Преимущества и недостатки люминесцентных ламп кратко – Люминесцентные лампы — технические характеристики
Люминесцентные лампы — технические характеристики
Практически каждый из нас в выборе освещения для каких-либо целей сталкивался с трудностью выбора того или иного осветительного прибора.
Сейчас на рынке этой сферы представлено великое множество вариантов, каждый из которых отличается своими положительными качествами и, конечно, некоторыми недостатками.
Тем не менее, есть и те продукты производства, которые уже долгое время сохраняют признание потребительского сегмента.
К числу таких изделий можно отнести люминисцентные лампы, которые нашли широкое применение практически повсеместно. Их эксплуатационные характеристики отмечены на самом высоком уровне, а недостатки можно счесть не слишком значительными.
Словом, для монтажа системы освещения это довольно оптимальный вариант, который к тому же отличается своей экономичностью.
Что такое люминесцентные лампы и их характеристики
Люминесцентная лампа – это довольно распространенное явление в нашей жизни.
Наверняка каждый из нас посещал какие-либо общественные учреждения и замечал специфику освещения в этих зданиях. Однако о том, что именно представляет собой это изделие, знает мало кто.
Люмиисцентные лампы относятся к газозарядным устройствам, основывающим свою работу на воздействии с физической стороны электрического разряда в газах.
В таком устройстве содержится ртуть, обеспечивающая ультрафиолетовое излучение, которое в самой лампе превращается в свет.
Происходит этот процесс с помощью очень важного элемента – люминофора.
Люминофор может быть смесью каких либо химических элементов, например, галофосфата кальция с чем-либо. Подбирая люминофор какого-либо типа, можно добиться самых интересных эффектов, например, изменения цветового решения света лампы.
При выборе изделия стоит обратить внимание на один из самых важных показателей – общий индекс цветопередачи. Обозначается он сочетанием букв Ra, и чем большее значение указано в сопроводительной документации к лампе, тем лучше она будет производить свою работу.
Благодаря такой системе освещения люминисцентная лампа стала явным лидером перед теми же лампами накаливания.
А если учесть, что эксплуатационные характеристики ее обеспечивают куда более длительный срок пользования, то о правильности выбора, обращенного в пользу люминисцентной лампы, задумываться не стоит.
К содержанию ↑
Преимущества и недостатки люминесцентных ламп
Как и все вокруг нас, люминесцентные лампы обладают своими положительными и отрицательными сторонами. К счастью, вторых гораздо меньше.
Как было сказано ранее, люминесцентные лампы – явный лидер среди средств освещения. Превосходство перед лампами накаливания не трудно заметить даже самому не опытному в электрике человеку.
Достоинства
К числу достоинств этого элемента относятся следующие:
- светоотдачу она совершает в куда большей степени, да и качество света несколько выше, чем у других осветительных элементов;
- длительный срок эксплуатации, обеспечивающий отсутствие перебоев в работе с лампами;
- КПД такого изделия значительно выше;
- Рассеянный свет, оказывающий меньший вред на состоянии сетчатки глаза, а значит, при эксплуатации этой лампы вы сможете значительно уменьшить риск проблем со зрением;
- широкий диапазон в плане цветовых решений света.
Недостатки
Конечно, негативные качества у люминесцентных ламп тоже имеют место быть. В этот перечень входят следующие пункты:
- Содержание ртути в таких изделиях представляют некоторую химическую опасность и требуют специальной утилизации;
- Ленточный спектр распределяется не равномерно, а это может вызвать некоторое неудобство в плане восприятия реального цвета предметов, которые освещаются люминесцентной лампой; однако, здесь следует допустить некоторую оговорку: существуют экземпляры, которые представляют практически полноценный сплошной спектр, но степень светоотдачи в этом случае падает;
- Люминофор, содержащийся в этих лампах, со временем производит свою работу с меньшей эффективностью, это уменьшает коэффициент полезного действия лампы и снижает степень светоотдачи;
- В установке люминесцентной лампы обязательно нужно купить дополнительный пускорегулирующий элемент, который либо обойдется потребителю в довольно крупную сумму, но будет отличаться оптимальными эксплуатационными качествами, либо по цене он будет несколько дешевле, зато обеспечит высокий уровень шума и ненадежность работы;
- Низкий показатель мощности, следовательно, этот вариант не слишком подходит для электросети.Имеют место быть и менее значительные недостатки, однако, их влияние играет не слишком значимую роль в применении люминесцентных ламп.
Классификация и типология люминесцентных ламп
Естественно, что прогресс в производстве таких изделий, как люминесцентные лампы, не стоит на месте, и если ранее применялись в основном аналогичные экземпляры со схожими техническими характеристиками, то сегодня потребитель может подобрать себе тот вариант, который будет для него наиболее оптимальным и эффективным.
Существует множество признаков, по которым можно классифицировать эти лампы, но тем не менее, самым основным из, все же, будет признак показателей давления.
На данный момент на рынке представлены газозарядные ртутные экземпляры высокого и низкого давления.
Лампы высокого давления нашли свое применение в основном в освещении вне помещений. Поскольку такие изделия обладают высокой мощностью, то внутри здания их свет будет довольно неприятен для восприятия его глазом.
Также лампы высокого давления отлично подходят для сборки каких-либо осветительных установок.
Лампы низкого давления обладают сравнительно меньшей мощностью, а значит, подходят для применения внутри зданий.
Назначение помещения может быть абсолютно любым: люминесцентные лампы такого показателя подойдут и для цеховых и производственных зданий, и для жилых помещений.
Помимо разделения ламп по принципу давления существует еще и классификация по диаметру трубки или колбы лампы, а также по схеме зажигания.
Для примера можно взять продукты самых известных производителей, например, Osram и Philips. Если внимательно присмотреться к данным на упаковке, то можно увидеть букву и цифру рядом. Это и есть маркировки типа изделия.
Итак, люминесцентные лампы подразделяются на:
- Т5 – лампы с таким показателем являются довольно редким явлением, не нашедшим признания у покупательского сегмента. Стоимость их довольно высока, однако степень светоотдачи показывает прекрасные результаты – до 110 лм/ватт. Стоит отметить, что сейчас производители значительно увеличили объемы производства люминесцентных ламп с таким показателем.
- Т8 – новый продукт, имеющий довольно высокую цену и рассчитанный на нагрузку не более 0,260 А.
- Т10 – аналог лампам маркировки Т12, отличающийся довольно низким качеством и уровнем эффективности.
- Т12 – лидер рынка люминесцентных ламп. Включает в себя широкое разнообразие подтипов, что говорить, практически все стандартные модели относятся к этой группе. В их число входят представители практически всех производителей люминесцентных ламп.
Упомянутый выше принцип классификации по схеме зажигания имеет под собой два типа: требующие стартера и не требующие его.
Мощность тоже является довольно значимой характеристикой люминесцентных ламп, соответственно, это тоже стало фактором для выделения отдельной классификации.
По показателям мощности лампы подразделяются на:
- Стандартные – с маркировкой Т12;
- HO – лампы высокой мощности, однако, отличаются сравнительно меньшей светоотдачей;
- VHO – лампы, способные выдержать нагрузку до 1,5 А;
- «Эконом» — варианты люминесцентных ламп.
