Состав древесина – Химический состав древесины

Древесина: химические свойства

Химический состав древесины

Древесина состоит преимущественно из органических веществ (99% общей массы). Элементный химический состав древесины разных пород практически одинаков. Абсолютно сухая древесина в среднем содержит 49% углерода, 44% кислорода, 6% водорода, 0,1-0,3% азота. При сжигании древесины остаётся её неорганическая часть — зола. В состав золы входят кальций, калий, натрий, магний и другие элементы.

Перечисленные химические элементы образуют основные органические вещества: целлюлозу, лигнин и гемицеллюлозы.

Целлюлоза — природный полимер, полисахарид с длинной цепной молекулой. Формула целлюлозы (C6h20O5)n, где n — степень полимеризации, равная 6000-14000. Это очень стойкое вещество, нерастворимое в воде и обычных органических растворителях (спирте, эфире и др.), белого цвета. Пучки макромолекул целлюлозы — тончайшие волоконца называются микрофибриллами. Они образуют целлюлозный каркас стенки клетки. Микрофибриллы ориентированны преимущественно вдоль длинной оси клетки, между ними находится лигнин, гемоцеллюлозы, а также вода.

Лигнин — полимер ароматической природы (полифенол) сложного строения; содержит больше углерода и меньше кислорода, чем целлюлоза. Именно с этим веществом связан процесс одревеснения молодой клеточной стенки. Лигнин химически нестоек, легко окисляется, взаимодействует с хлором, растворяется при нагревании в щелочах, водных растворах сернистой кислоты и её кислых солей.

Гемицеллюлозы — группа полисахаридов, в которую входят пентозаны (C5H8O4)n и гексозаны (C6h20O5)n. Формула гексозанов на первый взгляд идентична формуле целлюлозы. Однако степень полимеризации у всех гемицеллюлоз гораздо меньше и составляет 60-200. Это свидетельствует о более коротких цепочках молекул и меньшей стойкости этих веществ по сравнению с целлюлозой.

Кроме основных органических веществ, в древесине содержится сравнительно небольшое количество экстрактивных веществ (таннидов, смол, камедей, пектинов, жиров и др.), растворимых в воде, спирте или эфире.

В качестве сырья древесину потребляют три отрасли химической промышленности: целлюлозно-бумажная, гидролизная и лесохимическая. Целлюлозно-бумажная промышленность вырабатывает целлюлозу для изготовления бумаги, картона и целого ряда целлюлозных материалов (производных целлюлозы), а также древесноволокнистых плит.

Основываясь на высокой химической стойкости целлюлозы, путём воздействия различных агентов на древесину переводят в раствор сопровождающие её менее стойкие вещества. Различают три группы способов промышленного получения целлюлозы: кислотные, щёлочные и нейтральные. Выбор того или иного способа зависит в основном от породного состава перерабатываемого древесного сырья.

К группе кислотных способов относятся сульфитный и бисульфитный. При сульфитном способе в качестве сырья используется древесина малосмолистых хвойных (ели, пихты) и ряда лиственных пород. Бисульфитный способ позволяет использовать для получения целлюлозы древесину практически любых пород.

К группе щёлочных способов относятся сульфатный и нейтральный. Наибольшее распространение получил сульфатный метод. Варка щепы ведется в растворе едкого натра и сернистого натрия. Сульфатный способ позволяет получать более прочные волокна. К достоинствам этого способа относится меньшая продолжительность варки, а также возможность осуществлять процесс по замкнутой схеме (путем регенерации щелока), что уменьшает опасность загрязнения водоемов. Этим способом получают более половины производимой в мире целлюлозы, так как он позволяет использовать древесину любых пород.

Нейтральный — способ получения целлюлозы из древесины лиственных пород, при котором варочный раствор содержит вещества (моносульфиты), имеющие реакцию, близкую к нейтральной.

Широкое применение находят производные целлюлозы. При взаимодействии целлюлозы с растворами едкого натра, азотной и серной кислот или уксусным ангидридом можно получить искусственные ткани (штапель, вискозный и ацетатный шёлк), кордонное волокно для изготовления автомобильных и авиационных шин, целлофан, целлулоид, кино- и фотоплёнки, нитролаки, нитроклеи и другие продукты.

При взаимодействии водных растворов кислот с древесиной происходит гидролиз целлюлозы и гемицеллюлоз, которые превращаются в простые сахара (глюкозу, ксилозу и др.) Эти сахара можно подвергать химической переработке, получая ксилит, сорбит и другие продукты. Однако гидролизная промышленность в основном ориентируется на последующую биохимическую переработку сахаров.

Реакция гидролиза происходит при довольно высокой температуре (150-190°С). При охлаждении гидролизата (водного раствора простых сахаров) образуются пары, из конденсата которых получают фурфурол. Он применяется в производстве пластмасс, синтетических волокон (нейлона), смол, изготовления медицинских препаратов (фурацилина и др.), красителей и других продуктов.

При дальнейшей переработке гидролизата получают кормовые дрожжи, этиловый спирт (этанол), углекислый газ. Этанол получают только из хвойной древесины, используют как растворитель и, всё больше, как топливо.

