Солнечные батареи устройство и принцип работы: Принцип работы солнечной батареи
Как устроены и работают солнечные батареи
Солнечная энергетика становится все более популярной во всем мире. Вместе с коллегами из специализированного портала Elektrik мы разбирались, как устроена солнечная батарея, из чего она состоит и куда отправляется получаемая энергия.
В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).
Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.
В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.
Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.
Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.
Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.
Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.
Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.
Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.
Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.
Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток.
Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.
Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила — последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.
Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.
Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.
При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.
Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.
Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.
Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.
При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.
Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.
При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.
Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 — 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!
Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.
Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.
Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.
Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.
Доступными словами принципы работы солнечных батарей
Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.
Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.
Все дело в кремнии
Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.
Солнечная панель состоит из нескольких фотоэлементов.
Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)
Кремний располагается между двумя токопроводящими слоями.
«Сэндвич» из кремния и токопроводящих слоев
Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.
Структура атомов кремния
Для того, чтобы получить ток используют два различных слоя кремния:
- Кремний Р-типа – дополнительные места для электронов (дырки)
Кремний Р и N типа
Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.
Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р — сторону пластины.
После «освобождения» электрон стремится к проводнику
Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка 🙂 . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».
Работа фотоэлемента
Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.
Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.
Почему человек не перешел на солнечную энергию полностью?
Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.
- Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
- КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
- Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
- Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты
Видео о том, как производят солнечные батареи.
В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.
Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности Подбираем аккумулятор для солнечной электростанции Виды контроллеров для солнечных батарей и как выбирать Ветряк для частного дома — игрушка или реальная альтернатива
Принцип работы солнечных панелей
Применение солнечных батарей
Использование солнечной энергии для создания солнечных электростанций является очень выгодным и не таким уж дорогим источником электроэнергии. Широкое применение солнечных батарей нашли не только в промышленности и других отраслях, но и для индивидуальных нужд.
Со временем солнечные батареи становятся дешевле и все большее число людей приобретают их и используют в качестве источника альтернативной энергии. На солнечных панелях работают калькуляторы, радиоприемники, фонари на аккумуляторах с подзарядкой от солнечной панели.
Есть даже корейский мобильный телефон, который может заряжаться от солнечных панелей. Появились небольшие переносные электростанции на солнечных панелях, которыми пользуются туристы, рыбаки, охотники. Сейчас никого не удивишь автомобилем с солнечной панелью на крыше.
Как работают солнечные батареи
Солнечная панель состоит из множества фотоэлементов, которые при освещении солнечными лучами создают разность потенциалов. Теперь, соединяя эти фотоэлементы последовательно, мы увеличим величину постоянного напряжения, а соединяя параллельно, увеличим силу тока.
Устройство солнечных батарейТ. е., соединяя фотоэлементы последовательно – параллельно мы можем достичь большой мощности солнечной панели. Также батареи можно собирать параллельно и последовательно в модуле и добиться значительного увеличения напряжения, тока и мощности такого модуля.
Принцип работы солнечной панелиКроме солнечных батарей схема имеет еще такие устройства как контроллер, необходимый для контроля заряда аккумулятора, инвертор имеет функцию преобразования постоянного напряжения в стабильное переменное, для потребителей электроэнергии. Аккумуляторы предназначены для накопления электроэнергии.
Как работают фотоэлементы солнечной батареи
Еще Беккерель доказал, что энергию солнца можно преобразовать в электричество, освещая специальные полупроводники. Позднее эти полупроводники стали называть фотоэлементами. Фотоэлемент представляет собой два слоя полупроводника имеющих разную проводимость. С обеих сторон к этим полупроводникам припаиваются контакты для подключения в цепь. Слой полупроводника с n проводимостью является катодом, а слой с p проводником анодом.
Проводимость n называют электронной проводимостью, а слой p дырочной проводимостью. За счет передвижения «дырок» в p слое во время освещения, создается ток. Состояние атома потерявшего электрон называется «дырка». Таким образом, электрон перемещается по «дыркам» и создается иллюзия движения «дырок».
Принцип работы фотоэлементаВ действительности «дырки» не передвигаются. Граница соприкосновения проводников с разной проводимостью называется p-n переходом. Создается аналог диода, который выдает разность потенциалов при его освещении. Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода.
Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется ток. Величина разности потенциала зависит от размеров фотоэлемента, силы света, температуры. Основной первого фотоэлемента стал кремний. Однако высокую чистоту кремния получить трудно, стоит это недешево.
Когда освещается n проводимость, то электроны, получая дополнительную энергию, начинают проникать сквозь барьер p-n перехода. Число электронов и «дырок» меняется, что приводит к появлению разности потенциала, и при замыкании цепи появляется токПоэтому сейчас ищут замену кремнию. В новых разработках кремний заменен на многослойный полимер с высоким КПД до 30%. Но такие солнечные панели дорогие, и пока отсутствуют на рынке. КПД солнечных батарей можно повысить, если устанавливать их на южной стороне и под углом не меньше 30 градусов.
Рекомендуется, солнечные батареи устанавливать на устройство слежения за движением солнца. Это устройство передвигает панели таким образом, чтобы они получали максимально возможное освещение лучами солнца от восхода до заката. При этом КПД солнечных панелей возрастает достаточно сильно.
Принцип работы солнечной батареи
Принцип работы солнечной батареи позволяет добывать электричество практически ниоткуда, за счет физических свойств материала, из которого сделаны эти приборы. Энергия солнца позволяет значительно сэкономить и снизить зависимость электроснабжения от стационарных сетей.
Как используется солнечная энергия
Существует два основных способа преобразования солнечной энергии. После выполнения определенных действий она превращается в тепло и электричество. Именно первый вариант стал использоваться в первую очередь, при котором тепловая энергия солнца собиралась с помощью специальных коллекторов (рис. 1). Собранное тепло передается теплоносителю и далее осуществляется его практическое применение. Подобные системы используются для дома при устройстве отопления и подачи горячей воды.
Во втором случае солнечная энергия напрямую превращается в электрическую. Данный процесс осуществляется с использованием физических свойств фотоэлектрических элементов. Эти качества похожи на природный фотосинтез, в результате которого солнечные лучи превращаются в другие виды материи. Действие солнечной батареи и производство электроэнергии происходит по аналогичной схеме в дневное и ночное время.
В данном случае все зависит от материала, используемого в солнечных панелях. В большинстве устройств применяется кремний, соединенный с медью, кадмием, индием. Полученные таким образом полупроводники, под влиянием света начинают вырабатывать электрический ток. Наиболее высокий КПД у фотоэлектрических панелей из монокристаллического кремния. Другие виды элементов – поликристаллические и аморфные, считаются менее эффективными, обладают более низким КПД и стоят значительно дешевле.
Определенное количество фотоэлементов объединяются вместе, и становятся общими работающими солнечными батареями. Кроме того, гелиосистема включает в себя инвертор для преобразования напряжения, контроллер для управления зарядкой-разрядкой, а также один или несколько аккумуляторов.
Преобразование солнечной энергии
Чтобы понять, как работают солнечные батареи, нужно знать устройство и принцип работы. Непосредственное превращение солнечной энергии в электрический ток происходит внутри фотоэлементов, соединенных последовательно между собой. Основой каждого из них служат кристаллы кремния, широко распространенные в природе в виде различных соединений. Более всего известен обычный песок, который является оксидом кремния. По аналогии, кристаллический кремний представляет собой крупную песчинку, выращенную искусственным путем.
Готовые кристаллы получаются в форме кубиков, после чего они разрезаются на тонкие пластины, толщиной 200 микрон. На одну сторону такой пластинки наносится слой бора, а на другую – слой фосфора. На границе кремния и бора присутствует избыточное количество электронов, а со стороны фосфора их, наоборот, не хватает. Место стыковки с такими физическими свойствами называется р-п переходом.
Принцип действия солнечной батареи заключается в следующем. Когда солнечный свет попадает на фотоэлементы, его фотоны начинают бомбардировать поверхность. Излишки электронов выбиваются, после чего начинается их движение туда, где их не хватает, то есть, в сторону дырок. В этот момент и происходит возникновение электрического тока, представляющего собой упорядоченное движение электронов. Сбор электричества производится по металлическим дорожкам, подведенным к каждому фотоэлементу.
Отдельно взятый фотоэлемент обладает незначительной мощностью. Его напряжение находится в пределах 0,5 В. Для получения более высокого выходного напряжения в 18 вольт, элементы в количестве 36 единиц соединяются последовательно в общую батарею. Полученного напряжения вполне достаточно аккумулятору на 12 вольт. Данные параметры взяты по максимуму, на практике же заявленные показатели будут ниже. Все зависит от того, как устроена солнечная батарея.
Готовая батарея в сборе устанавливается на подложку, сверху накрывается стеклом, после чего все швы и стыки герметизируются. Сами батареи также могут соединяться между собой последовательно или параллельно. В результате, получаются небольшие солнечные электростанции, широко используемые на дачах и в частных домах. Единственным условием является чистая поверхность и наличие яркого солнечного света.
Параметры и характеристики солнечных батарей
Основным показателем работоспособности батареи является ее мощность. Максимальное напряжение создается при наличии яркого света и зависит от количества элементов, соединенных последовательно. Важным фактором считается площадь каждого из них.