К числу критериев, по которым можно распределить лампы по группам, относят и длину.
Вариантов эта дифференциация представляет великое множество. Как правило, производители в обязательном порядке указывают эти данные в инструкции или на упаковке.
Классификация по использованию стартера
Стоит отметить и тот факт, что люминесцентные лампы можно разделить на виды и по типу подключения их.
Однако в этом случае выделить какие-либо точные категории довольно сложно, поскольку каждый тип, выделенный, например, по мощности или необходимости присутствия стартера, требует соблюдения своих нюансов.
К содержанию ↑
Где применяются люминесцентные лампы
Как было сказано ранее, люминесцентные лампы находят довольно широкое применение практически повсеместно.
Несмотря на некоторые отрицательные стороны применения этого изделия, достоинства его, все же переоценить довольно трудно.
Каждый из нас учился в школе, посещал учреждения здравоохранения, административные здания и т.д.
Так вот система освещения в этих помещения как раз основывается на применении люминесцентных ламп.
Как правило, это довольно масштабные по своим размерам трубки, обеспечивающие качественное освещение в зданиях с некоторыми архитектурными особенностями.
Но если общественные здания отличаются своими габаритами, например, высокими потолками, большими по площади залами и комнатами, где освещение требуется довольно мощное и постоянное, то в домашних условиях люминесцентные лампы, которые оптимально будут эксплуатироваться там, не подойдут.
К счастью, уровень производственных навыков значительно вырос, а значит, появились адаптированные к домашним условиям люминесцентные лампы.
Они отличаются куда меньшими размерами, имеют в своем составе электронные балласты, которые возможно подключать в патроны, применяемые в домашней электронике.
И несмотря на свежесть этого новшества, адаптированные лампы уже прочно завоевывают этот сегмент рынка.
Кстати, существует довольно интересный факт. Уже привычные нам плазменные телевизоры имеют в своем механизме как раз люминесцентные лампы!
Конечно, это тоже адаптированный в соответствии со спецификой применения вариант, но, тем не менее, принцип его работы заключается в том же самом явлении. Жидкокристаллические экраны, кстати, ранее изготовлялись только с применением люминесцентных ламп, однако позже они были заменены на светодиоды.
Все мы видели световую рекламу на улицах города. Она тоже не обошлась без применения люминесцентной лампы! Фасады зданий также освещают именно этим изделием.
Хотя на данный момент конкуренцию в области световой рекламы люминесцентным лампам составляют SMD и DIP экраны.
Также люминесцентные лампы получили широкое применение в области растениеводства для выращивания растений.
Если говорить в общем, выделяя основную мысль применения люминесцентной лампы, то можно сделать вывод: их имеет смысл применять в тех случаях, когда требуется снабдить светом помещение больших размерных показателей.
Совместная работа с системами цифрового интерфейса освещения с возможностью адресации позволяет обеспечить и высокую светоотдачу, и, в то же время, не потратить крупных сумм на оплату электроэнергии, ведь по сравнению с лампами накаливания люминесцентные лампы позволяют сократить потребление энергии более чем в половину! Тем самым, являясь энергосберегающими.
Помимо этого, лампы сокращают расходы и длительностью своего применения.
Вывод
Итак, в данной статье мы рассмотрели самую основную информацию о таком благе современных технологий как люминесцентные лампы.
Для проведения работ по подключению этого устройства требуется обладать не только четкими представлениями об основах электроники и электротехники, но и быть предельно внимательным при выборе того или иного типа изделия.
Соблюдение этих минимальных, но очень важных требований обеспечит вам совершенно беспроблемную эксплуатацию ламп и максимальную полезность от их применения.
К содержанию ↑
Расскажите друзьям!Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.
Подписывайтесь на обновления по E-Mail:
Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:
zavodsvetodiodov.ru
Содержание:
За продолжительный период эксплуатации были хорошо изучены преимущества и недостатки люминесцентных ламп, что позволило наиболее рационально использовать их в осветительных приборах. В настоящее время большую популярность завоевывают компактные энергосберегающие устройства, нашедшие широкое применение в бытовых условиях. Общие сведенияЛюминесцентные лампы относятся к категории газоразрядных источников света низкого давления. В газовой среде возникает разряд электрического тока, вызывающий появление ультрафиолетового излучения, невидимого для обычного зрения. Попадая на стенки колбы с люминофорным покрытием, оно превращается в видимый световой поток. Сама лампочка изготовлена в виде цилиндрической стеклянной трубки, внутри которой находится инертный газ и пары ртути. Торцы герметично закрыты крышками, с впаянными в них электродами. При подключении тока они создают электрический разряд, после чего запускаются все процессы, в конечном итоге вызывающие свечение лампы.
Все люминесцентные лампы обеспечивают создание мягкого равномерного светового потока. Он трудно поддается управлению и регулировке в связи с большой площадью излучающей поверхности. Форма трубок может быть линейная, кольцевая, U-образная, круглая. Собственные конфигурации предусмотрены для компактных люминесцентных ламп. Диаметр стеклянной колбы отображается в количестве восьмых частей дюйма. Например, маркировка Т5 соответствует 5/8 дюйма или около 16 мм. В каталогах и международных стандартах эта величина указывается только в миллиметрах. Сегодня выпускается свыше 100 видов ламп общего назначения с собственными типоразмерами. Наибольшее распространение получили устройства мощностью 15, 20, 30 ватт под напряжение 127 вольт и 40, 80, 125 Вт – для 220 В. Срок эксплуатации в среднем составляет примерно 10 тысяч часов. Все известные недостатки и преимущества люминесцентных ламп, их параметры и технические характеристики напрямую связаны с температурой окружающей среды. Наиболее подходящей температурой для ртутных паров считается 40 градусов, при которых достигается максимальная световая отдача. Технические характеристикиСвойства каждой лампы отражены в ее параметрах, указанных производителями в маркировке или на упаковке. Обычно такой информации вполне хватает, чтобы сделать правильный выбор. Прежде всего, следует обращать внимание на питающее напряжение. Для российских сетей предусмотрена маркировка 220-240V/50Hz, что полностью соответствует общепринятым параметрам. Точно так же на лампочке указывается значение потребляемой мощности. Иногда на упаковке приводится сравнение светового потока с лампой накаливания при одинаковом энергопотреблении. Высокое качество известных производителей определяет преимущества люминесцентных ламп по данному показателю в 4-5 раз. Довольно часто встречается обозначение типа 16 Вт = 80 Вт. Это значит, что при одинаковом световом потоке люминесцентная лампа потребит всего 16 ватт, а обычная лампочка накаливания – целых 80 ватт.
Некоторые достоинства и недостатки определяются световым потоком, обозначающим величину мощности света с общем потоке излучения. Эта величина устанавливается лабораторным путем, измеряется в люменах (лм) и наносится на упаковку или отражается в паспорте. Большое значение имеет показатель цветовой температуры, показывающей, насколько свечение приближено к естественному освещению. Этот параметр измеряется в Кельвинах и рассматривается в трех диапазонах:
Выбирая лампу следует обязательно учитывать цветовую температуру. В случае замены изделие должно обладать такими же характеристиками. Особенности эксплуатацииРассматривая плюсы и минусы ламп дневного света, следует подробно остановиться на особенностях их эксплуатации, существенно отличающихся от обычных лампочек накаливания.
