Солнечные системы электроснабжения – Готовые решения систем солнечного электроснабжения.

Содержание

Системы солнечного электроснабжения дома - Gravicappa, Украина

Комбинированные ситемы солнечного электроснабжения дома

Во всем мире потребители электрической энергии ищут возможности для постоянного и бесперебойного обеспечения ею своих нужд. Люди заботятся не только о комфортном и экономичном удовлетворении своих потребностей. Охрана окружающей среды, сохранение ее чистоты для себя, своих детей и будущих поколений — решение этих проблем заставляет обращаться к поиску разнообразных экологичных источников получения энергии. Один из них — это солнечная энергия. Она способна обеспечить теплом от инфракрасного излучения не только все живое на земле, но и наши дома, предоставив возможность пользоваться горячей водой, электрическими приборами и другими благами цивилизации практически бесплатно. Автономное электроснабжение солнечных батарей является оптимальным решением как с точки зрения экологии, так и с экономической.

На что расходуется электроэнергия в частном доме?

В каждом доме есть великое множество электрических приборов. Трудно представить современное жилище без стиральной машины, телевизора, компьютера, утюга, микроволновой печи. Круглосуточно работает холодильник. В частном доме есть бойлер, может быть бассейн, работает газонокосилка, электропила, сварочный аппарат. Всего не перечислить. Плюс ко всему, люди пользуются светом электрических ламп. Если подсчитать количество энергии, нужной для минимального жизнеобеспечения, оно окажется довольно внушительным. К примеру, расходные величины таковы:

  • лампа накаливания - 40-100 Ватт;
  • энергосберегающая лампа - 10-20 Ватт;
  • стиральная машина - 2 кВт;
  • бойлер - 1,5 кВт;
  • зарядка электромобиля - 5 кВт.

Вся электроэнергия, которую мы использовали за месяц, отображается на нашем счетчике и измеряется в кВт*часах. Например, лампа 100 Ватт включается на 4 часа каждый день в течение месяца: 100 Ватт * 4 часа* 30 дней = 12 кВт*часов.

Если включить все приборы сразу, получим пиковую нагрузку. Это маловероятно, так как свет мы включаем вечером, стираем несколько раз в неделю. В течение суток мы потребляем большее количество энергии утром, собираясь на работу, в школу, садик, и вечером, когда все в сборе. Днем потребление небольшое.

Если обратиться к графику сравнения электрической нагрузки в среднестатистическом доме и «режиму» излучения солнцем энергии, то видим, что когда все на работе и не пользуются в полном объеме электрической энергией, солнце излучает ее наибольшее количество.

Автономные солнечные электростанции, установленные в частных домах, аккумулируют эту энергию и сохраняют ее для потребления.

Каким должно быть автономное электроснабжение на солнечных батареях?

  1. Солнечные батареи должны вырабатывать столько электроэнергии за световой день, чтобы нам  хватило на суточные потребности. Т.е. для конкретного дома величина солнечного массива подбирается  на основании среднемесячного потребления электроэнергии.
  2. Так как солнце есть не всегда, когда есть нагрузка, и наоборот, то нужен буфер для накопления — это блок аккумуляторов. Емкость аккумуляторов зависит от количества солнечных панелей и от желаемого времени автономной работы.
  3. Чтобы аккумуляторы прослужили как можно дольше, их зарядом от солнечных батарей руководит солнечный контроллер. Характеристики контроллера определяются по солнечным  модулям.
  4. Солнечные панели, аккумуляторы, контроллер заряда— это приборы постоянного тока, а нам нужен переменный ток (220 В). Для этого в системе используется инвертор для солнечных батарей (преобразователь), цена которого в Украине зависит в первую очередь от мощности. А мощность этого инвертора зависит от мощности нагрузки, которую мы собираемся подключить.

Какие источники энергии можно комбинировать?

  • Купить и установить автономную солнечную электростанцию
  • Использовать электрическую энергию из общей сети
  • Использовать энергию ветра
  • При отсутствии электрической энергии в сети получить ее при помощи дизеля

Таким образом, человек полностью обеспечит себя энергией в любое время года, при любой погоде, с перебоями в общей сети.

Почему к нам обращаются?

  • В нашей компании “Гравицаппа” вы найдете специалистов, которые детально учтут ваши потребности и разработают систему автономного обеспечения вашего жилища или предприятия при помощи энергии солнца.
  • При поступлении заявки мы выедем на объект к заказчику и определим наиболее выгодное место расположения солнечных батарей для того, чтобы солнце могло достигать их в течение целого дня. Ваши расходы на установку станции таким образом быстро окупятся. Цена автономной электростанции для дома будет в первую очередь зависеть от расчетной потребности в мощности.
  • Мы работаем только с оборудованием высокого качества ведущих производителей. Оно прослужит вам долго и качественно, обеспечивая ваши потребности почти бесплатно в течение многих лет. Мы даем трехлетнюю гарантию на эксплуатацию оборудования.
  • У нас есть сервисное обслуживание.
  • Вы будете иметь возможность мониторить работу станции отдаленно.
  • Специалисты нашей компании сделают все возможное, чтобы сэкономить ваши средства и уложиться в выделенный бюджет

Звоните сейчас! (044) 499-36-99.

gravicappa.com.ua

Солнечные системы электроснабжения | автономная система электроснабжения на солнечных батареях.

Компания «Ассолар» появилась на российском рынке солнечной энергетики для частного жилья не так давно – в 2015 году. Начав свою профессиональную деятельность в качестве поставщика солнечных батарей, на сегодняшний день мы расширили спектр своей деятельности.

Обратившись к нам, Вы можете эффективно решить все свои потребности в бесплатной энергии ввиду комплексности оказания услуг.

Мы готовы предложить Вам профессиональное проектирование комплекса автономных систем электроснабжения на базе солнечных батарей.

 

За неполные три года нашей деятельности в этой сфере на рынке Москвы и столичного региона нами было спроектировано и запущено в строй свыше 500 автономных мини-электростанций на базе фотоэлектрических модулей. Практика их эксплуатации заказчиками показала надежность и эффективность реализованных нами на практике решений  подобных комплексов.

