Схемы лед драйверов – Схемы драйверов светодиодов на PT4115, QX5241 и др. микросхемах с регулятором яркости для диммируемых светодиодных светильников

Схема драйвера для светодиода от сети 220В

Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.

Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.

Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.

Рассмотрим драйвер на базе микросхемы CPC9909, поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).

Базовая схема драйвера следующая:

Схема драйвера для светодиодов на базе микросхемы CPC9909

Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С1 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.

У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.

COB cветодиод 50 ватт

Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.

Максимальный ток светодиода ограничим 1А. Значит

ILED = 1А

Падение напряжения на светодиодах –

VLED = 30В

Пульсацию тока примем равной +-15%:

ID = 1 * 0.15 * 2 = 0.3A

При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит

VIN = 310В

Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле

Rs = 0.25 / ILED = 0.25 / 1 = 0.25 Ом.

Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:

Rs = 0.22 Ом,

что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.

Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени «высокого уровня», когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:

Rt = (tp — 0.8) * 66, где tp — пауза в микросекундах. Сопротивление Rt получается в килоомах.

Продолжительность «высокого уровня» — это время, за которое рабочий ток достигнет требуемого значения — регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.

Давайте рассчитаем допустимое время паузы. Отношение продолжительности «высокого уровня» к общей продолжительности импульса — скважность импульса — рассчитывается по формуле:

D = VLED / VIN = 30 / 310 = 0.097

Частота переключений рассчитывается так:

F = (1 — D) / tp, а значит tp = (1 — D) / F

Пусть частота будет равна 90КГц. В этом случае

tp = (1 — 0.097) / 90 000 = 10мкс

Соответственно, потребуется сопротивление резистора Rt

Rt = (10 — 0.8) * 66 = 607.2КОм

Ближайший доступный номинал — 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:

tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс

Минимальная индуктивность дросселя L рассчитывается по формуле

Lmin = (VLED * tp) / ID

Используя уточненное значения tp, получаем

Lmin = (30 * 10.19) / 0.3 = 1мГн

Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение — 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.

Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности — это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А. «Трансформаторы и дроссели для импульсных источников питания».

Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 — 1.5А. Маловато, но для тестовой сборки пойдет.

Остались силовой транзистор и диод. Здесь проще — оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким — STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора — менее 25нКл. Прекрасный выбор на нужный нам ток — FDD7N60NZ. В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.

При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.

Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.

Вот примеры из технической документации, которые это реализуют.

Схема плавного регулирования яркости светодиодов.

На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.

Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:

Схема регулирования яркости светодиодов посредством ШИМ

Допустимая частота диммирования — до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.

Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.

Плата драйвера для светодиода от сети 220В

Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.

Сердце будущего мощного светильника в тестовом запуске

Разводку платы в программе Sprint-Layout 6.0 можно взять здесь.

Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой — кулер включается автоматически и охлаждает всю конструкцию.

Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь — напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.

Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.

Больше о схемах драйверов для светодиодов читайте в статье «Самодельный драйвер для мощных светодиодов».

www.flashled.com.ua

Мощные светодиоды: схемы драйверов :: SYL.ru

Для регулировки напряжения у мощных светодиодов используются специальные драйвера. По конструкции они довольно сильно отличаются. Основным элементом драйвера принято считать регулятор. Устанавливается он на микросхеме, которая крепится к модулятору. Для передачи сигнала между компонентами используются резисторы, а также транзисторы. В свою очередь, компараторы отвечают за стабильность работы системы. В некоторых случаях применяются выпрямители, однако в данной ситуации многое зависит от мощности светодиодов.

Светодиодные драйвера безконденсаторного типа

Драйвер для мощных светодиодов данного типа подходит для моделей с мощностью не более 20 В. Регуляторы в этом случае используются двоичные. В свою очередь модуляторы устанавливаются различных типов. Конденсаторы в драйверах заменяют специальные усилители. Как правило, они применяются двухразрядного типа, однако исключения также бывают. Резисторы используются как открытые, так и закрытые. Однако первый вариант встречается чаще. Непосредственно соединяются мощные светодиоды с драйвером через резисторный выход.

Ортогональные модели

Данного типа светодиоды мощные (схемы показаны ниже) на сегодняшний день являются очень востребованными. Основным элементом таких устройств принято считать компаратор. Максимум входное напряжение он может выдерживать до 20 В. При этом нагрузку на него можно давать до 30 А. Частотность устройства зависит от мощности конденсаторов.

