Принцип работы диммер – устройство и принцип работы диммера

Содержание

Принципы работы диммеров. Рынок Электротехники. Отраслевой портал

С самого начала стоит подчеркнуть, что в данной статье описываются диммеры, используемые в жилых помещениях. Мы не станем рассматривать мощные сценические диммеры, а также концентрировать внимание на обсуждении систем умного дома С-bus или других систем домашней автоматизации. Несмотря на то что между продукцией высокого и низкого качества есть много общего, процесс автоматизации по природе своей является почти полностью цифровым и может быть выполнен несколькими разными способами, причем конечный результат одинаков. 

Существуют две основные категории традиционных диммеров переменного тока: обычно их делят на светорегуляторы, срезающие передний фронт, и те, которые срезают тыл. Оба указанных диммера отлично работают при активной нагрузке, которую создают, к примеру, светильники с лампами накаливания. Однако при использовании ламп с электронными компонентами к выбору схемы управления стоит подходить более тщательно. Кое-где, возможно, все еще применяются устаревшие (и крайне неэффективные) реостатные диммеры, а также светорегуляторы на основе автотрансформаторов. Но, поскольку они не являются стандартными и уже точно не будут ими в будущем, в описании подобных диммеров я коснусь только их общих особенностей.

Сейчас при организации низковольтного освещения часто используются электронные трансформаторы. Они приобрели популярность из-за низкой стоимости и сравнительной эффективности. Однако по подобным устройствам довольно сложно найти какую-либо полезную и правдивую информацию. В сети можно найти несколько схем самых простых диммеров (срезающих передний фронт), а также информацию по электронным трансформаторам, но практически ничего о светорегуляторах, отсекающих тыл, и принципах их работы. 

 Все графики и расчеты, приведенные в настоящей статье, рассчитаны для сетей питания 50 Гц, 230 Вольт AC. С учетом этой информации нетрудно будет рассчитать напряжение и частоты для других источников питания. Это было сделано для упрощения описания, поскольку основные принципы работают для любых показателей частоты и напряжения. Большинство приведенных графиков построены не путем прямого измерения, а с помощью моделирования. Это упрощает процесс создания графиков и позволяет провести их более детальный анализ, выявить коэффициент мощности и искажение. Если бы мы решили прибегнуть к реальным измерениям, нам бы потребовалось куда больше времени на подготовку, а результат при этом остался непредсказуем из-за коэффициента искажения формы кривой напряжения, колебаний напряжения источника питания и внешних помех/искажений.

Наконец, существуют диммеры, работающие только в цепях постоянного тока. Раньше подобные светорегуляторы были редкостью (или использовались только для управления скоростью электродвигателей постоянного тока), но теперь они получили второе рождение и применяются для организации светодиодного освещения. Дроссели состоят из импульсных источников питания постоянного тока, модифицированных с целью обеспечения непрерывного тока, необходимого для питания светодиодов. Уменьшение силы света достигается путем организации цикла включения/выключения постоянного тока, что сокращает потери.  

Коэффициент мощности. Для обозначения графиков с небольшим или нулевым искажением шкалы напряжения и хорошим коэффициентом мощности я буду использовать термин «дружественный». У многих складывается впечатление, что коэффициент мощности следует учитывать, только имея дело с индуктивной или емкостной нагрузкой, что в корне неверно. Любая кривая тока, которая не является точной копией кривой напряжения, имеет коэффициент мощности меньше единицы (в идеале). И не имеет значения, если кривая тока просто сдвинута по фазе или не линейна, коэффициент мощности все равно затрагивается.

·         Единица – ток и напряжение находятся в фазе и имеют идентичные кривые (показатели активной нагрузки).

·         Сдвиг фаз – из-за индуктивной нагрузки пик тока наступает после пика напряжения (двигатели, трансформаторы). 

·         Опережение по фазе – из-за емкостной нагрузки пик тока наступает до пика напряжения (несвойственно, но такое может случиться и иногда случается).

·         Нелинейность – ток и напряжение находятся в фазе, но их кривые различны (характерно для многих электронных нагрузок). 

Поскольку для получения вольтамперной характеристики показатели тока и напряжения просто перемножаются, становится очевидным, что для последних трех примеров значение указанной характеристики составит 105,8 В-А, а мощность при этом останется прежней – 52,9 Вт. Всякий раз, когда вольтамперная характеристика и коэффициент мощности имеют различные показатели (вольтамперная характеристика не может быть меньше мощности), из сети поступает чрезмерный ток, что вызывает потери в распределительных кабелях, трансформаторах, подстанциях и генераторах. Сталкиваясь с коэффициентом мощности 0,5, генератор мощностью 1 МВт может произвести только 500 кВт, поскольку на его работу влияет вольтамперная характеристика. Все компоненты распределительной электрической сети фактически ограничены вольтамперной характеристикой, а не коэффициентом мощности.

Даже несмотря на то что показатели мощности могут совпадать с заводским диапазоном, указанным на трансформаторе, при превышении вольтамперной характеристики он будет перегреваться. Постоянный перегрев приведет к отказу или сбою в работе оборудования. По этой причине энергосбытовые компании (ЭСК) и/или службы по всему миру уделяют внимание получению наилучшего возможного коэффициента мощности для максимально продуктивной работы оборудования. Для мощных промышленных установок, чей коэффициент мощности не укладывается в оговоренные рамки, даже предусмотрены соответствующие дополнительные штрафы. 

Кривые, подобные тем, что приведены в последнем примере, считаются наихудшим вариантом, поскольку для их корректировки и сокращения нелинейности можно не так уж много сделать. Гармонические колебания частоты напряжения сети проникают в систему, провоцируя дальнейшие проблемы. Полное обсуждение разрушительного действия нелинейных кривых не предусмотрено в рамках данной статьи, но стоит отметить, что во многих странах введены (или готовятся к внедрению) постановления об обязательной компенсации коэффициента мощности для всех электронных нагрузок, превышающих допустимый лимит мощности. 

Принципы работы диммера

Чтобы приглушить лампу, обычно тем или иным способом уменьшают приложенное напряжение. На самом раннем этапе развития подобных приборов для достижения этого результата использовался реостат (переменный резистор), последовательно соединенный с лампой. Это делалось из-за отсутствия какой-либо разумной альтернативы. При таком решении тратится огромное количество энергии. По скромным подсчетам, с момента, как кто-то в последний раз использовал подобного «монстра», прошло не менее 40 лет. Конечно, есть и положительные стороны, поскольку при этом подходе обеспечивается довольно «дружественная» нагрузка на сеть при нулевых коммутационных импульсах и идеальном коэффициенте мощности. Сложность заключается в избыточном перегревании, особенно если речь идет об очень мощных лампах. Из-за необходимости рассеивания тепла реостатные диммеры отличает довольно крупный размер (если вам удастся их найти).

Регулируемый автотрансформатор (известный как вариак™) отличается практическим отсутствием потерь электроэнергии и оказывает такое же щадящее действие на электросеть, как и реостат, но является очень затратным (и громоздким) способом затемнения ламп. Самый дешевый ныне доступный регулируемый трансформатор стоит около $150 и весит несколько килограммов. Хотя, несомненно, описанный подход является отличным вариантом, его трудно применять из экономических соображений.

Еще 20 лет назад диммеры на основе автотрансформаторов широко использовались в телестудиях. Еще одним устройством, использовавшимся в прошлом для схожих целей, был «магнитный усилитель». Из тех экземпляров, что нам удалось найти, ни один не имел широкого хождения, поскольку им на смену быстро пришли другие технологии. Нам не кажется целесообразным в этой статье упоминать о принципах работы магнитных усилителей. 

В настоящее время наиболее распространенными являются диммеры с регулированием фазы, отсекающие передний фронт, сконструированные на основе двунаправленного триодного тиристора. Тиристор – двунаправленный переключатель, для включения которого необходим лишь краткий импульс. В цепи переменного тока он будет автоматически выключаться при смене полярности тока. Это происходит, потому что напряжение (а значит, и ток) проходит через 0. При нулевом токе тиристор не может обеспечивать проводимость и отключается.

Каждую секунду процесс переключения совершается 100 раз (120 раз для сетей частотой 60 Гц). Среди появившихся бытовых диммеров последний тип называется «универсальным». Подобные светорегуляторы в зависимости от нагрузки могут переключаться на отсечение как переднего, так и заднего фронта.

При изменении соотношения между напряжением включения и выключения создается грубая схема широтно-импульсной модуляции, что позволяет менять количество питания, подаваемого на лампу в широком диапазоне. Для этого способа управления идеально подходят лампы накаливания. При этом способе обеспечивается плавный и естественный переход от практически выключенного до полностью включенного состояния. Для большинства тиристорных диммеров используются самые простые схемы, поэтому работа при пониженных настройках может быть нестабильна. При средних настройках эффективное напряжение половины длины волны составляет 162 В при напряжении источника питания переменного тока 230 В.

Независимо от применимого метода целью является варьирование мощности лампы. При этом пользователь должен иметь возможность устанавливать уровень яркости свечения в зависимости от ситуации. Ни один из общедоступных диммеров не может поддерживать хороший коэффициент мощности (что важно для поддержания исправности электросети).