 

Принципы нашей работы

Существует ряд принципов, реализуемых нашей компании при взаимодействии с клиентами. Каждый из них является важным преимуществом «Ассолар» в глазах наших клиентов. В числе таковых:

  • Индивидуальный подход к каждому клиенту и каждому проекту. Несмотря на то, что мы разработали множество проектов и могли бы предлагать типовые готовые решения новым клиентам, для максимальной эффективности мы разрабатываем индивидуальный проект солнечной системы электроснабжения для каждого объекта. В нем учтены специфика объекта, мощность и номенклатура энергопотребителей, пожелания заказчика и ряд иных факторов.
  • Использование передовых технологий.  Так как едва ли не ежегодно на рынке появляется продукция, превосходящая по своим характеристикам и свойствам ранее выпущенные модели. В этой связи мы стараемся постоянно обновлять предлагаемый ассортимент оборудования, предлагая оптимальный комплект солнечных батарей для каждого случая.
  • Внушительный опыт специалистов. Он позволяет гарантировать нашим заказчикам оптимальные конструктивные и технологические решения при сборке оборудования системы солнечного электроснабжения на базе солнечных батарей.  Кроме того, безупречное качество сборки также имеет ключевое значение для надежности и расчетной эффективности системы.
  • Широкий выбор. Ассортимент продукции, которая используется нашими сотрудниками или предлагается к продаже для самостоятельной сборки соляризационных систем, весьма широк. В нем представлены лучшие образцы моделей солнечных батарей, контроллеров и других комплектующих от десятков ведущих производителей.
  • Исключительный показатель «цена-качество изделий» вне зависимости от ценового диапазона предлагаемых товаров.
  • Минимальные сроки доставки. Заказанные солнечные батареи для дома или иную продукцию можно получить с нашего склада в считанные дни. При этом будет использоваться согласованная с клиентами курьерская компания, что удобно при заказе в различные регионы России.

При возникновении любых вопросов – от характеристик различных товаров из каталога компании «Ассолар» до уточнения способов оплаты – не стесняйтесь обращаться к нашим менеджерам. Их компетентные консультации помогут сделать верный выбор и добиться оптимального результата.

Солнечные системы автономного электроснабжения от Ассолар

- надежный поставщик энергии в Ваш дом!

Добавить комментарий

as-solar.ru

Системы солнечного электроснабжения. Солнечное электричество. Электричество от солнца. Солнечный коллектор цена. Солнечная панель.

Каждый год наша компания помогает тысячам домовладельцев в установке солнечных энергетических систем, для того, чтобы снизить расходы на электроэнергию. Этот важный переход к солнечной энергии доступен только для опытных профессионалов, которые будут с вами от начала и до конца во время установки панелей солнечных батарей. Вы будете руководствоваться на всех этапах вашего проекта, включая бесплатную консультацию, проектирование, приобретение, монтаж, мониторинг и обслуживание. Экономьте время с помощью опытных проектировщиков и монтажников. Если у вас свой дом и Вы чувствуете, что платите слишком много за электричество, то солнечная энергия съэкономить деньги за электричество и сделает Ваш дом полностью или частично автономным. Один из самых распространенных способов использования солнечной энергии является использование его в качестве источника питания. С начала 1970-х годов, многие люди установке солнечных коллекторов на их крышах и используя приведенную питания, которые собираются, чтобы осветить их электрических приборов. В настоящее время, с развитием технологий, многие люди начали устанавливать солнечные батареи в своих домах и улавливания солнечной энергии с помощью этих панелей, чтобы обеспечить энергию для всего дома и в очень редких случаях, люди собираются по мере подачи питания к грид-системы или электрических компаний в ведении правительства. В самом деле, люди стали с помощью солнечной энергии, которая непосредственно обращается от солнечных батарей в течение дня и использовать накопленную энергию в батареи на ночь.

системы солнечного электроснабжения, солнечное электричество, электричество от солнца, солнечный коллектор цена, солнечная панель, солнечные системы электроснабжения, электричество от солнечных батарей, электричество от солнца своими руками, солнечный коллектор отзывы, солнечная панель, системы солнечного электроснабжения, система солнечного электроснабжения дома, солнечный коллектор для электричества, солнечное электричество для дома, солнечное электричество 6 в 1, солнечный коллектор, солнечный коллектор для дома цена, солнечный коллектор зимой, системы солнечного электроснабжения, солнечная система электроснабжения цена, электричество на даче солнечные батареи, солнечные коллекторы для дома, солнечный коллектор купить, системы солнечных коллекторов.

alipso.ru

Виды и типы: схемы солнечных электростанций. Подробно.

Категория: Поддержка по альтернативной энергии
Опубликовано 26.05.2016 00:53
Автор: Abramova Olesya

ТИПЫ СОЛНЕЧНЫХ ЭЛЕКТРОСТАНЦИЙ:

• Автономная электростанция (постоянный ток)

• Автономная электростанция (220/380В)

• Сетевая электростанция (220/380В)

• Гибридная электростанция (220/380В)

 


 

Солнечная электростанция – специальная инженерная конструкция, которая служит для преобразовании солнечной радиации в электрическую энергию (постоянный или переменный ток). Самый распространенный тип солнечных электростанций основан на плоских фотоэлектрических модулях монокристаллического или поликристаллического вида, которые обеспечивают преобразование солнечной радиации в постоянный ток (DC). В зависимости от применяемой схемы, постоянный ток может инвертироваться в переменный (AC) или стабилизироваться для заряда аккумуляторных батарей.

Ниже подробно описаны принципы работы и схемы солнечных электростанций, которые на сегодняшний день успешно применяются и обеспечивают наибольшую эффективность работы.


 

Автономная солнечная электростанция
(постоянный ток, DC)

Принцип действия: солнечная радиация преобразуется в постоянный электрический ток при помощи солнечных панелей, которые подключаются к контроллерам заряда аккумуляторов. Электрическая энергия накапливается в аккумуляторах в дневное время суток, когда Солнце активно, после чего может использоваться в любое время для питания потребителей постоянного тока.

Схема электростанции автономного типа постоянного тока

Контроллер заряда на базе ШИМ-контроллера (PWM-тип) обеспечивает заряд аккумуляторов свинцово-кислотного типа AGM VRLA, GEL VRLA или FLA типов.

В случае применения продвинутых солнечных контроллеров заряда, таких как BlueSolar MPPT, возможен заряд аккумуляторов более высокого класса: OPzV (свинцово-кислотные необслуживаемые элементы), OPzS (свинцово-сурьмянистые малообслуживаемые), NiCd (никель-кадмиевые необслуживаемые или малообслуживание) или LiFePO4 (литий-железо-фосфатные аккумуляторы).

