Принцип работы уф лампы – Что собой представляет ультрафиолетовая лампа для домашнего использования

виды, особенности, рекомендации по выбору.

УФ-лампа для воды: виды, особенности, рекомендации по выбору.

В обычной водопроводной воде содержится большое количество различных бактерий, грибов, вирусов, прочих микроорганизмов, часть из которых является болезнетворными, то есть опасными для жизни и здоровья человека. Для того чтобы обеззаразить жидкость, используют прибор, называемый ультрафиолетовым стерилизатором, основным элементом которого является УФ-лампа для воды. Обработка с жидкости помощью жесткого ультрафиолетового излучения с длиной волны 250 нм помогает контролировать количество патогенной микрофлоры в ней.

Вопросы, рассмотренные в материале:

  • Как работает УФ-лампа для воды?

  • Какие бывают УФ-лампы для воды?

  • Как выбрать УФ-лампу для воды?

  • Как установить УФ-лампу для воды?

Принцип работы УФ-лампы для воды

Ультрафиолетовые стерилизаторы работают следующим образом: за счет нагнетаемого насосом давления вода попадает в стерилизатор, обеззараживается в нем, а затем вместе с частицами коагулированных микроорганизмов оказывается в проточном фильтре, где очищается механическим способом.

Что касается устройства данного прибора, то он представляет собой корпус с бактерицидными лампами и двумя трубками. Для изготовления внутренней используется кварцевое стекло, внешней – ПВХ. Эти трубки герметично соединяются между собой с торцов при помощи специальной резины и герметиков. С обоих концов прибора от внешней трубы припаиваются штуцеры, которые выходят за пределы защитного корпуса. Они необходимы для присоединения шлангов для забора и обратной подачи жидкости.

УФ-лампа для очистки воды расположена внутри колбы, выполненной из кварцевого стекла. Ультрафиолетовое излучение, проходя через это стекло, воздействует на жидкость, циркулирующую между внутренней и внешней колбами, убивая живые микроорганизмы, находящиеся в ней. На качество обработки оказывает влияние грамотность проектировки прибора.


Для оценки эффективности ультрафиолетового стерилизатора по обеззараживанию воды используют единицу измерения, именуемую мкВт*с/см 2 . Иначе ее называют летальной дозой. Различным типам микроорганизмов для гибели требуются разные объемы ультрафиолетового излучения.

К примеру, для большинства бактерий смертельной является доза 4000–20 000 мкВт*с/см 2 . Для уничтожения одноклеточных водорослей потребуется 20 000–40 000 мкВт*с/см 2 ультрафиолета, грибов – 45 000–50 000 мкВт*с/см 2 . Большая часть вирусов погибает при летальной дозе не более 10 000 мкВт*с/см 2 , однако в ряде случаев она должна быть гораздо выше. Например, вирус табачной мозаики можно уничтожить воздействием излучения, равного 440 000 мкВт*с/см

2 .

Высокие дозы ультрафиолета требуются для гибели спор бактерий – до 300 000–3 500 000 мкВт*с/см 2 , еще выше – для простейших. Так, для амеб летальными являются 50 000–100 000 мкВт*с/см 2, а, например, бродяжкам криптокариона потребуется уже около 800 000 мкВт*с/см 2 . В действительности же в расчетах участвуют усредненные и слегка заниженные показатели, в соответствии с которыми для уничтожения бактерий и вирусов необходимо 12 000 мкВт*с/см 2 , для водорослей – 25 000 мкВт*с/см 2 , для одноклеточных организмов и грибов – 60 000 мкВт*с/см 2 .

Преимущества и недостатки УФ-ламп для воды

Обеззараживание с помощью УФ-лампы для воды считают наиболее чистым способом обработки жидкости, поскольку ультрафиолетовые лучи являются природным излучением, а оказать негативное влияние на человеческий организм они могут только в случае длительного и непосредственного воздействия. Кроме того, подобного рода очистка воды не меняет ее физико-химических качеств.

За счет УФ-лампы для воды уничтожается большая часть патогенных микроорганизмов, что свидетельствует об универсальности данного способа обработки жидкости. Большей эффективностью обладает, пожалуй, только озонирование. Впрочем, если вода не населена какими-либо устойчивыми к воздействию бактериями, то именно ультрафиолетовое излучение считается оптимальным способом обработки, в том числе по причине своей экономичности в сравнении с озонированием и прочими дорогостоящими технологиями очистки.

Помимо этого, говоря об обеззараживании при помощи УФ-лампы, нельзя не отметить высокую скорость реакции. Для уничтожения населяющей жидкость микрофлоры необходимы считанные секунды, даже если использовать максимальные дозы облучения.


Поскольку обеззараживание воды при помощи УФ-лампы не предполагает применения реагентов, дозы излучения могут быть сколь угодно высокими. Если же прибегать к иным способам обработки, то при превышении предельно допустимой границы действующего вещества существует вероятность его попадания в жидкость.