Поэтому, используя люминесцентные лампы, нельзя забывать о следующих обязательных правилах:
Плюсы и минусыРассмотрев устройство и работу люминесцентных ламп, правила их эксплуатации, их плюсы и минусы, можно сделать вполне определенные выводы об положительных и отрицательных качествах.
Несомненными достоинствами этих изделий являются:
Отрицательные качества и недостатки проявляются в следующем:
Существуют и другие недостатки, но они не оказывают заметного влияния на использование люминесцентных ламп. |
electric-220.ru
Люминесцентные лампы: преимущества и недостатки

В настоящее время люминесцентные лампы являются вторыми по популярности источниками освещения, уступая только лампам накаливания. В таких приборах используется ртуть, которая при нагревании в парах создает электрический разряд, формирующий ультрафиолетовое излучение. Затем специальное вещество (люминофор) поглощает это излучение, выделяя свет в привычном для человеческого глаза спектре. Длина и поперечное сечение трубки люминесцентной лампы определяют рабочее напряжение и напряжение зажигания, а также ток. Чем изделие толще, тем ниже сопротивление и, соответственно, больше мощность.
Сегодня люминесцентные лампы нашли широкое применение при освещении коммерческих объектов, общественных зданий, торговых и офисных центров, киностудий. Не менее популярны они и для бытового применения.
Положительные стороны люминесцентных ламп
Среди ключевых достоинств люминесцентных ламп следует выделить:
- Экономичность. Поскольку КПД этих источников освещения значительно выше, чем у ламп накаливания, потребление энергии у них ниже (примерно в 5 раз). В плане экономии с люминесцентными лампами могут конкурировать только светодиоды, но они имеют свою специфику.
- Высокую световую отдачу, что позволяет освещать помещения большой площади.
- Длительный срок службы. Ресурс эксплуатации источников освещения, работающих с использованием люминофора, составляет несколько десятков тысяч часов при условии отсутствия частых включений-выключений. В отличие от ламп накаливания, они не выходят из строя в результате перегорания нити накаливания.
- Минимальный нагрев, что позволяет использовать люминесцентные лампы для светильников с ограниченным уровнем максимально допустимой температуры.
- Большая площадь поверхности, за счет чего свет в помещении распределяется намного равномернее.
Эксплуатационные преимущества люминесцентных ламп сопровождаются и эстетическими достоинствами — разнообразие оттенков освещения позволяет подобрать решение для любого интерьера. Это же касается уровня освещенности, который можно очень легко изменить при помощи замены источников освещения на более мощные.
Недостатки люминесцентных ламп
Существуют и определенные минусы. Главным из них является содержание ртути, поэтому предъявляются повышенные требования к их утилизации. Следует отметить и линейчатый (ненатуральный) спектр света у дешевых люминесцентных ламп с многокомпонентным люминофором. Кроме того, неизбежна деградация вещества при продолжительной эксплуатации — она проявляется снижением теплоотдачи и «дрейфом спектра» (мерцанием, от которого устают глаза). В случае перегорания электродов вся лампа выходит из строя. Чтобы избежать негативных моментов, рекомендуется покупать только качественную и сертифицированную продукцию у проверенных поставщиков.
Немаловажным будет и правильный выбор люминесцентных ламп. При этом следует учитывать не только размер светильника и тип цоколя, но также на цветовую температуру генерируемого света. Цвет, конечно же, следует подбирать под интерьер.
Таким образом, люминесцентные лампы станут отличным источником освещения для больших помещений, где будет наблюдаться наиболее выраженный экономический эффект. Кроме того, за счет длительного эксплуатационного ресурса, они идеально подойдут для установки в труднодоступных местах (менять их придется очень редко).
Выбрав качественную люминесцентную лампу, вы обеспечите себя надежным и долговечным источником освещения, который в прямом смысле слова будет радовать глаз!
www.lamps.ru
Преимущества люминесцентных ламп следующие:
Световая отдача люминесцентной лампы в среднем в пять раз больше, чем у лампы накаливания. Для примера: световой поток люминесцентной лампы 20 Вт приблизительно равняется световому потоку лампы накаливания 100 Вт. Соответственно люминесцентные лампы позволяют снизить потребление электроэнергии приблизительно на 80% без потери привычного для вас уровня освещенности комнаты.
Чаще всего причиной выхода из строя обычной лампочки является перегорание нити накаливания. Строение и принцип работы люминесцентной лампы принципиально другие, поэтому срок ее работы в среднем в 6-15 раз выше, чем у лампы накаливания, и составляет от 6 до 12 тысяч часов (обычно ресурс работы люминесцентных ламп указывают на их упаковке). Поскольку люминесцентные лампы нужно заменять значительно реже, их удобно использовать в светильниках, расположенных в труднодоступных местах. Например, в квартирах или офисах со слишком высоким потолком.
Кроме меньшего потребления электроэнергии энергосберегающие лампы выделяют гораздо меньше тепла, чем лампы накаливание. Поэтому их можно смело использовать в светильниках и люстрах с ограничением уровня температуры – в таких светильниках от ламп накаливания с высокой температурой нагрева могут плавиться пластмассовая часть патрона, провод или элементы отделки.
Площадь поверхности энергосберегающих ламп больше, чем площадь поверхности спирали лампы накаливания. Благодаря этому свет распределяется по помещению мягче и равномернее, чем от лампы накаливания, а это, в свою очередь, снижает утомляемость глаз
Дуговые лампы общего назначения – это трубчатые лампы прямой или изогнутой формы в основном стартерного зажигания для сетей с напряжением 127 и 220 В. Лампы специального назначения имеют особенности в конструкции: малогабаритные, с фигурной колбой высокоинтенсивные и т.д.
Трубчатые люминесцентные лампы низкого давления с дуговым разрядом в парах ртути по цветности излучения делятся на лампы дневного света (ЛБ), тепло-белого света (ЛТБ), холодно-белого света (ЛХБ), лампы дневного света (ЛД) и лампы дневного света с исправленной цветностью (ЛДЦ) для правильной цветопередачи, обеспечивающие сохранение цвета объекта таким же, каким он был при стандартом источнике.
Вследствие значительной яркости люминесцентных ламп открытая установка (без светильников), как правило, не допускается. Но наряду со многими достоинствами люминесцентные лампы имеют ряд недостатков. Одним из главных является сложность включения их в сеть, связанная с особенностью газового разряда. Устойчивая работа возможна при наличии устройства, ограничивающего величину тока (дросселя). Лампы чувствительны к изменениям окружающей температуры. Ярче всего они горят при комнатной температуре 20-25С, понижение и повышение температуры резко снижает светоотдачу, а при понижении температуры до 0С в обычном конструктивном положении работать практически не могут.
Дуговые ртутные лампы высокого давления
При повышении давления в лампе и плотности тока разряд в ней становится более интенсивным по излучению. Наряду с излучением в видимой области спектра получается излучение в ультрафиолетовой области. При использовании такого разряда в источниках света требуется исправление его цветности путем преобразования ультрафиолетового излучения в красное. Для получения такого излучения используются трубчатые кварцевые лампы, называемые горелками.