Назначение: данный вид солнечной электростанции устанавливают в тех случаях, когда требуется организовать автономное уличное освещение или обеспечить электропитанием любые другие потребители постоянного тока: охранные системы, оперативные цепи постоянного тока, телекоммуникационные установки (радиосвязь, спутниковая связь, интернет и т. д.).

Эффективность работы: очень высокая, 97-98%

Составляющие: Солнечные панели, контроллер заряда, аккумулятор.

Работа в условиях «зелёного» тарифа: невозможна.


 

Автономная солнечная электростанция
(переменный ток, AC)

Принцип действия: Солнечные батареи вырабатывают постоянный ток в периоды солнечной активности, который поступает к контроллеру MPPT. Контроллер заряда аккумуляторов производит коррекцию (стабилизацию) постоянного тока для заряда аккумуляторов и производит качественный многостадийный заряда батарей различных типов: AGM, GEL, OpzS, OpzV, NiCd или высокотехнологичных литиевых аккумуляторов (Li-ion). Когда аккумуляторный банк полностью заряжен, излишек электрической энергии поступает на вход инвертора напряжения DC/AC, к выходу которого подключаются потребители переменного тока (AC).

В периоды отсутствия солнечной активности (вечер, ночь и раннее утро), электроэнергия для потребителей переменного тока черпается из аккумуляторных батарей (DC) и преобразовывается в переменную (AC) при помощи инвертора напряжения.

Современные функции инверторов позволяют очень гибко настраивать схему работы солнечной электростанции, особенно это востребовано для частных домов и коттеджей.

Схема электростанции автономного типа переменного тока

Схема сетевой электростанции автономного типа переменного тока

Режим I. Автономное электроснабжение. Данная схема может применяться, когда нет сети переменного тока. Вся накопленная за световой день электроэнергия в аккумуляторах используется в вечернее и ночное время для питания потребителей переменного тока. Правильный расчет мощности солнечных панелей (PV-массива) и достаточная энергоемкость аккумуляторов позволяют обеспечить полную автономность объекта.

Режим II. Смешанное электроснабжение. Этот вид электростанций требует наличия сети переменного тока, которая используется при разряде аккумуляторов, чтобы не происходило прекращения подачи электроснабжения дома. Достоинство данного типа в том, что нет необходимости устанавливать больше массивы солнечный батарей и блоки аккумуляторов, т. к. всегда есть возможность получить недостаток электроэнергии от сети.

Режим III. Резервное электроснабжение. В данном случае схема солнечной электростанции предполагает настройку инвертора таким образом, что аккумуляторный банк остается всегда заряженным на 100%. Лишь небольшое количество произведенной солнечной электроэнергии тратится на поддержание полного заряда аккумуляторов, остальной объем преобразуется в переменный ток и используется для питания активных потребителей, излишек отдается в сеть согласно условиям «зелёного» тарифа.

Назначение: описанные выше типы солнечных электростанций востребованы для частных домов и коттеджей, где полностью отсутствует сеть или когда сеть отличается низким качеством. Также данные схемы нередко применимы для коммерческого применения: небольшие производственные участки, системы телекоммуникаций и любые другие области, где требуется создать надежную систему резервного питания с возможностью существенной экономии потрбленной электроэнергии. Стоит отметить, что некоторые режимы работы возможны только в инверторами MultiPlus, Quattro и Symo Hybrid, которые поддерживают тонкую настройку и передачу избытка электроэнергии по «зелёному» тарифу.

Эффективность работы: высокая, до 90-93% при прямом и инвертируемом режимах.

Составляющие: солнечные панели, MPPT-контроллер, аккумуляторный банк, гибридный инвертор, реже – дизельный генератор.

Работа в условиях «зелёного» тарифа: поддерживается.


 

Сетевая солнечная электростанция
(переменный ток, AC)

Принцип действия: вырабатываемый постоянный ток (DC) солнечными батареями поступает на вход солнечного инвертора, который производит преобразование постоянного в переменный ток (DC/AC). Выход от солнечного инвертора подключен к сети переменного тока и потребителям электроэнергии.

Данная схема отличается своей простотой, однако конструкция имеет несколько особенностей. Так, электростанция работает только когда доступна электрическая сеть переменного тока, а также напряжение в сети должно находиться в рабочем диапазоне инвертора.

Схема сетевой солнечной электростанции переменного тока

Назначение: данный вид очень востребован для домов, дач, коттеджей, где предлагаются выгодные условия «зелёного» тарифа. В дневное время, когда потребление электроэнергии, как правило, на минимальном уровне, произведенная энергия передаётся в сеть по уловиям «зелёного» тарифа. В вечернее и ночное время, когда в доме работает основная часть потребителей, энергия поступает из сети. Таким образом, данный вид солнечной электростанции позволяет существенно экономить на расходах за оплату электроэнергии, а если установлен достаточный массив солнечных батарей, домохозяйство будет получать прибыль за положительную разницу произведенной и затраченной электроэнергии по итогам месяца.

Эффективность работы: очень высокая, до 97%.

Составляющие: солнечные панели, солнечный PV-инвертор.

Работа в условиях «зелёного» тарифа:

поддерживается.


 

Гибридная солнечная электростанция
(переменный ток, AC)

Принцип действия: солнечными батареи (DC) подключены к сетевому солнечного инвертору (DC/AC). Сеть переменного тока подключается на вход гибридного инвертора (DC/AC), также к гибридному инвертору подключены аккумуляторные батареи. Выход сетевого солнечного инвертора и гибридного инвертора объединены через распределительный щит и обеспечивают электропитанием потребителей переменного тока.

Применение гибридного инвертора с зарядным устройством в данном типе солнечной электростанции обеспечивает ряд неоспоримых преимуществ: электростанция работает даже при отсутствии напряжения в сети переменного тока, а также в условиях нестабильной сети. Пользователю доступно несколько режимов работы, которые могут гибко настраиваться по желанию и в соответствии с временем года.

Схема гибридной сетевой электростанции переменного тока

Режим I. Автономная электростанция. Сгенерированная электроэнергия накапливается в аккумуляторах: сетевой инвертор подает переменное напряжение на выход гибридного инвертора, который производит заряд аккумуляторов. Избыток используется потребителями или отдается в сеть переменного тока по условиям «зелёного» тарифа. В вечернее и ночное время электропитание обеспечивается гибридным инвертором от аккумуляторов.

Для автономного электроснабжения требуется устанавливать достаточную мощность солнечных батарей, чтобы сгенерированной электроэнергии хватало на достаточной заряд аккумуляторов, а их емкости было достаточно, чтобы покрыть потребности потребителей.