Нормальное функционирование панелей во многом зависит от дополнительных компонентов системы. Среди них следует отметить контроллер зарядки аккумуляторной батареи, а также инвертор, который нужен для преобразования постоянного тока в переменный.
Каждый аккумулятор обладает допустимым током зарядки, который не должен быть превышен. В противном случае это приведет к выходу из строя всей системы. Мощность, необходимая для зарядки аккумулятора, выбирается в зависимости от его напряжения. Уровень заряда как раз и обеспечивается контроллером, в результате, поступающая солнечная энергия используется максимально полно.
Необходимость использования контроллера связана с недостатками прямого подключения аккумулятора к батарее. В этом случае ток зарядки может быть либо слишком большим, либо слишком маленьким. В первом случае АКБ быстро выйдет из строя, а во втором – аккумулятор не будет полностью заряжен.
Мощность инвертора должна совпадать с аналогичным показателем у подключаемого оборудования. В этом случае в расчет принимается суммарная мощность используемых электроприборов.
Виды солнечных панелей
Кроме мощности и других рабочих параметров, солнечные панели различаются по материалам, используемым в их конструкции.
Монокристаллический кремний
В наиболее качественных панелях применяется монокристаллический кремний. Данные элементы изготавливаются в форме квадрата с закругленными углами. Такая конфигурация обусловлена технологией изготовления, когда выращенные кристаллы изначально принимают цилиндрическую форму. Далее края цилиндров обрезаются и основание принимает нужную конфигурацию, из чего потом делаются заготовки.
Готовые ячейки устанавливаются на подложку и накрываются стеклом или ламинированным покрытием. Полученные таким способом батареи имеют максимально возможный КПД, отличаются высоким качеством и надежностью в работе.
Поликристаллический кремний
Технология изготовления почти такая же за исключением формы кристалла, который в конце изготовления принимает не круглую, а квадратную форму. В его структуру входят мелкие кристаллы в большом количестве, поэтому конечный продукт и получается в квадратной конфигурации.
Сырьем служат отходы, полученные при изготовлении фотоэлементов и микросхем. В результате, готовые приборы обладают более низким КПД, однако конкретные параметры зависят от производителя, и нередко совпадают с монокристаллическими изделиями.
Аморфный кремний
Используется в производстве гибких солнечных панелей. Вместо кристаллов здесь выполняется напыление тонкого слоя кремния со всеми добавками, после чего образуется покрытие нужной толщины. После разрезания листов и приклеивания на них токопроводящих полосок, конструкция покрывается ламинатом.
Такие батареи обладают самым низким КПД, однако они могут сгибаться во всех направлениях, а скатанные в рулон – транспортируются на любые расстояния. Данные изделия незаменимы в полевых условиях, в походах и путешествиях при отсутствии возможности нормальной зарядки.
Преимущества и недостатки
Солнечные батареи, так же как другие устройства обладают своими достоинствами и недостатками. К несомненным плюсам этих систем можно отнести следующие:
- Возможность автономной работы позволяет организовать питание объектов, электронных устройств и освещения, удаленных на значительное расстояние от стационарных электрических сетей.
- Значительная экономия денежных средств в процессе эксплуатации. Солнечный свет, превращающийся в электроэнергию, ничего не стоит и не требует дополнительных расходов. Платить приходится лишь за инверторы и аккумуляторные батареи, требующие периодической замены. И даже в этом случае солнечные панели окупятся примерно за 10 лет при среднем гарантийном сроке службы в 25-30 лет. При соблюдении всех правил эксплуатации, батареи смогут прослужить еще дольше.
- По сравнению с обычными электростанциями, потребляющими топливо и загрязняющими окружающую среду, схема работы солнечных панелей отличается экологической чистотой и отсутствием шума.
Тем не менее, данные устройства обладают и серьезными недостатками, которые следует заранее учитывать в предварительных расчетах:
- Высокая стоимость не только панелей, но и дополнительных компонентов – инверторов, контроллеров, аккумуляторных батарей.
- Окупаемость наступает слишком долго. Деньги в течение длительного времени оказываются извлеченными из оборота.
- Солнечные системы с фотоэлектрическими элементами требуют очень много места. Довольно часто для этих целей приходится задействовать не только всю крышу, но и стены здания, серьезно нарушая проектные дизайнерские решения. Дополнительное место необходимо аккумуляторным батареям с большой емкостью, которые в отдельных случаях могут занять целое помещение.
- Процесс вырабатывания электроэнергии происходит неравномерно, в зависимости от времени суток. Этот недостаток компенсируется аккумуляторными батареями, которые днем накапливают электроэнергию, а ночью отдают ее потребителям.
Изготовление солнечных батарей
Конструкция стандартной солнечной батареи состоит из нескольких компонентов. Основной деталью является сама панель, выполненная в виде прямоугольного прозрачного короба, внутри которого располагаются тонкие квадраты кремния темного цвета. Кремний в соединении с кислородом представляет собой оксид кремния, используемый в качестве основы для батарей, на чем основан их принцип действия.
Процесс изготовления солнечных панелей можно условно разделить на несколько этапов:
- Первый этап заключается в подготовке сырья. В этот период очищается состав кварцевого песка путем прокаливания его вместе с коксом. В результате, из него выделяется кислород и остается только чистый кремний, внешне похожий на уголь.
- Затем начинается выращивание кристаллов, и в этот период упорядочивается структура кремния. В специальном тигле он разогревается до температуры плавления, после чего в полученную лаву добавляется специальная затравка. Она похожа на готовый кристалл и вокруг него начинают образовываться слои кремния с упорядоченной структурой, чтобы в дальнейшем соблюдался принцип работы солнечных батарей. Через несколько часов получается готовый кристалл цилиндрической формы, обрезаемый по краям. В сечении получается квадрат с закругленными краями.
- Заготовка разрезается на тонкие пластинки по 100-200 микрон, после чего они тестируются, сортируются и направляются на следующий участок.
- На следующем этапе пластинки запаиваются в секции, из которых на стеклянной основе формируются блоки. Стекло выполняет защитную функцию и уберегает готовые элементы от механических повреждений. Одна секция состоит из 9-10 отдельных элементов, а все устройство солнечной батареи включает в себя 4-6 секций и более.
- Далее выполняется ламинирование пластин, спаянных в блоки. Для этого используется этиленвинилацетатная пленка. После наносится защитное покрытие, формируется строение солнечных батарей. Вся информация поступает на компьютер, отслеживающий уровень вакуума, давления и температуры.
- На завершающей стадии осуществляется монтаж алюминиевой рамы и соединительной коробки. Готовая конструкция тестируется, проверяется как работает солнечная батарея, проводятся измерения всех показателей и технических параметров.
Солнечные батареи принцип действия
Приборы, служащие для преобразования электроэнергии из солнечных лучей, в народе называют солнечными батареями. По сути, такие электрогенераторы работают пока светит солнце, а значит такой источник энергии является практически неиссякаемым.
История открытия солнечных батарей
Александр Эдмон Беккерель
В XIX веке (1839 год) в возрасте 12 лет, французский естествовед Александр Эдмон Беккерель увидел фотогальванический эффект, трудясь в лаборатории своего отца Антуана Беккереля. Суть эффекта состоял в том, что при освещении платиновых пластин, находящихся в растворе электролита, гальванометр зарегистрировал появление ЭДС (электродвижущая сила). Взяв за основу этот эффект, Беккерель спроектировал актинограф — прибор для регистрации интенсивности света.
Уиллоуби Смит
Дальнейшим шагом на пути к солнечным батареям стало открытие фотопроводимости селена. Его осуществил Уиллоби Смит, английский инженер-электрик, занимавшийся разработкой изоляции подводных кабелей. В 1873 году он обнаружил, что электрическое сопротивление серого селена сильно «прыгает» от замера к замеру. Оказывается электропроводность стержней из селена стремительно возрастает при попадании на света. А в 1883 году американец Чарльз Фритс произвел первый фотоэлемент из тонкого слоя селена, находящийся между пластинами золота и меди.
Генрих Герц
Немецкий физик Генрих Герц в 1887 году выявил влияние солнечного излучения на электрический разряд. Смотря одновременно 2 разряда, Герц отметил, что яркая вспышка света от электрической искры 1-го разряда повышает длительность другого разряда.
Александр Григорьевич Столетов
В 1888 году наш земляк Александр Григорьевич Столетов изучил, как разряжается под воздействием освещения отрицательно заряженный цинковый электрод и как данный процесс зависит от интенсивности света.
Благодаря работам английского физика Джозефа Томсона в 1899 году и немецкого физика Филиппа Ленарда в 1900 году было подтверждено, что свет, попадая на металлическую поверхность, выбивает из неё электроны, вызывая возникновения фототока. Но целиком понять естество данного явления получилось в 1905 году, когда Альберт Эйнштейн предоставил его разъяснение с позиции квантовой теории.