Достоинствами ламп ДРЛ являются:
высокая световая отдача (до 55 лм/Вт),
большой срок службы (10000 ч),
компактность,
некритичность к условиям внешней среды (кроме очень низких температур)
Недостатками ламп следует считать:
преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные поверхности,
возможность работы только на переменном токе,
длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин),
пульсации светового потока, больше, чем у люминесцентных ламп,
значительное снижение светового потока к концу срока службы.
ДРЛ – дуговые ртутные лампы высокого давления. Для этого источника света характерна высокая световая отдача, длительный срок эксплуатации и некоторое искажение цветопередачи. Поэтому лампы типа ДРЛ чаще всего используются для освещения больших открытых площадей, улиц, производственных цехов. ДНАТ – натриевые лампы высокого давления. Наиболее экономичный из всех видов ламп. Работают в сетях переменного тока частотой 50 Гц напряжением 220 В с применением пускорегулирующей аппаратуры. Обладают низкой цветопередачей. С помощью ламп такого типа осуществляется освещение автотрасс, улиц, промышленных площадей.
Натриевые лампы высокого давления типа ДНаТ являются в настоящее время наиболее экономичными из всех существующих источников света и широко применяются для освещения улиц, автотрасс, площадей, промышленных территорий и других открытых пространств, где не предъявляется высоких требований к качеству цветопередачи. Лампы включаются в сеть переменного тока частотой 50 Гц напряжением 220 В с соответствующей пускорегулирующей аппаратурой. Эти лампы похожи на ртутные лампы высокого давления, но имеют лучшую эффективность (свыше 100 люменов на ватт) и отличное постоянство светового потока. Химическая активность натрия требует, чтобы дуговая лампа была изготовлена из прозрачного поликристаллического оксида алюминия (глинозема), так как стекло или кварц для этого не подходят. При натриевом разряде нет ультрафиолетового излучения, поэтому люминофорные покрытия не представляют здесь никакой ценности. Некоторые колбы матированы или имеют покрытие для рассеивания света. При эксплуатации исключается попадание атмосферных осадков на колбу. Рабочее положение произвольное. По конструкции лампы представляют собой стеклянную колбу, имеющую эллипсоидную или цилиндрическую форму, внутри которой расположена горелка, смонтированная на ножку. Лампы снабжены резьбовыми цоколями. Горелка изготовлена из поликристалической окиси алюминия (или монокора), торцы которой плотно соединены с электродными узлами. Горелка наполнена амальгамой натрия и ксеноном. Натриевые лампы так называются потому, что в процессе их горения участвуют молекулы обыкновенной соли. Спектр таких ламп сдвинут в желто–красную область, а это очень хорошо. Натриевые лампы являются одной из самых эффективных групп источников видимого излучения: они обладают самой высокой световой отдачей среди всех известных газоразрядных ламп, и незначительным снижением светового потока при длительном сроке службы.
studfiles.net
Вред и польза от энергосберегающих люминесцентных ламп
В последние годы политика перехода на энергосберегающие технологии привела к появлению в продаже большого количества люминесцентных ламп. Хотя используется такой тип осветительных приборов уже достаточно давно, споры о их безопасности не умолкают до сих пор. Так каковы же вред и польза от энергосберегающих люминесцентных ламп, попробуем разобраться в этой статье.

Люминесцентные лампы различной формы
Свойства ртути
Все опасения при использовании люминесцентного освещения родились не на пустом месте. Ведь в производстве ламп используется небольшое количество паров ртути, которые ядовиты для человека, как считает большинство. Понять смысл этого стереотипа позволят знания о свойствах этого единственного жидкого в естественных условиях металла.
Из курса химии мы знаем, что при комнатной температуре ртуть находится в жидком состоянии. Сам по себе это тяжелый серебристый металл не представляет опасности. Однако ртуть способна испаряться даже при такой невысокой температуре, не говоря уже о более серьезных ее значениях. Эти пары способны не только самостоятельно распределяться по воздуху внутри помещения, но и образовывать летучие соединения с органическими веществами, абсорбироваться на предметах обихода, мебели и даже на обычных частичках пыли.

Капли ртути в пробирке
Пары могут проникать через строительные материалы, толщу воды и почвы. Жидкая ртуть обладает слабой вязкостью и большим поверхностным натяжением, что способствует разделению одной капли на множество более мелких. Это еще больше увеличивает площадь испарения. Частицы жидкой ртути очень подвижны, что сильно затрудняет демеркуризацию помещения. Они легко растворяются в органических растворителях и даже в воде в отсутствии свободного кислорода. При рН = 8 растворимость находится на минимуме. При изменении этого показателя в любую сторону растворимость увеличивается. Жидкая ртуть способна без труда растворять некоторые металлы, даже благородные. При этом образуются так называемые амальгамы. В связи с этим закономерно, что это вещество разрушающе действует на металлические конструкционные материалы.
Химические свойства ртути таковы, что она очень сильно ионизирована, а это создает большие сложности при превращении ее паров в относительно безопасные соли. При комнатной температуре невозможно ее окисление на воздухе. Нужны очень сильные окислители. Не подходят даже разбавленные кислоты, такие, как серная и соляная. Требуется концентрированная азотная кислота или царская водка, чтобы прошла реакция окисления ртути. Именно сложность нейтрализации этого ядовитого вещества и обуславливает необходимость принятия серьезных мер безопасности при использовании ртути в различных приборах, в том числе и в люминесцентных лампах.
Преимущества и недостатки люминесцентных ламп
Разобравшись в химических свойствах ртути, нам становится понятно, почему люминесцентные энергосберегающие лампы при всех своих преимуществах имеют и серьезные недостатки.
Сегодня мы уже не можем представить свою жизнь без использования искусственного освещения. Каким бы оно ни было, для его создания применяются лампы. Чаще всего еще с начала 20 века мы применяем обычные лампы накаливания, которые бывают различной мощности – 40 Вт, 60 Вт, 100 Вт. При такой достаточно высокой мощности, лампы накаливания обладают небольшой светимостью, что сильно влияет на их КПД, который вряд ли достигает даже 50%. То есть, мы платим деньги не только за освещение, но и половину за нагрев нити в лампе.
Такое расточительство в современных условиях все более становится неуместным, поэтому на свет появилась комплексная люминесцентная лампа. Ее еще называют энергосберегающая.
Чем принципиально энергосберегающая лампа отличается от лампы накаливания?
Устройство лампы накаливания достаточно просто, чтобы его понимали и знали о нем большинство людей. Помещенная в стеклянную колбу, из которой выкачан воздух, вольфрамовая нить накаляется до яркого свечения под воздействием проходящего по ней электрического тока. Устройство же люминесцентной лампы понимают не все. Энергосберегающая лампа представляет собой стеклянную колбу, которая наполнена парами ртути и инертным газом аргоном. Также в комплекте может иметься, но не обязательно, пускорегулирующее устройство или стартер. Внутренняя поверхность колбы имеет напыление из специального вещества люминофора. Оно под воздействием ультрафиолетового излучения излучает видимый свет. При включении энергосберегающей лампочки возникает электромагнитное излучение, которое провоцирует пары ртути создавать ультрафиолетовое излучение. Оно в свою очередь, проходя через нанесенный на поверхность лампы люминофор, преобразуется в обычный видимый свет.