Для стабильной работы должен использоваться трехжильный провод (земля, фаза и ноль). Это необходимо, чтобы точно соблюсти точку перехода через ноль на кривой сети. Небольшие диммеры не делаются с трехжильным проводом, поскольку это бы затруднило их установку. Поэтому с любыми другими нагрузками, кроме активной нагрузки (как в лампах накаливания), подобные диммеры обычно работают плохо и часто сбоят. Серьезность сбоев зависит от типа нагрузки (особенно недостатки заметны при работе с электронными приборами, такими как компактные люминесцентные или светодиодные лампы).

Двухпроводные светорегуляторы не имеют надежной исходной точки перехода через ноль, поскольку заряженные конденсаторы (внутри источника питания лампы) на протяжении практически всего цикла сигнала вырабатывают нулевой ток. Таким образом, диммер не может быть постоянно включен (на полную мощность), потому что до момента срабатывания тиристора должно пройти какое-то время.

Недиммируемые (без регулировки яркости) компактные люминесцентные или светодиодные лампы нельзя подключать к цепи с диммером, даже если он установлен на полную мощность. Хотя это и не очевидно, ток в цепи лампы может резко возрасти (в 5 раз или даже больше), что спровоцирует угрозу возгорания, а также негативно повлияет на срок службы электронных компонентов лампы. 

Даже коммерческие диммеры, которые поддерживают точное пересечение нуля, не следует использовать вместе с компактными люминесцентными и светодиодными лампами или любыми другими конденсаторными источниками входного питания. На одной из установок нам удалось наблюдать, как конечный пользователь добился практически 100% потерь при подключении светодиодных трубок через схему с промышленным светорегулятором. Норма отказов составила приблизительно 1%. При этом поставщики уверяли, что потери провоцирует не диммер.

Единственное, чем отличалась их установка от всех прочих подобных, – это наличие светорегулятора. Таким образом, легко сделать вывод, что именно из-за него и происходили отказы. По странному стечению обстоятельств, проблемы и конечного пользователя, и поставщика диммера заключались в самой концепции. 

Мощные промышленные диммеры часто производятся с применением триодных тиристоров (соединенных параллельно в обратном порядке), поскольку они выдерживают более высокие токовые нагрузки, чем обычные тиристоры. Переключение зачастую провоцируется высокочастотными импульсами, которые обеспечиваются на всем протяжении отрезка сигнала сети, отвечающего за включенное состояние. Трехпроводная конструкция позволяет не допускать потерь при переходе через ноль. Тем не менее, как указано выше, даже подобные светорегуляторы не подходят для работы с нагрузками источников питания электронного типа.

Диммеры, срезающие передний фронт

На данный момент это самые распространенные светорегуляторы. Их название обусловлено тем, что диммер при работе буквально отсекает передний фронт волны переменного тока. Для стандартных бытовых диммеров в качестве активного переключателя с низкой на среднюю мощность практически всегда используется тиристор. При срабатывании тиристора сигнал сети переходит на нагрузку с периодом задержки от 0 (полное включение) до 9 мс (сильное приглушение яркости).

В качестве примера на рис. 3 показана форма кривой напряжения при нагрузке диммера, срезающего передний край, установленного на 50% мощности. Для сравнения первые два цикла, показанные на графике (выделены зеленым цветом), изображают работу без функции затемнения. Настоящий график можно считать «идеальным». Это тот результат, которого можно ожидать от цепи, работающей в точном соответствии с теорией. Функционирование большинства диммеров указанной конструкции близко к идеалу.

Как отмечалось выше, диммеры, отсекающие передний фронт, никогда не следует включать в одну схему с компактными люминесцентными лампами, если о такой возможности четко не сообщается в инструкции, поскольку из-за быстро возрастающего сигнала через основной конденсатор фильтра, являющийся частью балластной цепи лампы, начинает поступать очень большой ток. При использовании большинства современных светодиодных ламп вы столкнетесь с той же проблемой.

Как и в случае с люминесцентными лампами, в инструкции должно быть четко указано, что они совместимы с упомянутыми диммерами. В качестве примера, если электронный балласт потребляет из сети 83 мА, то этого достаточно, чтобы запитать любую лампу с электронным переключением мощностью 8 Вт. Если для повышения коэффициента мощности при этом не используется никакой дополнительной схемы, токовые пики составят 270 мА, а коэффициент мощности будет равен 0,42, что является довольно слабым показателем.

Если ту же самую цепь запитать с помощью диммера, в худшем случае среднеквадратическое значение тока поднимется до 240 мА с пиками в 4,2 A. При этом коэффициент мощности упадет до 0,14, что можно назвать по-настоящему плохим результатом. На данном этапе источник питания лампы потребляет из сети более 55 В-А, что выражается в том, что на выходе мы имеем довольно грубую кривую с острыми участками. 

Представленная выше схема является стандартной для высококачественного диммера, срезающего передний фронт. C1 и L1 – точки подавления радиопомех. Схема работает, используя фазовый сдвиг, создаваемый VR1, C2, R1 и C3. Эта сеть задерживает сигнал, подаваемый на DB1 (диод с двусторонним ограничением – симметричный диодный тиристор). Когда напряжение начинает превышать 30 В (стандартная величина) напряжения пробоя симметричного диодного тиристора, он становится полностью проводимым и заряд на С3 используется для запуска двунаправленного триодного тиристора (триака). После запуска триак будет проводить ток в полном объеме, пока он не опустится ниже нуля, после чего снова отключится. Этот процесс повторяется каждый полуцикл напряжения сети. Точки задержки, включения и выключения показаны на рис. 3.

Диммеры описываемой конструкции никогда не следует использовать с емкостной нагрузкой (большинство схем электронного балласта), поскольку из-за стремительного периода нарастания напряжения на конденсатор начинает сразу же подаваться большой ток. Индуктивные нагрузки (трансформатор с железным сердечником) переносятся довольно хорошо, поскольку индуктивность способствует ограничению времени нарастания тока до безопасных значений (однако см. информацию ниже).

Устройство черного цвета, расположенное слева, – это двунаправленный триодный тиристор (триак). Он оснащен теплоотводом, контакт между ним и триаком лучше всего можно описать как случайный. Надо сказать, что когда этот диммер сняли, в нем не наблюдалось вообще какого-либо контакта, несмотря на то что прибор исправно проработал 12 лет и был, возможно, последним в своем роде, который протянул так долго. Простота схемы очевидна. Использована самая незатейливая плата. Некоторые компоненты имеют сквозные отверстия, а с обратной стороны нет вообще ни одного элемента. Схема практически совпадает с той, что показана выше. Катушка и конденсатор оранжевого цвета предназначены для подавления помех, однако предохранителя не предусмотрено.

В случае короткого замыкания этого светорегулятора лампа просто станет светить на полную мощность. 

Несмотря на то что создатели диммеров, срезающих передний фронт, часто утверждают, что они подходят для использования с трансформаторами с железным сердечником, в некоторых случаях это не так. Наиболее распространенная проблема, возникающая при применении простейших тиристорных диммеров, связана с их переходом на режим «половинной волны». Они начинают проводить только одну полярность формы волны сети. Это катастрофа для любого трансформатора, на который тут же начнет поступать очень большой ток, ограниченный только первичным сопротивлением.

Диммеры, срезающие тыл

Диммер, срезающий задний фронт (их еще называют светорегуляторами с «обратной фазой»), нуждается в более сложной схеме. С данным устройством уже невозможно использовать простейшую схему, которая отлично работала с диммерами, срезающими передний фронт, поскольку большинство двунаправленных триодных тиристоров просто невозможно выключить. Существуют, конечно, двухоперационные тиристоры, но они обойдутся значительно дороже и редко отличаются компактными размерами, что необходимо для наладки освещения. Чтобы правильно организовать работу диммера, срезающего задний фронт, коммутационное устройство нужно настроить так, чтобы оно включалось при прохождении кривой переменного тока через ноль. Для этого используется детектор перехода сигнала через ноль. По истечении заданного регулирующим устройством времени коммутационное устройство выключается, а оставшаяся часть кривой сигнала просто не используется.

 В конструкцию описываемых диммеров часто включены МОП-транзисторы (полевые транзисторы на основе перехода металл-оксид-полупроводник). Причина заключается в том, что для их работы практически не требуется ток управления, а сами по себе они прочны и надежны. МОП-транзисторы относительно дешевы и подходят для использования в рамках диапазона напряжений, выдаваемого электрической сетью. С другой стороны, можно использовать БТИЗ (биполярный транзистор с изолированным затвором), который сочетает в себе преимущества обоих типов, но обойдется он дороже. Необходимо снова подчеркнуть тот факт, что мы рассматриваем идеальную волну, и, если взглянуть на кривую, показанную на рис. 6, очевидно, что между ней и идеальной есть существенные различия, которые особенно заметны на отрезке, отвечающем за полную мощность. Это происходит из-за потери части приложенного напряжения, связанного с необходимостью обеспечения питания сложной электронной схемы. Иначе она просто не будет работать.

Как и в предыдущем примере, на кривой указаны точки переключения и задержки. Нет нужды приводить полную диаграмму цепи указанного светорегулятора, поскольку в их конструкции за выполнение необходимых функций зачастую отвечают специализированные ИС (или сложносочиненные схемы, состоящие их нескольких стандартных). На рис. 6 приведена блок-схема, включающая основные компоненты цепи, а на рис. 7 показана схема диммера, сделанного на основе промышленной ИС.