При нагревании древесины без доступа воздуха происходит пиролиз. В результате пиролиза образуется уголь, жижка и газы.

Древесный уголь, отличающийся высокой сорбционной способностью, применяют для очистки промышленных растворов, сточных вод, в производстве сахара, при выплавке цветных металлов, при изготовлении медицинских препаратов, полупроводников, электродов и для многих других целей.

Жижка — раствор продуктов разложения, используется в производстве антисептиков, фенолов, уксусной кислоты, метилового спирта, ацетона. Газы, образующиеся при пиролизе древесины, используют в качестве топлива.

Сырьём для лесохимической промышленности помимо низкокачественной древесины являются экстрактивные вещества. Добыча смолы (живицы) из хвойных пород деревьев и кустарников достигается путём подсочки. Для этого на поверхности стволов сосны или кедра осенью наносят специальную рану (карру), из которой живица вытекает в конический приёмник. Переработка

живицы осуществляется на лесохимических предприятиях, где происходит отгонка с водяным паром летучей части — скипидара и уваривание канифоли.

Скипидар широко применяется как растворитель в лакокрасочной промышленности для производства синтетической камфары. Камфара используется в производстве целлюлозы, лаков и киноплёнки. Канифоль применяют в производстве каучука, бумаги, нитролаков, электроизоляционных материалов и др.

Дубильные вещества (танниды), используемые при выделке кож получают из коры ивы, ели, лиственницы, пихты, а также из древесины дуба и каштана.

http://www.wood.ru/ru/lpshim.html

pihtahvoya.ru

Строение и состав древесины — Древесина

Строение и состав древесины

Древесина представляет собой сложный композиционный материал, созданный природой. При рассмотрении структуры древесины принято различать макроструктуру, различимую невооруженным глазом, и микроструктуру, различимую с помощью оптической и электронной микроскопии.

Макроструктура древесины — строение древесины, видимое невооруженным глазом. Рассматриваются три основных разреза ствола: поперечный — торцовый и два продольных — радиальный, проходящий через ось ствола, и тангентальный, проходящий по касательной к годовым кольцам (рис. 3.1).

На поперечном разрезе древесины ствола видны концентрические годовые кольца, располагающиеся вокруг сердцевины. Каждое годовое кольцо имеет два слоя: ранней (весенней) и поздней (летней) древесины. Ранняя древесина светлая и состоит из крупных тонкостенных клеток.

Рис. 3.1. Строение ствола дерева:

Поздняя древесина более темного цвета, состоит из мелких клеток с толстыми стенками; поэтому она менее пориста и обладает большей прочностью, чем весенняя.

В процессе роста дерева стенки клеток древесины внутренней части ствола, примыкающей к сердцевине, постепенно изменяют свой состав, одеревеневают и пропитываются у хвойных пород смолой, а у лиственных — дубильными веществами. Движение влаги в древесине этой части ствола прекращается, и она становится более прочной, твердой и менее способной к загниванию. Эту часть ствола у разных пород называют ядром или спелой древесиной.

Микроструктура древесины. Изучая строение древесины под микроскопом, можно увидеть, что основную массу древесины составляют клетки механической ткани, имеющие веретенообразную форму и вытянутые вдоль ствола.

Срубленная древесина состоит из отмерших клеток, т. е. только из клеточных оболочек (рис. 3.2). Оболочки клеток сложены из нескольких слоев очень тонких волоконец, называемых микрофибриллами, которые компактно уложены и направлены по спирали в каждом слое под разным углом к оси клетки (подобно отдельным прядям в канате). Это обеспечивает высокую прочность древесине.

Химический состав древесины. Микрофибриллы состоят из длинных, напоминающих цепи макромолекул целлюлозы (от лат. cellula — клетка). Эти цепи построены из большого числа (нескольких сотен) ячеек глюкозы (поэтому целлюлозу можно назвать полисахаридом):

Макромолекулы целлюлозы благодаря наличию сильно полярных групп —он жестко связаны друг с другом, чем объясняется отсутствие у древесины области высокоэластического состояния, возникающего при нагревании у большинства линейных полимеров (например, у полиэтилена). Эти же гидроксильные группы объясняют гигроскопичность древесины и сопутствующие ей набухание и усушку (см. п. 3.4). Механизм гигроскопичности заключается в образовании электростатической связи между полярными — он группами целлюлозы и диполями воды: от их вида, места расположения, размеров, а также от назначения древесной продукции. Один и тот же порок в некоторых видах продукции делает древесину непригодной, а в других понижает ее сортность или не имеет существенного значения. Поэтому в стандартах на конкретные виды лесопродукции имеются указания о допустимых пороках.

Пороки древесины можно разделить на несколько групп: пороки формы ствола, пороки строения древесины, сучки, трещины, химические окраски и грибковые поражения и покоробленности. Ниже рассмотрены основные виды пороков.

Пороки формы ствола легко определяются на растущем дереве, поэтому стволы таких деревьев могут быть отбракованы на лесосеке. К этой группе пороков относятся сбежистость, закомелистость и кривизна ствола (рис. 3.3).