В случае применения гибридного инвертора Quattro с двумя входами, ко второму подключается дизельгенератор, которым система управляет автоматически в соответствии с заданными настройками. Например, при достижении установленного порогового значения разряда аккумуляторов, дизельгенератор будет заведен автоматически.

Режим II. Смешанное электроснабжение. В данном случае допускается незначительный разряд аккумуляторов или полный, после чего электропитание будет переключено на сеть переменного тока. Солнечный инвертор продолжает работу в любых случаях и дополняет мощность системы, а также продолжает заряжать аккумуляторы. Избыток передается в сеть по условиям «зелёного» тарифа.

Режим III. Резервное электроснабжение. В этом случае схема настроена таким образом, что аккумуляторы задействованы только при отсутствии электрической сети (авария, плановое отключение, веерные отключения и т. д.). Солнечный инвертор генерирует электроэнергию и обеспечивает потребителей, избыток передается в сеть по условиям «зелёного» тарифа.

Назначение: подобные электростанции востребованы для домов, коттеджей, офисов, отелей, гостиниц, баз отдыха и т. д., где требуется создать систему гарантированного электропитания, а также снизить зависимость или полностью отказаться от общей сети электроснабжения.

Эффективность работы: очень высокая, до 97%.

Составляющие: Солнечные панели, солнечный PV-инвертор, гибридный инвертор, аккумуляторный банк, реже – дизельный генератор.

Работа в условиях «зелёного» тарифа: поддерживается.

Схемы с выделенными группами потребителей

Проектирование солнечной электростанции на этапе строительства — правильный шаг, который позволяет создать удобную схему распределения электроэнергии. Очень важно предусмотреть группы потребителей с разным приоритетом, данная опция позволяет сбалансировать систему резервного питания. Например, первая группа – охватывает электрические приборы с максимальным приоритетом, которые должны работать даже при пропадании напряжения в сети: освещение, системы охраны, отопления, связи и т. д. Вторая группа – приборы второстепенной важности, которые требуют корректного завершения работы, при пропадании напряжения в сети их можно отключить вручную или при помощи дистанционного управления. А третья группа – потребители с низким приоритетом, без которых можно обойтись во время отключения электроэнергии.

Таким образом, вне зависимости от типа солнечной электростанции, правильная схема обеспечивает существенное повышение комфорта в условиях аварийного отключения сети.

Дизельный генератор в схеме солнечной электростанции

Дизельный генератор – важный элемент резервного или автономного электроснабжения. Во-первых, дизельгенератор обеспечивает очень длительное резервное питание при наличии дополнительного бака с топливом. Во-вторых, генератор может покрывать большие потребности в электрической мощности. В-третьих, современные системы обеспечивают интеллектуальное управление генератором. Такие инверторы как Quattro, поддерживают два входа переменного тока и могут самостоятельно запускать генератор, когда аккумуляторы разряжаются до определенного пользователем уровня. Данная возможность позволяет избежать глубокого разряда аккумуляторов, а также исключить вероятность полного отключения электроснабжения.

best-energy.com.ua

Автономное электричество от солнечных батарей

Одной из главных проблем человечества сегодня является нехватка энергетических ресурсов.

Основным решением на данный момент является использование возобновляемых источников энергии, таких как ветер, вода и Солнце.

Наиболее доступными в этой области являются приспособления, направленные на получение электроэнергии от солнечного излучения.

Области применения

Долина солнечных батарей во Франции

Солнечная батарея – это фотоэлектрический генератор, который преобразует солнечное фотонное излучение в электричество.

(Фотон – элементарная частица электромагнитного излучения, например, солнечной радиации). Обычно батарею изготавливают в виде панелей.

Размеры могут быть самые разные, в зависимости от необходимых количества и мощности конечного продукта преобразования. Сегодня солнечные батареи используются даже для сувениров, имея размеры от нескольких см2.

Площади панелей могут достигать нескольких десятков м2, когда надо получать энергию мощностью в несколько десятков квт.

Началось конструирование солнечных батарей ещё в середине прошлого века, главным образом для нужд космонавтики. Первые спутники нуждались в автономном энергообеспечении, для этого наиболее всего подходил именно этот вид источника.

О современных разработках в области солнечной энергии можно узнать в этой в статье: https://teplo.guru/eko/solnechnyie-batarei-novogo-pokoleniya.html

Устанавливались солнечные панели на луноходах и марсоходах, а также на других космических аппаратах. Актуально всё это и сегодня, так как поиски других, более подходящих, вырабатывающих бóльшие мощности источников пока ещё не увенчались успехом.

Крупнейший в мире корабль на солнечных батареях Planet Solar Türanor

Не менее популярны солнечные батареи и на Земле. Здесь они имеют очень широкое применение, практически во всех сферах, где необходимо использование электричества.

Благодаря солнечным панелям обеспечиваются электроэнергией целые города, плавают суда и летают самолёты.

Автономное электроснабжение дома

Солнечные батареи на участке

Большую тенденцию приобрело переселение людей за город к благам природы и отсутствию цивилизации. Это влечёт за собой большие затраты, особенно это касается снабжения дома электроэнергией.

Хорошо, если переезжать в поселение, тогда можно совместными усилиями решить эту проблему и подключиться к центральному, чаще всего дорогостоящему, электричеству, сложив общие средства.

Подключение возможно и в более уединённых местах, но стоить будет ещё дороже. Потому многие сегодня решаются на установку солнечных батарей на территории своего участка, так как это в конечном итоге является наиболее выгодным предприятием с разных точек зрения.

Подробнее о выборе солнечных панелей для дачи здесь: https://teplo.guru/eko/solnechnaya-batareya-dlya-dachi.html

Разумно это всё же для местностей, где достаточно солнечного света для постоянной выработки энергии. Можно, конечно, воспользоваться солнечными аккумуляторами, но для этого потребуется больше места. К тому же и площадь солнечной батареи должна быть гораздо больше, чем в местности с большим освещением.

Разумеется, и стоить всё это будет дороже, и тогда следует уже подумать, стоит ли базировать автономное электроснабжение дома на солнечной энергии.
Стоит помнить и том, что солнечные батареи обладают хоть и доступной, но достаточно высокой стоимостью.

Совет специалистов: при покупке следует обращать внимание на страну производителя. Не стоит экономить, покупая у неизвестных китайских производителей, так как чаще всего они изготавливают товар сомнительного качества. Лучше обратить внимание на батареи западных компаний, пусть и произведены панели будут в Китае.