C1 и L1 – устройства подавления внешних радиопомех. В схеме необходим выпрямитель тока, поскольку МОП-транзисторы не могут переключать переменный ток, только постоянный. Источник питания, детектор перехода сигнала через ноль и таймер, как правило, уже входят в состав специализированной ИС. Показаны сигналы для каждой точки цепи. Выходной сигнал детектора перехода сигнала через ноль сбрасывает таймер, обеспечивая высокий уровень на выходе, и включает МОП-транзистор. После прохождения интервала между 0 и 10 мс для частоты 50 Гц таймер обеспечивает низкий уровень на выходе, МОП-транзистор выключается, и прохождение тока через токоприемник прерывается.

Во многих отношениях рассматриваемые диммеры (срезающие передний и задний фронт) являются полными противоположностями друг другу. 

Из-за довольно низкой скорости возрастания выходного напряжения исчезает проблема большого выброса тока, который диммер, срезающий передний фронт, направляет на емкостную нагрузку. Некоторые затемняемые компактные флуоресцентные и светодиодные лампы отлично работают с подобными диммерами. Однако светорегуляторы, срезающие задний фронт, никогда не следует использовать в связке с трансформаторами с железным сердечником. Как правило, это указывается в инструкции. 

Почему так получается? Казалось бы, диммер, срезающий задний фронт, должен идеально подходить для этих целей. Проблема кроется в обратной ЭДС, которая генерируется, когда переключатель выключается по 100 или 120 раз в секунду. Большую часть времени обратная ЭДС будет безопасно рассеиваться, но при отказе ламповой нагрузки энергии выключения просто будет некуда деться. Наиболее вероятный результатом станет повреждение диммера, поскольку вряд ли промышленные установки смогут рассеять обратную ЭДС без сильного перегрева или поломки. 

Обратная ЭДС образуется при любой индуктивной нагрузке, поскольку индукционная катушка – это элемент, в котором накапливается энергия (реактивный компонент). Энергия сохраняется в виде магнитного поля. При прерывании тока оно разрывается, генерируя в процессе электрический ток. При отсутствии нагрузки (в качестве которой выступает лампа), подсоединенной к индуктивной составляющей, даже малый ток обладает очень высоким напряжением. Это случается регулярно, но обычно эффект рассеивается, что выражается в возникновении небольшой дуги между переключающими контактами. Подобные дуги не наносят вреда, если появляются не более одного-двух раз в день. Но если этот эффект повторяется 100–120 раз в секунду, накапливается существенная средняя мощность.

Как вы видите, при простом взгляде на многоштырьковую ИС невозможно понять, как она работает. Однако всегда полезно посмотреть, как именно сконструирована схема. Естественно, это не единственный способ. Некоторые промышленные диммеры, срезающие задний фронт (такие, как на фото ниже), сделаны с применением многофункциональной ИС и прочих деталей, которые можно увидеть на поверхности платы. Эффект при этом достигается тот же. 

Два крупных устройства на левой плате – это мощные МОП-транзисторы. Обратите внимание, что нижняя часть печатной платы также занята деталями, включая таймер, другую ИС, которую невозможно распознать, четыре транзистора, несколько резисторов и конденсаторов. Изображенное устройство довольно дешево в производстве, однако можно только представить, сколько времени потребуется разработчикам, чтобы создать прибор, обладающий высокой надежностью, и подходящий при этом для стандартного применения. Стоимость такого светорегулятора будет в 3–4 раза выше стандартных диммеров указанной конструкции.

Промышленный диммер, показанный на фото, был протестирован с лампой накаливания мощностью 60 Вт, благодаря чему были получены формы кривых, представленных на графике. Если форма кривой при максимальных настройках отличается от формы идеального сигнала, показанного на рис. 5, то при минимальных настройках (и вплоть до установки средней мощности) теоретические построения и реальный результат практически сходятся. При полной загрузке цепь не может вести себя как при настоящем коротком замыкании, поскольку часть приложенного напряжения идет на питание электронных компонентов. Это вызывает разрыв цепи, который можно наблюдать в области нулевого тока, когда диммер работает на полную мощность. 

Всегда следует помнить о том, что если электронная лампа явно не предназначена для затемнения, подобный диммер не будет работать. Просто ради эксперимента я пытался объединить его в одной цепи со стандартной компактной люминесцентной лампой. Больших выбросов тока не наблюдалось, но лампу было невозможно нормально затемнить, схема отказывалась правильно работать. Это правило в равной степени верно в отношении и компактных люминесцентных, и светодиодных ламп. О том, что они подходят для использования с диммерами, должно быть четко указано в инструкции. Продолжительное использование электронной лампы в одной цепи с диммером может вызвать повреждение схемы, сильный перегрев оборудования или даже спровоцировать пожар.

Коэффициент мощности диммера

Оба типа диммеров обладают одинаковым коэффициентом мощности при той же мощности выходной нагрузки. Ни один из них не позволяет применить какой-либо реальный или полезный способ коррекции коэффициента мощности. Единственным смягчающим фактором является то, что при низких настройках на некоторых отрезках цикла из сети поступает ток, который не используется большинством небольших источников питания. Однако коэффициент мощности все еще оставляет желать лучшего, особенно при низких значениях мощности.

В колонке «угол» проводится градусная мера угла кривой на отрезке питания лампы. Полный цикл составляет 360°, полуцикл – 180°. При частоте 50 Гц использован коэффициент нарастания 18°; 18° эквивалентны интервалу в 1 мс. Это было сделано для упрощения процесса вычислений. Для источника питания частотой 60 Гц данные практически такие же. Единственное отличие заключается в том, что время прохождения одного полного цикла при 60 Гц составляет 16,67 мс, а не 20 мс. Это не влияет на угол, питание или коэффициент мощности, но из-за того, что для стран, использующих источники питания частотой 60 Гц, напряжение будет иным, значение тока тоже будет отличаться.

Угол

Ток

Мощность

Коэффициент мощности

180°

1000 mA

230 Вт

1,00

162°

994 mA

227 Вт

0,99

144°

971 mA

217 Вт

0,97

126°

918 mA

194 Вт

0,92

108°

829 mA

158 Вт

0,83

90°

702 mA

113 Вт

0,70

72°

557 mA

71 Вт

0,55

54°

391 mA

35 Вт

0,39

36°

226 mA

11,7 Вт

0,23

18°

83 mA

1,6 Вт

0,08

0 mA

0 Вт

0,00

Фазовый угол против коэффициента мощности, 230 В AC, нагрузка 230 Ом. Обратите внимание, что нагрузка, использованная при составлении вышеприведенной таблицы, полностью активная и остается неизменной при любых настройках. Однако лампы накаливания не являются устройствами постоянной нагрузки. При остывании нити накаливания при пониженных настройках, уменьшается и сопротивление, что приводит к потреблению большей энергии, чем требуется. Именно поэтому, несмотря на то что уменьшение силы света лампы, несомненно, сокращает потребление энергии, выгода не так велика, как можно было бы ожидать или предполагать.

Стандартная лампа для рабочего освещения (100 Вт) при работе в приглушенном режиме потребляет около 18 Вт. Это больше, чем можно ожидать. Из-за охлаждения сопротивление нити накаливания падает примерно до значения половины сопротивления полной мощности, поэтому потребляется в два раза больше энергии, чем при фиксированном сопротивлении. Для сравнения была протестирована лампа рабочего освещения. При охлажденном состоянии сопротивление составило 44 Ом, в нагретом состоянии – 552 Ом (при включении на полную мощность).

Электронные трансформаторы

Многие новые установки, в которых используются низковольтные галогенные лампы, сконструированы с применением электронных трансформаторов. Несмотря на то что традиционные трансформаторы с железным сердечником отлично работают и обладают невероятным запасом прочности, обходятся они очень дорого. Некоторые из них довольно неэффективны, поскольку теряют порядка 20% от общей мощности, выделяя ее в виде тепла. Электронные трансформаторы отличаются более компактным размером и легким весом и выглядят менее «солидно». Но большинство из них на самом деле эффективны, потери обычно составляют менее 15%. Меньший процент потерь говорит о том, что они вырабатывают меньше тепла, а значит, потребляют меньше энергии. Несмотря на то что уровень рассеивания энергии отдельной установкой может показаться некритичным, при одновременной работе тысяч подобных устройств существенным становится каждый лишний процент потерь. 

Стандартный трансформатор с железным сердечником работает с частотой напряжения сети (50 или 60 Гц). При этом из-за низкой частоты сердечник должен быть довольно значительных размеров. Размер сердечника обратно пропорционален частоте напряжения сети, поэтому трансформатор, работающий при высоких частотах напряжения, может иметь более компактный размер.

Термин «электронный трансформатор» на самом деле употребляется неверно, поскольку это устройство скорее можно описать как импульсный источник питания (ИИП). Электронные схемы применяются для выпрямления сети и конвертации переменного тока в пульсирующий постоянный. Затем пульсирующий постоянный ток подается на коммутационную цепь высокой частоты и небольшой трансформатор. На рис. 11 изображено стандартное устройство подобного типа. 