Джозеф Томсон (слева) и Филипп Ленард (справа)
Обширное применение солнечных модулей началось с 1946 года, после того как работы по увеличению производительности приборов были запатентованы. А в 1957 году солнечные батареи уже были запущены в космическое пространство в составе искусственного спутника земли. Данный полет продемонстрировал, что работа солнечных батарей способна не только обеспечивать энергией спутники, а считается единственным возможным источником питания для бесперебойной работы таких автономных устройств в космосе.
Принцип работы и устройство солнечной батареи
Устройство и принцип действия солнечной батареи
На сегодняшний день солнечные преобразователи производятся в большинстве случаев из кремния. Отличают 2 вида передовых технологий, на базе которых функционируют батареи: поликристаллическая и монокристаллическая.
Поликристаллическая по стоимости ниже, благодаря чему не особо эффективная технология.
Монокристаллическая по стоимости выше, цена которой зависит от трудозатратной технологии изготовления, а точнее выращивания монокристаллов. Она предоставляет больше количества электроэнергии и срок службы ее существенно больше. Благодаря этому, монокристаллический солнечный модуль является наиболее лучшим для использования его в повседневной жизни.
Работа солнечного элемента сопряжена с его устройством. Состоит он из кремниевых наружных пластин, с различными свойствами проводимости, и внутреннего слоя чистого монокристаллического кремния. Внутренний слой имеет установленную дырочную проводимость. Один из наружных проводников тоньше противоположного слоя и покрыт особым слоем, образующим цельный металлический контакт.
При попадании на один из наружных слоев солнечного света создается фотогальванический эффект, что приводит к формированию в этом слое свободных электронов. Данные частицы получают вспомогательную энергию и способны преодолеть внутренний слой элемента, который в данном случае именуется барьером. Чем больше объем солнечного света, тем сильнее происходит процесс прохождения или перепрыгивания электронов от одной наружной пластины к другой, минуя внутреннюю перегородку. При замыкании наружных пластин возникает напряжение. Та пластина, которая усиленно отдает частицы, создает в себе так называемые дырки, обретает знак минус, а которая принимает, обретает знак плюс.
Типы солнечных батарей
На сегодняшний день на рынке присутствуют 5 видов солнечных батарей в которых используются разные материалы и фотоэлементы.
Максимальную известность приобрели солнечные батареи из поликристаллических фотоэлементов. Результативность подобных панелей обычно составляет 12-14 %.
Поликристаллическая солнечная батарея
Панели из монокристаллических фотоэлементов характеризуются наиболее большим коэффициентом полезного действия (14-16 %). Подобные панели немножко дороже, нежели панели из поликристаллического кремния. Так же фотоэлементы выполнены в виде многоугольника и из-за этого не целиком наполняют пространство солнечной батареи, что приводит к наиболее низкой производительности всей батареи по отношению к одной ячейки фотоэлемента.
Монокристаллическая солнечная батарея
Солнечные батареи из аморфного кремния располагают минимальной результативности (6-8 %), однако в то же время обладают низкой себестоимостью производимой энергии.
Солнечная батарея из аморфного кремния
Солнечные батареи на основе Теллурид Кадмия (CdTe) внешне изображают тонкопленочную технологию изготовления солнечных панелей. Полупроводниковые слои покрывают панель толщиной всего в несколько сотен микрон. Разработка считается наименее опасным для окружающей среды. Результативность солнечных батарей CdTe составляет примерно 11-12 %.
Солнечная батарея на основе Теллурид Кадмия (CdTe)
Солнечные батареи в составе которых присутствуют смеси Индия, Галлия, Меди, Селена (CIGS) так же считаются тонкопленочной технологией изготовления фотоэлементов. Эффективность колеблется примерно от 10 до 15 %. Такая технология не особо распространена на рынке, но весьма быстро развевается.
Солнечные батареи на основе смеси Индия, Галлия, Меди, Селена (CIGS)
Области применения солнечных панелей
- Портативная электроника. Для снабжения электричеством и(или) подзарядки аккумуляторных батареи разной бытовой электроники.
- Электромобили. Подзарядка автотранспорта.
- Авиация. Разработка самолета, использующего только энергию солнца.
- Энергообеспечение зданий. Электроснабжение дома, за счет размещения крупных солнечных батарей на крышах.
- Энергообеспечение населённых пунктов. Создание солнечных электростанций.
- Дорожное покрытие. Дороги, покрытые солнечными панелями, для освещения их же в ночное время.
- Использование в космосе. Электроснабжение космических аппаратов.
- Использование в медицине. Внедрение под кожу миниатюрную солнечную батарею для обеспечения работы приборов, имплантированных в тело.
Преимущества и недостатки
солнечных источников энергииПреимущества:
- Экологически чистая энергия;
- Неисчерпаемость и постоянство солнечной энергии;
- Минимум обслуживания;
- Длительный срок службы;
- Доступность;
- Экономичность;
- Большая область применения.
Недостатки:
- Высокая цена панелей;
- Нерегулярность из-за погодных условий;
- Высокая цена аккумуляторных батарей для аккумулирования энергии;
- Для большей мощности необходимо устанавливать большие площади солнечных панелей.
Таким образом, анализируя все вышеупомянутое, можно отметить, что в данный момент получить выгоду от солнечной энергии могут лишь достаточно богатые собственники загородных домов. Они могут без проблем дождаться того этапа, когда батареи окупят себя.
Солнечные батареи для дома и дачи: как правильно выбрать и установить
Показатель | Монокристаллические солнечные батареи | Поликристаллические солнечные батареи |
---|---|---|
Кристаллическая структура | Зёрна кристалла параллельны. Кристаллы ориентированы в одну сторону. | Зёрна кристалла не параллельны. Кристаллы ориентированы в разные стороны. |
Температура производства | 1400°С | 800-1000°С |
Цвет | Чёрный | Синий |
Стабильность | Высокая | Высокая, но меньше, чем у моно |
Цена | Высокая | Высокая, но меньше, чем у моно |
Как правильно выбрать автономную систему
Перед покупкой солнечной электростанции учитывайте следующие параметры:
- Суточное потребление подключаемых электроприборов.
- Место установки солнечных панелей (ориентация на юг, оптимальный угол наклона, отсутствие тени на панелях).
- Место установки АКБ (должны находиться в помещении при плюсовой температуре, но не выше 25 градусов).
- Пиковые нагрузки электроприборов (насосы, холодильник).
- Круглогодичная или только летняя эксплуатация системы.
Монокристаллические чаще используются в регионах с высокой солнечной активностью, поликристаллические – с низкой активностью солнца. Если вам нужна солнечная батарея для дачи – обратите внимание на микроморфные модели. Они недорогие, но имеют в 2 раза большую площадь. Системы из микроморфного кремния могут эффективно работать под широким углом и в пасмурную погоду. Для больших станций, которые устанавливаются на крышах предприятий и на земле, лучше использовать гетероструктурные модули (КПД 22%) российского производителя «Хевел» (Hevel).
Краткий обзор производителей
Лидирующие мировые производители солнечных панелей:
- TopRaySolar (Китай) выпускает панели из монокристаллического кремния мощностью 20-300 Вт и поликристаллические кремниевые батареи мощностью 20-300 Вт.
- Axitec (Германия) разрабатывает фотоэлементы на основе монокристаллического и поликристаллического кремния мощностью от 260 до 330 Вт.
- Hevel (Россия) – производитель микроморфных панелей, а также гетероструктурных с высоким КПД (22%).
Установка солнечных панелей
Монтаж системы требует специальных навыков. Самостоятельная установка не рекомендуется, поскольку при малейшей ошибке в расчётах вы рискуете обесточить дом. В случае неудачи стоимость ремонта может превысить цену за монтажные услуги.
Чаще всего цена монтажа рассчитывается от стоимости системы в размере 10-15%. Высоких цен пугаться не стоит. компании, которые устанавливают данное оборудование, за эту сумму предоставляют гарантию (что всё будет подключено и установлено правильно) как минимум на 1 год.
Заказывая профессиональную установку, вы избавитесь от проблем. Специалисты рассчитают необходимое количество панелей, помогут определиться с типом батарей, правильно определят оптимальное место установки, угол наклона и другие параметры.
Монтаж стандарной установки до 5 кВт выполняется в течение одного дня.
Выгодно ли использовать солнечные батареи на даче
Устанавливая солнечные батареи на своём загородном участке, владелец дома предполагает, что сразу же начнёт экономить на освещении. Это правда, но только при установке СЕТЕВОЙ солнечной электростанции без использования аккумуляторов.
- Срок окупаемости в среднем составляет 5-10 лет в зависимости от тарифа на электричество.
- Максимальную эффективность данная установка принесёт тем владельцам дачных участков, которые проживают в широтах с преобладающим большинством солнечных дней.
- В зимнее время в средней полосе России количество солнечных дней сильно уменьшается и на все нужды вырабатываемой энергии не хватит.
Отопление от солнечных батарей в России
Считается, что установка солнечных батарей является отличной инвестицией в дом и в будущее. Системы недорогие, экологичные и автономные. На первый взгляд кажется, что про перебои с электричеством и счета можно забыть. Однако в России отопление от солнечных панелей, как и желание отказаться от городской сети, является всё же нерентабельным.