Обеззараживание при помощи УФ-лампы для воды можно рассматривать и как предварительный способ очистки. Поскольку ультрафиолетовое излучение обладает высокой дезинфицирующей способностью, его применение помогает в дальнейшем значительно уменьшить количество необходимых химических реагентов-дезинфекторов либо расход электроэнергии при обеззараживании жидкости с помощью озонирования и т. п.

Среди недостатков же использования УФ-лампы для обеззараживания воды можно отметить ее неэффективность относительно ряда микроорганизмов, отличающихся повышенной устойчивостью к ультрафиолету. Встречаются они не столь часто, однако при их значительной концентрации в жидкости подобный способ очистки может рассматриваться исключительно как предварительная мера.

Кроме того, необходимо осуществлять контроль над содержанием железа, и при повышенной его концентрации проводить очистку от этого элемента.

Эффективность работы бактерицидных установок, обеззараживающих воду ультрафиолетом, зависит от количества находящихся в жидкости взвешенных частиц различных загрязнителей. Например, наличие крупнодисперсных примесей может скрыть собой болезнетворные микроорганизмы, которые, не подвергнувшись облучению, не будут обезврежены.

То есть высокая концентрация взвесей приводит к неэффективному воздействию УФ-лампы для воды на ряд существ. В этом случае полноценная работа установки возможна после использования дополнительных способов очистки, за счет которых из жидкости будут удалены механические и прочие примеси.

Еще одним недостатком ультрафиолетовой обработки воды является отсутствие последействий от применения мер дезинфекции. Поскольку обеззараживание осуществляется за счет излучения, при выходе из корпуса бактерицидной установки жидкость перестает подвергаться влиянию ультрафиолета. Такого рода очистку можно считать одноразовой, заканчивающейся незамедлительно при разрыве контакта УФ-лучей с водой.

На сегодняшний день обеззараживание воды при помощи УФ-лампы может использоваться как самостоятельно, так и в комплексе с иными способами обработки жидкости.

Статьи, рекомендуемые к прочтению:

Виды УФ-ламп для воды

Существуют различные критерии, по которым можно оценивать ультрафиолетовые установки для обработки воды. Суть их в любом случае остается одинаковой: облучение жидкости за счет УФ-ламп, находящихся в кварцевых чехлах. Однако благодаря некоторым факторам можно говорить о том, что не все приборы одинаково эффективно работают в любых условиях.

Выбирая установку с УФ-лампой для обеззараживания воды, в первую очередь необходимо исходить из производительности системы водоподачи. Поскольку эти устройства функционируют по принципу непрерывного действия, то их производительность зависит от часовой скорости пропуска жидкости через систему, иными словами, от расхода воды. Кроме того, повышать ее за счет накопительных баков в данном случае невозможно, поскольку установка не имеет последействий, а значит, не способна предотвратить дальнейшее заражение.


Также при выборе прибора необходимо учитывать коэффициент пропускания водой ультрафиолетовых лучей, на который прямо влияют качества самой жидкости. Высокий уровень мутности, большая концентрация крупнодисперсных примесей снижают его, соответственно, возрастает необходимость в повышении дозы облучения.

В числе заключительных параметров ультрафиолетовых установок для обеззараживания воды назовем их мощность, то есть дозу излучения, которая используется при обработке. На нее влияют характер и количество микроорганизмов, населяющих жидкость. Устойчивость различных бактерий и микробов к излучению может быть разной, а потому будут изменяться и параметры очистки воды ультрафиолетом.

Самым простым критерием, учитываемым при выборе УФ-лампы для воды, можно назвать ее производительность, а для того чтобы вычислить коэффициент пропускания и дозу облучения, требуется проведение полного химического анализа состава жидкости.

Как выбрать УФ-лампу для воды

Выбор стерилизаторов с УФ-лампой для обеззараживания воды весьма обширен, и на месте не так просто сориентироваться, какой подходит именно вам. Поэтому лучше определиться с УФ-установкой заранее. Подготовку нельзя назвать сложной. Она заключается в понимании механизмов функционирования системы, а также в проведении анализа воды.

Выбирая ультрафиолетовый стерилизатор для жидкости, необходимо ориентироваться на следующее:

  • Вид и количество населяющих воду микроорганизмов. Разные представители флоры и фауны требуют применения разных доз излучения, соответственно, именно анализ воды подскажет, какая мощность УФ-лампы поможет добиться достаточной степени дезинфекции в конкретном случае.

  • Температуру воды. На сегодняшний день выпускается два вида ламп: со средним давлением (подходят для обеззараживания горячей воды (до +85 °С)) и с низким, с помощью которых можно очищать жидкость температурой до +16…+20 °С.

  • Необходимый уровень дезинфекции. Например, для питьевой воды нужна стопроцентная чистота, в то время как для стерилизации сточных вод подобный результат не требуется.

  • Скорость потока очищаемой жидкости. То есть предварительно необходимо выяснить его максимальные и минимальные показатели и с учетом полученных данных настраивать ультрафиолетовый стерилизатор.