Слева расположены вводные клеммы, справа – выходные клеммы 12 В. На входе установлен элемент фильтрации радиочастотных помех. Вертикально стоящие устройства, которые видны по нижнему краю, – это два переключающих транзистора. Небольшое зеленое кольцо в центре схемы – трансформатор переключения транзистора. Большой элемент из белого пластика – выходной трансформатор. Внутри него расположен ферритовый сердечник с основной обмоткой. Дополнительные витки (выходной сигнал – 12 В) выведены наружу. Выходной сигнал не трансформируется, это переменный ток, который подается всплесками высокочастотных сигналов. 

T1 – трансформатор переключения транзистора. Он снабжен тремя обмотками: первичной (T1A) и двумя дополнительными (T1B и C). Сравните его с трансформатором зеленого цвета. Первичная содержит один виток, а пусковая обмотка каждого транзистора состоит из 4 витков. T2 – выходной трансформатор. DB1 – симметричный диодный тиристор (такой же, что используется в диммерах, срезающих передний фронт). При превышении напряжением значения в 30 В он запускает колебательный контур цепи. Осцилляция не прекратится до тех пор, пока напряжение не достигнет нуля. Обратите внимание, что базовая выходная частота в два раза выше частоты сети, поэтому выходная частота сигнала электронного трансформатора, работающего в сети частотой 50 Гц, будет равна 100 Гц.

Подобная частота складывается из множества циклов переключения на высокой частоте. Большинство электронных трансформаторов не предназначены для работы без нагрузки (или с нагрузкой в виде лампы). К примеру, установка мощностью 60 Вт для нормальной работы потребует нагрузку, которая потребляет как минимум 20 Вт. При очень небольшой нагрузке на переключающий трансформатор подается слишком малое значение тока, чтобы можно было поддерживать колебательный контур.

Несмотря на то что кривые сигнала приведены в точности в том виде, в котором они были считаны осциллографом на базе ПК, на диаграмме невооруженным глазом заметны участки перехода. Это остаточный эффект процесса оцифровки. Частота на самом деле гораздо выше указанной. Среднеквадратическое напряжение показанного сигнала составляет 12,36 В, но подобную кривую достаточно сложно точно измерить. Я думаю, что реальное значение напряжения было близко к 10 В, которые показал аналоговый измерительный прибор (номинальное значение, указанное на заводском щитке, составляет 11,5 В). При электрическом сопротивлении нагрузки 2 Ом (5A) выходная мощность составила около 50 Вт. Источник питания потребил из сети 231 мА (52,2 В-А). Измеренная входная мощность составила 52 Вт, что позволяет заключить, что коэффициент мощности близок к единице. КПД составляет практически 96%, что является хорошим показателем.

При использовании электронных трансформаторов с низковольтными светодиодными и компактными люминесцентными лампами следует соблюдать осторожность. Поскольку они оборудованы встроенным выпрямителем тока, с ними должны применяться быстрые диоды. Стандартные диоды будут перегреваться, потому что рабочая частота в этой установке гораздо выше той, для которой они предназначены. Несмотря на то что огибающая сигнала имеет частоту всего 100 Гц, частота переключения намного выше – обычно около 30–50 кГц (частота уменьшается с возрастанием нагрузки).

Следует отметить, что экономия энергии при использовании электронных трансформаторов часто переоценивается. В то время как стандартные трансформаторы теоретически имеют бесконечный запас прочности, электронные могут отказать в любой момент и отказывают. Присутствие высоких температур, отмечающееся в пространстве под крышей многих зданий, плохо влияет на полупроводниковые устройства, а повсеместное использование припоя без свинца позволяет говорить о вероятности разрыва соединений. Я видел несколько отказавших приборов, и, несмотря на то что лично я мог бы устранить неполадку, 99% домовладельцев в подобном случае просто выкинут неисправное оборудование и установят новое. Вместо беготни по магазинам с целью замены неисправных установок не проще ли просто использовать неэффективный трансформатор с железным сердечником?

Диммеры постоянного тока 

Несмотря на то что многие (включая меня 30 лет назад) экспериментировали с диммерами постоянного тока, до недавнего времени в них просто не было необходимости. Бывают случаи, когда требуется приглушить свечение автомобильной фары (поворотника или другой). Большинство автомобилей имеют функцию регулируемого освещения приборной панели. В последнем случае обычно используется переменный резистор, к которому последовательно подсоединены лампы, или различные резисторы в зависимости от необходимости попеременно включаются и отключают от цепи. Этот способ подходит для маломощных систем с низкой производительностью, поскольку нет смысла создавать осветительный прибор высокой производительности и тратить энергию, включая в цепь резистивный диммер.

Чтобы наглядно проиллюстрировать энергозатраты, можно произвести простейшие вычисления, представив, что мы используем простой источник питания 12 В и лампочку мощностью 12 Вт…

Мощность лампы

Ток

Напряжение

Резистор

Мощность на резисторе

12 Вт

1 A

12 В

0

0

9 Вт

866 mA

10,39 В

0

1,4 Вт

6 Вт

707 mA

8,48 В

0

2,48 Вт

3 Вт

500 mA

6 В

0

3 Вт

Для упрощения предположим, что лампа имеет постоянное сопротивление (что неверно в отношении ламп с нитью накаливания с любым напряжением). Это, однако, никак не влияет на принцип теста, а включение значения сопротивления лампы для различных настроек в процесс вычислений может только запутать. 

Очевидно, что этот метод не подойдет, если мы хотим получить максимальный КПД. Несмотря на то что величина 3 Вт не ассоциируется у нас с большим выделением тепла, попытка его рассеять в замкнутом пространстве – отнюдь не легкая задача. Таким образом, высокие температуры представляют собой проблему.

Вопрос эффективности начинает стоять еще более остро с возрастанием мощности используемой лампы, поэтому для универсальности необходимо более хорошее решение. К счастью, существует очень простой ответ. В электронике довольно распространен такой прием, как широтно-импульсная модуляция (ШИМ), позволяющий достичь высокой производительности.

При модулировании периодов включения/выключения напряжения, подаваемого на лампу, ее яркость можно контролировать практически без потерь. Если напряжение подается и отключается с одинаковым интервалом (50% коэффициент длительности), лампа (или мощные светодиоды) половину времени работают так, будто на них подается полное напряжение (работают на полную мощность), при этом на самом деле они функционируют на ½ мощности. Поскольку знач

marketelectro.ru

Что такое диммер, назначение, принцип работы, важные советы по установке

Диммер, или выключатель со светорегулятором, при всей своей простоте является очень удобным прибором для выключения освещения в доме и одновременного управления его интенсивностью.

Установленный в доме или офисе, он несет на себе функцию энергосбережения.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Сложна ли установка диммера?

Установка диммера и последующая его эксплуатация абсолютно не сложны. Главное — правильно подобрать подходящую модель и купить качественные лампы.

Принцип работы диммера

Принцип действия прибора элементарен — с помощью него свет зажигается, как при использовании традиционных выключателей, после чего его мощность может плавно регулироваться, от комфортной тусклой подсветки до самого яркого сияния.

Устройство обеспечивает мягкий запуск, не только экономящий ток, но и уменьшающий риск выхода из строя нити накаливания, в настоящее время часто применяется с беспроводными дистанционными выключателями света.

Что предлагает рынок

В магазинах можно купить диммеры самых разных конструкций, отличающиеся способом управления.

Это могут быть как привычные нажимные и поворотные варианты, так и более современные модификации, оснащенные сенсорной панелью, чувствительной к касаниям пальцев.

В поворотных моделях регулировка осуществляется вращением круглой кнопки, в нажимных — необходимым количеством нажатий клавиши, в сенсорных — легким прикосновением.

Существуют и дистанционные светорегуляторы, управляющиеся с помощью беспроводного пульта прямо с дивана.

В некоторых многофункциональных решениях реализована возможность управления сразу несколькими светильниками независимо друг от друга, в том числе всей системой освещения в доме.

Признанный факт — установка диммера позволяет сократить ежемесячные затраты энергии на 40 процентов и в целых 20 раз продлить срок службы ламп за счет подачи более низкого напряжения на нить накаливания.

Выбор диммера

Как выбрать диммер для установки в жилом или рабочем помещении?

Сделать это нетрудно, достаточно брать во внимание такие параметры, как суммарная мощность подключаемых ламп и их тип.

Важно понимать, что для экономичных энергосберегающих ламп и традиционных ламп накаливания схемы регуляторов будут иметь различия.

Диммеры для обычных лампочек работают с напряжением 220 вольт, для галогенных — подключаются через трансформатор с током на выходе 12-24 вольта, для светодиодов и люминесцентных ламп — через электронный дроссель с диапазоном напряжения 1-10 вольт.

При покупке нужно брать в расчет характеристику предельной суммарной нагрузки устройства.

Например, регулятор со значением 300 ватт сможет регулировать яркость люстры с 5 рожками, в каждом из которых установлена лампа мощностью 60 ватт. Для более сильных нагрузок он уже не подойдет.

Установка диммера – важные моменты

По правилам установка диммера должна проводиться только профессиональным электриком. В процессе монтажа помещение должно быть полностью обесточено.

Неправильно установленный регулятор начинает гудеть при включении. В таком случае, проверяют правильность совпадения его разъемов с нужными проводами.