Качественная солнечная электростанция – недешёвое оборудование. Для необходимой мощности потребуется множество панелей и аккумуляторов. В регионах с низкими тарифами на электричество такая установка будет изначально невыгодной. Но в труднодоступных районах, где требуется постоянный подвоз дизельного топлива и техническое обслуживание генераторов, солнечные электростанции получаются более выгодными и имеют срок окупаемости 2-3 года.
С одной стороны, электростанция на фотоэлементах не требует особого обслуживания, но 1-2 раза в год вытирать пыль и счищать снег всё-таки необходимо. К тому же при ежедневной эксплуатации автономной системы у аккумуляторов снижается срок службы до 3-4 лет, т. к. он измеряется количеством циклов заряда-разряда. Это означает, что тратить средства на замену АКБ всё же придётся.
Другой вариант возможной установки солнечных панелей для экономии электричества — это сетевая солнечная электростанция без аккумуляторов. Она позволяет замещать электричество из городской сети в дневное время суток. Такая система окупается за 5-10 лет в зависимости от стоимости электроэнергии. Основное преимущество — это модульность (можно ставить параллельно несколько станций) системы, которое даёт возможность дальнейшего расширения без замены уже установленного оборудования. И, конечно, срок эксплуатации 35-40 лет без специального технического обслуживания.
Также если на даче часто отключают электричество, можно использовать гибридную солнечную электростанцию, которая объединяет в себе бесперебойную систему (замена генератора) и сетевую для экономии электричества.
Солнечные батареи: ставить или нет
Безусловно, автономная солнечная электростанция на поликристаллических или монокристаллических батареях незаменима в местах, где электричество вовсе отсутствует. Но там, где есть электричество, есть смысл подключить сетевую станцию без АКБ, которая будет компенсировать затраты днём, а лишнюю энергию можно будет продавать в городскую сеть по специальному «зелёному» тарифу.
Пример использования солнечных батарей на даче: всю неделю с понедельника по пятницу солнечные батареи отдают лишнюю электроэнергию в городскую сеть (и вам за это платят), а в выходные вы приезжаете на дачу и отдыхаете бесплатно.
Компания 220-on предлагает оптимальное, проверенное оборудование под текущие задачи клиента без накруток и переплат. В каталоге собраны модели от надёжных и проверенных производителей. Все модели обеспечивают высокую производительность и мощность.
Специалисты 220-on выполнят монтаж и проведут гарантийное и постгарантийное обслуживание. Получить консультацию по подбору оборудования можно по телефону +7 (495) 646-12-20 или по бесплатной горячей линии 8-800-500-20-74.
Солнечная батарея – принцип работы
Дорого отапливать дом газом? Или у вас на даче постоянно отключают свет? А может быть вы устали переплачивать за электроэнергию? Вам поможет установка солнечной батареи, которая обеспечит вас не только электричеством, но и отоплением. В этой статье мы рассмотрим принцип работы солнечной батареи, и ее отличия от солнечного коллектора.
Содержание:
- В чем суть работы солнечной батареи?
- Итак, как же работает солнечная батарея?
- Типы солнечных батарей
- Зачем нужен контроллер в солнечной батарее?
- Садовые фонари на солнечных батареях
В чем суть работы солнечной батареи?
Солнечная батарея, она же фотобатарея, представляет собой фотопластину, изменяющую под воздействием солнечных лучей проводимость в отдельных своих участках.
Это позволяет преобразовать энергию этих переходов в электрическую, которая либо используется сразу, либо накапливается.
Для того, чтобы понять принцип работы солнечной батареи, необходимо знать несколько моментов:
- Солнечная батарея представляет собой систему фотоэлектрических преобразователей, которые соединены друг с другом в заданной последовательности.
- В структуру фотопреобразователей входит два слоя, отличающихся между собой типом проводимости: n и p.
- Основой для изготовления фотопреобразователей служит кремний.
- В слое n-типа к кремнию добавлен фосфор; в результате их взаимодействия образуется избыток отрицательно заряженных электронов.
- В слое р-типа к кремнию добавлен бор, в результате чего образуются так называемые «дыры», которые вызваны дефицитом в слое отрицательных зарядов.
- Оба слоя размещаются между разнозаряженными электродами
Итак, как же работает солнечная батарея?
На отрицательно заряженную панель падает солнечный свет. Он вызывает активное образование дополнительных отрицательных зарядов и «дырок». Под воздействием электрического поля, которое присутствует в p-n переходе, происходит разделение положительно и отрицательно заряженных частиц. Первые направляются в верхний слой, а вторые в нижний. Таким образом, появляется разность потенциалов, иными словами, постоянное напряжение (U). Исходя из этого видно, что один фотопреобразователь работает по принципу батарейки. И в случае, когда к нему подсоединяется нагрузка, в цепи возникает ток. Сила тока будет зависеть от таких параметров, как:
- уровень инсоляции;
- размер фотопреобразователя;
- тип фотоэлемента;
- общего сопротивления приборов, подключенных к солнечной батарее.
Типы солнечных батарей
Выделяют несколько типов солнечных батарей: поли- и монокристаллические, а также аморфные.
Монокристаллические являются наименее продуктивными, но при этом самыми недорогими. В связи с этим их использование оправдано в качестве дополнительных источник энергии на случай отключения централизованной подачи электроэнергии.
Поликристаллы занимают промежуточные позиции по этим двум параметрам, в связи с чем могут быть использованы в отдаленных районах, лишенных централизованной подачи электроэнергии.
Аморфные солнечные батареи отличаются высокой эффективностью, однако и очень высокой стоимостью. В их основу входит аморфный кремний.
Данные разработки еще не вышли на промышленный уровень и находятся на экспериментальной стадии.
Зачем нужен контроллер в солнечной батарее?
Солнечные батареи, принцип работы которых был описан выше, не смогли бы эффективно заменить системы центральной подачи электроэнергии, если бы не были оснащены контроллерами, способными контролировать степень заряда солнечной батареи.
Контролеры позволяют перераспределять энергию, полученную от солнечных батарей, направляя ее при необходимости напрямую к источнику потребления, либо сохраняя ее в аккумуляторе.
Выделяют несколько типов контроллеров солнечных батарей, отличающихся между собой степенью увеличения общей эффективности системы солнечных батарей.
Садовые фонари на солнечных батареях
Для того, чтобы приобщиться к использованию альтернативных источников энергии, вовсе не обязательно приобретать дорогостоящую солнечную батарею. Есть более доступные примеры использования солнечной энергии для получения электрической. Речь идет о популярных в настоящее время садовых фонарях на солнечных батареях.
Такие фонарики позволяют освещать приусадебный участок в темное время суток, не затрачивая на это дополнительную электроэнергию.
Принцип работы таких фонарей заключается в том, что посредством фитопластины, вмонтированной в верхнюю часть фонарика, происходит улавливание и преобразование солнечной энергии, которая аккумулируется в небольшой батарее, расположенной в основании фонарика. Расход накопившейся энергии происходит в темное время суток.
Читайте также:
Принцип работы солнечной панели— ваше руководство по электрике
Привет, друзья, в этой статье я собираюсь обсудить принцип работы солнечной панели и надеюсь, что вам понравятся мои усилия.В солнечной фотоэлектрической системе солнечная энергия напрямую преобразуется в электрическую. Это делает систему намного более удобной и компактной по сравнению с тепловыми методами преобразования солнечной энергии.
Технология солнечных батарей — это самая быстрорастущая технология производства электроэнергии в мире.Это связано с тем, что становятся доступными солнечные элементы с эффективностью преобразования более 40%.
Фотоэлектрический элемент также называют солнечным элементом. Это полупроводниковое устройство, преобразующее солнечный свет в постоянный ток с помощью фотоэлектрического эффекта. Практически все солнечные элементы представляют собой фотодиоды из полупроводникового материала, например кремния. Солнечный элемент работает в три этапа:
- Фотоны солнечного света попадают в солнечный элемент и поглощаются полупроводниковым материалом.
- Отрицательно заряженные электроны отрываются от своих атомов и начинают течь в том же направлении, создавая электрический ток.
- Типичный кремниевый солнечный элемент может производить до 0,5 В и ток до 6 А. Таким образом, его максимальная мощность составляет 3 Вт.
Поскольку мощность одного солнечного элемента очень мала, большое количество солнечных элементов соединены между собой, образуя солнечный модуль, комбинация солнечных модулей называется панелью, а комбинация панелей называется солнечной батареей. Это делается для получения требуемой выходной мощности от фотоэлектрической системы.
Когда солнечные элементы соединены последовательно, их напряжение увеличивается на столько же, сколько и количество элементов, соединенных последовательно. Но ток остается прежним.
При параллельном соединении ячеек напряжение остается постоянным, как и у одной ячейки, но ток увеличивается. Ячейки, модули или панели можно подключать параллельно, только если их напряжения одинаковы. Основные компоненты солнечной фотоэлектрической системы:
Блокирующие диоды
Массивы SPV подключены к батарее.В солнечные часы панели вырабатывают электричество, которое заряжает аккумулятор. Но когда нет солнечного света или ночью, ток будет пытаться течь в обратном направлении, то есть от батареи к массивам. Это может повредить массивы. Поэтому, чтобы избежать этого обратного тока, используются блокирующие диоды.