Солнечные панели на крыше дома

Чаще всего солнечные батареи устанавливают на крыши домов, что, несомненно, экономит пространство.

Особенностям создания автономного отопления посвящена данная статья: https://teplo.guru/sistemy/avtonomnoe-otoplenie-doma.html

Для этого склон крыши должен быть не менее 30⁰, лучше всего 45⁰. Стоит также позаботиться о том, чтобы удалить все объекты, создающие тени на установках.

Имейте в виду: необходимо помнить об укреплении кровли, потому как солнечные батареи имеют достаточно большой вес. Значительное давление оказывает и снег зимой.

Комплекты солнечных электростанций

Если созданы все условия для обустройства системы автономного электроснабжения, то можно выбрать один из следующих видов домашней электростанции:
  1. Автономные контуры солнечных генераторов. Их устанавливают для обеспечения энергией насосного оборудования. Имеют небольшие размеры и стоят недорого.
  2. Энергонезависимые установки с аккумуляторными батареями. Именно они чаще всего используются для автономного и полного энергоснабжения частных домов.
  3. Разного рода комбинации солнечных модулей с другими источниками энергии. Это могут быть ветровые и дизельные генераторы, также с центральными электросетями.

Следует внимательно учесть все факторы, влияющие на выбор того или иного вида солнечной электростанции.

Плюсы и минусы применения солнечных панелей

Положительные стороны:
  1. Экологичность. Несомненно, использование солнечной энергии не вызывает загрязнения природы, а также заменяет способы получения энергии, негативно влияющие на окружающую среду.
  2. Автономность. Возможность не зависеть от центрального энергоснабжения определённо является достоинством, особенно отдалённой местности.
  3. Доступная цена. Возможность воспользоваться этим плюсом предоставляется в том случае, если велико солнечное освещение в течение года. Помогает и совместное использование с другими источниками электроэнергии. В иных ситуациях покупка батарей может оказаться дорогостоящим, хоть и чаще всего окупаемым мероприятием.
  4. Долговечность. Качественные солнечные батареи имеют долгий срок годности (минимум 25 лет).
  5. Не занимают много места при установке солнечных панелей непосредственно на крышу дома.

Отрицательные стороны:

  1. Непрактичны при малом освещении.
  2. Несмотря на экологичность, солнечные батареи могут наносить вред окружающей флоре и фауне. Например, самая крупная солнечная электростанция в мире вызывает гибель птиц, пролетающих над ней. Но этот минус не относится к небольшим домашним электростанциям.

teplo.guru

Самостоятельный расчёт системы электроснабжения на солнечных панелях.

 

Прежде чем рассчитывать систему электроснабжения на солнечных панелях необходимо провести энергоаудит.

Для начала необходимо составить список приборов, которые вы будете использовать. При этом желательно заменить все приборы на энергосберегающие. Использовать LED мониторы, освещение рекомендуется ставить светодиодное,  холодильник класса А, и максимально снизить количество электронагревательных приборов, по возможности заменить их на более экономичные, а лучше на альтернативные (газовая плита, твердотопливный котёл, солнечный водонагреватель), т.к. электронагревательные приборы требуют больше всего мощности, что значительно удорожит вашу систему электроснабжения.

После того, как вы составили список приборов, которые требуют электроснабжения, необходимо рассчитать их потребляемую мощность, сколько кВт они потребляют в сутки. Для этого необходимо номинальную мощность прибора умножить на количество часов их непрерывной работы в день. Номинальную мощность можно узнать из паспорта прибора, в интернете или в таблице 1, в ней написана примерная мощность распространенных приборов.

Давайте разберем наиболее распространенный пример, вот список приборов, которые чаще всего используются на дачных участках:

Прибор Мощность, Вт Время работы, ч Суммарная мощность, Вт/сутки
светодиодное освещение 100 5 500
LED телевизор 150 5 750
ноутбук 100 5 500
Пылесос 1000 0,5 500
Чайник 1500 0,3 450
Холодильник класса А 150 24 3600
Электронасос 150 1 150
Электроинструменты 1000 0,5 500
Стиральная машинка 800 1 800
 4950 Вт 7750 Вт

 

Исходя из этого, вы можете видеть ваше среднесуточное потребление электроэнергии. В нашем примере получилось 7750 Вт/сутки.

Весь дальнейший расчет системы электроснабжения будет строится на основе этого проведенного энергоаудита.

 

2.     Подбор инвертора.

Большинство электроприборов работают от переменного тока с напряжением 220В и частотой 50 Гц.  Для того, чтобы обеспечить наши приборы переменным током, необходим инвертор – прибор который преобразует постоянный ток от солнечных панелей и аккумуляторов в переменный ток.

Для того чтобы выбрать инвертор, нужно понимать две вещи: во-первых, есть ли среди используемых приборов приборы чувствительные к частоте? В основном это приборы с электродвигателями (холодильник, стиральная машинка, пылесос, электроинструменты, насос).

Исходя из этого, выбирается тип выходного сигнала инвертора и тут есть два варианта:  инвертор с чистым синусом и инвертор с модифицированным синусом.

Для приборов, чувствительных к частоте подойдет только инвертор с чистым синусом, он намного дороже инвертора с модифицированным синусом, но при этом данные приборы не будут выходить из строя из-за перегрева электродвигателя и смогут работать на максимальной мощности. Остальные приборы тоже будут отлично работать от инвертора с чистым синусом, хотя для них вполне подойдет и инвертор с модифицированным синусом.

Во-вторых, при выборе инвертора, важна мощность одновременно работающих приборов. Именно исходя из этого параметра подбирается мощность инвертора. При этом, чем мощнее инвертор, тем он дороже.

Если включить одновременно все приборы, которые указаны в таблице энергоаудита, то их суммарная мощность получится 4950 Вт, исходя из этого потребуется инвертор на 5 кВт.

Если же среди всех этих приборов выбрать самые основные приборы, которые работают дольше всего в сутках, то это будет: холодильник, освещение, телевизор и ноутбук, суммарная мощность этих приборов при их одновременной работе будет всего 500Вт. Остальные же приборы в этой таблице включаются изредка по необходимости и фактически все вмести, одновременно практически никогда не работают. При этом, например, самый мощный из приборов — чайник (1500 Вт), вообще кипит 5 минут и на время кипения чайника можно отключить электроинструменты или пылесос, а если работает стиральная машинка, то можно подождать немного и включить чайник позже, после того, как стиральная машинка закончит свою работу.

Выбор номинального напряжение инвертора.