  • Количество УФ-излучения, проходящего через воду, которое иначе называют прозрачностью. Она зависит от присутствующих в жидкости веществ, препятствующих проникновению ультрафиолетовых лучей и снижающих их количество, что в свою очередь влечет ухудшение качества обеззараживания.


Как установить УФ-лампу для воды

Основным при установке стерилизатора с УФ-лампой для воды является соблюдение правил безопасности. Решив самостоятельно заняться монтажом ультрафиолетовой системы для обеззараживания жидкости, обратите внимание на следующее:

  • Для питания установки используется электрический ток переменного напряжения 220 В, поэтому важно соблюдать меры безопасности в процессе работы.

  • Воздействие ультрафиолета вредно для зрения и кожного покрова. Нельзя включать лампу в сеть до тех пор, пока ее не поместили в защитный корпус, выполненный из нержавеющей стали.

  • Помните, что при помощи данного прибора можно обеззараживать исключительно прозрачные жидкости. То есть он не подойдет для бактериологической обработки таких напитков, как молоко, соки, вина, пиво.

Теперь расскажем о том, как выполнить монтаж обеззараживающей установки с УФ-лампой для воды.

Для начала соберите элементы, строго придерживаясь прилагаемой инструкции.

Корпус обеззараживающей установки крепится на стене в вертикальном либо горизонтальном положении при помощи специальных скоб, которые могут входить в комплект. Если же система не укомплектована ими, то их необходимо купить отдельно, проконсультировавшись с продавцом.

После того как вы выполните установку УФ-прибора для обеззараживания воды, оставьте вокруг свободное пространство (минимум один метр), чтобы иметь возможность впоследствии обслуживать ультрафиолетовый модуль и менять рабочие элементы.


Излучатель рассчитан на 9000 часов или один год службы.

На блоке питания или корпусе лампы может располагаться счетчик продолжительности работы или светодиодная индикация, которая подскажет о необходимости замены элемента УФ-лампы для воды.

В обязательном порядке должна быть предусмотрена обводная линия в обход ультрафиолетовой установки, чтобы не прекращать подачу жидкости в случае аварийной ситуации или сервисного обслуживания прибора.

Выполните заземление корпуса прибора.

Давление входящей в устройство воды должно быть не более шести атмосфер. Если же оно выше, то, прежде чем монтировать систему, необходимо установить регулятор давления.

Следите за тем, чтобы корпус УФ-лампы для воды был размещен таким образом, чтобы предотвратить его опорожнение и высыхание кварцевого чехла с ультрафиолетовым излучателем.

Учтите, что блок питания может располагаться в любом месте поблизости от источника электрического тока. При этом не забывайте о длине провода.

Если в вашей электрической сети часто наблюдаются колебания напряжения, то следует воспользоваться стабилизатором.

Где купить УФ-лампу для воды

Компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

  • подключить систему фильтрации самостоятельно;

  • разобраться с процессом выбора фильтров для воды;

  • подобрать сменные материалы;

  • устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

  • найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!


biokit.ru

Принцип действия УФ-ламп (стерилизатора).