Регулятор напряжения
Выходное напряжение фотоэлектрических панелей зависит от интенсивности солнечного света. Это приведет к колебаниям тока нагрузки.Стабилизаторы напряжения будут следить за тем, чтобы колебания напряжения оставались в установленных пределах.
Инвертор
Поскольку мощность, вырабатываемая фотоэлектрической антенной, является постоянным током, для преобразования ее в переменный ток используется инвертор, чтобы мы могли легко ее использовать. Инверторный блок с различными защитными устройствами обеспечивает безопасность системы и выполняет автоматическое переключение нагрузки и доступных источников питания.
Аккумуляторы
Они используются для хранения солнечной энергии.Они являются наиболее важными компонентами солнечной фотоэлектрической системы. Успех солнечной фотоэлектрической системы во многом зависит от аккумуляторной системы хранения.
Контроллеры батарей
Это устройства, обеспечивающие правильную зарядку аккумуляторов. Они контролируют зарядный ток и защищают аккумулятор от перезарядки. Это осуществляется путем постоянного контроля тока, напряжения и температуры аккумулятора.
Типы солнечных фотоэлектрических систем
По способу использования может быть две конфигурации:
- Автономная система
- Система, подключенная к сети
Автономная система
В этой системе питание подается на нагрузку без использования какой-либо общей сети или подключения к любой другой системе и работает автономно и независимо.Он используется для резервного питания, когда подключение к сети очень дорого. Его можно использовать для питания нагрузок постоянного тока, а также нагрузок переменного тока с помощью инвертора.
Существуют разные типы автономных систем. Но наиболее часто используется гибридная автономная система .
В гибридной автономной системе используются один или несколько источников в дополнение к фотоэлектрическим панелям. Источники, такие как генераторы, топливные элементы, сеть переменного тока и т. Д., Могут использоваться вместе с фотоэлектрическими батареями. Таким образом снижается зависимость от какого-либо одного источника.Это также снижает емкость аккумулятора и размер фотоэлектрических массивов.
Система, подключенная к сети
В этой системе мощность, генерируемая фотоэлектрической батареей, передается в сеть или на нагрузки переменного тока напрямую. Когда выработка электроэнергии превышает потребности нагрузок, она подается в коммерческую сеть. Таким образом, система становится частью большой сети. В этой системе, когда мощность, производимая фотоэлектрической антенной, превышает требования к локальной нагрузке, она подается в сеть. Счетчик энергии используется для контроля поставляемой энергии.
Спасибо, что прочитали о принципе работы солнечной панели .
Электростанции | Все сообщения
© https://yourelectricalguide.com/ Принцип работы солнечной панели.
Солнечный элемент: принцип работы и конструкция (схемы в комплекте)
Что такое солнечный элемент?
Солнечный элемент (также известный как фотоэлектрический элемент или фотоэлектрический элемент) определяется как электрическое устройство, которое преобразует световую энергию в электрическую энергию посредством фотоэлектрического эффекта.Солнечный элемент — это в основном диод с p-n переходом. Солнечные элементы представляют собой форму фотоэлементов, определяемых как устройство, электрические характеристики которого, такие как ток, напряжение или сопротивление, изменяются под воздействием света.
Отдельные солнечные элементы могут быть объединены в модули, обычно известные как солнечные панели. Обычный кремниевый солнечный элемент с одним переходом может производить максимальное напряжение холостого хода приблизительно от 0,5 до 0,6 вольт. Само по себе это немного, но помните, что эти солнечные элементы крошечные.При объединении в большую солнечную панель можно вырабатывать значительное количество возобновляемой энергии.
Конструкция солнечного элемента
Солнечный элемент в основном представляет собой переходной диод, хотя по своей конструкции он немного отличается от обычных диодов с p-n переходом. Очень тонкий слой полупроводника p-типа выращивается на относительно более толстом полупроводнике n-типа. Затем мы накладываем несколько более тонких электродов на верхнюю часть полупроводникового слоя p-типа.
Эти электроды не препятствуют проникновению света в тонкий слой p-типа.Чуть ниже слоя p-типа находится p-n переход. Мы также предоставляем токосъемный электрод внизу слоя n-типа. Мы герметизируем всю сборку тонким стеклом, чтобы защитить солнечную батарею от любых механических ударов.
Принцип работы солнечного элемента
Когда свет достигает p-n перехода, световые фотоны могут легко попасть в переход через очень тонкий слой p-типа. Световая энергия в виде фотонов поставляет в переход достаточно энергии для создания ряда электронно-дырочных пар.Падающий свет нарушает условие теплового равновесия перехода. Свободные электроны в обедненной области могут быстро перейти на сторону n-типа перехода.
Точно так же отверстия в истощении могут быстро попасть на сторону p-типа перехода. После того, как вновь созданные свободные электроны попадают на сторону n-типа, они не могут дальше пересекать переход из-за барьерного потенциала перехода.
Точно так же вновь созданные отверстия, когда-то выходящие на сторону p-типа, не могут далее пересекать переход, стали с тем же барьерным потенциалом, что и переход.Когда концентрация электронов становится выше на одной стороне, то есть на стороне n-типа перехода, а концентрация дырок увеличивается на другой стороне, то есть на стороне p-типа перехода, p-n переход будет вести себя как маленький аккумуляторный элемент. Устанавливается напряжение, известное как фото-напряжение. Если мы подключим небольшую нагрузку через соединение, через него будет протекать крошечный ток.
V-I Характеристики фотоэлектрического элемента
Материалы, используемые в солнечном элементе
Материалы, которые используются для этой цели, должны иметь ширину запрещенной зоны, близкую к 1.5ев. Обычно используемые материалы —
- Кремний.
- GaAs.
- CdTe.
- CuInSe 2
Критерии для материалов, которые будут использоваться в солнечной батарее
- Должна иметь ширину запрещенной зоны от 1 Ev до 1,8 Ev.
- Он должен иметь высокое оптическое поглощение.
- Должен иметь высокую электропроводность.
- Сырье должно быть доступно в изобилии, а стоимость материала должна быть низкой.
Преимущества солнечной батареи
- Отсутствие загрязнения окружающей среды.
- Он должен прослужить долго.
- Нет затрат на обслуживание.
Недостатки солнечной батареи
- Имеет высокую стоимость установки.
- Имеет низкий КПД.
- В пасмурный день энергия не может производиться, а также ночью мы не получаем солнечную энергию.
Использование систем солнечной генерации
- Может использоваться для зарядки аккумуляторов.
- Используется в люксметрах.
- Применяется для питания калькуляторов и наручных часов.
- Может использоваться в космических кораблях для выработки электроэнергии.
Заключение: хотя солнечная батарея имеет некоторые недостатки, которые, как ожидается, будут устранены по мере развития технологии, поскольку технология развивается, стоимость солнечных панелей, а также стоимость установки снизятся. так что каждый может приложить усилия для установки системы. Кроме того, правительство уделяет большое внимание солнечной энергии, поэтому через несколько лет мы можем ожидать, что каждое домашнее хозяйство, а также каждая электрическая система питаются от солнечной или возобновляемой энергии.
|
|
Что такое солнечная энергия и как работают солнечные панели?
Перейти к разделу «Как работают солнечные панели»
Что такое солнечная энергия?
Проще говоря, солнечная энергия — это самый распространенный источник энергии на Земле.Около 173 000 тераватт солнечной энергии попадает на Землю в любой момент времени, что более чем в 10 000 раз превышает общие потребности мира в энергии.
Улавливая солнечную энергию и превращая ее в электричество для вашего дома или бизнеса, солнечная энергия является ключевым решением в борьбе с текущим климатическим кризисом и сокращении нашей зависимости от ископаемого топлива.
Как работает солнечная энергия?
Наше солнце — это естественный ядерный реактор. Он высвобождает крошечные пакеты энергии, называемые фотонами, которые преодолевают расстояние в 93 миллиона миль от Солнца до Земли примерно за 8.5 минут. Каждый час на нашу планету воздействует достаточно фотонов, чтобы произвести достаточно солнечной энергии, чтобы теоретически удовлетворить глобальные потребности в энергии в течение всего года.
В настоящее время фотоэлектрическая энергия составляет лишь пять десятых одного процента энергии, потребляемой в Соединенных Штатах. Но солнечные технологии улучшаются, и стоимость перехода на солнечную энергию быстро падает, поэтому наша способность использовать изобилие солнечной энергии растет.
В 2017 году Международное энергетическое агентство показало, что солнечная энергия стала самым быстрорастущим источником энергии в мире — это первый раз, когда рост солнечной энергии превысил рост всех других видов топлива.С тех пор солнечная энергия продолжает расти и бить рекорды по всему миру.
Как погода влияет на солнечную энергию?
Погодные условия могут влиять на количество электроэнергии, производимой солнечной системой, но не совсем так, как вы думаете.
Идеальные условия для производства солнечной энергии включают, конечно же, ясный солнечный день. Но, как и большая часть электроники, солнечные батареи более эффективны в холодную погоду, чем в теплую погоду. Это позволяет панели производить больше электроэнергии за то же время.При повышении температуры панель вырабатывает меньше напряжения и вырабатывает меньше электроэнергии.