У инверторов есть еще один немаловажный параметр – это номинальное напряжение инвертора. В основном, инверторы бывают с номинальным напряжением 12, 24 или 48 вольт.

Инверторы до 1000 Вт, в основном, идут с номинальным напряжением 12В, инверторы от 1000 до 3000 Вт с номинальным напряжением 24В, а инверторы от 3000 до 6000 ватт бывают с напряжением 48 В. Хотя есть различные модели инверторов и на 600 Вт инверторы могут быть с напряжением 48В, но это скорее особенность.

Чем выше номинальное напряжение инвертора, тем выше КПД инвертора, следовательно, тем меньше на нем потерь при преобразовании постоянного тока в переменный.

При этом надо учитывать тот факт, что к инвертору всегда необходимы аккумуляторные батареи (АКБ), в основном все АКБ идут с номинальным напряжением 12 В, поэтому инвертору с номинальным напряжением 24 В потребуется уже не один аккумулятор, а два, соединенных последовательно, чтобы они дали 24 В, а инвертору с номинальным напряжением необходимо уже 4 аккумулятора. Ёмкость аккумуляторов при этом не изменяется.

Надо отметить, что номинальное напряжение не влияет на цену инвертора, и поэтому инверторы одной модели с одинаковой мощности, но с разным номинальным напряжением стоят одинокого.

Исходя из этого, для нашего конкретного случая подойдет инвертор с чистым синусом, мощностью 2 кВт с номинальным напряжением 24В. Пятьсот ватт мощности инверторы уйдет на приборы, которые работают практически постоянно (холодильник, телевизор, освещение) и 1500Вт на один любой прибор, включаемый по необходимости.

 

3.     Подбор аккумуляторных батарей (АКБ).

Как известно солнечная панель генерирует электроэнергию только при попадании на неё света, поэтому, для того, чтобы приборы продолжали работать в вечернее время необходимы аккумуляторы, которые в течении дня будут заряжаться электроэнергией, а вечером отдавать этот запас электроэнергии работающим приборам. Время работы приборов только лишь от аккумуляторов называется временем автономной работы.

Выбор типа аккумуляторов.

Для системы электроснабжения в принципе подходят аккумуляторы все типов: как обслуживаемые, так  и не обслуживаемые, как стартерные, так и специализированные для источников бесперебойного питания. Конечно же, лучше всего для систем бесперебойного и автономного электроснабжения подходят герметичные свинцово-кислотные AGM аккумуляторы или гелевые аккумуляторы. Гелевые аккумуляторы будут подороже AGM, но при этом они обладают большей устойчивостью к глубоким разрядам (их можно разряжать до 90%, в отличие от AGM, которые рекомендуется разряжать максимум на 70%). Гелевые аккумуляторы не так чувствительны к температуре окружающей среды и могут работать даже при отрицательной температуре (в отличии от AGM аккумуляторов, которые выходят из строя при отрицательной температуре). И, наконец, гелевые аккумуляторы имеют больше циклов заряда/разряда, благодаря чему их срок службы намного выше.

Более подробно про аккумуляторные батареи вы можете прочитать в статье «Аккумуляторные батареи, их эксплуатация и обслуживание»

Расчёт необходимой ёмкости аккумуляторов.

Для того чтобы рассчитать ёмкость аккумуляторов необходимо знать мощность приборов, работающих во время автономной работы и знать необходимое время автономной работы.

Чтобы рассчитать необходимое время автономной работы, нужно понимать в какой сезон будет использоваться ваша система электроснабжения. Если это лето, то времени автономной работы от аккумуляторов необходимо значительно меньше, чем зимой, т.к. световой день длиннее, а ночь короче.

В среднем необходимое время автономной работы от аккумуляторов в период с мая по октябрь — 5 часов, в период с марта по ноябрь – 6-8 часов. А если вы планируете использовать вашу систему электроснабжение круглый год, то рекомендуется потратить деньги не на дополнительные аккумуляторы ради увеличения времени автономной работы, а на приобретение дополнительного источника электропитания, например, на дизельный генератор.

 

Итак, выбираем период использование нашей системы электроснабжения с апреля по октябрь, а время автономной работы приборов от аккумуляторов 6 часов.

 

Теперь выберем приборы, которыми будем пользоваться вечером:

Прибор Мощность, Вт Время работы, ч Суммарная мощность, Вт/за вечер
светодиодное освещение 100 5 часов 500
LED телевизор 150 5 часов 750
ноутбук 100 5 часов 500
Чайник 1500 0,1 (6 минут) 150
Холодильник класса А 150 16 часов (весь вечер и всю ночь) 2400
2000 4300

 

Если в этот список включить стиральную машинку, пылесос, электроинструменты, то это значительно увеличит необходимую ёмкость аккумуляторов, но это сильно удорожит систему, поэтому рекомендуется эти приборы использовать в дневное время, когда солнечные панели генерируют достаточно электроэнергии.

 

Теперь мы можем рассчитать необходимую для автономной работы ёмкость аккумуляторов.

Ёмкость аккумуляторов измеряется в Ампер*часах, для того, чтобы её узнать, необходимо [суммарную потребляемую во время автономной работы мощность приборов] разделить на  [номинальное напряжение инвертора].

Получается: 4300Вт/24В=180Ач. Это означает, что для нашей системы потребуются аккумуляторы ёмкостью 180Ач с напряжением 24В.

 

Как мы выяснили выше, аккумуляторы нельзя разряжать полностью на 100%, иначе они быстро выйдут из строя, поэтому полученную ёмкость для гелевый аккумуляторов, необходимо умножить на коэффициент 1,11 (100%/90%~1,11), а для AGM аккумуляторов – умножить на  1,43 (100%/70%~1,43), и полученный результат округлить в большую сторону.

В нашем случае получается, если мы выбираем AGM аккумулятор, то нам необходим аккумулятор ёмкостью 180Ач*1,43~260Ач, а если мы выбираем гелевый аккумулятор, то нам необходим аккумулятор ёмкостью 180Ач*1,11~200Ач.

Выбираем гелевый аккумулятор на 200 Ач 24В (он хоть и дороже, но зато его характеристики превышают AGM).

В основном все аккумуляторы всегда идут с номинальным напряжением 12В, поэтому, для того, чтобы получить нужный аккумулятор на 200Ач 24В, нам необходимо взять два аккумулятора по 200Ач 12В и соединить их последовательно, т.е. плюс одного аккумулятора соединить с минусом другого, а оставшийся минус от одного и плюс от другого аккумуляторы соединить с инвертором. Так мы получим из двух аккумуляторов 200Ач 12В, один с общей ёмкостью 200Ач и номинальным напряжением 24 В, как мы и хотели.