Подводим итог

Такой прибор — первый шаг на пути к энергосбережению и созданию умного дома, позволяющий создать эргономичный и уютный для глаз интерьер.

Бликовые контрасты, грамотная игра света и тени в жилище — вот результаты его работы.

Соединив несколько регуляторов в одну сеть, и организовав управление их работой с помощью единой панели, можно осуществить комфортное световое зонирование жилища. Спасибо за внимание. Всем удачи!

elektrikexpert.ru

Диммер. Принцип их работы. Светодиодные диммеры.

Нынешние формы диммер приобрел сравнительно недавно. Тиристорный выключатель начали применять самоделкины еще в ХХ веке. Простая схема диммера такого типа позволяла изготовить его даже начинающему пионеру из кружка юных физиков.

Название диммер получил от английского «dim» – затемнять, делать тускнее. Это вариант регулятора электрической мощности. Обычное использование – регулировка яркости ламп или светодиодов. Наипростейшая форма – реостат – существует довольно давно. Однако реостат имеет недостаток – он выделяет большую мощность, а это дает очень низкий КПД, да еще и нагрев устройства. Также разновидностью регулятора можно считать автотрансформатор, однако такие устройства имеют внушительные размеры и вес, а это делает их неудобными, тем более в нашу эпоху.

Электронные диммеры признано считать наиболее компактными и экономными. Однако к ним не рекомендуется подключать такие устройства, которые работают от тока низкого коэффициента – у них может перегореть обмотка. Если первые диммеры могли выполнять лишь одну функцию (менять яркость лампы), то на современном этапе развития их роль значительно расширилась. Современные регуляторы управляют:

  • яркостью
  • автоматическим отключением
  • плавным пуском/остановкой
  • режимами затемнения или мерцания
  • дистанционно

Особенности и характеристики

  • если диммер применять для включения лампы накаливания, то это позволяет избежать резкого броска тока. По идее, такой прием должен существенно продлить срок службы лампы, сделать ее практически «вечной». Однако на практике лампы все равно перегорают, хотя и значительно реже
  • диммер способен менять не только яркость, но и цветовую температуру света. При уменьшении яркости свет приобретает красноватый оттенок
  • диммеры сочетаемы не с мощными лампами (тогда КПД лампы сильно падает), а с лампами меньших мощностей
  • применение светового регулятора при мощных лампах создает назойливый уловимый шум
  • схема диммера создает помехи, которые делаю работу некоторых приборов неточной или невозможной
  • устройство диммера часто является причиной появления фона при записи или трансляции звука
  • механические (поворотный, поворотно-нажимной, кнопочный)
  • электронные (сенсорный диммер и бесконтактный)
  • дистанционные
  • акустические

Недостатки

  • диммер может вызвать помехи, даже радиочастотные
  • несовместим с люминесцентными лампами
  • могут перегреваться при температуре в помещении выше 25-27°С
  • дают особенное освещение при использовании светодиодных ламп, когда движущийся предмет кажется неподвижным – это может привести к травмированию

Принцип работы диммера

Как работает диммер

Диммирование осуществляется при использовании «фазовой отсечки», при которой происходит отсечение одной части синусоиды напряжения в сети, и происходит уменьшение действия, питающего напряжение на освещение. Если действие отсечки применимо к началу синусоиды, способ называется «регулирование по переднему фронту», если эта технология используется на конце синусоиды, такой способ называется «диммирование по заднему фронту». Эти способы используются для диммирования ламп различных типов: «Диммирование по заднему фронту» рекомендуется для ламп с низким напряжением светодиодного или галогенового типа с применением электронных трансформаторов. «Диммирование по переднему фронту» используется для ламп низкого напряжения с использованием трансформаторов электромагнитного типа, а также для компактных люминесцентных и светодиодных ламп 230В. Эти два способа также хорошо подойдут для ламп галогенового типа и ламп накаливания 230В. Стабильная работа прибора заставляет использовать провод с тремя жилами один для заземления, для рабочего нуля и для фазы, это действие применяется для соблюдения точки перехода через ноль. При использовании малых диммеров достаточно двухжильного провода.

Вопрос энергосбережения

На многих сайтах диммер позиционируется как устройство, что позволяет экономить расходы на электроэнергию. Так ли это? В принципе, да. Все существующие модели позволяют потреблять лампе меньшее количество мощности. Однако целесообразно ли так поступать? Диммер имеет неоспоримое преимущество – он внешне красив и даже неординарен. Чего только стоит сенсорный диммер.

Также он меняет освещение в помещении, что также вызывает приятные эстетические чувства. Но экономить с помощью диммера все равно, что покупать вместо двух ламп 60 Ватт одну на 100. В первую очередь диммер должен рассматриваться как регулятор эстетики освещения и лишь потом как способ сэкономить. Например, после ремонта человек установил две (или даже три) линии освещения. При вариациях цветов и мощности ламп с помощью двух- или трехклавишного диммера можно добиться красивого цветового и осветительного эффекта. Экономия даже в случае применения нескольких ламп столь незначительна и ничтожна, что ее можно назвать невидимой.

Небольшой совет: подбирая диммер, следует обратить внимание на его показатель мощности. Желательно, что величина мощности светового регулятора любого типа была несколько выше, чем суммарная мощность ламп освещения в помещении. В противном случае возможен перегрев, выход из строя и даже пожар.

Светодиодные диммеры

Диммер — если раньше это касалось только ламп накаливания, то с появлением на рынке светодиодных ламп, возникла необходимость регулировать и их. Вообще, функция диммера – понижать до нужного уровня средний ток через лампу, и таким образом уменьшать интенсивность излучаемого ею света. Так, с лампами накаливания традиционно применяют симисторные и тиристорные диммеры, которые корректируют подачу мощности на лампу путем отсечки части фазы сетевого напряжения. Поскольку лампы накаливания – приборы довольно бесхитростные, то и диммеры для них довольно просты по устройству. Со светодиодными лампами дело обстоит сложнее.

Обычные светодиодные лампы иногда содержат в своей конструкции, кроме светодиодов, еще и схему простейшего импульсного преобразователя, который предназначен для взаимодействия с обычным сетевым напряжением синусоидальной формы. Этот драйвер зачастую очень прост, а иногда отсутствует даже он. Если такую лампу подключить через диммер, то встроенная в ее корпус схема управления быстро выйдет из строя, или, в лучшем случае, не сможет корректно работать.

   Светодиодные диммеры

Для решения возникшей проблемы, некоторые производители светодиодных ламп стали выпускать линейки специальных диммируемых светодиодных ламп, драйвер которых несколько усложнен, и может легко работать даже при включении лампы через обычный диммер с отсечкой фазы. Такие лампы дороже обычных, и далеко не каждого покупателя это положение дел устраивает. Единственной альтернативой является применение специальных диммеров, предназначенных для управления непосредственно светодиодными лампами. Эти электронные устройства сами являются преобразователями с широтно-импульсной модуляцией, и подают на светодиодную лампу стабилизированное напряжение, которое схема лампы принимает без нарушения штатного режима своей работы.

Такие светодиодные диммеры позволяют плавно регулировать яркость света светодиодной лампы, повышают экономичность, и продлевают срок службы даже самых обычных светодиодных ламп.

Довольно часто бывает, что освещение какого-нибудь помещения в течение продолжительного времени было бы лишним, поскольку это сказывается на перерасходе электроэнергии; на помощь приходит именно диммер, к тому же современные диммеры имеют КПД – более 90%. Оригинальные дизайнерские решения гораздо проще реализовать при помощи диммеров, которые могут иметь запрограммированные световые сценарии. В конце концов, применение диммеров управляемых с пультов дистанционного управления попросту повышает уровень комфорта. Наконец, управление яркостью света, изменение цвета и реализация различных сценариев легко интегрируются в современные системы «Умный дом».

Из вышесказанного видно, что светодиодные диммеры – сложные электронные устройства, они могут включать свет по таймеру, осуществлять плавный пуск, и даже управляться дистанционно с пульта. Эти диммеры встречаются в различных исполнениях и для различного монтажа. Диммеры для установки в монтажную коробку удобно заменяют собой выключатель, управление производится либо кнопкой, либо с подключаемого к диммеру дополнительного блока.

Модульные светодиодные диммеры

Для установки в щиток на DIN-рейку позволяют реализовывать различные световые сценарии, и могут работать в системах «Умный дом»; они управляются посредством выносных регуляторов и кнопок, либо пультом дистанционного управления. Модульные диммеры дороже обычных диммеров. Диммеры управляемые пультом бывают как с радио, так и с инфракрасным управлением. В первом случае управлять устройством можно на расстоянии, тогда как для управления при помощи инфракрасного пульта необходима прямая видимость.

Выносные блоки

Еще одна разновидность диммеров. Потолочные светодиодные ленты часто используются вместе с такими диммируемыми блоками, и к ним можно подключить точечные светильники со светодиодными лампами, важно лишь соблюсти требования относительно суммарной мощности. Сами эти блоки управляются с обычных диммеров, либо со специальных выносных панелей или с пультов, а иногда управление осуществляемо всеми этими способами.

