется и возникает эффект искажения. Достоинством таких ламп является высокая световая отдача.

В более дорогих моделях применяет трех- или пятиполосный люминофор. Благодаря этому удается получить более равномерное распределение излучения по видимому спектру. Так свет воспроизводится более натурально. Недостатком этих ламп является не такая высокая светоотдача, как в предыдущем случае.

Существуют также специальные люминесцентные лампы, используемые в освещении помещений, в которых живут птицы. Их спектр содержит ближний ультрафиолет, позволяющий питомцам практически не чувствовать разницу между естественным и искусственным освещением. Необходимость применения таких технологий обусловлена тем, что в отличие от людей, птицы имеют четырехкомпонентное зрение.

Варианты исполнения

По стандарту, люминесцентные лампы подразделяют на колбные и компактные. Оба типа используются довольно широко.

Колбные лампы имеют в качестве оболочки стеклянную трубку. Они могут отличаться по типу и диметру цоколя. Такие лампы часто используются в крупных помещениях: магазины, офисы, цеха, склады и так далее.

Компактные люминесцентные лампы имеют оболочку в виде более тонкой (по сравнению с колбными) изогнутой трубки. Их различают по типу цоколя и размерам. Эти лампы производятся под стандартный патрон Е27 и Е14, поэтому их можно использовать вместо ламп накаливания в обычных светильниках. Их мощность, как правило, колеблется в пределах 16-36 Вт. Люминесцентная лампа такого типа имеет небольшие габариты и устойчивость к механическим воздействиям (умеренным, разумеется).

Кроме типа цоколя, на коробке из-под лампы указываются такие данные:

  1. Цвет излучения: Д – дневной, Б – белый, ХБ – холодно-белый и т. д.
  2. Мощность в ватах: 16W, 18W и т. д.
  3. Длина корпуса (если это колбный вариант люминесцентной лампы): 765, 450 и т. д. Подразумевается длина в миллиметрах.

Возвращаясь к типу цоколей, стоит отметить, что они бывают резьбовыми (например, Е27) и штырьковыми (например, G13). Люминесцентная лампа может иметь и другие типы цоколей, но они слабо распространены.

Утилизация люминесцентных ламп

Все лампы такого типа содержат ртуть, которая, как известно, является ядовитым веществом. В разных моделях ламп ее доза может колебаться от 40 до 70 мг. Но даже небольшого количества ртути, находящегося в люминесцентной лампе на 18 Вт, достаточно, чтобы причинить вред здоровью. Ртуть представлена в виде пара, поэтому, если лампа разбилась, нужно сразу же проветрить помещение.

Когда срок службы ламп истекает, их обычно выбрасывают вместе с простым мусором, что совсем неправильно. Существуют фирмы, утилизирующие такие лампы, но к ним обращаются лишь крупные предприятия. Справедливости ради стоит отметить, что количество попадающей в воздух ртути из залежей на свалках не так велико, как количество этого вещества, выбрасываемое при выработке электроэнергии. А так как ЛЛ являются экономными, их использование даже положительно сказывается на экологическом состоянии планеты. Тем не менее утилизация люминесцентных ламп является открытой проблемой.

www.syl.ru