4.     Выбор солнечных панелей.

Наконец мы подошли к выбору солнечных панелей, основной составляющей нашей системы электроснабжения. Ведь солнечные панели – это практически вечный генератор электрического тока, который прослужит более тридцати лет точно без сильных потерь своих электрофизических свойств.

Выбор типа панелей.

Есть три типа солнечных панелей: аморфные, поликристаллические и монокристаллические. Они отличаются технологией изготовления, своим КПД и ценой. Самые распространённые солнечные панели – это поликристаллические и монокристаллические. Ниже приведена сравнительная таблица этих панелей.

Монокристаллическая солнечная панель Поликристаллическая солнечная панель
КПД% выше (17%) ниже (15%)
Площадь панели меньше больше
Работа при рассеянном солнечном свете хуже лучше
Работа при прямом солнечно свете лучше хуже
Работа при отрицательной температуре лучше хуже
Работа при температуре выше 25 градусов лучше хуже
Снижение характеристик за 25 лет 20% 30%

 

Не смотря на то, что КПД монокристаллической солнечной панели не на много выше КПД поликристаллической панели, площадь поликристаллической панели больше, поэтому две панели разного типа, но с одинаковой мощностью, дают примерно одни и те же показатели по генерации тока, все зависит от условий окружающей среды (см. таблицу выше).

Расчёт необходимой мощности солнечных панелей.

Т.к. мы выбрали период с апреля по октябрь, то средняя продолжительность светового дня в этот период примерно 12 часов. За это время необходимо, чтобы солнечные панели успели зарядить аккумуляторы, для использования их вечером, когда солнечные панели перестанут генерировать электричество, а так же необходимо чтобы их мощности хватило для энергообеспечения электроприборов, работающих днём.

Сразу стоит отметить, что расчет мощности солнечных панелей можно сделать только приблизительный, потому что невозможно предугадать, когда на небе тучка закроет солнечную панель, поэтому лучше рассчитывать мощность с запасом и округления при расчётах делать в большую сторону.

Для того, чтобы рассчитать мощность солнечных панелей, необходимую для зарядки аккумулятора в течении светового дня, нужно [ёмкость аккумулятора] умножить на его [номинальное напряжение]  и разделить на [количество световых часов].

Рассчитываем: (200Ач*24В)/12ч=400Вт

Итак, для того, чтобы зарядить аккумулятор на 200 Ач с номинальным напряжением 24 В, понадобятся панели общей мощностью 400 Вт и номинальным напряжением не меньше номинального напряжение аккумуляторов, то есть в нашем случае не меньше 24 вольт.

Далее рассчитываем мощность панелей, необходимых для обеспечения работы приборов в течении дня. Эту мощность достаточно тяжело рассчитать, т.к. всё сильно зависит от внешних факторов, погодных условий и от того, как используются электроприборы. Из практики можно вывести следующую формулу: 1,3*[мощность панелей, необходимых для заряда аккумуляторов] + [мощность панелей, необходимых для заряда аккумуляторов]. Для нашего случая это будет: 1,3*400+400=920Вт.

То есть минимальная мощность солнечных панелей в нашей системе электроснабжения должна быть 920 Вт 24 В. Это четыре солнечных панели мощностью 230 Вт каждая и номинальным напряжением 24 В.

5.     Выбор контроллера заряда.

Для того чтобы нормально зарядить аккумулятор до 100% от солнечной панели, при этом не испортить его, а наоборот продлить срок службы необходим контроллер заряда. Бывает, что контроллер заряда встроен в инвертор, специально предназначенный для использования совместно с солнечными панелями, но чаще всего контроллер заряда идет отдельно.

Сейчас существует два типа технологии контроллеров заряда аккумуляторов от солнечных панелей: это PWM-контроллер или по другому ШИМ-контроллер (pulse-width modulationширотно-импульсная модуляция), и MPPT-контроллер (maximum power point tracking – слежение за точкой максимальной мощности). Более подробно о контроллерах заряда вы можете прочитать в статье «Контроллеры заряда аккумуляторов от солнечных панелей». Отмечу только то, что MPPT-контроллер за счёт более продвинутой технологии заряжает аккумулятор на 30% эффективнее, чем ШИМ-контроллер, но он, естественно, и дороже.

А так же MPPT-контроллер может преобразовывать более высокое напряжение от солнечных панелей в номинальное напряжение всей системы с пропорциональным увеличением тока. Это означает, что, MPPT-контроллер с подключенными четырьмя последовательно соединенными солнечными панелями мощностью 230Вт и напряжением 96 вольт, на выходе может дать ток равный четырем солнечным панелям 230Вт 24 В, соединенных последовательно. Закономерный вопрос: зачем это нужно? Ответ прост: чем выше напряжение солнечных панелей, тем меньше потерь в кабеле, идущем от солнечных панелей к контроллеру, соответственно, тем эффективнее работа солнечных панелей.

Немаловажный показатель, по которому выбирается контроллер – это пропускная способность по току. Чем выше эта пропускная способность контроллера, тем он дороже.

Необходимая пропускная способность по току рассчитывается очень просто: необходимо [суммарную мощность солнечных панелей] разделить на [номинальное напряжение системы].

В нашем случае пропускная способность контроллер должна быть не ниже чем: 38,3 ампер (920Вт/24В=38,3А).

Стоит отметить, что часто солнечные панели имеют положительный толеранс, то есть их мощность может быть выше заявленной на 1-6%, поэтому, при выборе контроллера следует учитывать эту тонкость.

Из всего вышеописанного относительно контроллеров, мы можем сделать выбор. И выбираем мы контроллер с технологией MPPT (чтобы соединить наши солнечные панели последовательно и получить на них напряжение 96В),  и пропускной способностью по току 40А.

6.     Выбор кабеля и коннекторов.

Для систем электроснабжения, где источник электроэнергии находятся на улице, необходим кабель со специальной изоляцией, для того, чтобы такие силы окружающей среды, как ультрафиолет,  влага и грызуны, по-минимому воздействовали на него.

Сечение кабеля рассчитывается таким образом, чтобы потери напряжение на кабеле не превышали 2%. И оно высчитывается по таблице, исходя из необходимого удельного сопротивления кабеля. Удельное сопротивление кабеля рассчитывается по формуле: [максимально возможное падение напряжения] разделить на ([проходящий по кабелю ток] умноженный на [общую длину кабеля]).