Но даже несмотря на то, что солнечные батареи более эффективны в холодную погоду, они не обязательно производят больше электроэнергии зимой, чем летом. Более солнечная погода часто бывает в более теплые летние месяцы. В дополнение к меньшему количеству облаков солнце обычно не светит большую часть дня. Таким образом, даже если ваши панели могут быть менее эффективными в теплую погоду, они все равно, вероятно, будут производить больше электроэнергии летом, чем зимой.
Получают ли одни государства больше солнечной энергии, чем другие?
Очевидно, что в одних штатах солнца больше, чем в других. Итак, реальный вопрос: если погода может повлиять на производство солнечной энергии, являются ли одни штаты лучшими кандидатами на использование солнечной энергии, чем другие? Короткий ответ — да, но не обязательно из-за погоды.
Возьмем, к примеру, облака. Любой, кто получил солнечный ожог в пасмурный день, знает, что солнечное излучение проникает сквозь облака. По той же причине солнечные панели все еще могут производить электричество в пасмурные дни.Но в зависимости от облачности и качества солнечных панелей эффективность производства электроэнергии солнечными панелями обычно падает с 10 до 25 или более процентов по сравнению с солнечным днем.
Другими словами, солнечная энергия может работать в обычно облачных и холодных местах. Нью-Йорк, Сан-Франциско, Милуоки, Бостон, Сиэтл — во всех этих городах ненастная погода, от дождя и тумана до метелей, но это также города, где люди получают огромную экономию за счет солнечной энергии.
Где бы вы ни жили, солнечная энергия может быть отличным вложением средств и отличным способом помочь в борьбе с изменением климата. Сколько вы сэкономите — и как быстро вы увидите окупаемость своих инвестиций в конкретном штате — зависит от многих факторов, таких как стоимость электроэнергии, доступные солнечные льготы, чистые измерения и качество ваших солнечных панелей.
Как работают солнечные панели?
Когда фотоны попадают в солнечный элемент, они выбивают электроны из их атомов.Если проводники присоединены к положительной и отрицательной сторонам ячейки, она образует электрическую цепь. Когда электроны проходят через такую цепь, они вырабатывают электричество. Несколько ячеек составляют солнечную панель, а несколько панелей (модулей) могут быть соединены вместе, чтобы сформировать солнечную батарею. Чем больше панелей вы можете развернуть, тем больше энергии вы можете ожидать.
Из чего сделаны солнечные панели?
Фотоэлектрические (PV) солнечные панели состоят из множества солнечных элементов. Солнечные элементы сделаны из кремния, как и полупроводники.Они состоят из положительного и отрицательного слоев, которые вместе создают электрическое поле, как в батарее.
Как солнечные панели вырабатывают электричество?
фотоэлектрических солнечных панелей вырабатывают электроэнергию постоянного тока (DC). При использовании электричества постоянного тока электроны движутся по цепи в одном направлении. В этом примере показана батарея, питающая лампочку. Электроны движутся с отрицательной стороны батареи через лампу и возвращаются к положительной стороне батареи.
При использовании электричества переменного тока электроны толкаются и притягиваются, периодически меняя направление, подобно цилиндру двигателя автомобиля. Генераторы создают электричество переменного тока, когда катушка проволоки вращается рядом с магнитом. Многие различные источники энергии могут «повернуть ручку» этого генератора, например, газ или дизельное топливо, гидроэлектроэнергия, атомная энергия, уголь, ветер или солнце.
Электричество переменного токабыло выбрано для электросети США, в первую очередь потому, что его дешевле передавать на большие расстояния.Однако солнечные панели создают электричество постоянного тока. Как получить электроэнергию постоянного тока в сеть переменного тока? Используем инвертор.
Для чего нужен солнечный инвертор?
Солнечный инвертор получает электричество постоянного тока от солнечной батареи и использует его для создания электричества переменного тока. Инверторы подобны мозгу системы. Наряду с преобразованием постоянного тока в переменный, они также обеспечивают защиту от замыканий на землю и статистику системы, включая напряжение и ток в цепях переменного и постоянного тока, выработку энергии и отслеживание точки максимальной мощности.
Центральные инверторы доминируют в солнечной промышленности с самого начала. Внедрение микроинверторов — один из самых больших технологических сдвигов в фотоэлектрической индустрии. Микроинверторы оптимизируются для каждой отдельной солнечной панели, а не для всей солнечной системы, как это делают центральные инверторы.
Это позволяет каждой солнечной панели работать с максимальным потенциалом. Когда используется центральный инвертор, проблема с одной солнечной панелью (возможно, она находится в тени или испачкалась) может снизить производительность всей солнечной батареи.Микроинверторы, такие как те, что используются в домашней солнечной системе Equinox компании SunPower, делают это несложным. Если одна солнечная панель неисправна, остальная часть солнечной батареи по-прежнему работает эффективно.
Как работает система солнечных батарей?
Вот пример того, как работает домашняя солнечная энергетическая установка. Сначала солнечный свет попадает на солнечную батарею на крыше. Панели преобразуют энергию в постоянный ток, который течет к инвертору. Инвертор преобразует электричество из постоянного тока в переменный, который затем можно использовать для питания вашего дома.Это красиво, просто и чисто, и со временем становится все более эффективным и доступным.
Однако что произойдет, если вы не дома, чтобы использовать электроэнергию, которую вырабатывают солнечные батареи каждый солнечный день? А что происходит ночью, когда ваша солнечная система не вырабатывает электроэнергию в реальном времени? Не волнуйтесь, вы все равно можете получить выгоду от системы, называемой «нетто-учет».
Типичная фотоэлектрическая система, подключенная к сети, в часы пик в дневное время часто производит больше энергии, чем нужно одному потребителю, так что избыточная энергия возвращается в сеть для использования в другом месте.Потребитель, имеющий право на чистое измерение, может получать кредиты за произведенную избыточную энергию и может использовать эти кредиты для получения электроэнергии из сети в ночное время или в пасмурные дни. Счетчик нетто регистрирует отправленную энергию по сравнению с энергией, полученной из сети. Прочтите нашу статью о чистых счетчиках и о том, как это работает.
Добавление накопителей в солнечную систему еще больше усиливает эти преимущества. С помощью системы хранения солнечной энергии клиенты могут хранить свою собственную энергию на месте, что еще больше снижает их зависимость от электросети и сохраняет способность обеспечивать электроэнергией свой дом в случае отключения электроэнергии.Если система хранения включает программный мониторинг, это программное обеспечение контролирует производство солнечной энергии, потребление энергии в доме и тарифы на коммунальные услуги, чтобы определить, какой источник энергии использовать в течение дня — максимизируя использование солнечной энергии, предоставляя заказчику возможность снизить пиковую плату и возможность сохранять электроэнергию для последующего использования во время отключения электроэнергии.
Если вы хотите узнать, сколько может сэкономить ваш дом или бизнес, назначьте время для того, чтобы мы разработали индивидуальный дизайн и расценки на потенциальную экономию.
Похожие сообщения
Что такое солнечная панель? Как работает солнечная панель?
Солнечная энергия начинается с солнца. Солнечные панели (также известные как «фотоэлектрические панели») используются для преобразования солнечного света, состоящего из частиц энергии, называемых «фотонами», в электричество, которое можно использовать для питания электрических нагрузок.
Солнечные панели могут использоваться для самых разных целей, включая удаленные системы электроснабжения для кабин, телекоммуникационное оборудование, дистанционное зондирование и, конечно же, для производства электроэнергии в жилых и коммерческих солнечных электрических системах.
На этой странице мы обсудим историю, технологию и преимущества солнечных панелей. Мы узнаем, как работают солнечные панели, как они производятся, как они производят электричество и где вы можете купить солнечные панели.
Краткая история солнечных панелей
История развития солнечной энергетики насчитывает более 100 лет. Раньше солнечная энергия использовалась в основном для производства пара, который затем можно было использовать для привода механизмов. Но только после открытия Эдмондом Беккерелем «фотоэлектрического эффекта», который позволил преобразовывать солнечную энергию в солнечную электрическую энергию.Затем открытие Беккереля привело к изобретению Чарльзом Фриттсом в 1893 году первого настоящего солнечного элемента, который был образован путем покрытия листов селена тонким слоем золота. И из этого скромного начала возникло устройство, которое мы знаем сегодня как солнечная панель .
Рассел Ол, американский изобретатель, работающий в Bell Laboratories, запатентовал первый в мире кремниевый солнечный элемент в 1941 году. Изобретение Ола привело к производству первой солнечной панели в 1954 году той же компанией.Солнечные панели нашли свое первое широкое применение в космических спутниках. Для большинства людей первая солнечная панель в их жизни, вероятно, была встроена в их новый калькулятор — примерно в 1970-х годах!
Сегодня солнечные панели и полные системы солнечных панелей используются для питания самых разных приложений. Да, солнечные панели в виде солнечных батарей все еще используются в калькуляторах. Однако они также используются для обеспечения солнечной энергией целых домов и коммерческих зданий, таких как штаб-квартира Google в Калифорнии.
Как работают солнечные панели?