Устройство люминесцентной лампы
Спектр видимого света может иметь смещение в ту или иную сторону. Поэтому бывают люминесцентные лампы, имеющие свет, спектр которого ближе к желтому, а бывают ближе к синему. Первые более естественны, так как их спектр аналогичен спектру солнечных лучей. Современные лампы имеют такой же цоколь, что и у ламп накаливания, внутри которых спрятан электромагнитный излучатель. Диаметр цоколя бывает 14 или 27 мм. Это стандартные размеры, позволяющие вкручивать такие лампы в любые современные светильники и люстры.
Преимущества современных энергосберегающих ламп
Теперь мы можем перечислить все те достоинства, которыми обладают энергосберегающие люминесцентные лампы:
- Серьезная экономия электроэнергии. Благодаря тому, что КПД у таких ламп очень высокий, они отдают в 5 раз больше световой энергии, чем лампы накаливания. Люминесцентная лампа мощностью всего в 20 Вт выдает столько же света, сколько 100 ваттная лампа накаливания. Экономия при этом составляет около 80%. Со временем снижения светимости не наблюдается в отличие от ламп накаливания.
- Качественные люминесцентные лампы имеют срок службы, в несколько раз (от 5 до 15) больший, чем у простых лампочек. Производитель указывает 5 – 12 тысяч часов работы. Это обусловлено тем, что в них отсутствуют нагревающиеся до высоких температур детали. Это свойство удобно в тех местах, где частая замена ламп проблематична.
- Люминесцентные лампы обладают низкой теплоотдачей, так как вся их энергия преобразуется в световой поток. Такие лампы слабо нагреваются. Поэтому их можно использовать в любых люстрах и светильниках, даже в тех, где обычная лампа более высокой мощности может расплавить патрон.
- Повышенная светоотдача появляется благодаря тому, что энергия не тратится на нагревание вольфрамовой нити, как в лампах накаливания. Энергосберегающая лампа отдает свет абсолютно со всей своей поверхности. Ее свет более мягкий и рассеянный, что благоприятно сказывается для глаз. Различные оттенки люминофора позволяют изготавливать лампы с мягким или холодным, желтым или белым светом. Каждый волен выбирать более подходящий для себя оттенок.
Перечисленные выше преимущества во многом обусловили популяризацию люминесцентных ламп в последние годы. Этому способствовала и унификация цоколя с обычными лампочками. Тем не менее существуют недостатки, которые пока препятствуют полному замещению ламп накаливания люминесцентными.
Недостатки энергосберегающих ламп
В настоящее время самым главным недостатком энергосберегающих ламп является их слишком высокая стоимость, которая превышает стоимость ламп накаливания в 10 – 20 раз. Однако этот недостаток нивелируется экономичностью и длительность использования. Согласно расчетам, качественная люминесцентная лампа способна окупиться менее чем за год в некоторых случаях. Это касается тех мест, где освещение требуется ежедневно. При этом важным условием является использование именно качественных ламп, так как некоторые китайские экземпляры обладают таким же сроком службы, как и лампы накаливания, если не меньшим.
Есть еще одна важная особенность энергосберегающих ламп, которую несомненно нужно отнести к недостатку. Это ртутные пары, которыми она наполнена. Выше мы уже рассмотрели опасность этих паров и трудность их нейтрализации. Поэтому слишком опасно разбивать лампы в квартире и ином помещении. Обращаться с ними необходимо очень осторожно. Это заставляет отнести их к экологически опасным приборам, поэтому их утилизация регламентируется специальными нормативными актами и представляет определенные неудобства пользователю. Выбрасывать отработавшие лампы запрещено.
Способы правильной утилизации энергосберегающих ламп
Важным недостатком энергосберегающих ламп является применение ртутных паров в их конструкции. Это делает недопустимым их выбрасывание в мусоропровод или в контейнер. Их утилизация строго регламентируется. Известно два способа утилизации:
- Перегоревшие энергосберегающие лампы необходимо отнести в районный ДЕЗ или РЭУ. У них должны быть установлены специальные контейнеры. Приемка в Москве осуществляется бесплатно на основании Распоряжения правительства Москвы «Об организации работ по сбору, транспортировке и переработке отработанных люминесцентных ламп» от 20 декабря 1999 г. № 1010-РЗП. В других регионах могут существовать свои региональные нормативно-правовые акты, регламентирующие утилизацию.
- Если ламп достаточно много (это касается предприятий или офисов), то заключается соответствующий договор с организациями, которые занимаются деятельностью по приему и утилизации ртутьсодержащих изделий. На сайте организации Гринпис можно найти список пунктов приема люминесцентных ламп.
Следует помнить, что от правильной утилизации опасных приборов зависит наша экологическая безопасность.
На что следует обратить пристальное внимание при покупке люминесцентных ламп
Выбирая для покупки энергосберегающие лампы, необходимо иметь представление о том, на какие характеристики и свойства следует обращать внимание:
- Мощность является очень важным параметром. У люминесцентных ламп она варьируется от 3 до 90 Вт. При этом необходимо умножить мощность на 5, чтобы понять, какой светимостью эта лампа будет обладать, при сравнении с лампой накаливания. Поэтому при покупке лампы для конкретного прибора, вам нужно посмотреть, какая лампочка накаливания в нем была. Если там вкручивалась лампа на 100 Вт, то вас устроит люминесцентная лампочка мощностью 20 Вт.
- Спектральные характеристики света лампы. Их можно определить по следующей маркировке: 2700 К – теплы белый свет, 4200 К – дневной свет, 6400 К – холодный белый свет. При понижении цветовой температуры наблюдается смещение спектра к красному, а при увеличении к синему. Поэтому сначала следует подобрать подходящий цвет для вас. Только после этого можно приобретать лампочки одного спектрального класса.

Различные по спектру света лампы
- По форме лампы бывают спиралевидные и U-подобные. Принципиальной разницы в их работе и характеристиках нет. Просто первые поменьше и подороже вторых. Необходимо также учесть особенности своего светильника. Ведь не каждая лампочка может подойти для него по размерам.
- По типу цоколя лампы тоже отличаются. Большинство из них рассчитаны на цоколь Е27, а некоторые на цоколь Е14. Соответственно, если в люстре большие патроны, то подойдет первый тип, если маленькие, то второй. Лампы для освещения офисных помещений могут быть в виде длинных тонких трубок. Они имеют принципиально иной тип цоколя и контактов.
Все перечисленные характеристики имеются на упаковке лампочек. Например, маркировка ESS-02A 20W E27 6400K на упаковке означает, что лампа обладает мощностью 20 Вт, с большим цоколем (Е27), излучает холодный белый свет (6400К).