Если рассматривать лучевые модификации, то у них вышеуказанный параметр в среднем находится в районе 33 Гц. Катушки индуктивности у драйверов имеются как понижающие, так и повышающие. Входное напряжение они должны выдерживать не менее 30 В. Непосредственно подключение устройства происходит через интегральный выход. Питание мощных светодиодов в этом случае может осуществляться через батарейки.

Схема устройства с импульсным резистором

Модели с импульсными резисторами (схемы драйверов для мощных светодиодов показаны ниже) в наше время встречаются довольно редко. Параметр порогового напряжения у них в среднем находится на уровне 30 В. При этом блоки питания можно использовать различной мощности. Также в данном случае необходимо учитывать частотность устройства. В среднем данный параметр не превышает 40 Гц.

Транзисторы для драйверов подбираются исключительно открытого типа. Скорость передачи сигнала зависит во многом от конденсаторов. Выпрямители производители часто используют полевые. Пропускная способность у них обычно колеблется в районе 3 мк. Дополнительно следует учитывать чувствительность таких устройств. Регуляторы используются самые разнообразные. За счет указанного драйвера можно сделать мощный фонарик на светодиодах.

Модель с расширителем

Модификации с расширителями на сегодняшний день являются наиболее востребованными. Транзисторы в данном случае встречаются только лучкового типа. При этом модуляторы используются многими обычные. В свою очередь конденсаторы обязаны пороговое напряжение выдерживать на уровне 20 В. Частота устройства обычно находится в районе 33 Гц. В некоторых случаях расширители устанавливаются с затворами. Однако следует учитывать, что стоят такие модели довольно дорого. В данном случае наиболее распространенными принято считать модификации без него.

Схема устройств на трансивере

Драйвера на трансиверах используются для светодиодов, мощность которых превышает 25 В. При этом модуляторы чаще всего можно встретить именно интегрированного типа. В среднем частота их колеблется в районе 35 Гц. В свою очередь пороговое напряжение они выдерживают около 30 В. Фильтры в данном случае также устанавливаются. Если скачки в сети довольно большие, то они способны сильно помочь. В противном случае фильтры будут лишними в устройстве. Подключается сверхяркий мощный светодиод к драйверу через интегральный выход.

Применение раздельных контактов

Контакты данного типа устанавливаются непосредственно на модуляторах. Используются эти компоненты в высокочастотных и низкочастотных моделях. Регуляторы для них подходят только поворотного типа. Скорость передачи сигнала у таких модификаций довольно хорошая. Если рассматривать безконденсаторные драйвера, то всего контактов там предусмотрено три.

В среднем входное напряжение они выдерживают на уровне 30 В. При этом отрицательное сопротивление в цепи может доходить до 20 Ом. Частотность зависит от мощности резисторов, а также типа выпрямителя. Работают контакты непосредственно через дроссель. При этом параметр пороговой частоты меняется за счет изменения предельной проводимости.

Использование низкочастотных тиристоров

Драйвера с низкочастотными тиристорами на сегодняшний день являются довольно востребованными. Компараторы для них подходят с емкостью не менее 10 пФ. Также следует отметить, что безконденсаторные устройства устанавливаться не могут. В данном случае мощность резисторов как минимум обязана составлять 20 В. При этом мощные светодиоды подключаются непосредственно через интегральный выход. Блоки питания чаше всего используются емкостного типа. В некоторых случаях можно встретить модели на маломощных батарейках. Однако на большую производительность в такой ситуации рассчитывать не приходится.

Применение высокочастотных тиристоров

Высокочастотные тиристоры в наше время встречаются редко. Связано это с тем, что выходное напряжение они выдерживают 35 В. Таким образом, на компаратор оказывается довольно большая нагрузка. Регуляторы в данном случае устанавливаются цифровые. Соединяются они с модуляторами через регистр. Транзисторы в устройствах данного типа можно встретить в основном полевые. В среднем они выходное напряжение выдерживают около 20 В.

Однако многое в данном случае зависит от производителя. Непосредственно скорость передачи сигнала тесно связана с типом конденсаторов. Также следует учитывать, что тиристоры способны повышать отрицательное сопротивление. В результате на выпрямитель может оказываться большая нагрузка.