Солнечные панели собирают чистую возобновляемую энергию в виде солнечного света и преобразуют этот свет в электричество, которое затем можно использовать для обеспечения питания электрических нагрузок. Солнечные панели состоят из нескольких отдельных солнечных элементов, которые сами состоят из слоев кремния, фосфора (который обеспечивает отрицательный заряд) и бора (который обеспечивает положительный заряд). Солнечные панели поглощают фотоны и при этом инициируют электрический ток.Результирующая энергия, генерируемая фотонами, ударяющими по поверхности солнечной панели, позволяет электронам сбиваться с их атомных орбит и превращаться в электрическое поле, создаваемое солнечными элементами, которые затем тянут эти свободные электроны в направленный ток. Весь этот процесс известен как фотоэлектрический эффект. В среднем доме имеется более чем достаточно площади на крыше для необходимого количества солнечных панелей для выработки солнечной энергии, достаточной для удовлетворения всех его потребностей в электроэнергии. Избыточная выработка электроэнергии поступает в основную энергосистему, окупаясь за счет использования электроэнергии в ночное время.
В хорошо сбалансированной конфигурации с подключением к сети солнечная батарея вырабатывает энергию в течение дня, которая затем используется в доме ночью. Программы чистых измерений позволяют владельцам солнечных генераторов получать деньги, если их система производит больше энергии, чем требуется в доме. В автономных солнечных приложениях необходимыми компонентами являются аккумуляторный блок, контроллер заряда и, в большинстве случаев, инвертор. Солнечная батарея отправляет электричество постоянного тока (DC) через контроллер заряда в аккумуляторную батарею.Затем энергия поступает из аккумуляторной батареи в инвертор, который преобразует постоянный ток в переменный ток (AC), который может использоваться для устройств, не работающих на постоянном токе. С помощью инвертора размеры панелей солнечных батарей могут быть изменены в соответствии с самыми высокими требованиями к электрической нагрузке. Переменный ток можно использовать для питания нагрузок в домах или коммерческих зданиях, транспортных средствах для отдыха и лодках, удаленных каютах, коттеджах или домах, удаленном управлении движением, телекоммуникационном оборудовании, мониторинге потока нефти и газа, RTU, SCADA и многом другом.
Преимущества солнечных панелей
Использование солнечных батарей — очень практичный способ производства электроэнергии для многих приложений. Очевидное — это автономная жизнь. Проживание вне сети означает проживание в месте, которое не обслуживается основной электрической сетью. Отдаленные дома и коттеджи хорошо извлекают выгоду из систем солнечной энергии. Больше нет необходимости платить огромные сборы за установку опор электроснабжения и прокладку кабелей от ближайшей точки доступа к основной сети. Солнечная электрическая система потенциально дешевле и может обеспечивать электроэнергию более трех десятилетий при правильном обслуживании.
Помимо того факта, что солнечные панели позволяют жить вне сети, возможно, самое большое преимущество, которое вы получите от использования солнечной энергии, состоит в том, что это одновременно чистый и возобновляемый источник энергии. С наступлением глобального изменения климата стало более важным, чтобы мы делали все возможное, чтобы уменьшить давление на нашу атмосферу из-за выбросов парниковых газов. Солнечные панели не имеют движущихся частей и требуют минимального обслуживания. Они прочны и служат десятилетиями при надлежащем уходе.
Последнее, но не менее важное, из преимуществ солнечных панелей и солнечной энергии заключается в том, что после того, как система окупила свои первоначальные затраты на установку, электричество, которое она вырабатывает на оставшийся срок службы системы, который может достигать 15%. 20 лет в зависимости от качества системы, абсолютно бесплатно! Для владельцев солнечных энергосистем, подключенных к сети, преимущества начинаются с того момента, когда система вводится в эксплуатацию, что потенциально устраняет ежемесячные счета за электроэнергию или, и это лучшая часть, фактически приносит владельцу системы дополнительный доход от электрической компании.Как? Если вы потребляете меньше энергии, чем производит ваша солнечная электрическая система, эту избыточную мощность можно продать, иногда с наценкой, вашей электроэнергетической компании!
Есть много других применений и преимуществ использования солнечных панелей для выработки электроэнергии — их слишком много, чтобы перечислять здесь. Но, просматривая наш веб-сайт, вы получите хорошее общее представление о том, насколько универсальной и удобной может быть солнечная энергия.
Сколько стоят солнечные панели?
Цены на солнечные панели существенно снизились за последние пару лет.Это здорово, потому что в сочетании с федеральным налоговым кредитом на инвестиции в солнечную энергию в размере 30 долларов и другими применимыми льготами СЕЙЧАС — лучшее время для инвестиций в солнечную энергетическую систему. И учтите: солнечная энергетическая установка стоит примерно столько же, сколько автомобиль среднего размера!
Где я могу купить солнечные батареи?
Ну, конечно, прямо здесь, на этом сайте!
В число наших брендов солнечных панелей входят самые уважаемые производители солнечных панелей. Эти бренды включают, среди прочего, такие названия, как BP Solar, General Electric и Sharp.Мы предлагаем солнечные панели только высочайшего качества от производителей, зарекомендовавших себя в области производства солнечных панелей. Имея более чем 30-летний опыт работы в сфере солнечных панелей, вы можете быть уверены, что на MrSolar.com мы знаем о солнечных батареях!
Сохранить
Сохранить
Как работают солнечные панели?
Шаг 5. Солнечная электроэнергия измеряется счетчиком нетто
Для этой последней части вам нужно знать, что такое соглашение об измерении нетто. Чистое измерение — это когда ваша местная коммунальная компания соглашается предоставить кредиты на энергию для любой излишков солнечной энергии, которую вы производите, и отправить ее обратно в электросеть.В некоторых случаях эти кредиты на электроэнергию могут продлеваться, поэтому вы накапливаете их в долгосрочной перспективе, а некоторые коммунальные предприятия даже снимут с вас чек на ваши кредиты на производство электроэнергии.
Сетевой счетчик устанавливается в доме и измеряет электричество, поступающее в сеть и из нее. Этот счетчик похож на электрический счетчик, который у вас, вероятно, есть сейчас, но он измеряет мощность, идущую в двух направлениях, а не только в одном. Остались вопросы? Узнайте больше о чистых счетчиках здесь.
Примечание о чистых измерениях
Важно отметить, что если у вас есть совместное соглашение PPA, в котором вы платите за солнечную энергию, производимую вашими панелями, вы, скорее всего, будете платить больше за солнечную энергию летом.Это кажется обратным, верно? Поясним: лето означает больше солнечного света, что также означает больше производства солнечной энергии. НО хорошая новость в том, что вы меньше полагаетесь на традиционную электроэнергию, это должно помочь компенсировать ваши общие затраты на использование.
Теперь добавьте стоимость начисляемых чистых счетчиков, и, хотя сначала это может показаться медленным, в конечном итоге это сэкономит вам деньги в долгосрочной перспективе. Дайте ему около двенадцати месяцев после того, как вы установили свою солнечную энергетическую систему, чтобы увидеть, как процесс чистых измерений начинает склоняться в вашу пользу.Откуда пришла идея солнечной энергии?
Из того, что мы записали как народ, мы знаем, что человечество использовало солнечную энергию еще в 7 веке до нашей эры. От сосредоточения солнечной энергии на стекле, чтобы разжечь огонь, до направления солнечного света через зеркала для освещения комнаты, у человека всегда была очень тесная связь с устрашающей силой солнца. Однако идея использования солнечной энергии с помощью фотоэлементов действительно появилась в 1839–1883 годах благодаря изобретательности следующих пяти человек:
1839: Эдмон Беккерель В 1839 году французский физик Эдмон Беккерель обнаружил влияние фотовольтаики, экспериментируя с ячейкой, сделанной из металлических электродов, и заметил, что ячейка вырабатывает больше электричества, когда на нее воздействует свет.
1873: Уиллоуби Смит В 1873 году Уиллоуби Смит обнаружил, что селен может действовать как фотопроводник.
1876: Уильям Гриллс Адамс и Ричард Эванс Дэй В 1876 году Уильям Гриллс Адамс и Ричард Эванс Дэй применили к селену фотоэлектрический принцип, открытый Беккерелем, и зарегистрировали, что он, на самом деле, может генерировать электричество при воздействии света.
1876: Уильям Гриллс Адамс и Ричард Эванс Дэй В 1883 году американский изобретатель Чарльз Фриц создал первый работающий селеновый солнечный элемент.
Почему солнечная энергия считается «возобновляемой» и что это означает?
Помните, как мы говорили о солнце как о главном источнике возобновляемой энергии, потому что оно (надеюсь) никогда не иссякнет? Когда мы говорим о возобновляемых источниках энергии с точки зрения солнечной энергии, мы говорим о том, что является устойчивым, простым в использовании, требует минимального обслуживания и будет работать в течение длительного периода времени. Это солнце. Солнце возобновимо, потому что оно буквально обновляется.Это источник энергии, который не иссякнет (опять же, мы надеемся), что означает, что мы можем продолжать использовать удары для выработки энергии для нас без необходимости дозаправки или возобновления ее. Помимо солнца, к другим источникам возобновляемой энергии относятся ветер и гидроэнергетика.