Для того, чтобы выбрать сечение кабеля, соединяющего солнечные панели с контроллером, необходимо знать три характеристики: напряжение солнечных панелей, суммарная мощность солнечных панелей и длину кабеля.

Первое что необходимо рассчитать – это ток, которые будет протекать по этому кабелю, для этого [мощность солнечных панелей] делим на их напряжение.

В нашем случае этот ток равен 920Вт/96В=9,58 А.

Максимальное возможное падение напряжение не должно превышать 96В*0,02=1,92В

Допустим, что от солнечных панелей до контроллер заряда необходимо проложить 30 м кабеля.

Исходя из этого удельное сопротивление кабеля должно быть не более, чем 1.92В/(9,58А*30м)=0,00668 Ом/м или 6,68 мОм/м

Теперь посмотрим в таблицу удельного сопротивления кабелей и подберем кабель необходимого сечения:

Сечение, мм медный
1,5 12,5
2,5 7,4
4 4,63
6 3,09
10 1,84

Для нашего случая вполне подойдет кабель с сечением 4 мм.

Для соединения солнечных панелей друг с другом используются специальные коннекторы, стандарта MC4 «мама» и «папа» для плюса и минуса солнечной панели соответственно. Также существуют специальные Y-коннекторы для параллельного соединения солнечных панелей.

В нашем случае потребуется четыре обыкновенных коннектора, чтобы последовательно соединить солнечные панели.

7.     ИТОГ.

В данной статье мы рассмотрели то, как рассчитываются системы автономного электроснабжение на солнечных панелях, и, как пример, рассчитали такую систему для периода с апреля по октябрь обеспечивающую электроэнергией основные бытовые приборы:

  • светодиодное освещение
  • LED телевизор
  • ноутбук
  • Пылесос
  • Чайник
  • Холодильник
  • Электронасос
  • Электроинструменты

 

Наша система получилась со следующими характеристиками:

  • Номинальное напряжение: 24 В
  • Суммарная мощность солнечных панелей: 920 Вт
  • Напряжение на солнечных панелях 96 В
  • Ёмкость аккумуляторов: 200 Ач
  • Напряжение на аккумуляторах: 24В
  • Суммарная мощность одновременно работающих приборов: 2 кВт
  • Время автономной работы при максимальной мощности: 1 час 45 минут
  • Время автономной работы при мощности 500 Вт: 8 часов 45 минут

 

А комплектация систем получилась такая:

  • Солнечные панели, мощностью 230 Вт: 4 штуки
  • Контроллер заряда с технологией MPPT с пропускной способностью по току 40А
  • Гелевые аккумуляторы, ёмкостью 200Ач: 2 штукм
  • Инвертор с чистым синусом, мощностью 2000 Вт
  • Набор коннекторов MC4: 4 шт.
  • Медный кабель с сечением 4 мм: 30 м

 

Если вы посмотрите готовые решения, представленные в нашем Интернет-магазине, то увидите именно этот комплект под названием «Солнечная у-дача». Кроме этого комплекта представлены и другие системы электроснабжения на солнечных панелях с наиболее оптимально подобранными комплектующими.

Если вы приобретаете комплект целиком, то, во-первых, он обойдется где-то на 10-15% дешевле, чем если бы вы приобретали бы комплектующие по-отдельности, во-вторых, вы получаете скидку 10% на установку и подключение комплекта, в-третьих, вы получаете гарантию на комплект 5 лет, в-четвертых, если вы в будущем будете делать покупки в нашем Интернет-магазине ещё, то вы получите скидку 10% на любой товар, в-пятых, при приобретении комплекта, вы получаете светодиодную лампочку отличного качества в подарок!

autonomy-energy.ru

Солнечные электростанции. Комплектация и монтаж. Цена солнечные батареи

Полноценное автономное ( или резервное ) энергоснабжение дома. Мощные системы на основе многофункциональных гибридных инверторов OutBack и XANTREX XW. Когда в системе установлен альтернативный источник энергии - солнечные панели и контроллер заряда, то генерируемая энергия может быть использована для заряда АКБ и/или прямого преобразования в переменный ток. В последнем случае в дневное время дом может обходиться без внешней сети, обеспечивая внутреннее потребление только за счет альтернативного источника. В местах без электросети или со слабой/недостаточной электросетью, использование гибридной инверторной системы с солнечными панелями значительно повышает качество электропитания в доме, а следовательно, и качество жизни. Предусмотрена функция автозапуска генератора


Электроснабжение дома солнечными батареями состоит из следующих специальных фотоэлектрических элементов:

Солнечные батареи, преобразующие энергию солнца в электроэнергию, различной мощности и номинального ( или фактического напряжения) от 100 до 300 Ватт

Контроллер напряжения и заряда АКБ для защиты от глубокого разряда батареи аккумуляторов и от перезаряда системы солнечных модулей на ток от 6 до 60 А

Накопитель энергии – банк аккумуляторных батарей , соединенных последовательно и ( или ) параллельно, глубокого разряда при циклическом режиме работы.

Инвертор DC-AC, который позволяет пользоваться обычными электроприборами. Инверторы, представленные на нашем сайте имеют все необходимые рабочие характеристики для комплектации систем энергоснабжения исходя из:

  • Формы выходного сигнала: чистый синус

  • Рабочего напряжение системы: 12, 24 и 48 Вольт

  • Выходной мощности инвертора от 0,3 до 18 кВт

А также

  • Необходимые предохранительные устройства по постоянному и переменному току

  • Коммутационные и аккумуляторные провода

  • Элементы крепления и монтажа панелей

Все эти элементы, содиненные определенным образом образуют автономную солнечную систему энергоснабжения, имеющую следующие основные характеристики:

  • Генерацию энергии от солнечных модулей, кВт – зависит от количества и мощности солнечных батарей

  • Время автономной работы без генерации, зависит от общей емкости банка аккумуляторов

  • Мощности подключаемой нагрузки. Зависит от предыдущих двух пунктов и от выходной мощности инвертора

  • Время автономной работы при генерации энергии солнечными батареями. Зависит от предыдущих трех пунктов плюс инсоляции

Таким образом, говоря о мощности системы, имеются ввиду три ее параметра

P ген.

Генерация мощности при прямом солнечном освещении

Р ном

Номинальная мощность системы

Р авт ( t)

Автономия при подключаемой нагрузке или среднесуточное потребление кВт*ч

www.ra-energo.ru