УФ-стерилизатор — это прибор, который служит для обеззараживания
воды от бактерий, грибов, вирусов, водорослей и простейших микроорганизмов, многие из которых являются патогенными и представляют прямую угрозу для здоровья и жизни водных обитателей и оказывают неблагоприятное воздействие на состояние воды в водоёме. За счет обработки воды жестким ультрафиолетовым облучением с длиной волны 250 нм уф-стерилизатор контролирует численность вредоносных микроорганизмов. После комплекса механической и биологической фильтрации, УФ-стерилизатор является вторым по важности оборудованием, позволяющим весьма сильно улучшить качество воды в водоёме.
Принцип работы УФ-стерилизаторов таков: вода из водоёма под давлением, создаваемым насосом, проходит через стерилизатор , где происходит происходит процесс обеззараживания после этого вода с комочками коагулированных микроорганизмов подается в проточный фильтр , где происходит процесс механической очистки воды.
Устройство. Внутри корпуса бактерицидных ламп располагаются две трубы – внутренняя из кварцевого стекла, и внешняя из ПВХ, герметично соединенные резиной и специальными герметиками между собой
с торцов. От внешней трубы с противоположных сторон вблизи торцов впаиваются два штуцера, выходящие за пределы декоративного защитного кожуха прибора, в которые и подсоединяются шланги для забора и обратной подачи воды. Сама бактерицидная лампа располагается внутри колбы из кварцевого стекла. Ее лучи беспрепятственно проникают через кварцевое стекло и уничтожают все живое в воде, проходящей между внутренней и внешней колбой. Качество обработки сильно зависит от того, насколько грамотно прибор спроектирован.
Эффективность работыУФ-стерилизатора по уничтожению микроорганизмов измеряется в мкВт•с/см2 и называется летальной дозой. Для различных типов организмов летальные дозы могут весьма сильно отличаться. Например, большинство бактерий уничтожаются при летальной дозе 4000–20000 мкВт•с/см2. Одноклеточным водорослям требуется 20000–40000 мкВт•с/см2. Грибам — 45000–50000 мкВт•с/см2. Многие вирусы требуют не более 10000 мкВт•с/см2, но есть и такие, которым требуется летальная доза на порядок больше, например 440000 мкВт•с/см2 для вируса табачной мозаики.
Также плохо дело обстоит со спорами бактерий, здесь значения дозировки также могут достигать 300000–3500000 мкВт•с/см2. Еще хуже дело с простейшими. Если, например, амебам достаточно дозы в 50000–100000 мкВт•с/см2, то для эффективного уничтожения бродяжек ихтиофтириуса требуется 400000 мкВт•с/см2, а для уничтожения бродяжек криптокариона – порядка 800000 мкВт•с/см2. Впрочем, на практике для расчетов обычно применяют усредненные и несколько заниженные значения: 12000 мкВт•с/см2 для бактерий и вирусов, 25000 мкВт•с/см2 для водорослей и 60000 мкВт•с/см2 для одноклеточных животных и грибов.
Три параметра стерилизатора определяют обеспечиваемую им дозировку ультрафиолета.
1. Мощность. Тут все понятно. Чем она больше, тем сильнее дозировка, а положительный эффект от такого прибора выше.
2. Размер рабочего зазора, то есть толщина обрабатываемого слоя воды. Вода очень быстро поглощает ультрафиолет. Теоретически в воде средней прозрачности, к которой относится и прудовая вода, полное поглощение ультрафиолетовых лучей происходит в слое толщиной 40–60 мм. Можно считать, что такой слой утилизирует 100 % излучения лампы, но качество обработки при этом сравнительно невысокое, так как достаточную дозу облучения получает лишь небольшой слой потока, ближайший к лампе. Соответственно, при большом рабочем зазоре между двумя колбами прибора, для полной обработки воды, ее требуется прогнать через УФ-стерилизатор многократно в течении одних суток. Уменьшение рабочего зазора заметно увеличивает эффективность обработки воды.
3. Производительность. Тут сложнее. С одной стороны, чем больше производительность стерилизатора, т.е. ток воды, проходящий через него, тем меньшее время вода находится под воздействием ультрафиолета и тем меньше получаемая доза, а, значит ожидаемый эффект. С другой стороны, для повышения качества обеззараживания воды, желательно чтобы вся вода в водоёме была обработана хотя бы раз за сутки , и вот почему. Если, например, принять средний период деления бактерии за 12 часов, то, как пишут многие авторы в своих книгах, надо пропустить через УФ-стерилизатор два объема в сутки.*. Основываясь на всем этом и зная мощность УФ-лампы, ее длину и толщину рабочего слоя воды внутри, можно вычислить оптимальную производительность насоса для водоёма любого объема. Очень важный критерий, это время, в течении которого вода находится в зоне облучения при прохождении через стерилизатор. То есть, чем длиннее УФ-лампа, вдоль которой течет вода, находясь в облучаемой зоне, тем больше возрастает эффективность обработки воды. Математический аппарат расчета этого весьма сложен, приводить его здесь, нет никакой нужды. Гораздо проще воспользоваться рекомендациями производителей.