Способов управления диммерами четыре:

  • поворотом ручки, когда включение лампы и регулирование ее яркости осуществляется поворотом ручки, а выключение сопровождается щелчком
  • поворотно-нажимным способом, когда выключить или включить можно нажатием, а регулировать яркость – поворотом, при этом не обязательно для включения каждый раз поворачивать ручку, достаточно просто нажать на нее, и яркость сразу будет на заранее установленном уровне
  • управление клавишей
  • сенсорное управление, часто дополняется пультом дистанционного управления

Пожалуй, единственный недостаток светодиодных диммеров – расходы на их приобретение, которые, однако, окупаются эффективностью и экономичностью оснащенных ими систем освещения. Важно лишь помнить, что при покупке светодиодного диммера и светодиодной лампы, либо обычного диммера и диммируемой светодиодной лампы, желательно проверить их совместную работу прямо в магазине, где для этой цели должен быть оборудован специальный стенд.

 

Так же смотрите по этой теме:

   Выключатели с дистанционным управлением. Что предлагает рынок?

   Умные розетки и выключатели ELRO. Обзор линейки AB600.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Принцип работы и схема подключения диммера 

Общее понятие

Диммер (светорегулятор, симисторный, тиристорный регулятор), – устройство для плавной регулировки яркости источников света. Самые популярные изделия, используемые ламп накаливания, являются наиболее простыми по внутреннему устройству и принципу работы, достаточно доступные по цене, и надёжные при правильной эксплуатации.

Они выпускаются с типоразмерами под стандартную 68 мм монтажную коробку, и для их установки не требуется замена проводки – электрическая схема подключения диммера идентична цепи с обычным выключателем, с добавлением одного условия: диммер имеет маркировку клемм. Фазный сетевой провод подключается к входу L, а идущий к потребителю проводник — к выходу L-out.

Перед тем, как установить диммер, нужно выяснить с помощью индикатора, на каком проводе находится фаза. Во всех остальных аспектах, установка данного устройства ничем не отличается от монтажа выключателей и розеток.

Рисунок 1

Выгоды применения

Экономическая выгода от такого затемнения с помощью диммера (от «to dimm» – затемнять, английский глагол) обусловлена принципом его работы, который будет описан ниже, кардинально отличающегося от использовавшихся ранее реостатов, в которых падение напряжения достигалось за счёт регулируемого сопротивления, нагревающегося протекающими токами.

При этом тепловыделение было сопоставимо с мощностью подключённой нагрузки. Также диммер выигрывает в размерах, цене, и бесшумности работы, по сравнению с громоздкими и шумными автотрансформаторами, регулирующими освещение в профессиональных театральных, фото и киностудиях.

Благодаря плавному выходу на полную мощность, который происходит при повороте ручки диммера, лампы накаливания служат дольше из-за исключения холодного включения.

Принцип регулировки мощности

В отличии от автотрансформаторов и реостатов, которые меняют ампл

infoelectrik.ru

Принцип работы диммера

Представьте себе на минутку, как человек, используя кувалду, пытается расколоть орех? Применяя слишком большую силу там, где требуется лишь немного усилий — это заведомо пустая трата энергии. То же самое можно сказать о ежедневном потреблении электричества маленькими пользовательскими гаджетами и вещицами. Ведь все они используют далеко не одинаковое напряжение. Никогда не задумывались почему?

Излишние затраты энергии


Вообще говоря, напряжение является эквивалентом полезной работы, совершаемой электрическим полем по перемещению заряда. Задаваемая мощность для электроприборов и гаджетов, часто гораздо превосходит, чем им на самом деле нужно. Думается, разница очевидная, если мы говорим о такой бытовой электротехнике, как:

  • электрический двигатель пылесоса;
  • микрочип в ноутбуке;
  • маленькие лампы накаливания в светильнике.

Используя термин «электрического молотка» для взлома гайки, можно утверждать о бесполезной трате денег, а также энергии и, как следствие, значительном сокращении срока службы дорогостоящего оборудования. Ведь светодиодные лампочки – это весьма дорогое удовольствие.

Одним из решений является использование оборудования, оптимизирующее напряжение. Последнее постоянно регулирует подачу электроэнергии, таким образом, чтобы потребитель получал именно то напряжение, которое нужно. Давайте освежим свои знания об устройстве диммера и внимательно посмотрим на то, как он работает!

Что такое диммер?

Диммер – это устройство, которое изначально создавалось для управления яркостью ламп. Изменяется общая мощность, подводимая к лампе и, следовательно, варьируется яркость. Следующая принципиальная схема диммера иллюстрирует работу устройства универсального типа:

R – это защитный резистор на вводе симистора. Управление осуществляется с помощью потенциометра Rp, который контролирует значение тока, необходимого для заряда конденсатора С.

Принцип работы

Работа диммера основывается на том, чтобы, во время полного цикла изменения волны, тиристор пропускал только часть сигнала к нагрузке (лампе). Достаточно взглянуть на следующие осциллограммы и принцип работы диммера становится понятным:

На чертежах показаны осциллограммы одного и того же диммера. Разница заключается в том, что слева зафиксирована волна сигнала в момент, когда лампа светит ярче, а справа соответственно – слабее.

Угол отпирания симистора обозначается греческой буквой α (альфа). Величина измеряется в градусах. Полный оборот составляет 360°, что эквивалентно (2*π). Из-за того, что за полный период волна напряжения переходит через ноль дважды, α может принимать значения от 0° до 1800 (0 — π). Когда α становится меньше, то яркость лампочки тускнеет. Когда α становится больше, то симистор открывается и лампочка светит ярче. Таким образом, работает диммер.

По такому принципу функционируют схемы диммера для обычных ламп накаливания.

Невольно возникает мысль о простом фонарике. Как только батарея начинает терять свой заряд, лампочка постепенно гаснет. Для многих типов ламп, существует такая линейная зависимость между напряжением питания и светом, который они излучают. Что на самом деле происходит? С понижением уровня напряжения уменьшается яркость света. Сокращая первое, вы уменьшаете световой поток лампы.

Заключение

Если есть диммер, уже беспокоиться о нестабильном напряжении линии электропередач на вводе в ваш дом не нужно. Такое устройство позволяет платить не больше за электричество, чем это действительно нужно для осветительной техники. Да и падения напряжения уже не будут сокращать жизнь вашим лампочкам.

electricdoma.ru

Что такое диммер? Назначение, подключение :: SYL.ru

Светодиодные приборы в свое время совершили технологическую революцию в сегменте осветительной аппаратуры. Они подняли на новый качественный уровень и рабочие показатели оборудования, и технико-эксплуатационные качества. В итоге обслуживание систем освещения стало экономнее, а характеристики излучения – эстетически привлекательнее. При этом некоторые дополнительные возможности потребовали использования вспомогательной фурнитуры. В частности это касается системы управления, реализуемой диммерами. Это всего лишь компонент общей осветительной инфраструктуры, но от него зависят параметры свечения. Ведь что такое диммер, с точки зрения владельца? Это инструмент контроля светодиодных приборов, позволяющий регулировать яркость. Качество же работы данного средства управления зависит от множества факторов и свойств самого прибора.

Назначение диммеров

Прямая и базовая задача светорегуляторов заключается в контроле напряжения. Путем регуляции данного показателя светодиодный прибор можно настраивать на разные уровни интенсивности свечения. Но это далеко не единственная функция устройства. В некоторых системах диммер выполняет и ответственные защитные задачи. Уже отмечалось, что такие приборы в основном используются для LED-систем, но в определенных условиях допускается их применение в комбинации с традиционными светильниками. Как раз диммер для ламп накаливания выполняет важную защитную функцию, предотвращая так называемый бросок тока сквозь колбу. Риск возникновения этого эффекта имеет место при включении прибора «с нуля», однако возможность автоматической регуляции его исключает. К другим задачам диммеров можно отнести коррекцию теплового излучения. Для светодиодов с конденсаторами эта функция не так значима, но в системах энергосберегающих ламп вполне актуальна.

Виды прибора

Типовая конфигурация диммера предусматривает наличие резистора (с переменным током), который и выступает непосредственным регулятором мощности. Но такие модели не составляют целевую группу приборов в силу высокой нагрузки. То есть минимальный уровень энергозатрат находится существенно выше, чем оптимальный спектр показателей напряжения для стандартной LED-техники. Более привлекательны с точки зрения среднего пользователя модели с автотрансформаторами. Они отличаются возможностью коррекции сигнала в выгодном частотном диапазоне, на 50 или 60 Гц, но тоже имеют ограничения в использовании из-за крупных размеров. Самым же популярным исполнением прибора является электронный светорегулятор. Что такое диммер на электронной базе? Это скромный по размеру, легкий и экономный в расходе энергии аппарат, в котором задачи управления решает транзисторный или симисторный ключ. От диммера на целевую лампу поступает обработанный синусоидальный сигнал, излишние участки которого устраняются тем самым ключом-корректором. При этом нельзя сказать, что это во всех смыслах выгодное решение, поскольку процесс работы электронного регулятора сопровождается отдачей сильных электромагнитных помех.