Различные по спектру света лампы
Обобщая вышеизложенное, можно прийти к выводу, что основными преимуществами энергосберегающих люминесцентных ламп является их высокая экономичность и очень долгий срок службы. Это дает очень серьезную экономию, особенно в масштабах целого домовладения. Ассортимент таких ламп в магазинах достаточно большой, что дает возможность каждому подобрать подходящее изделие. В тоже время, затруднение могут возникнуть при утилизации ртутьсодержащих ламп, так как не во всех городах имеются специализированные предприятия, занимающиеся этой деятельностью.
stroyvopros.net
Достоинства и недостатки компактных люминесцентных ламп — Svetinfo

Привычная всем лампа накаливания (ЛН), изобретенная Эдисоном 130 лет назад, отсчитывает последние годы широкого применения. Её КПД в 4–6% сравним с паровозным и то, что ЛН не вымерли вслед за пыхтящими локомотивами, можно объяснить лишь отсутствием подходящих альтернатив да инерционностью электроламповой промышленности с её миллиардными объёмами выпуска.
Тем не менее час пробил: энергетическая расточительность ЛН, а вслед за ней и вред природе (никому не надо напоминать про выбросы парниковых газов на электростанциях? А ведь лампы греют атмосферу ещё и в прямом смысле!) диктуют ускоренный переход на энергосберегающие технологии. Стимулом здесь служат не только растущие тарифы на электроэнергию, но и меры административного характера.
Так, в странах Евросоюза с 1 сентября запрещается продажа ЛН мощностью 100 Вт и выше. Ограничения будут ужесточаться, и к 2012 году ЛН должны полностью исчезнуть с прилавков. Ожидается, что общее электропотребление в итоге снизится на 3–4%, а средняя семья будет экономить на освещении 50–100 евро в год. Впрочем, еврограждане встречают кампанию по-своему и закупают приговоренные к смерти лампочки впрок ящиками.
Всё больше стран, включая такие несхожие, как Израиль и Австралия (а также экологически озабоченный штат Калифорния), ограничивают применение ЛН. Даже не слишком богатая Украина здесь отметилась: с января бюджетным учреждениям Незалежной запрещено покупать ЛН. А в Таджикистане, где многие живут на пару долларов в день, массовая замена ЛН началась по указу президента с 1 мая.
Что же предлагается обитателям современных квартир и офисов? Выбор не слишком велик: линейные люминесцентные лампы (ЛЛ) — знакомые всем трубки; компактные люминесцентные лампы (КЛЛ) — те же трубки, свернутые в клубок и снабженные электронным пускорегулирующим аппаратом (ЭПРА, обиходное название — балласт) с резьбовым цоколем; светодиодные системы. Всё остальное — сфера уличного и профессионального освещения.
Главное преимущество КЛЛ — совместимость с инфраструктурой, созданной для обычных ЛН. Достаточно ввернуть лампу в патрон любого светильника, чтобы приобщиться к энергосбережению. Линейные ЛЛ хоть и дешевле, но громоздки, требуют специфической арматуры, а в большом количестве делают помещение похожим на офис. Светодиоды же пока не вышли за пределы декоративной подсветки. Причины в первую очередь экономические: светодиодный светильник, сравнимый со 100-ваттной ЛН, стоит больше сотни евро. Даже при рекордном энергосбережении и двадцатилетнем сроке службы это многовато.
Поэтому массовый интерес потребителей направлен именно на КЛЛ. В магазинах можно встретить множество моделей по весьма несхожим ценам. Как же выбрать то, что подойдет именно вам? Реклама обещает пятикратную экономию электроэнергии, многолетний срок службы, яркий свет приятных оттенков и прочие удовольствия. Но реклама никогда не говорит всей правды. Попробуем разобраться в достоинствах и недостатках КЛЛ, присутствующих на рынке, а также указать на особенности их грамотной эксплуатации.
Достоинства
1. Значительно меньшее энергопотребление и соответственно экономия на оплате электроэнергии. На каждой упаковке КЛЛ ласкает глаз цифра 80%: считается, что 100-ваттную ЛН без ущерба для освещенности можно заменить на КЛЛ мощностью 20 Вт и тем самым сэкономить 80% электроэнергии.
В реальности, однако, такой подсчет справедлив лишь для изделий ведущих мировых брендов, причём не самых младших модельных рядов. Их стоимость сводит на нет любые соображения об экономии. У недорогих же ламп завышается потребляемая мощность и особенно световой поток. Фактическая мощность бывает на 10–25% меньше заявленной, а поток — на 20–35%. Поэтому при замене ЛН её мощность надо делить не на 5, а на 3,5–4, а с учетом снижения потока в ходе эксплуатации лучше и вовсе на 3–3,5. То есть, 100-ваттную ЛН на практике надо заменять не 20-ваттной КЛЛ, а 26–30-ваттной.
2. Длительный срок службы. Он всегда указан на упаковке и обычно составляет 6–12 тысяч часов (встречаются модели и на 3, и на 15 тысяч, но это исключения). Имеется в виду, что за указанное время в среднем половина ламп выходит из строя при нормальных условиях эксплуатации (непрерывное горение 2,7 часа в день, или 1000 часов в год, при температуре 25° и номинальном напряжении сети). Никто не гарантирует, что конкретный экземпляр проработает именно столько.
На практике заявленный срок службы достигается редко. Во-первых, КЛЛ массовых марок быстро деградируют: через 2 тысячи часов горения световой поток снижается на 20–30%, портится его спектр (он становится более грязным, с желтым оттенком). Под конец поток может вообще упасть вдвое. Это вынуждает заменять ещё исправную лампу.
Во-вторых, КЛЛ не любят частых включений — от этого изнашиваются электроды в разрядной колбе и детали ЭПРА. По некоторым оценкам, каждое включение уносит один-два часа ресурса. Ещё вреднее повторное включение неостывшей лампы. Соблюдайте интервал как минимум две-три, а лучше пять-шесть минут. Там, где свет включается множество раз в день, лампы долго не живут. Справедливости ради отметим, что для более дорогих моделей, где имеется прогрев электродов, частые включения не столь разрушительны.
В-третьих, большую роль играет рабочее положение КЛЛ и условия вентиляции плафона. От этого зависит долговечность электроники. В положении цоколем вверх балласт нагревается до 60–70°, а в закрытом плафоне — аж до 90°. Из соображений экономии (схема-то одноразовая, выбрасывается вместе с лампой) большинство производителей применяют дешёвую элементную базу, нестойкую к нагреву. Например, конденсаторы ставятся с температурным пределом 85°, а не 105° как надо бы. Ресурс горячих деталей уменьшается в несколько раз, и они быстро выходят из строя.
3. Стойкость к перепадам напряжения, особенно к снижению. КЛЛ нормально работают в интервале 160–260 В, и могут выносить даже падение до 130 В (в последнем случае, правда, свет заметно тускнеет, а срок службы снижается). ЭПРА здесь играет роль эффективного стабилизатора.
Это ценнейшее качество в тех местах, где о нормальном электроснабжении остается только мечтать. ЛН в подобных условиях малопригодны — они быстро перегорают либо еле светят, требуют дорогостоящих стабилизаторов. КЛЛ же обеспечивают комфортный свет без лишних затрат. Также они очень удобны в аварийных ситуациях, когда электричество отключено и приходится пользоваться автономными источниками.
4. Широкий выбор оттенков. КЛЛ могут давать теплый белый свет (цветовая температура 2700 К), холодный белый (4200 К), дневной свет (6500 К). Первый вариант наиболее распространен в быту — он имитирует ЛН, создавая привычное домашнее освещение. Холодный свет, однако, точнее передает цвета; он уместен в рабочих и общественных зонах. Все это дает широкие возможности для моделирования световой среды.