Кому и зачем нужен УФ-стерилизатор на практике?
Хозяева водоёмов традиционного типа, с умеренным количеством рыб мелкого и среднего размера, в особенности с живыми растениями, могут и не увидеть сколько-нибудь заметного визуального эффекта от применения этого прибора ( конечно, если у вас хорошая биофильтрация, обеспечивающая стабильное биологическое равновесие в водоёме), хотя качество воды все же улучшится, причем значительно. А вот владельцам водоемов с крупными рыбами, особенно с высокой плотностью их посадки, УФ-стерилизатор окажет немалую, а порой и неоценимую помощь.
Что же касается зоомагазинов, рыборазводен и карантинных баз, то есть там, где плотность посадки рыбы велика, тем более если биофильтрация не идеальна и постоянно приходится иметь дело со стрессуемой и ослабленной рыбой, то им УФ-стерилизация просто необходима. Работая на пару с системой фильтрации, УФ-стерилизатор уменьшает количество факторов, воздействующих на иммунную систему рыбы.
Свободно плавающие в толще воды бактерии, в том числе и патогенные, представляющие опасность для рыб, начинают разлагать органику прямо в воде, и активно размножаться. Очень скоро (иногда через час – другой) количество патогенных бактерий достигает некой критической точки, после которой иммунная система рыбы (критическая точка у всех видов своя) не может больше защищать организм от воздействия оных и размножающихся вслед за ними простейших. Помните, бактериями питаются простейшие микроорганизмы, многие из которых являются паразитами рыб. Начинается цепная реакция. Таким образом, сопротивляемость организма к воздействию на него патогенной флоры и фауны падает, и рыба начинает болеть, как правило, сразу несколькими видами заболеваний, например смешанными инфекциями. И стоит вовремя не разобраться в сложившийся ситуации и не принять верного решения, как начнется мор.
В такой ситуации невозможно недооценить пользу от УФ-стерилизации воды. Если правильно подобрать и установить этот прибор, то вы снимаете один из самых страшных факторов воздействия на ваш водоём – неконтролируемое размножение в воде патогенных микроорганизмов. Значит, даже если вы совершите некоторые ошибки в кормлении, мытье фильтров, чистке грунта и декораций и прочие, то в большинстве случаев вы будете застрахованы от этой беды. А основной аргумент очень прост и понятен для любого владельца садового водоёма: использование УФ-стерилизации выгодно, так как позволяет увеличить плотность посадки рыб и поднять ее качество жизни.
Безопасность. 1. Ни в коем случае не включайте УФ-лампу без защитного кожуха. Вы можете получить ожог роговицы и даже ослепнуть и получить тяжелые ожоги кожи даже при кратковременной экспозиции.
2. Отключайте УФ-стерилизатор при использовании каких-либо лекарств в водоёме.
Антибиотики и многие органические красители в нем разлагаются, перестают оказывать лечебное действие, а продукты их распада могут отравить рыбу.
3. Лучше не пользоваться УФ-стерилизацией при добавлении в воду удобрений для водоёмных растений. Обработка ультрафиолетом солей металлов-микроэлементов, обязательно входящих в состав удобрений, может перевести их в форму, токсичную для рыб.
Вопросы и ответы В. Не вреден ли УФ-стерилизатор для рыб?
О. Ни коим образом. Страшные слова типа «убивает все живое», написанные в статье выше, относятся исключительно к тем микроорганизмам, которые находятся в воде внутри УФ прибора в данный момент времени. Никакого вредного воздействия на то, что снаружи, ни на рыб, ни на растения, стерилизатор не оказывает. Конечно, если рыба умудриться попасть внутрь стерилизатора, то ей не поздоровиться…
В. В водоёме живут не только вредные, но и полезные бактерии. Как быть с ними? Ведь УФ-стерилизация убьет их тоже. О. Полезные бактерии в водоёме живут на всех поверхностях – на грунте, стенках, листьях растений и т.п. При наличии биофильтра самая большая колония полезных нитрифицирующих бактерий живет в нем. Полезные бактерии не плавают в толще воды и, следовательно, не могут попасть внутрь УФ-стерилизатора и там погибнуть. Конечно, если вы только запускаете новый водоём и влили в него промышленную культуру бактерий, то в первые сутки после этого включать УФ-стерилизацию не стоит.
.
________________________________________
*) Заметьте, что производительность фильтра и производительность помпы, которая прокачивает воду через фильтр – разные вещи. Допустим, в шестикубовом водоёме используется помпа производительностью 100 л/ч. Весь ли объем воды в таком водоёме пройдет через фильтр за один час? Конечно, не весь. За счет неравномерности течений, перемешивания слоев воды и застаивания в углах водоёма, некоторые частицы воды, а соответственно и микроорганизмы, пройдут через фильтр неоднократно, а некоторые за этот час и даже за 3 часа не попадут в него ни разу. Если мы увеличиваем мощность помп, то уменьшаем экспозицию облучения. Есть довольно сложная теоретическая формула, позволяющая рассчитать время, за которое через фильтр пройдет, например, 99 или 99,9 % всего объема воды. На практике же удобно использовать упрощенное соотношение, обеспечивающее относительно приемлемую точность:
T = 3 • Vв / F Здесь T – время в часах, Vв – объем водоёма, F – производительность насоса в л/ч.

www.lancon.ru

Лед и УФ лампы, их преимущества и отличия. Какую же лампу выбрать.

На сегодняшний день рынок предоставляющий различного рода лампы переполнен моделями разного дизайна, разной мощности и конечно новшествами с системой лед излучения. Голова идет кругом. Что выбрать? Как не ошибиться в выборе? Давайте разберемся в чем принципиальные отличия новинки от «старинки».  Сейчас многие мастера ногтевого сервиса отдают предпочтения лед лампам из-за их преимуществ :

1. Не нужно каждые пол года менять лампочки (элементы). Светодиоды служат очень долго, порядка 10 лет, за счет того что у них нет элементов горения, которые перегорают в обычных лампах. Напомним, что светодиод это полупроводниковый прибор (кристалл) который при минимальном напряжении вызывает свечение

2. В отличии от уф лампочек (элементов) которые сделаны из стекла, светодиод более устойчив к внешним механическим воздействиям, поэтому не требует бережной перевозки, когда мастер выезжает на дом к клиенту

3.  Светодиоды потребляют минимум электроэнергии

4. Быстрее просушивают материал. Все зависит от мощности о которой мы с вами  поговорим отдельно немного позже.

5. Светодиод не содержит ртути и свинца не требуя тем самым специальной утилизации в отличии от уф ламп

6. Лед лампы не нагреваются

7. И самое главное! Светодиодные лампы безопасны для здоровья. Рассмотрим почему: все дело в спектре излучаемого света

На картинке №1 мы видим, что присутствует рентгеновское и опасное для здоровья уф излучение. Конечно же за один день использования уф ламп для ногтей ни чего не будет, но если задуматься как отразится на здоровье мастера и его будущих детей при использовании ламп 5, 10, 15 лет ни кто не знает, а если и знает то промолчит ведь в любой работе есть определенная степень вредности. Но каждый мастер должен любить себя и не жить одним днем заботясь в первую очередь о своем здоровье. Эти тонкости профессии нужно знать. 

UVC – это опасная часть диапазона, она разрушает ДНК организма и при длительном воздействии на кожу человека, может привести к раку кожи. Принцип работы ламп состоит в том, что возбужденные атомы ртути испускают ультрафиолетовые волны длинной  от 253,7Нм до 185Нм, которые попадая на люминофор, нанесенный на внутренней поверхности лампы, заставляют его светиться  в видимом для человеческого глаза диапазоне.

UVB – это волны, которые позволяют нашей коже получить загар. Есть даже специальные люминесцентные «лампы для загара», со специальным люминофором, преобразующим UVC излучение в UVB, которые используют соляриях SPA салонов. К слову, UVB излучение, так же «несет ответственность » за выгорание красок на шторах, как под воздействием  солнечных лучей.

UVA – это тип ультрафиолетового света, используемый для создания эффекта свечения в темноте (дискотеки, бары, боулинг…).

 Все эти типы uv волн присутствуют в уф лампах для наращивания ногтей. Вы скажете что за столько лет ни кто не «умер» от использования ламп. А разве кто нибудь подумает о том что маленькая безобидная лампа могла спровоцировать какую либо болезнь или опухоль, в первую очередь все жалуются на экологию, стрессы, генетику и т.д.

Ведь о вреде ультрафиолета даже в небольших дозах особо ни кто не распространяется, только по факту знают люди страдающие заболеваниями эндокринной системой или опухолевыми заболеваниями.

Вы не подумайте что я хочу вас напугать, не в коем случае. Каждый мастер должен знать чем он платит за свой доход. Вы работаете с тоннельными лампами? Рассеянный ультрафиолет который отражается от поверхностей и усиливает свое действие, тоже очень вреден. 

Другое дело лед излучение.


Рассмотрим рисунок 2, здесь мы видим отсутствие рентгеновского излучения  и присутствие ультрафиолета, но почему именно здесь он не страшен? Лед луч имеет наибольшую мощность в том месте где помечено буквой  h то есть это в зоне инфракрасного излучения которое не имеет вредного влияния на организм человека. А вот интенсивность уф импульсов здесь сведена к минимуму , безопасному для здоровья в любых количествах. Не будем забивать вам голову скоростью фотонов. Скажем одним словом: лед лампы абсолютно безопасны для здоровья как клиента так и мастера и не имеют противопоказаний к использованию даже у онкобольных.

Одним словом уф лампа — это яркое обеденное вредное солнце, а лед лампа это свет через тучи в пасмурный день.

Почему лед лампы сушат быстрее чем уф? Все дело в специфике луча света запускающего реакцию и фотоинициаторов, веществ входящих в состав материала. Признано считать что лед лампа сушит в 4 раза быстрее чем уф, но нужно обращать внимание на мощность лед ламп. Если мы возьмем лед лампу 9 вт то она приравняется по мощности и скорости полимеризации к 36 вт уф лампе, это соотношение очень важно помнить. Что касается лед ламп, то в них разница всего в несколько ватт имеет большую роль во времени полимеризации материала. Если производитель указал время отверждения 10-30 секунд, то это наверняка для мощных ламп и это не значит, что такое же время понадобится для ламп меньшей мощности.

Почему не все гели сохнут в лед лампах? В лед лампах 36 вт сохнут абсолютно все гели, но это очень дорогое удовольствие. А вот меньшей мощности ультрафиолета недостаточно даже для того, чтоб запустить реакцию отверждения, здесь нужны фотоинициаторы не только уф но и лед. Обычно это светочувствительные материалы на которых производитель указал, что это uv/led , такие гели полимеризуются при минимальном излучении даже на обычном свету и их нужно держать закрытыми, подальше от света.

Как узнать время отверждения uv/led материала в вашей лампе?

Посмотрите на время полимеризации в 36 вт уф лампе. Например это 2 минуты.

Посмотрите на мощность вашей лед лампы, если она 9 вт то время полимеризации 2 мин.

Если мощность лед лампы 18 вт, то время полимеризации составляет 1 мин.

Если мощность лед лампы 36 вт то время отверждения будет составлять 30 сек а то и меньше в зависимости от толщины слоя.

Необходимо знать! выделение тепла при застывании геля это реакция движения частиц при построении полимерной сетки. И от нагрева ни куда не деться. И чем быстрее протекает реакция, тем больше происходит выделения тепла. По этому при использовании мощных лед ламп нужно помнить об этой особенности, для того чтоб не сделать ожога ногтевых пластин клиенту, жжет сильнее чем в уф лампе.

Из недостатков можно выделить :

1. высокая стоимость

2. на сегодняшний день не вся продукция переведена на uv/led формулу поэтому наблюдается дифицит ассортимента. Но, что касается продукции Формула Профи, то практически все материалы имеют uv/led формулу.

Надеемся, что в этой статье вы нашли много полезной для себя информации. Ну а выбор уф или лед конечно же остается за вами. Советуем иметь в наличии обе лампы, чтоб ваши клиенты видели вашу заботу и профессионализм, которые будут отличать вас от мастера работающего в соседнем салоне.

Горячих вам трудовых деньков и улыбчивых клиентов.

formulaprofi.net

Рекомендации по эксплуатации УФ ламп

Рекомендации по эксплуатации ламп

Несмотря на то, что стоимость УФ — ламп составляет лишь незначительный процент от общей стоимости флексографского процесса производства, УФ — лампы являются ОДНИМ ИЗ ВАЖНЕЙШИХ ФАКТОРОВ в достижении надлежащего и полного отверждения УФ — красок, лаков и других покрытий. Правильная техническая эксплуатация и своевременная замена УФ — ламп позволяет избежать потенциально возможного удорожания процесса производства.

1. Соблюдение сроков эксплуатации

При нормальной эксплуатации УФ — лампа служит около 1000 часов при максимальной нагрузке и 100% мощности. Через 1000 часов работы мощность лампы начинает снижаться, что постепенно приводит к неровному и неполному высыханию краски или покрытий. Рекомендуется производить замену лампы после 1000 часов работы. Использованные лампы могут храниться на случай крайней необходимости их дополнительного использования. Однако, несомненно, лучше использовать в таких случаях новую лампу, заранее подготовленную для замены.

2. Соблюдение режимов работы лампы

* Наибольший ущерб причиняется лампам при их частом включении и выключении. Во время технического перерыва (при обслуживании оборудования, смене вида работы и т.п.) наиболее благоприятным для лампы является режим ожидания/ простоя. Для перехода лампы из состояния ожидания в режим максимальной мощности требуется не более 2 секунд. При выключении оборудования и последующем включении процесс выхода лампы на режим полной мощности занимает около 5 минут. Если технический перерыв продолжается 1 час и более, тогда рекомендуется выключение машины/ оборудования. При продолжительности простоя менее 1 часа переводите лампы и оборудование в режим ожидания.
* Никогда не стоит брать лампу за соединительные провода, воспользуйтесь цоколями.
* Когда лампа устанавливается в корпусе необходимо убедиться, что ничто не касается колбы лампы: термопары, отражатель и т.д.
* Следует избегать резких скачков напряжения, а также отключения электропитания лампы и оборудования во время работы, так как это ведет к необратимым изменениям лампы (вздутие колбы, перегорание контактов и т.д.).

3. Обязательное фиксирование параметров процесса

Обязательно фиксируйте параметры системы: скорость печати, ресурс работы лампы, график технического обслуживания и т.п.

При возникновении проблем гораздо проще выявить причину и смоделировать процесс, если Вы обладаете выше перечисленной информацией.

4. Предотвращение перегрева

Охлаждающая система и система выпуска отработанного воздуха могут послужить причиной неэффективной работы УФ — облучения. Всасывающие фильтры могут засориться, что в свою очередь приведет к перегреву лампы и ее преждевременному выходу из строя. Перегрев лампы можно визуально определить по ее прогибу (деформации).

5. Предотвращение переохлаждения

Переохлаждение может привести к столь же большому перечню проблем, как и перегрев. Температура кварцевого элемента должна быть в интервале 600-800 градусов Цельсия. Если температура опускается ниже обозначенного предела, пары ртути начинают конденсироваться в ее жидкое состояние, и эффективность работы лампы будет падать. Наиболее очевидный признак переохлаждения лампы – это длительный прогрев лампы до рабочего состояния. Лампа может погаснуть при выборе слишком низкого уровня мощности. Вы можете заметить, что лампа работает не так ярко, как при нормальном режиме.

6. Чистка ламп

После установки лампы в оборудование и перед ее первым включением рекомендуется протереть/ очистить поверхность колбы лампы. Не рекомендуется прикасаться к лампе голыми руками, всегда пользуйтесь хлопковыми перчатками. При случайном касании лампы голыми руками необходимо протереть лампу специальной салфеткой. Чистку ламп следует осуществлять специальными салфетками, прилагаемыми к лампе при поставке, либо для этой цели можно использовать изопропиловый спирт и чистую салфетку.

Если лампа устанавливается в оборудование и включается без предварительной чистки или длительное время функционирует, и на ней осаждается значительное количество внешних загрязнений, это может привести к расстеклованию лампы в загрязненных местах. К сожалению, процесс расстеклования нельзя остановить путем чистки лампы после того, как он уже начался.

Загрязнения часто приводят к преждевременному выходу лампы из строя.

7. Чистка рефлекторов
Чистку рефлекторов (отражателей) следует осуществлять при каждой замене/ установке новой лампы, но не реже, чем 1 раз в год. Это обеспечивает максимальную концентрацию светового потока на поверхности запечатываемого материала и способствует правильному охлаждению лампы. При невозможности очистки рефлектора или восстановления его правильной формы полностью замените его.

Автор: Светлана Мамаева

pechatnick.com

принцип действия, отличия, цена, отзывы

Акриловое наращивание ногтей больше не в тренде. На смену ему пришло новое направление в маникюре — покрытие шеллак. Технология его нанесения довольно сложна и предполагает использование специальной лампы для сушки гель-лака.

Ультрафиолетовые (или UV) лампы для сушки гель-лака

Особенностью гель-лака, или шеллака, является то, что сохнет он исключительно в свете лампы. Они бывают трех типов: ультрафиолетовые (UV), светодиодные (LED) и газосветные (CCF). Каждая из них имеет свои преимущества и недостатки.

UV-лампы появились раньше других, но до сих пор они пользуются популярностью среди мастеров маникюра. Важный показатель этого прибора — мощность. От нее зависит, насколько быстро высохнет шеллак на ногтях. В каждом приборе находится одна или несколько флуоресцентных лампочек. Мощность каждой из них составляет 9 Вт. В соответствии с этим UV-прибор с маркировкой 9W состоит из одной лампочки, 18W — из двух, 36W — из четырех и так далее. Кстати, в последней шеллак высохнет всего за пару минут.

Профессиональная UV (ультрафиолетовая) лампа бывает разных размеров, что позволяет сушить одну руку или две сразу. Большим преимуществом является наличие таймера, который устанавливают на определенное время сушки.

Ультрафиолетовые лампы имеют один существенный недостаток. Они оказывают вредное воздействие на глаза, а также сушат кожу рук и отрицательно влияют на ногтевую пластину.

LED-лампы

Более современные лампы основаны на ультрафиолетовом излучении светодиодов. С их помощью шеллак высыхает за считанные 10—30 секунд. Они превосходят по мощности UV-лампы, что позволяет сэкономить время на маникюре.

В целом принцип действия обоих приборов идентичный. После обработки ногтевой пластины, в том числе специальными антибактериальными средствами, наносится базовый слой шеллака. Затем в течение 20 секунд ногти сушатся в лампе. После этого наносится цветное покрытие. На следующем этапе ногти снова сушат под лампой. После этого наносится последний слой шеллака. Ногти опять облучаются лампой, после чего необходимо удалить остатки шеллака и обработать кутикулу маслом.

LED-прибор не оказывает вредного воздействия на глаза, не сушит кожу, имеет более продолжительный срок службы. Но есть один большой минус. Светодиодная лампа сушит не все гель-лаки. Это обязательно следует учитывать при покупке прибора.

Отличия между лампами. Какую из них выбрать для работы?

Каждая из ламп имеет свои особенности работы, преимущества и недостатки. Чтобы выбрать, какая из них лучше, нужно знать, чем эти приборы отличаются друг от друга.

  • В UV-приборе в качестве источника света используется флуоресцентная, а в светодиодной — LED-лампа. Первый вид имеет более короткий срок службы, быстро перегорает, поэтому требует дополнительных затрат на замену перегоревших элементов.
  • В отличие от UV, LED-лампа высушивает лак намного быстрее, за считанные секунды, но под ней застывают не все гель-лаки. Вот самый главный ее недостаток. Это объясняется тем, что полимер в составе шеллака начинает затвердевать только тогда, когда он получает ультрафиолетовое излучение. Но диапазон волн LED-лампы гораздо меньше, поэтому шеллак отдельных производителей высыхает в ней неравномерно или не затвердевает вовсе.
  • UV-лампы с низкой мощностью (до 18 Вт) воздействуют очень медленно. Поэтому часто нижний слой не успевает полностью высохнуть. В результате покрытие, которое должно держаться на ногтях как минимум две недели, трескается уже через несколько дней. Оптимальный вариант для профессиональной лампы — это прибор мощностью 36 Вт.

Поскольку UV-лампы вредны для организма, а LED сушат не все виды шеллака, специалисты рекомендует приобретать комбинированные лампы: светодиодную с газосветной, «2 в 1». В ней хорошо затвердевает любой полимер, а время сушки колеблется от 30 секунд до 2 минут. Единственный недостаток такого прибора — высокая цена.

UV-лампа: отзывы

А теперь узнаем мнение начинающих мастеров маникюра и профессионалов о данном приборе. Отзывы свидетельствуют, что он хорошо просушивает шеллак. Для затвердевания одного слоя необходимо до 5 минут свободного времени. Но это только если мощность лампы составляет не менее 36 Вт.

Для слабых приборов времени для сушки нужно в несколько раз больше. Лампа мощностью 9 Вт сушит один слой шеллака около 30 минут. Таким образом, на маникюр в домашних условиях придется потратить около 3 часов. При этом нужно учитывать один большой недостаток — прибор оказывает негативное воздействие на зрение.

fb.ru