Противоположностью возобновляемым источникам энергии будет ископаемое топливо. Ископаемые виды топлива (газ, нефть, уголь, нефть и т. Д.) Не подлежат возобновлению, потому что они требуют постоянного пополнения запасов, технического обслуживания и являются ограниченными ресурсами, которые со временем закончатся.Они также ужасно вредны для окружающей среды из-за количества выбросов углерода, которые они производят, которые загрязняют воздух, растения и эту прекрасную землю, на которой мы живем.
Как солнечная энергия может сэкономить мне деньги?
Теперь мы подошли к большому вопросу. Сколько солнечной энергии можно сэкономить? И простой ответ — это зависит от вас и ваших потребностей в энергии. Сумма экономии, которую вы получаете от солнечной энергии, зависит от множества различных факторов, включая: размер вашего дома, количество людей, живущих в вашем доме, количество электроэнергии, которую вы потребляете как домашнее хозяйство каждый месяц, размер ваша солнечная энергетическая система, степень воздействия прямого солнечного света на вашу солнечную энергетическую систему, стимулы, доступные в вашем районе, тип соглашения о солнечной энергии, которое вы подписываете, и требования вашего местного округа / коммунальной компании могут повлиять на то, насколько ваша солнечная энергия потенциально может спасти вас.
Хорошая новость в том, что мы можем помочь. С вашего разрешения наши специалисты по солнечной энергии осмотрят ваш дом и произведут измерения вашей крыши, ее наклона, вашего чердака (если он у вас есть) размером с ваш дом и множества других вещей, которые помогут им определить, подходит ли ваш дом. хорошо подходит для солнечной энергии. Они также расскажут вам о различных планах солнечной энергии, которые мы предлагаем, и помогут вам определить тип доступного вам плана, который будет соответствовать вашим потребностям, и план, доступный для вас в зависимости от вашего региона.Наши планы варьируются от соглашения о солнечной наличности, где вы покупаете солнечные панели напрямую, до соглашения о ссуде на солнечную батарею, где вы можете взять ссуду для их оплаты. Вы также можете заплатить за электроэнергию, производимую вашей системой, с помощью Solar PPA или сдать оборудование в аренду через Solar Lease.
Каждый из этих вариантов финансирования может помочь вам сэкономить деньги по-разному, при этом помогая использовать энергию солнца с помощью возобновляемых источников солнечной энергии.
Что еще я должен знать, когда речь идет о солнечной энергии?
Прелесть солнечной энергетической системы состоит в том, что она дружит с другими сверхсовместимыми приложениями.Солнечная батарея и зарядное устройство для электромобилей — это два перспективных продукта, которые прекрасно сочетаются с солнечной энергетической системой и могут действительно повлиять на качество вашей жизни.
Поскольку ваша солнечная энергетическая система работает на вас, она может отправлять излишки энергии обратно в сеть, что потенциально может сэкономить вам на счетах за коммунальные услуги. Но он также может хранить часть этой избыточной энергии в солнечной батарее. Благодаря солнечной батарее ваша система сохраняет избыточную солнечную энергию от ваших панелей и использует ее для питания вашего дома, когда она вам больше всего нужна — например, во время отключения электричества или когда садится солнце.
Зарядное устройство для электромобилей, хотя оно и не подключено к вашей солнечной энергетической системе, по-прежнему невероятно полезно для тех, кто хочет быстро зарядить свой электромобиль. Подумайте об этом так: стандартная розетка (традиционное 110 В) должна легко заряжать вашу бытовую технику. Но когда дело доходит до вашего электромобиля, вам нужна более сильная и мощная розетка, чтобы действительно произвести впечатление. С установленным зарядным устройством Vivint Solar для электромобилей вы можете заряжать до шести раз быстрее, чем стандартная домашняя розетка, а также составлять напоминания по расписанию, время зарядки и отслеживать потребление энергии с помощью смартфона.
Это лишь две из множества инноваций, которые улучшают способы использования технологий умного дома как сейчас, так и в будущем.
Так работает солнечная энергия
Заинтересованы в использовании солнечной энергии? Vivint Solar может помочь вам проработать детали. Начните свое солнечное путешествие с бесплатной солнечной цитатой от Vivint Solar.
Примечания: 1. https://www.eia.gov/energyexplained/index.cfm?page=solar_home
Как работают фотоэлектрические системы? | Управление научной миссии
Гил Книр назад к рассказу Science @ NASA «Край солнечного света»Что такое фотовольтаика?
Фотогальваника — это прямое преобразование света в электричество на атомном уровне.Некоторые материалы проявляют свойство, известное как фотоэлектрический эффект, заставляющее их поглощать фотоны света и высвобождать электроны. Когда эти свободные электроны захватываются, возникает электрический ток, который можно использовать в качестве электричества.
Фотоэлектрический эффект впервые был отмечен французским физиком Эдмундом Бекерелем в 1839 году, который обнаружил, что некоторые материалы производят небольшой электрический ток при воздействии света. В 1905 году Альберт Эйнштейн описал природу света и фотоэлектрический эффект, на котором основана фотоэлектрическая технология, за что позже он получил Нобелевскую премию по физике.Первый фотоэлектрический модуль был построен Bell Laboratories в 1954 году. Он был выставлен как солнечная батарея и был в основном просто любопытством, поскольку был слишком дорог для широкого использования. В 1960-х годах космическая промышленность впервые начала серьезно использовать эту технологию для обеспечения энергии на борту космических кораблей. Благодаря космическим программам технология продвинулась, была подтверждена ее надежность, а стоимость стала снижаться. Во время энергетического кризиса 1970-х годов фотоэлектрические технологии получили признание в качестве источника энергии для не космических приложений.
Схема выше иллюстрирует работу базового фотоэлектрического элемента, также называемого солнечным элементом. Солнечные элементы изготавливаются из тех же полупроводниковых материалов, как кремний, используемых в промышленности микроэлектроники. В солнечных элементах тонкая полупроводниковая пластина специально обрабатывается для образования электрического поля, положительного с одной стороны и отрицательного — с другой. Когда световая энергия попадает на солнечный элемент, электроны отрываются от атомов в полупроводниковом материале.Если электрические проводники присоединены к положительной и отрицательной сторонам, образуя электрическую цепь, электроны могут быть захвачены в виде электрического тока, то есть электричества. Затем это электричество можно использовать для питания нагрузки, такой как свет или инструмент.
Ряд солнечных элементов, электрически соединенных друг с другом и установленных в опорной конструкции или раме, называется фотоэлектрическим модулем. Модули предназначены для подачи электроэнергии на определенное напряжение, например в обычную систему на 12 вольт.Производимый ток напрямую зависит от того, сколько света попадает на модуль.
Несколько модулей можно соединить вместе, чтобы сформировать массив. Как правило, чем больше площадь модуля или массива, тем больше электроэнергии будет производиться. Фотоэлектрические модули и массивы вырабатывают электроэнергию постоянного тока. Их можно подключать как последовательно, так и параллельно, чтобы получить любую требуемую комбинацию напряжения и тока.
В наиболее распространенных сегодня фотоэлектрических устройствах используется один переход или интерфейс для создания электрического поля в полупроводнике, таком как фотоэлемент.В однопереходной фотоэлектрической ячейке только фотоны, энергия которых равна ширине запрещенной зоны материала ячейки или превышает ее, могут освободить электрон для электрической цепи. Другими словами, фотоэлектрический отклик однопереходных ячеек ограничен той частью солнечного спектра, энергия которой превышает ширину запрещенной зоны поглощающего материала, и фотоны с более низкой энергией не используются.Одним из способов обойти это ограничение является использование двух (или более) разных ячеек с более чем одной запрещенной зоной и более чем одним переходом для генерации напряжения.Их называют «многопереходными» ячейками (также называемыми «каскадными» или «тандемными» ячейками). Многопереходные устройства могут обеспечить более высокую общую эффективность преобразования, поскольку они могут преобразовывать большую часть энергетического спектра света в электричество.
Как показано ниже, многопереходное устройство представляет собой набор отдельных ячеек с одним переходом в порядке убывания ширины запрещенной зоны (например). Верхняя ячейка улавливает фотоны с высокой энергией и пропускает остальные фотоны для поглощения ячейками с более низкой запрещенной зоной.
Большая часть сегодняшних исследований многопереходных клеток сосредоточена на арсениде галлия как на одной (или на всех) составляющих клетки. Такие клетки достигли эффективности около 35% при концентрированном солнечном свете. Другими исследованными материалами для многопереходных устройств были аморфный кремний и диселенид индия и меди.В качестве примера в многопереходном устройстве ниже используется верхняя ячейка из фосфида галлия-индия, «туннельный переход», чтобы способствовать потоку электронов между ячейками, и нижняя ячейка из арсенида галлия.
 назад к рассказу Science @ NASA «Край солнечного света»Присоединяйтесь к нашему растущему списку подписчиков — подпишитесь на нашу экспресс-доставку новостей , и вы будете получать сообщение по электронной почте каждый раз, когда мы публикуем новую историю !!! Подробнее Заголовки
КОНЕЦ .