Сбежистость — значительное уменьшение диаметра по длине ствола. Нормальным сбегом считается уменьшение диаметра на 1 см на 1 м длины ствола. Этот порок уменьшает выход обрезных пиломатериалов. Кроме того, в материале оказывается много перерезанных волокон, что снижает его прочность.

Закомелистость — резкое увеличение диаметра комлевой (нижней) части ствола. Закомелистость бывает круглой и ребристой. В любом случае она увеличивает количество отходов и искусственно вызывает косослой в готовой продукции.

Кривизна ствола — искривление ствола дерева в одном или нескольких местах. Сильная кривизна переводит древесину в разряд непригодной для строительных целей.

Пороки строения древесины представляют собой отклонения от нормального расположения волокон в стволе дерева: наклон волокон, свилеватость, крень, двойная сердцевина и др. (рис. 3.4).

Рис. 3.3. Пороки формы ствола:

Наклон волокон (косослой) — непараллельность волокон древесины продольной оси пиломатериала. Это явление (особенно при больших углах наклона волокон) вызывает резкое снижение прочности древесины и затрудняет ее обработку.

Рис. 3.4. Пороки строения древесины:
а — наклон волокон; б — свилеватость; в — крень; г — двойная сердцевина

Пиломатериал, имеющий косослой, обладает повышенной склонностью к короблению при изменении влажности.

Свилеватость — крайнее проявление косослоя, когда волокна древесины расположены в виде волн или завитков.

Свилеватость в некоторых породах (орех, карельская береза) придает красивую текстуру древесине; такие породы используются в отделочных работах.

Крень — изменение строения древесины, когда годовые кольца имеют разную толщину и плотность по разные стороны от сердцевины. Крень нарушает однородность древесины.

Сучки — самый распространенный и неизбежный порок древесины, представляющий собой основание ветвей, заключенные в древесине. Они нарушают однородность строения древесины, вызывают искривление волокон (свилеватость). Сучки уменьшают рабочее сечение пиломатериалов, снижая их прочность в 1,5…2 раза (а в тонких Досках и брусках и более).

По степени срастания сучков с древесиной ствола различают сучки сросшиеся, частично сросшиеся и несросшиеся (выпадающие). Особенно опасны сучки разветвленные (лапчатые) (рис. 3.5).

Рис. 3.5. Различные виды сучков: а — сросшийся здоровый; 6 — выпадающий; в — сшивной; г — разветвленный (лапчатый)

Здоровые сучки имеют древесину твердую и плотную без признаков гнили. Часто сучки загнивают вплоть до превращения в рыхлую порошкообразную массу — это так называемые табачные сучки.

Для изготовления несущих деревянных конструкций использует-ся древесина, имеющая только здоровые сросшиеся сучки. Количество и размещение сучков определяют сортность материала.

Трещины могут появляться как на растущем дереве, так и при высыхании срубленного дерева и пиломатериалов. Они нарушают целостность лесоматериалов, уменьшают выход высокосортной продукции, снижают прочность и даже делают их непригодными для строительных целей. Кроме того, трещины способствуют гниению древесины.

Различают следующие типы трещин: метик, морозобоина и отлуп, образующиеся на растущем дереве, и трещины усушки, образующиеся на срубленной древесине (рис, 3.6).

Метик — внутренние трещины, идущие вдоль ствола от центра к периферии; трещин может быть несколько как расположенных в одной плоскости, так и крестообразно.

Рис. 3.6. Виды трещин: а, б — метиковая простая и сложная; в, г — морозобоина открытая и закрытая; д, е — отлуп кольцевой и частичный

Морозобоина — наружная открытая продольная трещина, сужающаяся к центру. Такие трещины возникают при замерзании влаги в стволе во время сильных морозов.

Отлуп — полное или частичное отделение центральной части ствола от периферийной в результате усушки первой. Такие трещины располагаются по годовым кольцам.

Трещины усушки встречаются очень часто в древесине всех пород; они возникают в результате напряжений, вызванных неравномерной усадкой при быстрой сушке древесины на воздухе. Эти трещины направлены от периферии к центру вдоль волокон древесины.

Грибные поражения и химические окраски вызываются простейшими живыми организмами — грибами, развивающимися из спор и использующими древесину в качестве питательной среды, или микроорганизмами. Для развития грибов необходим кислород воздуха, определенная влажность и положительная температура. Различают грибы, поражающие деревья, растущие в лесу, и свежесрубленную Древесину, и грибы, развивающиеся на деревянных конструкциях.

На растущих деревьях могут развиваться деревоокрашивающие грибы. Они питаются содержимым клеток, не затрагивая их стенки. Поэтому прочность такой древесины изменяется незначительно, но на Древесине появляются цветные пятна и полосы.

Изменение окраски древесины без изменения ее механических свойств может происходить из-за биохимического окисления дубильных веществ, провоцируемого микроорганизмами.