5. Слабый нагрев. КЛЛ выделяет в пять-шесть раз меньше тепла, чем аналогичная ЛН, а температура колбы не превышает 50–60° (для сравнения, ЛН накаляется до 130°). Это снимает проблему пожароопасности, позволяет использовать критичные по тепловой нагрузке светильники и плафоны, в том числе из нестойких и горючих материалов, а также снижает общее тепловыделение в помещении.
Последнее играет важную роль летом, когда затраты на кондиционирование составляют значительную часть всех расходов домохозяйства. В ярко освещенной комнате суммарная мощность ЛН достигает 500–600 Вт, это может вынудить поставить более мощный кондиционер. А платить сперва за нагрев воздуха ЛН, а затем за охлаждение этого же воздуха — двойная глупость.
Что касается боящихся перегрева светильников, то возможность получить больше света без их замены — существенное удобство и экономия. Особенно это полезно для люстр и бра с патронами миньон (Е14), которые часто сделаны из хилого пластика и имеют ограничение по мощности ЛН всего 40 Вт. Вкрутив туда КЛЛ на 13–15 Вт, мы повысим освещенность минимум в полтора раза.
6. Минимальная нагрузка на электропроводку, что важно в случае её ветхости. Нередко пара сэкономленных ампер от установки КЛЛ позволяет снять угрозу выбитых пробок и тем более возгорания. Ведь полная перекладка проводки — вещь часто неосуществимая, приходится мириться с тем, что есть.
7. Наружное освещение — не главная область применения КЛЛ, но они с этим вполне справляются. Качественные модели способны работать при температуре воздуха от –20° до +40°. Их долговечность и стойкость к перепадам напряжения очень удобны в труднодоступных местах: поставил и забыл. Вместе с тем на холоде лампы медленнее выходят на рабочий режим и слабее светят, а их электроника нуждается в защите от повышенной влажности.
8. Большая светящаяся поверхность КЛЛ создает мягкое, более равномерное распределение света, отсутствуют резкие тени, как в случае с ЛН. Это уменьшает контрасты освещения, что благоприятно действует на зрение (снижается утомляемость глаз). Во многих случаях становятся излишними абажуры и плафоны, задерживающие много света и постоянно пылящиеся.
Что касается пульсаций яркости, так досаждавших в старых трубках, то у КЛЛ они сведены на нет. ЭПРА обеспечивает частоту разрядов 30–40 кГц, что совершенно незаметно для глаз, да и стробоскопический эффект отсутствует. Если же светящаяся лампа заметно мерцает — она собирается погаснуть навсегда…
Недостатки
1. Нестабильное качество
На рынке КЛЛ преобладает недорогая продукция китайского происхождения. Для неё характерны частая смена марок и конструктивные изменения, направленные в основном на “оптимизацию” затрат. Во имя снижения себестоимости упрощается схемотехника, применяются более дешёвые материалы и компоненты, ослабляется производственный контроль. Ресурс изделий порой умышленно занижается.
В итоге покупателя могут ждать неприятные сюрпризы: лампа тускло светит (поток меньше заявленного и быстро падает), свечение имеет мертвенный оттенок и “гуляет” от лампы к лампе (люминофор упрощенного и нестабильного состава), ЭПРА сильно греется и издает неприятный запах (ухудшенная элементная база, тесный корпус, некачественный пластик и лак). При отсутствии цепей защиты и плавного старта количество гарантированных включений не превышает пяти тысяч. Все это сокращает жизнь КЛЛ и делает её эксплуатацию некомфортной.
Лампы от мировых брендов, таких как Osram и Philips, подобных проблем не имеют: качество стабильно высокое, все заявленные параметры выдерживаются, а гарантийный срок доходит до трех лет. Однако их цена (8–25 евро) в несколько раз выше, чем у “китайщины”. Такие изделия можно назвать энергосберегающими, но никак не деньгосберегающими.
Наилучшее соотношение цена/качество — у продукции крупных китайских фабрик, проходящей автоматизированную сборку и строгий контроль (в качестве примера можно назвать Uniel и Camelion).
2. Неполная совместимость с существующей инфраструктурой освещения
В первую очередь упомянем выключатели с подсветкой, регуляторы яркости (диммеры), датчики движения, фотоэлементы, таймеры и пр. Эти устройства заставляют КЛЛ работать в нештатном режиме, отчего те быстро выходят из строя. Например, выключатель с подсветкой, ставший почти общепринятым, пропускает в выключенном состоянии через лампу слабый ток в несколько миллиампер. От этого ЭПРА постоянно пытается запуститься, что приводит к миганиям колбы и быстрому износу. Аналогично ведут себя элементы автоматики1.
При диммировании КЛЛ падает мощность, подаваемая на колбу, и идет разряд при недостаточно прогретых электродах. Естественно, это резко снижает ресурс лампы, а глубокой регулировки всё равно не добиться. Существуют специальные комплекты “диммер+лампа”, где управляющий сигнал передается по отдельному проводу, но их стоимость выходит за рамки разумного. В последнее время появились КЛЛ, совместимые с обычными диммерами, однако и это не слишком практичное решение: при увеличенной на 40% цене экономичность лампы невысока. На малой яркости энергопотребление почти не снижается, а срок службы ощутимо падает.
Кроме того, КЛЛ не любят тесных, закрытых и особенно герметичных светильников. Воздухообмен там недостаточен и ЭПРА сильно греется, особенно если лампа расположена цоколем вверх, да ещё в теплом месте (под потолком кухни, в ванной и т. п.). Нередко от жары размягчается клей, крепящий трубки к корпусу, и колба отвисает — выглядит это ужасно. На перегрев часто не обращают внимания, привыкнув к неприхотливым ЛН, а потом жалуются, что “сберегайки” недолговечны.
Наконец, светотехнически КЛЛ заметно отличаются от ЛН. Габариты их сравнительно велики, а распределение света может быть самым разным, зависящим от формы колбы. Так, U-образные прямые трубки в основном светят по сторонам, у “витушки” больше света направлено по оси лампы, “лотос” дает равномерно направленный свет. Нередко светильник, где ЛН заменена на КЛЛ, создает зрительный дискомфорт: слепящие трубки выглядывают из плафона, а освещенность рабочей поверхности явно недостаточна.
К счастью, новые модели в этом смысле улучшились. Ряд производителей освоил трубки T2 диаметром 6 мм; их плотная завивка позволяет фактически уложиться в габариты ЛН, а светораспределение близко к оптимуму.
К светотехническим отличиям можно отнести и медленный выход на рабочий режим. Многие КЛЛ сразу после включения светят довольно тускло, вполсилы, и на полную яркость выходят через одну-две минуты. К этому добавляется плавный старт, когда после включения лампа две-три секунды прогревает электроды и света вообще не дает. Эта особенность иногда удобна (скажем, человек вошел с темноты в помещение, и разгорающаяся лампа помогает адаптации зрения), но чаще раздражает, особенно в тех помещениях, куда заходишь на короткое время, а свет нужен яркий. Там бывает лучше оставить ЛН.