Принцип работы

Функциональные части в виде тиристоров и конденсаторов определяют мощность нагрузки. На первых этапах рабочего процесса тиристор имеет закрытую форму, при этом зарядка конденсатора выполняется посредством резистора. По мере нарастания входного напряжения открывается тиристор, и между контакторами возникает ток. Эта фаза продолжается до тех пор, пока напряжение не понизится до закрытия тиристора. Данный цикл повторяется несколько раз с подключением нагрузки. Но в некоторых системах неизбежна модификация конструкции, позволяющая использовать электротехнические схемы с широким частотным спектром. В этом контексте стоит рассмотреть, что такое диммер с дросселем. Для безопасной эксплуатации мощных регуляторов, в проводниках которых обязательно будут присутствовать сильные помехи, используются индуктивности и индуктивно-емкостные фильтры. Это вариации дросселей, применяемые вместе с конденсаторами низкого сопротивления. Благодаря такому дополнению в схемах достигается приемлемый уровень помех.

Способы управления диммером

Принципиальные отличия имеют механические и электронные регуляторы. В первом случае пользователь настраивает ту же яркость или другие рабочие параметры с помощью аппаратного регулятора или кнопок ручным способом. Электронные же модели допускают и возможность дистанционного управления. Данная возможность обеспечивается радиомодулями с пультами ДУ, а в некоторых модификациях — и смартфонами через Bluetooth-каналы. Контактные выключатели с диммером оснащаются сенсорными панелями. Наиболее развитые устройства допускают возможность программирования рабочего процесса. Существует и отдельное направление разработки светорегуляторов, управляемых датчиками. Например, акустические детекторы улавливают звуковые команды (хлопки, голос), переправляя уже преобразованные сигналы на пульт управления диммера.

Монтаж прибора

Установка прибора осуществляется в точке наиболее удобного расположения, где будет обеспечен свободный доступ к управляющим элементам. Чаще всего инсталляцию производят на стенах, где проходит электротехническая проводка. При необходимости можно выполнить штробление для прокладки кабельных линий, но в любом случае чрезмерно хлопотных работ светорегулятор не потребует. Непосредственная установка диммера выполняется с помощью крепежной оснастки, входящей в комплект. Она может быть представлена шурупами или саморезами, то есть с большей вероятностью потребуется использование электроинструмента для реализации качественного крепления.

Подключение диммера

Простейшие модели вводятся в линию через разрыв фазы. Нулевой контур сразу направляется к светильнику. Если используется группа диммеров, то к начальному устройству подводится та же фаза, после чего организуется связка с последующими регуляторами. Между устройствами подключение следует выполнять посредством контакторов, используя провода с теми же характеристиками, что и основные (фаза и ноль). В длинных коридорах иногда используют проходные выключатели. Они устанавливаются перед регулятором по линии фазы. При этом диммер для светодиодной ленты может изначально интегрироваться в монтажный корпус. Туда же вводится и проводка, которая соединяет прибор с драйвером, контроллером и блоком питания. Для осветительных приборов на 220 В питающий элемент с ограничением тока до 12 В не требуется.

Плюсы и минусы прибора

Применение светорегуляторов дает очевидные преимущества, которые заключаются в повышении надежности работы целевого прибора и эргономики. Достаточно отметить удобство при настройке яркости, отсечение электромагнитных помех и плавность включения/отключения, что повышает рабочий ресурс оборудования. Главное – правильно подобрать лампы для диммера, которые не допускают низкие коэффициенты гармоник. Что касается недостатков регулятора, то можно выделить следующие:

  • Конфликты в работе с понижающими трансформаторами и другими устройствами, преобразующими напряжение.
  • Электромагнитные помехи могут негативно сказаться на работе приборов с радиосигналами – к примеру, имеют место нарушения в частотах.
  • Невозможность совместного использования с драйверами светодиодных ламп и люминесцентными приборами.
  • Возможны перегревы в обмотке, что потребует включения в конструкцию дополнительных охлаждающих элементов.

Что учесть при выборе устройства?

На первом этапе определяется принципиальная возможность диммирования. Выбор по этому критерию затрагивает именно тип лампы, но не конструкцию светильника. Как уже говорилось, ограничения касаются люминесцентных, некоторых галогенных и энергосберегающих ламп. Затем можно переходить к вопросу совместимости регулятора с дополнительными устройствами. Например, для той же светодиодной ленты потребуется контроллер на 12 или 24 В, а в случае применения нескольких точек управления – выключатели. Также учитывается мощность диммера, хотя даже модели начального уровня способны обслуживать технику на 500-600 В. Это стандартный диапазон, охватывающий характеристики практически всех бытовых ламп.

Заключение

Современные электроприборы лишь в очень редких случаях используются без специальных управляющих устройств. Диммер нельзя назвать самым технически развитым решением подобных задач, но в случае отсутствия особых требований к контролю осветительной техники им вполне можно ограничиться. Хотя бы по той причине, что такой регулятор имеет простую и удобную в монтаже конструкцию. Здесь можно вспомнить, что такое диммер по своему устройству. Это компактный пластиковый короб с электротехнической начинкой в виде обмотки, резисторов и переключающих элементов. Существуют и более сложные модели регулятора, но расширение возможностей управления на такой базе нецелесообразно. Задачи многоступенчатого контроля с повышенными защитными функциями все же эффективнее выполняют современные контроллеры, дополненные панелями управления.

www.syl.ru

Диммер: схема, подключение, отзывы. Диммер

Люди используют помещения для различных целей, и эти функции требуют разной освещенности. Регулировать ее удобно диммером — электронным устройством, позволяющим изменять уровень освещенности от «почти темно» до полной видимости простым поворотом ручки или скольжением рычага.

Зачем нужны диммеры?

Освещенность помещений в доме очень важна. Уровень ее в каждой комнате диктует то, что вы можете и не можете сделать, и это имеет огромное влияние на ваши ощущения. Так, например, вы не сможете читать под одной зажженной свечой, а вот романтический ужин на двоих покажется не таким приятным под 1,5-киловаттной галогеновой лампой.

Современные диммеры, например диммер Legrand, позволяют плавно регулировать освещенность светильников с лампами различных типов.

Резисторные светорегуляторы

Поначалу для регулировки уровня света применялось довольно простое решение — переменный резистор, включенный как диммер. Что это давало? Обычный проволочный резистор представляет собой тонкий проводник, создающий определенное (в соответствии с номиналом) сопротивление движению электрических зарядов. В конструкцию переменного резистора, кроме резистивного материала и двух неподвижных контактов, добавился еще и подвижный контакт со своим выводом. К электроцепи такой элемент подключается подвижным и одним из неподвижных контактов.

В этой конструкции варьируется общее сопротивление резистора путем регулирования расстояния, которое заряд должен пройти через резистивный материал, а попросту говоря — длины проволоки от неподвижного до подвижного контакта. Если подвижный контакт находится вблизи неподвижного (подключенного к цепи), то сопротивление резистора минимально. Если он смещен до второго неподвижного контакта, заряд должен пройти через весь резистивный материал.

Когда заряд перемещается под действием электрических сил через резистор, его энергия теряется в виде тепла. Если вы ставите резистор в последовательной цепи, то потери энергии в нем вызывают соответствующее падение напряжения на резисторе, уменьшая энергию, доступную для других нагрузок (лампочки, например). Снижение напряжения на лампочке понижает ее светоотдачу.

Проблемой в этом решении является то, что вы в конечном итоге тратите много энергии на нагревание резистора, который не осветит вам комнату, но обойдется в копеечку. Кроме энергетической неэффективности, резисторные светорегуляторы, как правило, громоздки и потенциально пожароопасны, так как переменный резистор выделяет значительное количество тепла. Современные устройства используют более эффективный подход.

Принцип работы

Итак, собственно диммер. Что это означает в смысле отличий от резистора? Вместо того чтобы отбирать энергию от лампочки в переменном сопротивлении, современные диммеры в каждом периоде изменения тока кратковременно перекрывают путь для его прохождения, чтобы уменьшить общее количество энергии, рассеиваемой во всей цепи. Получается, что ток в электрической лампочке выключается много раз в секунду.

Цикл переключения строится вокруг периода колебаний бытового переменного тока. Они имеют различную полярность напряжения — в холмистой синусоидальной токовой волне она колеблется от положительного максимума до отрицательного. Иначе говоря, движущийся заряд, который и составляет переменный ток, постоянно меняет направление своего движения. В России он проходит через один цикл изменения (движения зарядов в одну сторону, затем в другую) 50 раз в секунду.

«Разрыв» синусоиды тока в каждом ее полупериоде — вот что делает диммер. Что это значит? Он автоматически отключает цепь лампочки каждый раз, когда меняется направление тока, то есть когда в цепи нулевое напряжение. Это происходит дважды за цикл, или 100 раз в секунду. Подача тока в схему светильника включается снова, когда напряжение поднимается до определенного уровня.

Этот принцип — » включать по уровню» — задает положением своей ручки выключатель с диммером. Если она установлена на светлую обстановку, он включается очень быстро после отключения. Схема включена на большей части цикла, так что она поставляет в секунду больше энергии в лампочку. Если диммер устанавливается на более низкое освещение, он будет ждать после отключения дольше, пока в конце цикла вновь не включится.

Это основная концепция, но как на самом деле работает диммер? Схема его подключения, представленная в следующем разделе, ответит на этот вопрос.

Устройство электронного светорегулятора

Мы уже знаем, что он быстро прекращает свет в цепи, чтобы сократить энергию, подаваемую в светильник. И все же, конкретно сам диммер — что это такое? Центральным элементом его схемы является полупроводниковый коммутатор переменного тока, или симистор.

Симистор — это небольшой полупроводниковый прибор, похожий на диод или транзистор. Как и они, симистор состоит из разных слоев полупроводникового материала. Среди них материалы n-типа, который имеет много свободных электронов, и материалы р-типа, имеющий много «дырок», через которые свободные электроны могут пройти.

Симистор способен пропускать ток при разной полярности приложенного к нему напряжения, т. е. в обоих полупериодах переменного напряжения сети, но только если к третьему электроду — затвору — приложено некоторое управляющее напряжение. Вот так, собственно, и работает диммер. Схема ниже показывает, как он включается.

Напряжение на затвор симистора, которое необходимо для его открытия, подается с накопительного конденсатора, а время его заряда от начала полупериода питающего напряжения регулирует переменный резистор. Так что же происходит в этой схеме? В двух словах:

  • Симистор действует как переключатель напряжения питания.
  • Напряжение на затворе управляет моментами его включения.
  • Переменный резистор задает напряжение на затворе.
  • Дроссель служит для сглаживания формы тока в цепи питания лампы (см. след. раздел).
  • Помехоподавляющий конденсатор препятствует генерации схемой диммера радиопомех.

Подключение к сети

Следует отметить, что конструктивно все электрорадиоэлементы, показанные на схеме выше, смонтированы в корпусе светорегулятора, который имеет всего две клеммы для включения устройства в однофазную электрическую сеть. Поэтому с точки зрения технологии выполнения такого подключения диммер полностью аналогичен обычному двухполюсному выключателю. Кстати, некоторые их конструкции имеют такой встроенный выключатель, включенный на входе всей схемы, а клавиша его размещается рядом с ручкой регулировки. Поэтому, подключая диммер, как и в случае подключения обычного выключателя, выполните следующие шаги:

  1. Определите светильник или группу светильников для управления от светорегулятора.
  2. Просчитайте ток, потребляемый осветительными приборами при питании их без диммера.
  3. Подберите светорегулятор с максимальным длительным рабочим током не меньшим, чем полученный в п. 2.
  4. Установите диммер на подходящее место и подключите к сети, как и обычный двухполюсный выключатель. Помните при этом, что любой выключатель следует устанавливать в разрыв фазного провода, а не «нулевого», т. е. он должен стоять в цепи прохождения тока до светильника (группы), а не после него.

Реальные схемы светорегуляторов гораздо сложнее. Так, может иметь место дистанционный диммер с пультом ДУ, отключаемый (автоматически) по таймеру, подключаемый к комплексу «Умный дом», а также с акустическим либо голосовым видом управления. Однако вся эта «умная начинка» спрятана внутри прибора, и процесс подключения его к сети вовсе не усложняет.

Гудение ламп при наличии диммеров

По отзывам ряда пользователей, при подключении вместо выключателя дешевого диммера в цепь питания лампы накаливания слышится странное жужжание. Это происходит из-за колебаний в нити накала лампы, вызванных изменением формы тока, поступающего из симистора.

Как вам известно, ток, текущий по проводам, генерирует значительную силу магнитного поля, а колебания тока вызывают пульсирующее магнитное поле. Нить накала в лампочке является просто проволочной спиралью, которая, словно соленоид, намагничивается проходящим через нее током, и ее магнитное поле колеблется с частотой переменного тока.

Нормальный синусоидальный переменный ток колеблется постепенно, как и его магнитное поле. Ток же от диммера изменяется скачкообразно, когда симистор становится проводящим. Это внезапное изменение тока меняет магнитное поле резко, что может вызвать вибрацию нити накала. В дополнение к производству мягкого жужжащего звука резко меняющееся магнитное поле будет генерировать слабые радиосигналы, которые могут создавать помехи в соседних телевизорах или радиоприемниках!

Лучшие диммеры содержат дополнительные компоненты для уничтожения жужжащего эффекта. Как правило, схема подключения диммера включает в себя индуктивный дроссель (см. схему выше), представляющий собой длинный провод, завернутый вокруг железного сердечника, и дополнительный помехоподавляющий конденсатор. Оба устройства могут временно запасать электроэнергию (в виде энергии магнитного поля, тока и энергии электрических зарядов) и расходовать ее позже. Эта энергия сглаживает острые скачки напряжения, вызванные переключениями симистора, чтобы уменьшить гудение и радиопомехи.

Диммеры и лампы

Светорегуляторы создают атмосферу комфорта в жилище и снижают затраты на электроэнергию. Тем не менее не все лампочки совместимы с ними, и это может создать трудности для домовладельцев. Многие потребители публикуют отрицательные отзывы о диммерном регулировании света, но анализ таких откликов приводит к выводу, что их авторы попросту не знакомы с принципами совместимости лампочек и диммеров между собой.

Лампочки характеризуются мощностью и напряжением. При неправильном выборе светорегулятора некоторые их типы получают неподходящее для них напряжение и создают проблемы. Поэтому, выбирая лампы для диммера, люди должны быть осведомлены о различных их типах и научиться выбирать только совместимые с имеющимися у них светорегуляторами.

Потребители могут выбирать лампы накаливания, галогенные, флуоресцентные и светодиодные лампы. Первые два типа ламп легко управлять диммерами, в то время как люминесцентные и светодиодные лампы, имеющие большую светоотдачу, более дорогие и хуже работают с рассматриваемыми устройствами.

Лампы накаливания

Лампа накаливания работает потому, что электрический ток проходит через ее нить накала, которая нагревается и начинает светиться. Эти лампочки, как и их ближайшие родственники — галогенные лампы (по сути, те же лампы накаливания, но с добавлением внутрь колбы галогенсодержащих соединений для предотвращения испарения материала нитей накала), являются наиболее утилитарным видом лампочки, потому что работают с любым диммером. Они плохо переносят слишком высокое напряжение, но достаточно хороши при соответствующем его уровне. По отзывам тех потребителей, которые хотели сохранить электроэнергию и увеличить срок службы лампочек за счет применения диммеров, это удается очень хорошо. Многие пользователи отмечают, что лампочки накаливания могут с недорогими диммерами работать так же хорошо, как и с продвинутыми моделями. Они тускнеют почти полностью, когда ручка диммера находится в положении чуть выше выключенного.

Люминесцентные лампы

У этих ламп внутри колбы находятся пары ртути. Генерируемое ими при нагреве ультрафиолетовое излучение возбуждает люминофор, которым изнутри покрыты стенки колбы, чтобы излучать видимый свет. Некоторые пользователи в своих отзывах отмечают, что в нижней части диапазона регулирования диммера их лампы просто выключаются. Все дело в том, что они применяют так называемые компактные люминесцентные лампы, не предназначенные для использования с диммерами: если домовладелец установит низкое напряжение через данное устройство, лампа просто выключится, а не потускнеет. Чтобы можно было использовать диммер с такой лампой, она должна иметь диммирующий балласт, о чем должно быть указано на упаковке. Некоторые стандартные диммеры будут совместимы с такой лампой, но не все из них. Потребители должны всегда выбирать диммер 220В с указанием производителя о совместимости его с люминесцентными лампами.

Светодиодные лампы

Их работа основана на способности светоизлучающего диода индуцировать электроны, которые взаимодействуют с положительно заряженными «дырками» и излучают фотоны, производящие люминесценцию. Они менее яркие, чем люминесцентные лампы, но диапазон регулировки яркости ограничивается только схемой ее включения. Согласно отзывам потребителей, светодиоды также подвержены выключениям в нижнем диапазоне силы света, и это тоже может проявляться с различными типами диммеров. В то время как лампа накаливания будет мерцать с колебаниями напряжения, светодиод может вообще выключиться или мерцать чрезмерно.

Выбор подходящей лампы

При покупке потребитель должен помнить, что лампы накаливания могут тускнеть от нуля до 100 процентов, а люминесцентные и светодиодные нельзя эксплуатировать ниже 10-20% номинального значения их яркости, так что домовладельцы не смогут с ними достичь уровня полного комфорта. Кроме того, люминесцентным и светодиодным лампам требуется более дорогой и сложный светодиодный диммер. Однако в долгосрочной перспективе они обеспечивают значительную экономию электроэнергии.

Выбор подходящего диммера

Современные диммеры, например диммер Legrand (имеется в виду вся линия бренда), выполняют разные функции, включая различные типы фотоэлементов, датчиков движения и таймеров. При инвестировании в данные приборы люди должны иметь в виду, что передовые схемы диммеров предназначены для высокоэффективных лампочек. В то время как недорогие устройства являются адекватными для ламп накаливания и галогенных ламп.

Подытоживая высказанные многочисленными пользователями диммеров отзывы, можно сделать вывод, что наибольший массовый эффект от их применения может получаться в жилищах, освещаемых традиционными лампами накаливания. Ведь светорегулятор дает возможность уменьшить потребление электроэнергии без замены дешевых ламп накаливания на дорогие люминесцентные или светодиодные. Если же жилище уже освещается новыми типами ламп, то основной эффект, заключающийся в повышении удобства управления освещением, могут дать «продвинутые» модели светорегуляторов, например дистанционный диммер, позволяющий управлять освещенностью помещений с пульта ДУ, не вставая с места.

fb.ru