Значительно более опасны дереворазру тающие грибы. Они питаются материалом стенок клеток — целлюлозой, разлагая ее с помощью ферментов до глюкозы.

Это возможно только при достаточной влажности древесины. Глюкоза в теле гриба используется в процессе его жизнедеятельности и, в конце концов, превращается в углекислый газ и воду:

Гниение по сути — это то же самое, что и горение, но с очень малой скоростью.

Известно большое число дереворазрушающих грибов. Среди них наиболее часто встречаются так называемые домовые грибы. При поражении такими грибами древесина делается трухлявой и легкой, а на ее поверхности появляется налет плесени в виде мягких подушечек. Домовый гриб может разрушить древесину очень быстро (в течение нескольких месяцев).

Процесс гниения прекращается при снижении влажности древесины до 18…20 % (сухая древесина не гниет), снижении температуры ниже 0 °С или исключении поступления кислорода.

Повреждения насекомыми (червоточины) представляют собой ходы и отверстия, проделанные в древесине насекомыми (жуками-короедами, точильщиками), которые живут в ней и ею же питаются. Жуки-точильщики могут развиваться в сухой древесине и даже в мебели.

Рис. 3.7. Продольная покороб-ленность

Поверхностные червоточины не влияют на механические свойства древесины, так как при распиловке уходят в горбыль. Глубокие червоточины нарушают целостность древесины и снижают ее прочность.

Покоробленности — нарушение формы пиломатериалов при изменении ее влажности при сушке и хранении или под действием внутренних напряжений при продольной распиловке крупных элементов на более мелкие. Покоробленность бывает поперечная, продольная (простая и сложная) и винтообразная (крыловатость) (рис. 3.7).

Читать далее:
Виды материалов и опалубка из древесины
Структура и свойства древесины
Защита древесины от гниения и возгорания
Лесоматериалы и изделия из древесины
Основные древесные породы, применяемые в строительстве
Важнейшие свойства древесины
Пиломатериалы для ремонта
Древесные материалы и способы их обработки
Типы пиломатериалов
Виды пиломатериалов


stroy-server.ru

Химический состав древесины

Древесина (абсолютно сухая) в основном состоит из трех химических элементов: углерода — 49,5%; кислорода — 44,2;

водорода — 6,3%. Из этих химических элементов образованы сложные органические вещества, входящие в состав клеточной ткани древесины, целлюлоза, лигнин, гемицеллюлоза, которые составляют 90-95% массы абсолютно сухой древесины. Остальные 5-10% составляют экстрактивные вещества, т.е. извлекаемые из древесины различными растворителями. Главные из них — дубильные вещества и смолы. Кроме того, в древесине содержится 0,2-1,7% массы неорганических веществ, получаемых из золы после сжигания древесины. Это соли кальция, калия, натрия, магния. Кора и листья дают больше золы, чем стволовая древесина .

Целлюлозу из древесины можно получить, отделив ее от лигнина и гемицеллюлозы. Отделение целлюлозы от этих веществ основано на ее высокой стойкости к химическим соединениям и в частности к растворам кислот и щелочей, в которых менее стойкие лигнин и гемицеллюлоза переходят в раствор. Древесную щепу варят в котлах в кислотной (сульфитный способ) или щелочной (сульфатный способ) среде при высокой (135-175°С) температуре и высоком (0,5МПа) давлении. После нескольких часов варки целлюлозу промывают, очищают, отбеливают. Целлюлоза исходный материал для производства бумаги, ваты, искусственных волокон (вискозный шелк, штапель), искусственных мехов и кожи, фотои кинопленок, лаков, целлофана, пластмасс, пороха и других материалов.

Гемицеллюлозу и лигнин, перешедшие в раствор при варке, после дальнейшей химической и гидролизной переработки используют для получения этилового спирта, кормовых дрожжей, углекислоты, сухого льда, ванилина, фурфурола. Этиловый спирт является основным сырьем для получения искусственного каучука, уксуса, эфира.

Смола находится в стволе хвойных пород, имеет слабую связь с тканью древесины и сравнительно легко извлекается. Извлечение смолы выполняют либо подсочкой растущего дерева, либо экстракцией сильно осмоленной древесины. При подсочке делают поверхностные раны на стволе живого дерева, из которых вытекает смола живица. В результате переработки живицы получают канифоль и скипидар. При экстракционной переработке древесины смолистые вещества сначала растворяют в бензине, а затем полученный экстракт разгоняют на канифоль и скипидар.

Канифоль используется для получения мыла, изготовления лаков, красок, линолеума, эфиров, а также применяют во многих отраслях (кабельной, кожевенной, нефтяной, резиновой) промышленности. Скипидар используют в медицине, применяют как растворитель для лаков и красок, а также как сырье для производства других продуктов.

Дубильные вещества танниды получают из измельченной древесины и коры экстрагированием горячей водой. Их используют в кожевенной промышленности для дубления кож, придавая ей гибкость, мягкость стойкость к гниению и набуханию. Танниды растворяются в спирте и воде; при соединении с солями различных металлов они могут образовывать красители различных оттенков от светло-желтых до иссиня-черных, применяемых для глубокого крашения древесины.

Похожие статьи

znaytovar.ru

Значение древесины, состав, свойства, особенности и строение. Древесина – это что такое?

Человек использует древесину с незапамятных времен. Топливо, строительные материалы, мебель, музыкальные инструменты – изделия из нее сопровождают нас всю жизнь. Кроме этого, деревья – это природные календари и живые исторические памятники.

Существует целая отрасль науки – дендрохронология, которая позволяет узнать возраст изделия, а также в какой области было срублено дерево, из которого оно было изготовлено. Изучая срезы годовых колец, можно узнать о природе и атмосфере давних времен. Достоинства и недостатки, строение, древесина как строительный материал, свойства – все эти вопросы заслуживают внимания.

Как все устроено

Свойства и характеристики материала невозможно понять, предварительно не изучив строение и состав древесины. Само понятие зависит от того, кто его употребляет. Для обычного человека и строителя это исключительно часть дерева под корой, которую можно употреблять в быту или производстве. Для ботаника строение дерева и древесины – это весь комплекс, включающий в себя все элементы от корней до кроны.

Крона в промышленности используется незначительно, а ветви идут как сырье для древесноволокнистых плит и картона. Основное значение имеет ствол. На поперечном разрезе взору открывается строение ствола древесины. Самый верхний слой – кора, защищает живые клетки от внешних воздействий. Между корой и телом ствола располагается слой живых клеток – кадмий. В самом центре через весь ствол проходит сердцевина. Рыхлые ткани, из которых она состоит, делают ее непригодной для утилитарных нужд.

Ядро дерева состоит в основном из омертвевших клеток, отложений смолы, красящих и дубильных веществ. Ядро окружает заболонь – часть дерева, которая отвечает за проведение воды к листьям от корней. Соответственно, в ней много влаги, она больше пропускает воду и сильнее подвержена гниению. Ярко выраженное ядро есть не у всех деревьев. В некоторых из них нет разницы между центральной и окраинной частью ствола. Такие породы называются заболонными.

Микроскопическое строение древесины

Применяя микроскоп, можно глубже изучить строение. Древесина состоит в целом из омертвевших клеток. Молодые растительные клетки состоят из оболочки и внутренней части – цитоплазмы и ядра. Основой тонкой прозрачной мембраны является целлюлоза или клетчатка. С течением времени растительные клетки претерпевают метаморфозу и, в зависимости от заложенной функции, превращаются в своей массе либо в кору (пробкование), либо в древесину (одревеснение).

В клетках постоянно образуется лигнин. Он и служит причиной одревеснения. Разделяют два вида древесных клеток – прозенхимные и паренхимные. Первый вид составляет основную массу древесины, в зависимости от породы – от 85% до 99%. В свою очередь, они разделяются по своим функциям. Проводящие клетки отвечают за доставку питательных веществ и влаги от корней к листве, механические – за прочность и устойчивость дерева. Паренхимные клетки выполняют функцию кладовой для растения. Они накапливают питательные вещества (жиры, крахмалы) и отдают их по мере надобности в трудный период.

Хвойные породы

В зависимости от вида деревьев различается и их строение. Породы древесины делят на хвойные и лиственные. Строение хвойных пород отличается большей простотой. Основную массу составляют трахеидные клетки. К особенностям хвойных пород можно отнести наличие клеток, вырабатывающих смолу. У разных видов они могут быть как хаотично разбросаны, так и объединены в систему смоляных ходов.

Лиственные породы

Более сложны деревья лиственных пород и их строение. Древесина состоит из сосудов, волокон либриформа и паренхимных клеток. Так как лиственные деревья сбрасывают осенью листву, зимой они нуждаются в большом запасе пищи. Отсюда и большее количество паренхимных клеток, отвечающих за накопление питательных веществ, чем у хвойных пород. Это можно увидеть по ярко выраженной сердцевине.

Свойства

Целым рядом характерным свойств обладает древесина. Особенности строения тому причина. Прочность у древесины довольно высока, и среди строительных материалов по этому показателю она занимает промежуточное положение. А учитывая небольшой удельный вес, она сравнима в этом плане с металлом. Слабым местом древесины является то, что она – анизотропный материал. Способность сопротивления к разрушению зависит от направления силы относительно расположения волокон. Самые лучшие показатели прочности видны при воздействии на материал вдоль волокон.

Жесткость древесины мала, причина этому – специфическое строение. Древесина – пористый, гибкий материал. Балки способны восстановить свою форму после кратковременной нагрузки. Но остаточные деформации, вследствие длительного воздействия, остаются навсегда. Деревянная балка не сможет восстановить свою форму после долгой эксплуатации.

Твердость строительных материалов определяется тем, какая нагрузка необходима для вдавливания стального шарика с определенными размерами. Для самых жестких пород древесины она составляет всего 1000 Н. При этом низкая твердость – это и одно из главных достоинств материала. Дерево легко обрабатывается, в нем прочно удерживаются гвозди, шурупы, самонарезающиеся винты.

Влажность древесины определяется удельным содержанием влаги в порах. В только что срубленном дереве оно достигает 100%. В зависимости от назначения свежесрубленную древесину подвергают сушке до необходимых показателей от 40 до 15%.

Достоинства

Древесина обладает малым значением теплопроводности. Ее можно с успехом применять в качестве теплоизолирующего материала. Простота в обработке позволяет использовать широкий круг инструментов. Невозможно представить любой оркестр без музыкальных инструментов, изготовленных из дерева. Чарующие звуки скрипки – результат такого свойства древесины, как способность к резонансу. Древесина легко изгибается, открывается большой выбор для изготовления различных гнутых конструкций. Также деревянные изделия отличаются хорошими звукопоглощающими характеристиками. Красивая поверхность открывает простор для фантазии при дизайне помещений.

Недостатки

Способность деревянных изделий воспринимать нагрузки зависит от направления приложения силы. Это объясняется анизотропным строением древесины. Кроме того, характеристики прочности зависят еще и от близости к центру ствола, влажности, наличия сучков, трещин. Это заставляет тратить много времени на отбор пригодного материала для работы.

Являясь органическим материалом, древесина беззащитна для насекомых, плесени, грибков. Для долговечной эксплуатации требуется проводить дорогостоящую химическую обработку. Стоит отметить, что деревянные конструкции без предварительной обработки – легкая добыча для огня.

Переработка древесины

В целом можно выделить три вида обработки древесины:

  • Самый распространенный – механический способ. Дерево пилят, строгают, раскалывают.
  • При химико-механической обработке материал подвергают промежуточной подготовке. Щепу, стружку смешивают со связующим веществом и нагревают. Происходит химическая реакция полимеризации, и на выходе получают такие материалы, как фанера, древесностружечные плиты, фибролит.
  • При химической обработке на древесину воздействуют кислотами, щелочами, солями, подвергают нагреву. Из продуктов такой обработки можно назвать древесный уголь, канифоль, камедь, дубильные вещества, целлюлозу.

Деревья старше человека на сотни миллионов лет. Все когда-либо существовавшие цивилизации основаны на применении древесины. Книги, мебель, музыкальные инструменты – все это возможно благодаря этому уникальному природному материалу.

fb.ru

1.Строение и состав древесины

Оглавление

Ведение

1. Строение и состав древесины

1.1.Строение дерева

1.2.Древесина

2. Физические свойства древесины

2.1. Цвет древесины

2.2.Блеск древесины

2.3.Текстура древесины

2.4.Запах древесины

2.5.Макроструктура

2.6.Влажность древесины

3. Продукты переработки древесины

4. Достоинства и недостатки древесины

4.1.Достоинства древесины как материала

4.2.Недостатки древесины как материала

4.3.Промышленное использование древесины

Заключение

Список использованных источников

Приложение 1

Введение

Древесина — сравнительно твердый и прочный волокнистый материал, скрытая корой основная часть стволов, ветвей и корней деревьев и кустарника. Состоит из бесчисленных трубковидных клеток с оболочками в основном из целлюлозы, прочно сцементированных пектатами кальция и магния в почти однородную массу. В природном виде используется в качестве строительного материала и топлива, а в размельченном и химически обработанном виде – как сырье для производства бумаги, древесноволокнистых плит, искусственного волокна. Древесина была одним из главных факторов развития цивилизации и даже в наши дни остается одним из важнейших для человека видов сырья, без которого не могли бы обойтись многие отрасли промышленности.

Трудно назвать какую-нибудь отрасль народного хозяйства, где древесина не использовалась в том ли ином виде, и перечислить разнообразные изделия, в которые древесина входит составной частью. По объему использования и разнообразию применения в народном хозяйстве с древесиной не может сравниться никакой другой материал.

Древесину применяют для изготовления мебели, столярно-строительных изделий. Из неё делают элементы мостов, судов, кузовов, вагонов, тару, шпалы, спортивный инвентарь, музыкальные инструменты, спички, карандаши, бумагу, предметы обихода, игрушки, сувениры. Натуральную или модифицированную древесину применяют в машиностроении и горнорудной промышленности; она является исходным сырьём для целлюлозно-бумажной промышленности, производства древесных плит.

Широкому использованию древесины способствуют её высокие физико-механические качества. Хорошая обрабатываемость. А также эффективные способы изменения отдельных свойств древесины путем химической и механической обработки. Древесина легко обрабатывается, имеет малую теплопроводность, достаточно высокую прочность, при небольшой массе хорошую сопротивляемость ударным и вибрационным нагрузкам, в сухой среде долговечна. Древесина соединяется крепёжными изделиями, прочно склеивается, сохраняет красивый внешний вид, на неё хорошо наносятся защитно-декоративные покрытия. Вместе с тем древесина имеет недостатки: она подвержена горению и загниванию, разрушению от воздействия насекомых и грибов, гигроскопична, вследствие чего может разбухать и подвергаться усушке, короблению и растрескиванию. Кроме того, древесина имеет пороки биологического происхождения, которые снижают её качество. Чтобы использовать древесину, надо знать её свойства, строение и пороки.

1.1.Строение дерева

Растущее дерево состоит из кроны, ствола и корней. При жизни дерева каждая из этих частей выполняет свои определенные функции и имеет различное промышленное применение.

Крона состоит из ветвей и листьев (или хвои). Из углекислоты, поглощаемой из воздуха, и воды, получаемой из почвы, в листьях образуются сложные органические вещества, необходимые для жизни дерева. Промышленное использование кроны невелико. Из листьев (хвои) получают витаминную муку — ценный продукт для животноводства и птицеводства, лекарственные препараты, из ветвей — технологическую щепу для производства тарного картона и древесноволокнистых плит.

Ствол (от 50 до 90% объема всего дерева растущего дерева) Образуется он благодаря камбию. Форма ствола — нейлоид. Проводит воду с растворенными минеральными веществами вверх, а с органическими веществами — вниз к корням; хранит запасные питательные вещества; служит для размещения и поддержания кроны. Он дает основную массу древесины и имеет главное промышленное значение. Верхняя тонкая часть ствола называется вершиной, нижняя толстая часть — комлем. Процесс роста можно представить как нарастание конусообразных слоев древесины. Каждый последний конус имеет большую высоту и диаметр основания. Обычно изучают три основных разреза ствола: поперечный (торцовый), радиальный, проходящий через ось ствола, и тангенциальный, проходящий по хорде вдоль ствола.

При рассмотрении разрезов ствола дерева невооруженным глазом или через лупу можно различить следующие основные его части: кору, камбий, древесину и сердцевину.

Сердцевина — узкая центральная часть ствола, представляющая рыхлую ткань. Сердцевина совместно с древесной тканью первого года развития дерева образует сердцевинную трубку. На торцовом разрезе имеет вид темного (или другого цвета) пятнышка диаметром 2-5 мм. На радиальном разрезе сердцевина видна в виде прямой или извилистой темной узкой полоски. Она может быть круглой овальной, треугольной (ольха), четырёхугольной (Ясень), пятиугольной (тополь) и зубчатой (дуб).

Кора покрывает дерево сплошным кольцом и состоит из внешнего коркового слоя и внутреннего слоя — луба, который проводит воду с органическими веществами, выработанными в листьях, вниз по стволу. Кора предохраняет дерево от механических повреждений, резких перемен температуры, насекомых и других вредных влияний окружающей среды. Вид и цвет коры зависят от возраста и породы дерева. У молодых деревьев кора гладкая, а с возрастом в коре появляются трещины. Кора может быть гладкой (пихта), чешуйчатой (сосна), волокнистой (можжевельник), бородавчатой (бересклет). Цвет коры имеет множество оттенков, например белая у березы, темно-серая у дуба, темно-бурая у ели. В зависимости от породы, возраста дерева и условий произрастания у наших лесных пород кора составляет от 6 до 25% объема ствола. Кора многих древесных пород имеет большое практическое применение. Она используется для дубления кож, изготовления поплавков, пробок, теплоизоляционных и строительных плит. Из луба коры делают мочало, рогожи, веревки и др. Из коры добывают химические вещества, применяемые в медицине. Кора березы служит сырьем для получения дегтя. Между корой и древесиной располагается очень тонкий, сочный, не видимый невооруженным глазом слой — камбий, состоящий из живых клеток.

Камбий. Ежегодно в вегетативный период камбий откладывает в сторону коры клетки луба и внутрь ствола, в значительно большом объеме, — клетки древесины. Деление клеток камбиального слоя начинается весной и заканчивается осенью.

Корни (мелкие и грубые) Функции: удерживают дерево в вертикальном положении, проводят воду с растворенными в ней минеральными веществами вверх по стволу; хранят запасы питательных веществ. Корни используются как второсортное топливо. Пни и крупные корни сосны через некоторое время после валки деревьев служат сырьем для получения канифоли и скипидара. Может быть использовано для изготовления технологической трески.

studfiles.net

Строение и состав древесины

На поперечном разрезе ствола различных пород древесины обычно видны: сердцевина, древесина, камбий и кора.

Древесина хвойных пород состоит из внутренней, более темной части — ядра и наружной, более светлой — заболони. Ядро представляет собой более плотную часть древесины, не проводящую воду и имеющую значительно меньшую влажность, чем заболонь. Как ядро, так и заболонь состоят из концентрических колец — годичных слоев по числу которых можно определить возраст дерева. Сердцевина расположена в центре ствола, занимает небольшую его часть и отличается темной окраской и меньшей плотностью, чем древесина. Камбий является образовательной тканью. Кора состоит из внутренней живой части — луба, проводящего раствор органических веществ из листьев, и наружной части — корки.

Древесина состоит из клеток и поэтому обладает большой пористостью, которая сказывается на физических свойствах древесины. Пористостью древесины объясняется ее низкая теплопроводность и малый удельный вес. Удельный вес древесины разных пород в среднем составляет около 1,55. Поры в различных породах древесины занимают 56—72% от ее объема. Они заполнены воздухом, который является плохим проводником тепла. Поэтому теплопроводность сухой древесины меньше, чем влажной. Древесина имеет весьма сложный химический состав. В ее состав входят: целлюлоза, лигнин и гемицеллюлозы. Древесина содержит в небольших количествах также смолу, жиры, терпены, дубильные и другие вещества (посторонние вещества древесины).

Целлюлоза (клетчатка) является главной (50% по весу) и наиболее важной в техническом отношении составной частью древесины.

Клетчатка — высокомолекулярный полисахарид со свойствами коллоида; эмпирическая формула (C6H10O5). Целлюлоза не растворяется в воде, спирте, эфире, бензине и других обычных растворителях. Растворителем для нее является аммиачный раствор гидрата окиси меди. В древесине содержится 23—27% лигнина, свойства которого еще недостаточно изучены.

Элементарный состав лигнина следующий: углерода 61—65%, водорода 4,9—6,4% и кислорода 28,6—34,1%. Колебания в элементарном составе лигнина объясняются разной степенью его чистоты и измененности. Лигнин изолируется различными методами, поэтому неодинаковы его эмпирические формулы, предложенные различными исследователями, например: С22Н20О7, С10Н10О3, С40Н42О16, С120Н138О35. Точно не установлен и молекулярный вес лигнина. Предполагают, что он достигает нескольких тысяч. О химической природе лигнина существуют две теории. До последнего времени большинством исследователей лигнин рассматривался как вещество ароматической природы. Дальнейшие исследования показывают, что в образовании лигнина принимают участие неизвестные неустойчивые углероды. Так появилась теория углеводного происхождения лигнина.

В. Н. Козлов предполагает, что лигнин, кроме ароматических веществ, содержит какие-то углеводы. Гемицеллюлоза — это углеводная часть древесины, которая в отличие от целлюлозы легко гидролизуется разбавленными кислотами. Гемицеллюлозы так же как и целлюлоза относятся к высокомолекулярным соединениям. В смоляных ходах древесины хвойных пород содержится живица, которая вытекает наружу при поражениях древесины. Живица образуется в живых тонкостенных

www.activestudy.info

Химический состав древесины: хвойных и лиственных пород

Доброго времени суток уважаемые читатели Блога Андрея Ноака! Давайте поговорим сегодня про химический состав древесины, а это значит что мы рассмотрим из каких веществ она состоит.

Строение древесины

Строение древесины можно рассматривать как с физической, так и с химической точки зрения.

Основными составляющими древесины являются целлюлоза, гемицеллюлоза и лигнин, которые в свою очередь состоят из химических элементов:

  • углерода — C
  • кислорода — O
  • водорода — H
  • азота — N

Взаимодействуя между собой целлюлоза, гемицеллюлоза и лигнин, являются цементирующими веществами клеточных стенок, и определяют емкость стенок, их механическую прочность и эластичность. Что в конечном итоге создает конкретные свойства древесины. К дополнительным компонентам древесины относят эфирные масла, смолы, крахмал, жиры, дубильные вещества и даже минеральные вещества.

Химический состав.

Целлюлоза: вещество клеточной стенки, придающее дереву прочность на растяжение.нитевидные, длинно цепочечные макромолекулы в древесине содержится около 40-55%
Гемицеллюлоза: вещество являющееся пластификатором в древесине, придает дереву пластичность, прочность при скреплении клеток. В зимний период времени является питательным веществом для дерева.короткая цепь разветвленных макромолекул в древесине содержится около 15-35%
Лигнин: Вещество являющееся наполнителем в древесине. Придает цвет древесине, создает герметичность клеточных стенок. Придает древесине прочность на сжатие и на разрыв.При повышении давления и температуры, происходит химическая реакция лигнина и он выступает в качестве природного клея (так делают пеллеты)трехмерная макромолекула, содержание около 20-30%
Пектин цементирующее вещество, находящееся между стенками клетоктрехмерная макромолекула
Другие ингредиенты: эфирные масла и смолы, крахмал и жиры, танины и фенольные вещества, минералыНеорганические и органические ингредиенты, которые влияют на биологические, физические и химические свойства древесины содержание около 1-7%

Целлюлоза представляет собой полисахарид с длинной цепью молекул глюкозы. Целлюлоза образуется на основе водородных связей в элементарные волокна. Около 1000 — 10000 молекул глюкозы образуют длинную нитевидную, неразветвленную молекулу (поз. 5).

Такую молекулу часто называют полимером или макромолекулой (поз. 5). Параллельные, соседние молекулы цепи называют мицеллы (поз. 4). От 5 до 20 фибрил образуют микрофибриллу (поз. 2). В свою очередь микрофибриллы (поз. 2) образуют макрофибриллы (поз. 1). Между волокнами может храниться вода, лигнин и гемицеллюлоза.

Лигнин представляет собой трехмерное, ароматическое соединение углеводорода. Он в основоном расположен в стенках древесных растений.

А вот взаимодействие между собой лигнина, целлюлозы и гемицеллюлозы.

 Удачи и до новых встреч, с вами был Андрей Ноак!

andreynoak.ru