3. Неэкологичность
Газовый разряд в КЛЛ происходит в смеси аргона и паров ртути, так что этот ядовитый металл имеется в каждой лампе. Есть опасность отравления ртутью из разбитой колбы, и что более важно, опасность загрязнения интерьера — ртуть легко адсорбируется самыми различными материалами. Например, если лампа падает на ковер и разбивается, то очистить его от ртути практически невозможно (точнее, можно, но ценой порчи ковра; проще сразу выбросить).
Современные КЛЛ в зависимости от мощности содержат всего 2–6 мг ртути (для сравнения, в линейных ЛЛ её гораздо больше, 20–50 мг), но и это количество небезопасно. ПДК паров ртути всего 0,3 мкг/м3, так что одна разбитая лампа способна заразить несколько тысяч кубометров воздуха.
Это серьёзная проблема, которую ведущие производители решают с помощью амальгамной технологии. В колбу вместо жидкой ртути вводится металлический сплав, ртуть из которого при атмосферном давлении и комнатной температуре почти не испаряется. Более того, шарик сплава находится в специальном отростке и не выпадает из разбитой лампы. Благодаря этому не требуется трудоемкая демеркуризация, достаточно собрать осколки и проветрить помещение.
Вместе с тем амальгамные лампы медленнее разгораются, чем лампы, содержащие жидкую ртуть. Первые десять-двадцать секунд после зажигания они светят совсем слабо, а полную яркость набирают лишь через две-три минуты. Выбирайте — экологическая безопасность либо моментально яркий свет.
Отдельный вопрос — утилизация вышедших из строя КЛЛ. Понятно, что их нельзя выбрасывать вместе с бытовым мусором. Не говоря о содержании ртути, лампы на 90% поддаются вторичной переработке. В цивилизованных странах повсеместно имеются контейнеры для сбора КЛЛ; в России их принимают немногочисленные магазины ИКЕА. В Москве ещё в 1999 г. начат сбор отработанных ламп через систему ЖКХ, но программа выполняется спустя рукава.
4. Паразитные излучения
Как известно, в ЛЛ первичное ультрафиолетовое излучение преобразуется в видимый свет посредством люминофора. При этом около 1% УФ пробивается наружу, что обычно не представляет проблемы. Однако КЛЛ, применяемые в настольных светильниках, находятся так близко от человека, что пренебрегать УФ-лучами уже нельзя. При длительном воздействии они могут вызвать раздражение кожи, обострить имеющиеся кожные заболевания и спровоцировать новые. Первыми это заметили в Британской ассоциации дерматологов, куда стали обращаться ювелиры и прочие специалисты, нуждающиеся в ярком освещении рабочего места. Немало людей с фоточувствительной кожей пострадали от перехода на КЛЛ. Медицинские эксперты советуют находиться не ближе 30 см от лампы, а также использовать дополнительное защитное стекло.
Кроме того, дешёвые лампы не имеют помехоподавляющих фильтров в ЭПРА и дают наводки в электросеть, что негативно влияет на чувствительную аппаратуру.
Советы по эксплуатации
1. Не прилагайте усилий к хрупкой колбе. При всех манипуляциях (установка в патрон и т.п.) КЛЛ следует держать за пластиковый корпус. Это особенно актуально для ламп с тонкими трубками. Хотя соответствующее предупреждение есть на каждой упаковке, немало людей прощается со своей покупкой, даже не опробовав её.
2. Как уже говорилось, КЛЛ не любят частых включений. Лампы малой мощности (до 13 Вт) лучше вообще не выключать: сокращение ресурса от нескольких включений обойдется дороже, чем работа в течение дня. Старую привычку “уходя, гаси свет” необходимо пересмотреть.
В том месте, где свет заведомо будет включаться чаще трёх-четырёх раз в день, используйте КЛЛ с плавным стартом — эта функция значительно продлевает срок службы.
www.svetinfo.ru
Устройство и принцип работы люминесцентной лампы
Люминесцентная лампа (ртутная лампа низкого давления, далее по тексту – ЛЛ) является газоразрядным источником света. Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцах трубки установлены спиральные электроды. Внутри лампы находятся разреженные пары ртути и инертный газ. Под действием электрического напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд. При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение.

Принцип люминесцентной лампы.
Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т.е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена ЛЛ, препятствует выходу ультрафиолетовогоизлучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.
Исключением являются бактерицидные лампы, при их изготовлении применяется увиолевое или кварцевое стекло, пропускающее ультрафиолет. Широкое распространение на сегодня получают ЛЛ с амальгамами In. Cd и других элементов. Более низкое давление паров ртути над амальгамой дает возможность расширить температурный диапазон оптимальных световых отдач до 600C вместо 18-250C для чистой ртути.
При повышении температуры окружающей среды сверх допустимой нормы (25оC для чистой ртути и 60оC для амальгам) возрастает температура стенок и давление паров ртути, а световой поток снижается.
Устройство компактной люминесцентной лампы.
Еще более заметное уменьшение светового потока наблюдается при понижении температуры, а значит, и давление паров ртути. При этом резко ухудшается и зажигание ламп, что делает затрудненным их использование при температурах ниже -10оC , без утепляющих приспособлений. В связи с этим представляют интерес безртутные ЛЛ, с разрядом низкого давления в инертных газах.
В этом случае люминофор возбуждается излучением с длиной волны от 58.4 до 147 нм. Поскольку давление газа в безртутных ЛЛ практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики. На сегодняшний день проблема работы ЛЛ при низких температурах решена использованием ЛЛ нового поколения, так называемых ламп Т5 (с диаметром трубки 16 мм), компактных люминесцентных ламп и применением для питания ЛЛ высокочастотных электронных пускорегулирующих аппаратов (ПРА).
Световая отдача ЛЛ повышается при увеличении размеров (длины) за счет снижения доли анодно-катодных потерь в общем световом потоке. Поэтому рациональнее использовать одну лампу на 36 Вт, чем две по18 Вт. Срок службы ЛЛ ограничен дезактивацией и распылением (истощением) катодов. Отрицательно сказываются на срок службы также колебания напряжения питающей сети и частые включения и выключения ламп. При использовании ЭПРА эти факторы сведены к минимуму. Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания :
- Высокая эффективность: КПД — 20-25% (у ламп накаливания около 7% ) и светоотдача в 10 раз больше .
- Длительный срок службы – 15000-20000 ч. (у ламп накаливания — 1000 ч., сильно зависит от напряжения) питания.
Имеют ЛЛ и некоторые недостатки :
- Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), — электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
- Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55оC, оптимальной считается 20оC ). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).
Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное ) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом ) значительное физиологическое и психологическое воздействие, в основном благотворное.
Схема энергосберегающей лампы.
Дневной свет — самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались ( и используются ) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.
Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициет полезного действия — 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.
Типичные люминесцентные лампы-трубки.
Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.
В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.
Так, лампы, выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.
Схема включения люминесцентной лампы.
Выпускаются также специальные агарные ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».
Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения, становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.
Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.
Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие жалобы на люминесцентное освещение.
Изменение тока люминесцентной лампы от напряжения сети.
В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т .е. при имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду.
И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.
Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.
Маркировка и параметры отечественных люминесцентных ламп.
И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг , а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.
Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.
На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:
- Германская фирма OSRAM.
- Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.
fazaa.ru