Полупроводниковые модели

Драйвера данного типа предназначены для обслуживания трех и более светодиодов. Блоки питания у них устанавливаются с мощностью на уровне 40 В. При этом частотность устройства можно менять при помощи регулятора. В данном случае выпрямители используются довольно редко. Также полупроводниковые модели позволяют использовать мощные светодиоды на 5 В. Подключение осуществляется через ортогональные выходы.

Переключатели в данном случае используются самые разнообразные. При этом частотность транзисторов зависит от скорости передачи сигнала. Конденсаторы в таких моделях встречаются в основном открытого типа. При этом тиристоры используются довольно редко. Регуляторы подсоединяются к модуляторам чаще всего напрямую. Однако в некоторых модификациях это происходит через сменный проводник. Таким образом, по характеристикам модели могут сильно отличаться.

Модели с двухсторонними регуляторами

Модели данного типа славятся большой чувствительностью. При этом конденсаторы у них используются только закрытого типа. В данном случае проводимость устройства зависит от скорости передачи сигнала. Резисторы можно встретить как полевого, так и симметричного типа. Параметр проводимости в среднем колеблется в районе 3 мк. При этом частотность способна меняться в зависимости от положения регулятора.

Для того чтобы подсоединить мощные светодиоды к драйверу, применяется ортогональный выход. При этом стабилитроны устанавливаются только на пару с демпферами. Также следует учитывать, что данные регуляторы способны довольно долго прослужить. Контакты у них обычно установлены медного типа. В свою очередь переходники используются высокой плотности.

Устройства с меридиональными регуляторами

Модели данного типа отличаются пониженной чувствительностью. В данном случае компараторы могут использоваться только лучевого типа. При этом модуляторы встречаются самые разнообразные. Однако наиболее распространенными на сегодняшний день принято считать двоичные модификации.

Отличаются невысокой точностью. Резисторы применяются как открытого, так и закрытого типа. При этом емкость конденсаторов колеблется от 2 до 3 пФ. Устанавливается регулятор чаще всего через переходник. Скорость передачи сигнала в данном случае менять можно. При этом системы контактов используются самые разнообразные.

www.syl.ru

Светодиодные драйверы для авто — для управления светодиодами

Светодиодные драйверы для авто

Светодиодные драйверы для авто — этот материал для тех, кому уже порядком поднадоело заниматься выпаиванием резисторов из светодиодной ленты класса SMD, в случае их выхода из строя. А это, как показывает практика, происходит очень часто. И вот встает вопрос, что можно сделать, чтобы избавиться от этого трудоемкого процесса? Какое сконструировать устройство, чтобы оно являлось надежным и в то же время самым простым вариантом для обеспечения светодиодов напряжением питания.

Если взять 12 вольтовые лампы MR16 — не подойдут, так как создают ощутимые помехи в радио эфире. Использовать стабилизатор тока на lm317 для мощных светодиодов, тоже не подойдет из-за технической сложности, то есть для него требуется сторонний ограничительный резистор по току. Ну а воспользоваться просто мощным резистором, такой вариант совсем отпадает, поскольку значение тока непосредственно зависит от напряжения в бортовой сети автомобиля. И вот после некоторого отчаяния от неопределенности, хорошие люди подсказали — светодиодный линейный драйвер NSI45030AT1G.


Вот их внешний вид

А это их компактные размеры

По габаритам похожи на SMD-резисторы

Цифры находящиеся в конце маркировки обозначают ток. Для примера: драйвер NSI50350AST3G обеспечивает постоянным током 360 мА в независимости от действующего напряжения в бортовой сети автомобиля. Отличительная особенность — способны работать в параллельном включении. Как известно, при параллельном соединении значение рабочего тока прибавляется. Вам необходим рабочий ток в 1А?


Включите параллельно три регулятора постоянного тока NSI50350 для управления светодиодами . Результат будет такой: 350+350+350 =1050мА

Если вам необходимо построить устройство с маленьким током потребления, то тогда нужно воспользоваться компонентами с различными номиналами: NSI50010YT1G – 10 мА, NSI45015WT1G – 15 мА NSI45020AT1G – 20мА, NSI45030AT1G — 30 мА.

Вот с ними можете экспериментировать, то-есть подгонять под нужные вам токи и не вспоминайте больше про резисторы. В популярной литературе про приборы NSI, вот что пишут:

Светодиодные драйверы для авто и в частности всей линейки NSI-устройства и их особенностей, то это простейшие с высокой надежностью электронные элементы, предназначенные для регулировки потребляемого светодиодами тока, имеющие высокоэффективный отвод тепла от теплоотвода и не большую стоимость. Как драйвер в цепи светодиода микросхема в основном направлена для модулей освещения в автомобилях. Регулятор управления реализован на базовых принципах технологического решения SBT, что гарантирует стабильный ток в большом спектре входящих напряжений. Защиту светодиода от температурной составляющей при высоких значениях напряжениях и тока, осуществляет установленный в тракте регулировки тока терморезистор с отрицательным температурным коэффициентом сопротивления. Также в регулирующем тракте имеется защита от импульсных скачков напряжения.

Следовательно, вопрос: где их можно задействовать? Для подсветки щитка приборов? Подсветка номерного знака? Габаритные огни авто? Да, именно там они будут очень эффективно полезны.
В общем приобретаем стабилизаторы:


NSI45030AT1G – 30 мА.

Светодиоды


LEMWS59R80HZ2D00.h2X, 5630, 5000K Производитель: LG INNOTEK

полоска фольгированного алюминия


Подготавливаем прозрачную пленку Lomond, которую можно использовать для печати различных изображений, фоторезист и для травления — хлорное железо. Конечно можно изготовить плату методом прорезки дорожек, как вам будет удобнее.

Изготавливаем половинки

Нужны хорошо наточенные ножницы

Где-то добываем вышедшие из строя светодиодные лампы W5W


Извлекаем пластиковый цоколь W5W

Делаем точную разметку, что резать


Здесь нужно убрать все лишнее, чтобы плата свободно заходила в цоколь

Гравер


Делаем плату с размером цоколя

Готовим паяльную пасту


С помощью шприца наносим пасту на контактные площадки и сажаем на плату светодиоды с драйверами

Здесь нужно заметить, что в схеме имеется две NSI45030AT1G, а поэтому на обеих зеркальных половинках ток будет по 60 мА
Затем помещаем плату на хорошо разогретый утюг


И как только паяльная паста оплавит выводы деталей сразу же снимаем плату с утюга

Затем нужно будет облудить провод от сетевого кабеля


и припаять отрезки провода к контактным площадкам половинок

в цоколе


я сделал отверстия сбоку, через них пройдут выводы

поместил половинки в цоколи


перед этим я убрал все остатки канифоли с платы

а затем уже одел цоколи


выводы сделал короче, на нужную длину

выводы между собой не скручивал


выводы аккуратно загнул

Теперь все, сборка закончена, сейчас будем проверять.


Яркость свечения мощнее нежели у лампочки W5W. Проработала больше часа, замерил температуру — было около 50 градусов

В этой статье вобще-то не было целью создать источник света с яркостью большей, чем у аналогичной лампы накаливания. Речь шла именно об приборах NSI, при использовании которых не потребуются резисторы.

usilitelstabo.ru

Простой светодиодный драйвер


В самоделках для индикации мы используем светодиоды, хорошо когда в схеме один светодиод, но когда их несколько придется рассчитывать токоограничивающие резисторы. Но если позволяет схема, то проще использовать драйвер.

Как сделать источник постоянного тока, выдающий 20мА
(рабочий ток многих светодиодов) на выходе. Или более известное название как светодиодный драйвер.
Входное напряжение драйвера 5 -15 вольт постоянного напряжения.

Драйвер при данных компонентах схемы потянет подключение до 7 светодиодов без резисторов, при этом светодиоды в полной безопасности.

Компоненты минимальные и доступные
Резистор 27 Ом
Резистор 10 КОм
Транзистор КТ3102 или аналог
Два диода1N4007 или аналог
Собираем согласно схеме

Простой светодиодный драйвер
Думаю ошибиться в сборке данной схемы не возможно.

Схема работает сразу и без проблем. Для теста подключите светодиод, при подключении питания начнет светиться.
Вы можете подключить от 1 до 7 светодиодов в цепь.

Пример расчета:
Входное напряжение = 9В
Потребление схемы = 0,7 в
напряжение для примера красных светодиодов = 1,8 в
0,7 + 1,8 + 1,8 + 1,8 + 1,8 = 7,9 в < 9В Норм!
Думаю принцип расчета понятен и не вызовет трудностей.
Желаю удачи!

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru