Заземление монтаж – Монтаж заземления

Содержание

Установка заземления своими руками: порядок действий

Действующее законодательство Российской Федерации, а также нормы ПУЭ, СНиП и различные ГОСТы предполагают, что конструкции, находящиеся под напряжением, должны быть изолированы для предотвращения непроизвольного прикосновения к ним человека, а открытые проводящие части не должны проводить ток, так как в обратном случае появляется угроза удара током. А исход ситуации контакта человека с оголенным проводником под напряжением может быть разным, но в любом случае это малоприятно, а в отдельных ситуациях может привести к летальному исходу. Исходя из этого, во всех сооружениях промышленного или жилого назначения при существовании риска удара электрическим током, должно быть оборудовано соответствующее устройство заземления. Ведь, как известно, именно земля имеет свойство поглощать электрический ток.

Заземлитель находится в электрическом контакте с грунтом. В качестве заземляющих проводников могут выступать любые металлические предметы, помещаемые в грунт.

Если защита требуется электроустановкам, имеющим различное назначение и напряжение, но территориально близким друг к другу, то в таком случае применяется одно заземляющее устройство на двоих.

Чтобы обеспечить дополнительную безопасность, при работе, используют переносное заземление.

Порядок работ при монтаже

Установка состоит из следующих операций:

  1. Перед тем как начать работу необходимо в обязательном порядке проверить отсутствие напряжения!
  2. Выкапывается траншея необходимой формы.
  3. В траншею, используя кувалду, вбиваются штыри, уголки или другие предметы, служащие заземлителем.
  4. Далее они скрепляются друг с другом полосой заземления, которая является проводником, для этого используем сварку.
  5. Окончание полосы выводится на близкое расстояние к электрощитку, к полосе заземления крепится болт, который будет использоваться для подключения проводника.
  6. Измеряется сопротивление полученного устройства.
  7. Засыпаем канаву.
  8. Наконец, соединяем с шиной РЕ, которая заранее должна быть установлена в щитке, все корпуса электроприборов.
  9. Швы лучше покрасить для повышения износостойкости и препятствия коррозии.

Такой метод имеет явные положительные стороны: это незамысловатость выполнения и доступность материалов. В то же время, потребуется применять много грубой рабочей силы; необходимо иметь навыки сварки и сварочный аппарат; требуется большая площадь; также невозможно провести данные операции в каменистом грунте.

Порядок проведения монтажа модульным методом

Одним из самых популярных методов становится модульно-штыревой. Из главных плюсов этой разновидности хочется назвать практичность, по причине того, что он не требует большой площади. Так же следует отметить легкость установки: весь процесс может выполнить один человек.

Модульный заземлитель является системой, представляющую скрепленные между собой стальные трубы длиной 150 см, покрытые снаружи слоем меди.

Эффективность обеспечивается большой глубиной, на которую вбивается заземлитель.

Монтаж проводится в два этапа:

  • штыри вбиваются в землю друг за другом при помощи отбойного молотка;
  • заземляющий проводник подключается к электрощитку.

Если процесс производится внутри здания, то все действия необходимо выполнять на уровне пола. А если вне здания, то предварительно необходимо выкопать небольшую канаву, глубиной полметра, в которую уложить проводник и протянуть до щитка.

Заземление трансформаторной подстанции

Как известно, ТП служат для получения и преобразования напряжения, а так же для распределения электроэнергии в электросистеме. Ввиду этого, не подлежит обсуждение тот факт, чтообеспечение безопасности ТП становится архиважный задачей.

При проектировании монтажа всех ТП должны быть предусмотрены наружный контур заземления и внутренний.

Шины необходимо провести по всем стенам, а после этого соединить с шинами во всех соседних помещениях. Данные действия необходимы, ввиду необходимости обезопасить все без исключения металлических части ТП, даже не являющиеся токопроводящими.

В процессе монтажа можно условно выделить следующие этапы:

  • Первый этап – разметка трассы для прокладки заземления.
  • Второй — подготовка. Перфоратором проделываются отверстия для установки шин сквозь стены и прочие монтажные отверстия. В них устанавливаются металлические гильзы, необходимого диаметра.
  • Третий этап – непосредственно монтаж заземления. Провода закрепляются по периметру при помощи дюбелей. Сами провода соединяются непосредственно с заземляемыми конструкциями, при помощи сварки или болтов.

Важно понимать, что в сухих, имеющих благоприятную среду зданиях прокладывать проводники разрешается прямо по стенам конструкции. Но в сырых помещениях защитные провода необходимо уложить на небольшом расстоянии от стен (от 1 см).

Заземление линий электропередач на столбах

Заземление столбов должно производиться исключительно только совместно с молниезащитой, основным элементом которой является подвеска грозозащитного троса.

В ситуации с ЛЭП монтаж заземляющих устройств производится именно для оттока в грунт импульсных токов, которые возникают при прямолинейном ударе молнии в столбы или молниезащиту, а также для снижения напряжения на изоляции линии.

Подытоживая все вышесказанное, можно сказать, что важность защиты электрооборудования сложно переоценить. Этот метод защиты от поражения электрическим током используется повсеместно: в жилых помещениях и частных постройках, в сооружениях промышленного назначения.

Заземление – сложный и трудоемкий процесс, требующий специального профессионального образования. Неспециалисту произвести самостоятельно данные работы будет довольно сложно. Нужно принимать во внимание необходимость производства множества сложных расчетов, а также различных факторов, например, промерзание грунта зимой или взаимное экранирование электродов, которые могут повлиять на качество проделанной работы.

pauk.top

Контур заземления: устройство и схема монтажа

В случае внезапного нарушения изоляции проводника в каком-либо электроприборе его поверхность неожиданно может оказаться под напряжением. Прикоснувшись к нему, можно получить удар током. Поэтому основной защитой от поражения электричеством может являться только контур заземления. Это система, которая снимает напряжение с корпуса электроприбора и отводит ток за пределы здания.

Устройство контура заземления

Заземляющий контур — это защитное устройство, состоящее из нескольких металлических электродов, вертикально забитых в грунт на определенную глубину. Они соединены между собой горизонтальным заземлителем, который изготавливается из стальной полосы и с помощью сварки крепится к верхней части электродов. Собранный таким образом контур при помощи специального кабеля или стальной полосы соединяется с внутренней схемой заземления дома, которая выводится на наружную сторону стены здания.

Все металлические элементы внешнего заземления, находящегося в земле, охватывают определенную площадь соприкосновения с грунтом, который позволяет быстро рассредоточить электрический ток по всему контуру, обозначенному электродами.

Принцип действия защитной цепи

Правильно собранные в одну цепь заземляющие элементы защищают человека от внезапного удара током, а бытовые электроприборы — от поломки в случае пробоя напряжения на их корпус.

Это происходит таким образом. Во время короткого замыкания или утечки тока на обшивку прибора, с него снимается напряжение и через проводник отводится в грунт на заземляющее устройство. Поэтому, чтобы схема контура заземления работала четко

, она выполняется строго по требованиям ГОСТа, где специально предусмотрены нормативы внешнего сопротивления всей цепи заземления с учетом таких факторов, как:

  1. Вид почвы и его влажность.
  2. Уровень подпочвенных вод.
  3. Количество электродов, их размер и расположение в контурном заземлении.
  4. Глубина погружения электродов.
  5. Материал электродов и линейных заземлителей, соединяющих их между собой, и внутренним заземлением здания.

По геометрической форме вертикальные электроды, в соответствии с нормативами СНиП, должны забиваться в землю на определенную глубину, с одинаковым расстоянием друг от друга, и представлять собой равнобедренный треугольник.

Расчет профиля схемы

Для правильного функционирования системы защиты желательно произвести расчет ее сопротивления. Для этого нужно учитывать следующее:

  1. Количество и параметры заземляющих электродов: длину, контактную площадь соприкосновения с землей и расстояние между собой.
  2. Общую линейную длину горизонтальных заземлителей, соединяющих электроды и внутренний контур в доме.
  3. Удельное сопротивление грунта.
  4. Влажность грунта и его соленость.
  5. Время года (температуру почвы).

Но как показывает практический опыт, ни одна расчетная методика полностью не учитывает приведенные факторы, а просто используется типичный образец конструкции ранее спроектированного и уже смонтированного контура.

Например, то, что является заземляющим контуром в частных домах, — это простая одноконтурная схема, собранная из трех вертикальных арматурных стержней, металлических уголков или труб, которые соединяются между собой полосой из стали.

Разновидности токоотводящих приспособлений

Наружный контур из искусственных элементов заземления подбирается согласно правилам ПУЭ. В нем четко дано определение основных видов контурных систем, которые могут быть:

  1. Традиционными заземляющими конструкциями.
  2. Глубинными модулями
  3. Наружными заземляющими системами.

Следует подробнее остановиться на каждой из них.

Традиционные конструкции

Такое контурное заземление собирается из одного горизонтального металлического электрода и трех вертикальных стержней. Горизонтальный (линейный) электрод представляет собой металлическую полосу, а забитые вертикально в землю стержни делаются из толстой арматуры. Эти элементы должны иметь определенную, заранее рассчитанную для данной местности и здания длину.

К недостаткам традиционного заземления можно отнести:

  1. Сложность монтажа.
  2. Сильная коррозия. Большинство элементов контура собирается из непокрашенного черного металла, который из-за лучшего контакта с землей нельзя красить.
  3. Влияние температурных перепадов и переменчивой влажности на верхнюю часть устройства.

Глубинные модули

Эта система заземляющего устройства изготавливается в заводских условиях и практически не имеет тех недостатков, которые существуют у традиционного заземления.

К достоинству глубинной модульной системы относится:

  1. Точность и качество всех элементов контура.
  2. Длительная эксплуатация.
  3. Благодаря тому, что электроды устанавливаются на большую глубину, погодные условия практически не влияют на работу заземления.
  4. Отсутствие необходимости частого обслуживания контура.
  5. Простота расчет сопротивления.
  6. Несложный монтаж заземления.

После монтажа контура необходимо проверить все соединительные стыки заземления, а также его работу. Если монтаж произведен точно по расчетам сотрудников специализированной и лицензированной лаборатории, которые производили замер и расчет контурного сопротивления, модуль будет безупречно работать на протяжении долгих лет.

Наружное обустройство

Применяется для заземления трансформаторных подстанций и состоит из вертикальных и горизонтальных электродов. Заземляющий контур собирается из 4 стальных полос шириной 40−50 мм и толщиной 8−10 мм на расстоянии не ближе 1 м от стены строения.

Полосы укладываются на дно траншеи глубиной 500 — 700 мм от поверхности земли. При монтаже используется заранее приготовленный рабочий чертеж, который проектируется под определенное электрооборудование.

Кроме этого, горизонтальное заземление может быть смонтировано в котловане под фундаментом здания и опорами воздушных линий электропередач.

Также для наружного заземления электрооборудования могут использоваться естественные заземлители в виде металлических трубопроводов, обсадных труб, металлических и ж/б сооружений и других токопроводящих конструкций, тесно связанных с грунтом. К заземлителям можно отнести и оболочки свинцовых кабелей, а также нулевой рабочий провод, имеющий повторный заземлитель.

К контурному заземлению не подключаются только трубопроводы со взрывчатыми и легковоспламеняющимися веществами.

Монтаж заземляемого профиля

В соответствии с пунктом 1.7.111 ПУЭ практически все электроды, независимо от того, как они расположены в заземляемом контуре (горизонтально или вертикально), должны быть медными, оцинкованными или стальными. При этом их поверхность для лучшего отведения напряжения ни в коем разе нельзя покрывать краской или другими покрытиями.

Монтаж должен производиться по заранее подготовленным схемам, соответствующим ПУЭ. А работы по подготовке к монтажу заземляющего устройства, к которым относится рытье траншей, пробивка или бурение отверстий под электроды, установка закладных деталей в заливаемый бетоном фундамент, осуществляется на начальном этапе заземления.

Конструктивные параметры

Установка защитного заземления не является сложной. Кроме того, его можно довольно быстро сделать своими силами. Для этого следует просто приготовить:

  1. Для вертикальных электродов — трубы или уголки с толщиной стенок не меньше 4 мм или металлические стержни диаметром от 14 мм.
  2. Для вертикального заземления — стальную полосу с поперечным сечением 100х4 мм.
  3. Для подвода заземления к дому — жесткий кабель сечением от 10 мм2 (можно полосу сечением 30х2.5 мм).
  4. Из инструментов понадобится лопата, большая кувалда, болгарка и сварочный аппарат.

Площадь заземления зависит от модели выбранного контура. Он может быть смонтирован по периметру всего здания, подсоединен к какой-либо подземной коммуникации, но самой распространенной схемой установки заземления является треугольная модель контура.

Полный комплект всех заземляющих элементов можно заказать в специализированных мастерских, где налажено производство медных электродов. Такие комплекты, имея небольшую стоимость, отличаются надежностью и долговечностью.

Порядок установки

При сборке элементов контура следует использовать только материалы, которые являются хорошими проводниками электротока. Сам монтаж защитной системы заземления производится таким образом:

  1. В пределах 3−5 м от здания раскапывается площадка глубиной в пределах 500 мм и площадью примерно 2х2 м. После этого от выкопанной площадки, на той же глубине, к дому копается траншея. Она должна подходить к точке выхода внутреннего контура из стены дома.
  2. На выкопанной площадке размечается равнобедренный треугольник, вершины которого должны располагаться на расстоянии 1−1.5 м друг от друга.
  3. В размеченные точки при помощи кувалды забиваются металлические стержни (электроды). Для облегчения работы концы желательно заострить болгаркой.
  4. Используя сварку, забитые в землю электроды соединяют между собой стальной полосой. После этого на ближней стороне полученного контура приваривается болт для крепления кабеля, идущего от расположенного в доме электрощита. Вместо кабеля можно уложить в траншею стальную полосу, которая приваривается к смонтированному заземлению, а болт приваривается уже на конце полосы выведенной на стену дома.
  5. Все сварные соединения (швы) должны быть очищены от шлака, прогрунтованы и покрашены, иначе в земле под действием сырости они быстро разрушатся.
  6. Выведенную из земли полосу желательно покрасить чередующимися полосками зеленого и желтого цвета.
  7. Также перед засыпанием траншеи рекомендуется измерить сопротивление смонтированного заземления специальными приборами. Если оно будет недостаточным, следует забить дополнительный электрод и соединить его сваркой с основной заземляющей конструкцией. Сопротивление всей системы должно быть в пределах 4 Ом.
  8. Траншея должна засыпаться чистым грунтом без остатков строительного мусора.
  9. В расположенном в доме электрощите нужно установить дополнительную шину — РЕ (если она отсутствует) и соединить ее проводником с выводом от смонтированного заземляющего конура.
  10. Все находящиеся в доме электроприборы соединить с шиной РЕ.

Правила устройства энергоустановок (ПУЭ)

Монтаж защитного заземления рекомендуется производить с учетом норм контура заземления ПУЭ, что обеспечит надежную защиту электроприборов и людей от поражения током.

Нормативы ПУЭ — это собирательная группа специализированных правовых актов, которые были утверждены Министерством энергетики еще при Советском Союзе. Данные ПУЭ описывают правила правильной закладки электропроводки в промышленных помещениях, жилых здания, частных домах и других объектах, а также разъясняют подключение различного электрооборудования и принцип их устройств.

ПУЭ содержат в себе требования по прокладке коммуникаций к электроустановкам, узлам, определенным энергосистемам и их отдельным элементам.

Проверка системы

Проверка сварных швов производится визуальным осмотром. Затяжка гаек проверяется при помощи гаечного ключа. Для замера сопротивления лучше пригласить специалиста из специализированной электролаборатории.

Но проверить сопротивление можно и собственными силами. Для этого берется переносная розетка и подключается одним проводом к фазе, а другим — к заземлению. После этого в розетку подключается какой-либо мощный электроприбор.

Практически контур считается правильным, если подключенный к фазе и заземлению прибор, мощность которого должна составлять 2 кВт, будет работать исправно, даже если напряжение в этом промежутке понизится в пределах 10 В.

chebo.pro

Установка защитного заземления

Есть одно общее правило выполнения любых видов работ – чтобы сделать работу качественно, нужно ясно представлять, для чего мы это делаем и какой цели хотим в итоге добиться. А чтобы это осознать, нужно разобраться в принципе действия данного устройства.

Поскольку у большинства людей понятия о заземлении весьма туманные, считаем необходимым посвятить несколько строк теории заземления. Начнём с того, что наша планета Земля имеет огромный объём и массу и вследствие этого обладает огромной электрической ёмкостью, то есть способна «впитывать» в себя очень большое количество электрической энергии, причём без изменения электрического потенциала на поверхности. Который, как известно, равен нулю, то есть практически отсутствует. Это если сравнивать с потенциалом других физических тел на поверхности Земли. У грозовых туч, к примеру, потенциал может быть миллионы вольт относительно поверхности Земли. Таким высоким потенциалом и объясняются молнии – электрический пробой воздушной массы на длине в километры.

Именно это свойство земной поверхности (нулевой электрический потенциал) используется как начальная точка отсчёта для электрических и электронных устройств. Когда мы говорим о напряжении – то имеем в виду разность электрических потенциалов измеряемой точки в сравнении с базовой, нулевой. Без базовой точки отсчёта понятия потенциал или напряжение теряют смысл. Если быть точным, то вполне возможно, что поверхность земли имеет вовсе не нулевой потенциал, а какой-либо другой. Но чтобы это узнать, нужно опять же с чем-то сравнить, хотя бы с другим небесным телом. Поскольку сегодня в нашей практике сравнивать не с чем, примем утверждение о нулевом потенциале земли как аксиому.

Но для того, чтобы земля могла «впитывать» электрическую энергию – она должна проводить ток, быть проводником тока. В этом плане интересен вопрос – а из чего состоит земной грунт – из изоляторов или из проводников? Ответ такой: земной грунт – это смесь изоляторов и проводников. Например, сухой песок – изолятор. Но если его смочить солоноватой водой – то он станет проводником. Грунт на поверхности земли хуже проводит электричество, чем на глубине 10 – 20 м, во-первых, потому что рыхлый, во-вторых, на такой глубине находятся грунтовые воды. Зимой поверхностный слой замерзает и превращается в изолятор. Это необходимо понимать при устройстве заземления.

В таблице ниже приведены величины удельного сопротивления грунта в зависимости от его типа.

Кожа человека – тоже, по сути, изолятор. Однако человеческое тело состоит на 70% из воды с растворами солей, а кожа имеет поры, через которые выделяется солёный пот, в результате человеческое тело начинает проводить электрический ток. Нужно знать, что дистиллированная вода ток не проводит и только присутствие в растворе заряженных частиц– ионов солей– делает воду проводником.

Необходимо также понимать, что сопротивление протеканию тока (электрическое сопротивление– R) человеческое тело (так же как и грунт Земли) оказывает значительно большее, чем, к примеру, металлы. Именно поэтому мы говорим об опасном и безопасном для человека напряжении. Так, напряжение 24 вольта на аккумуляторе для человека абсолютно безопасно, поскольку по закону Ома такое напряжение при большом сопротивлении тела (десятки кОм) не способно вызвать такой ток (порядка 30 мА и более), который может нанести вред. Если перейти к цифрам, то в среднем тело человека имеет электрическое сопротивление от 3 до 100 кОм (1кОм=1000 Ом). Большой разброс у разных людей объясняется многими факторами– здоровьем, состоянием кожи и даже зависит от того, выпил человек или нет. Известно, что при алкогольном опьянении сопротивление тела человека уменьшается, о чём неплохо было бы помнить профессиональным электрикам. Ну и напоследок заметим, что безопасным для человека согласно ПУЭ считается напряжение 42 вольта, если же напряжение выше этого значения, то для защиты необходимо применять защитное заземление, о котором мы и поговорим ниже.

Что же это такое заземление?

Заземление — это преднамеренное электрическое соединение произвольной точки сети, оборудования или электроустановки с заземляющими устройствами.

Заземляющее устройство — это совокупность заземлителей или заземляющих проводников.

Заземлитель — это совокупность соединенных между собой проводящих элементов, находящихся в электрическом контакте с землей или грунтом.

Существуют также (согласно ПУЭ) виды заземления по выполняемой функции – рабочее (функциональное) и защитное. В данной статье мы будем рассматривать защитное заземление и его устройство.

Чтобы лучше понять, как заземление может защитить человека при аварии, представим простую и достаточно часто встречающуюся ситуацию – на некотором оборудовании в результате плохого контакта отгорает проводник, находящийся под фазным напряжением 220 вольт. При этом он почти неизбежно внутри электроприбора касается какой-то корпусной детали. На корпусе возникает электрический потенциал 220 вольт. Если корпус не заземлён и не соединён с нулевым проводом, то внешне ничего не происходит, не появляется ток утечки, не срабатывает защита. В этой-то неприметности и заключается опасность. Человек, подходя к аппарату, чтобы начать работу, касается корпуса и получает удар током от напряжения 220 вольт.

Если же корпус аппарата заземлён – соединён проводником с грунтом, имеющим нулевой потенциал, то потенциалы земли и корпуса будут стремиться к выравниванию и по проводникам заземления пойдет ток утечки. Так как сопротивление заземления достаточно маленькое, ток будет иметь (по закону Ома) достаточную величину, чтобы сработала защита. Это обязательно привлечёт внимание персонала (при попытке повторного включения автоматов защиты, ситуация повторится) и заставит заняться ремонтом. Но даже если защита не сработает и человек коснётся заземлённого корпуса, образуется новое ответвление цепи тока через тело человека. Как известно, при разветвлении электрической цепи токи в ветвях имеют величину обратную сопротивлению ветвей. Пусть тело человека имеет сопротивление 100.000Ом, а заземление – 10Ом. В этом случае Ток через тело человека будет в 10.000 раз меньше, чем ток по цепи заземления.

Всё вышеизложенное важно для того, чтобы понять, что основной характеристикой заземления является его электрическое сопротивление! Оно должно быть небольшим! ПУЭ рекомендуют ряд значений для различных типов и назначений заземления. Например, сопротивление заземления для частных домов при подключении к заземлению молниезащиты должно быть не более 10Ом, при обычной системе заземления – не более 30Ом. При системе, в которой заземление изолировано от нейтрали источника тока (нуля) и применяется устройство УЗО с «током» срабатывания не больше чем 100мА – сопротивление заземления может быть не более 500Ом.

Но этого мало, конструкция заземления должна быть такой, чтобы эта маленькая величина сопротивления сохранялась долгое время независимо от сезона, будь то зима или лето, а сама конструкция не разрушалась от коррозии.

Сопротивление заземления можно уменьшить, увеличивая площадь контакта заземлителя с землёй, а также глубину размещения заземлителя в грунте. Иногда сопротивление уменьшают, смачивая грунт около заземлителя раствором соли, обычно поваренной, вместо углубления заземлителя, так как углубление требует больших энерго- и трудозатрат. Однако такое решение не может считаться хорошим, так как через 1-3 года соль размывается выпадением осадков. К тому же соляной раствор резко увеличивает коррозию конструкции.

Материал, из которого изготавливают конструкцию заземления – это, как правило, черные металлы – конструкционная сталь. Применение цветных металлов или нержавеющей стали слишком накладно в плане стоимости ввиду немалой материалоемкости конструкции. Поэтому детали заземлителя из стали нужно защитить от коррозии. Разумеется, не изолятором (лакокрасочным покрытием), а металлическими покрытиями. Рекомендуется применять цинкование или меднение деталей заземлителя. В паре цинк-сталь цинк, являясь более электрохимически активным металлом, начинает разрушаться раньше, чем стальная основа, и пока цинковое покрытие полностью не разрушится, сталь остаётся защищённой. В паре медь-сталь всё происходит наоборот: начинает разрушаться сталь, и пока она вся не разрушится – медь остаётся целой. Отсюда вывод – при меднении покрытие должно иметь достаточную толщину, не менее 250 микрон. Служит омеднённый заземлитель дольше, чем оцинкованный.

При устройстве заземлителей сегодня чаще всего применяют вертикальные заземляющие электроды, в качестве которых почти всегда выбирают стальные трубы, прутки, сортовой прокат – уголки, швеллеры и т.д. Объясняется это тем, что горизонтальные электроды гораздо труднее поместить на большую глубину, а при малой глубине у них сильно ухудшается основная характеристика – сопротивление, особенно из-за промерзания в зимний период. Ну а широкое применение штыревых конструкций объясняется, соответственно, тем, что их можно забить в землю, в отличие от листового металла, хотя лист и имеет большую поверхность.

На сегодня самыми распространенными конструкциями заземления считаются две:

1. На основе некоторого количества коротких штырей, забиваемых в грунт вручную (кувалдой) на максимально достижимую глубину и соединяемых в контур заземления стальной полосой, приваренной электросваркой к выступающим концам штырей. Необходимая величина сопротивления достигается увеличением количества штырей. Точные размеры и количество штырей определяются расчётом, с учётом вида грунта, климатических факторов и т.д. Конкретную методику расчёта можно найти в Интернете или в справочниках. Нужно учесть, что при использовании группы штырей в качестве заземлителя начинает проявляться такой фактор снижения эффективности работы, как взаимное влияние или «затенение», которое зависит от расстояния между штырями. При слишком близком расстоянии эффективность заземления может значительно уменьшиться. Поэтому размещать штыри нужно на расстоянии не менее их длины, а желательно и на большем. Тогда снижение эффективности не будет слишком заметным.

Недостатками этого способа являются потребность в большой площади для оборудования заземления, большой расход материала и необходимость тяжёлого ручного труда.

2. Одиночный глубинный электрод, так называемая «обсадная труба», устанавливаемый с помощью буровой машины (на базе грузовика) на глубину 20 – 30 метров. По эффективности работы такой заземлитель превосходит предыдущий при одинаковой суммарной длине электродов из-за того, что на глубинах более 5 метров грунт имеет в разы меньшее удельное сопротивление из-за того, что его влажность и плотность гораздо больше, чем у поверхности.
Недостатки этого способа – высокая стоимость бурения и материалов и пониженный срок службы (5-15 лет) из-за коррозии во влажной среде.

В заключение приведём конкретный пример монтажа заземления первым способом.

1. Исходные данные, полученные из расчёта:

— количество необходимых электродов – отрезков стальной арматуры или уголков 40х40х5 длиной 3 метра с цинковым покрытием – 20 штук.

— глубина забивания электродов – примерно 3 метра.

2. По периметру здания вдоль стен на расстоянии не менее 1 метра, начиная от места ввода провода заземления к входному электрощиту, делается траншея глубиной 0,5-0,37 метра и длиной 60 метров. Траншея нужна для изоляции и защиты заземлителя и соединительного проводника от погодных факторов (дождя, обмерзания) и механических повреждений, например, при копке земли для цветника.

3. В дно траншеи на расстоянии 3-х метров друг от друга с помощью кувалды забиваются предварительно заострённые с одного конца болгаркой заранее заготовленные электроды.

4. После забивания электродов к их концам электросваркой приваривается стальная полоса 40х5 мм от первого электрода и до последнего. Шов делается сплошной, катетом 5 мм. Для присоединения провода заземления в месте рядом с вводом заземления полоса выводится наружу на необходимую длину. Использование сварки для фиксации элементов из чёрной стали настоятельно рекомендуется (ПУЭ, п. 1.7.139).

5. Места сварки для защиты от коррозии покрываются битумным лаком или антикоррозийной краской, после чего канава засыпается.

6. Снаружи или внутри помещения делается переход со стальной полоски на медные провода заземления с помощью болтовых зажимов с шайбами. Места зажима и болты покрываются краской.

Аналогично первому приведём пример установки заземления вторым способом.

1. На расстоянии 3 метра от стены дома (для безопасного подъезда буровой установки) копается канава глубиной 0,5 – 0,7 м и длиной 3 – 4 метра.

2. Буровой установкой осуществляется процесс бурения, а затем и сама установка электрода (например, стальная труба диаметром 100 мм, устанавливаемая на глубину 20 метров).

3. Укладывается заземляющий проводник – стальная полоса 40х5 и приваривается сплошным швом (катет 5 мм) к концу трубы.

Далее, аналогично пп.5 и 6 предыдущего примера.

В заключение заметим, что в настоящее время появились сообщения о новом методе монтажа заземлителя, состоящего из составной трубы, на глубины до 20 метров с помощью забивания кувалдой поочерёдно элементов трубы-заземлителя.

И последнее – сопротивление смонтированного заземления необходимо проверить. Для этого используются специальные методы и приборы, обычным тестером это не делается. Как это сделать – можно узнать из справочников и статей Интернета.

muzhik-v-dome.ru

способы монтажа, устройство, общие требования

Системы электропередач в большей части зданий выполнены по старому образцу - без заземления. Современные бытовые приборы, работающие без заземляющего контура, могут выйти из строя в случае возникновения каких-либо неисправностей. Владельцы домов, как правило, самостоятельно осуществляют установку заземления в доме, обеспечивая тем самым электробезопасность.

Предназначение заземления

Основная задача заземления - снижение до нуля напряжения сети в случае возникновения утечки тока. Причиной этого может быть прикосновение к токоведущим частям, повреждение изоляции проводки. Дополнительной функцией заземления является создание и поддержание оптимальных условий для работы бытовых электрических приборов.

Некоторые устройства требуют не только установки розетки с заземлением, но и непосредственного подключения к заземляющей шине. С этой целью применяются специальные зажимы.

К примеру, на корпусе микроволновых печей располагается специальная клемма для заземления. При отсутствии заземления прикосновение к микроволновке может повлечь несильный, но неприятный удар током. Устраняется это только посредством установки защитного заземления. Аналогичная ситуация с большинством других бытовых приборов.

Установка заземления в частном доме является не менее важной процедурой, особенно если здание - деревянное. Имеющийся заземляющий контур позволяет защитить постройки от удара молнии и провоцируемого им пожара. Особенно важно это в сельской местности, где дома могут быстро выгореть за короткий срок. Одновременно с заземлением чаще всего обустраивают молниеотвод.

Правила обустройства заземления

При несоответствии естественных заземляющих элементов предъявляемым требованиям используются искусственные системы заземления. Естественными элементами могут быть расположенные в земле водопроводные стальные трубы, металлические конструкции зданий, артезианские скважины и многие другие.

В качестве естественных заземлителей запрещено использовать нефтепроводы, газопроводы и бензопроводы.

Оптимальный материал для установки переносного заземления своими руками - металлический уголок 50 х 50 миллиметров длиной 3 метра. Для установки таких элементов выкапывается траншея глубиной 0,7 метра, при этом над дном должно оставаться порядка 10 сантиметров отрезков. К выступающей части приваривают стальной прут диаметром 10-16 миллиметров или стальную полосу.

Сопротивление заземляющего контура в электрических установках до 1000 вольт должно составлять 4 Ом, не более. Сопротивление для установок более 1000 вольт не должно превышать 0,5 Ом.

Виды заземления и особенности

Выделяют шесть систем заземления, однако в частных домах используются только две: TN-C-S и TT. Большей популярностью пользуется первый тип, поскольку в нем устроена глухозаземленная нейтраль. Проведение нейтрали N и шины PE осуществляется одним проводом PEN до входа в здание, после чего заземление разводится на несколько отдельных веток.

Защитные функции в такой схеме осуществляются электрическими автоматами, при этом отсутствует необходимость в установке устройств защитного отключения. У такой схемы имеется свой недостаток: при повреждении проводника PEN на расстоянии между домом и подстанцией появляется фазовое напряжение на шине заземления в доме. Отключить напряжение невозможно никакой защитой, в связи с чем необходим монтаж механической защиты проводника PEN и резервного заземления на расстоянии каждые 200 метров.

Электрические сети в небольших городах и селах не соответствуют необходимым требованиям, в связи с чем используют схему TT. Оптимальный вариант применения данной схемы - для отдельных построек с грунтовым полом, поскольку имеется определенный риск прикосновения разом к грунту и заземлению, что опасно при использовании схемы TN-C-S.

Отличие заключается в том, что "земля" используется в качестве щита от индивидуального заземления, а не от подстанции. Такая система обладает большей устойчивостью к повреждениям проводника и требует установки специального устройства защитного отключения. По этой причине такая схема именуется резервной.

Установка заземления

Устройства заземления классифицируются на два типа, которые отличаются по свойствам и способу монтажа. Первый вид представлен штыревой модульной конструкцией с несколькими электродами, второй создается из металлопроката. Основными отличиями разновидностей являются углубленные детали, в то время как проводники и надземная часть полностью аналогичны.

Приобретенные в торговой сети наборы для заземления обладают определенными преимуществами:

  • Комплектующие разработаны специалистами в соответствии со всеми стандартами и требованиями и изготовлены на заводском оборудовании;
  • Практически не нужны земляные и сварочные работы;
  • Можно углубиться на значительную глубину в землю с сохранением минимального сопротивления всего устройства.

Основным недостатком является слишком высокая стоимость

Набор, приобретенный в торговой сети, имеет свои преимущества:

  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Из недостатков заводского исполнения можно отметить высокую стоимость набора.

Инструменты и материалы

Для изготовления самодельного заземлителя обязательно должен использоваться оцинкованный металлопрокат - труба, уголок или пруток.

Готовые заземлители выполнены из резных омедненных штырей, соединенных латунными муфтами. Соединение штыря и провода заземления выполнено при помощи зажима из нержавеющей стали и специальной пасты. Окрашивать или смазывать заземлители нельзя.

При выборе сечения проката учитывается воздействие коррозии, в результате которого сечение понижается. Минимальные сечения проката:

  • Для оцинкованного прутка - 6 мм;
  • Для прямоугольного проката - 48 мм2;
  • Для металлического прутка - 10 мм.

Штыри соединяются между собой уголком, полосой или проволокой. С их помощью заземление подводится до электрического щита. Для соединяющего проката размеры составляют:

  • Диаметр прутка - 5 мм;
  • Размер прямоугольного профиля - 24 мм2.

Сечение провода фазы должно быть больше сечения заземляющего провода в помещении. К подобным проводникам предъявляются определенные требования, затрагивающие диаметр жил:

  • Алюминиевый без изоляции - 6 мм;
  • Медный без изоляции - 4 мм;
  • Медный изолированный - 1,5 мм;
  • Алюминиевый изолированный - 2,5 мм.

Проводники заземления соединяются при помощи заземляющих шин, изготовленных из электротехнической бронзы. Все детали щита согласно схеме TT крепятся к стенке ящика.

Установка заземлений на ВЛ самодельного типа осуществляется при помощи кувалды, которой заземлитель вбивается в землю. Вбивание заводских деталей происходит при помощи отбойного молотка. В обоих способах установки заземления желательно использовать стремянку. Ручная сварка используется для сваривания проката из черного металла.

Земляные работы

Существует определенный порядок установки заземления. Первым этапом являются земляные работы. Заземлители размещаются на расстоянии 1 метра от фундамента здания. Минимальное расстояние между штырями составляет 1,2 метра. Оптимальный вариант - использовать штыри длиной 3 метра и создавать из них треугольник с трехметровыми сторонами.

После выкапывается траншея глубиной 0,8 метра.Оптимальная ширина траншеи - 0,7 метра: ее достаточно для удобной сварки проводников.

Подготовка электродов

Заострение электрода осуществляется при помощи болгарки. Если используется бывший в употреблении металлопрокат, то он очищается от коррозии и старого покрытия. Штыри заводского производства оснащаются острыми головками, которые накручиваются и промазываются в месте соединения специальной пастой.

Углубление электродов

Заглубление электродов в землю осуществляется посредством их забивания кувалдой. Для облегчения работы лучше использовать подмостья или стремянку. Если металл электродов слишком мягкий, то удары наносятся через специальные деревянные брусья. До конца забивать штыри не нужно: над землей должно оставаться порядка 10-20 сантиметров, которые используются для соединения с контуром.

Забивание заводских электродов осуществляется отбойным молотком. После того как штырь будет углублен, на него навинчивается муфта и дополнительный заземлитель. Процесс повторяется несколько раз до достижения требуемой глубины.

Соединение электродов

Между собой штыри объединяются полосой 40х4 миллиметра. Прокат из черного металла сваривается, поскольку болты быстро коррозируют, что приводит к повышению сопротивления общего контура. Сварочные швы должны быть высокого качества.

От собранного контура заземление проводится полосой к дому и крепится к фундаменту. Провод от щита подключается к болту, приваренному к краю полосы.

Крепежный хомут устанавливается на последний электрод, после чего закрепляется провод. Герметизация зажима осуществляется специальной лентой.

Засыпка траншеи

Засыпать траншею заземления лучше всего однородной плотной почвой.

Приобретенные в магазине устройства заземления с одним штырем комплектуются пластмассовыми колодцами, позволяющими осуществлять ревизию.

Проведение заземления в щит

Установка распределительного щита осуществляется на стену здания, причем место монтажа должно быть защищено от влажности. Кабели проводятся через стену с использованием специальных трубных гильз. Подключение провода к установленной на корпусе щита шине проводится при помощи болтового соединения.

После установки заземление проверяется мультиметром. Количество электродов увеличивается при сопротивлении, превышающем 4 Ом. Провода заземления в желтой изоляции подключаются к соответствующему разъему шины заземления. При подключении различных устройств - светильников, розеток открытой установки с заземлением и прочих - желтые провода также подсоединяются к соответствующим клеммам. К примеру, на розетках подобная клемма располагается в центре. Наиболее безопасными считаются розетки скрытой установки с заземлением - они используются для подключения холодильников, газовых плит и прочих бытовых приборов.

fb.ru

Контур заземления, его устройство, расчет и схема

Устройство контура заземления, установка и проверка уровня сопротивления контура – это работы, необходимость которых обусловлена спасением жизни человека и предохранением зданий от пожаров. Для производства работ следует выполнять требования ПУЭ, знать способы производства работ по монтажу защитного контура.

Каждый новичок хочет знать, что же это такое заземление и его контур.

Устройство и принцип действия заземления

Защитное устройство и его основное назначение – соединение всех потребителей электричества, при помощи заземляющего провода с контуром защиты. Систем заземления 3, но в жилом помещении наиболее часто устанавливают систему с маркировкой TN – 5. Эта система предусматривает проведение ноля и земли двумя отдельными проводами.

При коротком замыкании или утечке тока с корпуса приборов снимается опасное напряжение и по проводу подается на контур защитного заземления. Он должен монтироваться и изготавливаться, выполняя требования ГОСТа. Нормы, предусматривают оборудование контура с учетом уровня сопротивления. На его величину влияют:

  • виды почвы;
  • влажность и уровень грунтовых вод;
  • глубина погружения заземлителей;
  • количества заземлителей в контуре;
  • материалы электрода и всех составляющих устройства.

По форме, контур заземления, согласно нормам СНиП, делают в форме равностороннего треугольника, из вертикальных заземлителей и горизонтальных электродов. Они должны располагаться на определенной глубине. Из этого значения и свойства грунта производится расчет контура заземления. Каждый вид грунта имеет свой уровень сопротивления растекания токов КЗ.

Для обустройства контура защиты лучшим вариантом будет:

  • торфяник;
  • суглинистая почва;
  • глинистая, с близко расположенными грунтовыми водами.

Худшими свойствами обладают каменистые участки грунта и монолитные скалы. На выбор влияют климатические особенности региона установки.

Проведение расчета защитного контура

Сопротивление контура заземления следует проводить, определив несколько значений:

  1. Определить удельное сопротивление почвы на участке.
  2. Выявить влажность грунта.
  3. Уровень солености почвы.
  4. Средней температуры в регионе.
  5. Расстояние от фундамента до контура.
  6. Размеров заземлителей и других деталей устройства.

Методика расчетов «проста» — нужно знать множество физических формул и иметь инженерное образование. Но, как правило, никакая методика выполнения расчетов не может учитывать все значения. Поэтому, проведя монтаж наружного контура заземления и измерив, значение сопротивления защиты – вы увидите, что расчет не совпадает с фактическим результатом.

По этой причине, для обустройства в данном регионе выполняется типовой проект, остается только провести изменения, учитывая удаление устройства от здания. И затем проводят измерение сопротивления контура, вносят изменения до достижения номинального значения сопротивления, не более 4 Ом в жилищном строительстве.

Поэтому, выбрав лучшую схему, соблюдая все размеры и глубину забивания заземлителей, подобрав качественный материал, правильно сделать работу для вашего жилья не составит труда. А рассчитать заземление нужно обязательно для крупных промышленных и торговых зданий.

Объекты, требующие оснащения контуром

Для безопасного проживания и условий труда, каждое помещение, в котором установлены промышленные или бытовые электроустановки обязано быть защищено.

Для этого, оборудуется как внутренний контур заземления, так и наружный. Защита должна быть установлена в помещениях:

  • С различными по мощности железными кожухами и корпусами приборов, станков и осветительных устройств.
  • В электрощитовых, в которых находятся стальные корпуса щитков, шкафов и другого электротехнического оборудования, а также в комплектных трансформаторных подстанциях (ктп).
  • В местах с металлоконструкциями, оболочками кабелей, проводов различного сечения, а также защитных стальных трубопроводов для кабелей.
  • Вторичная обмотка измерительного трансформатора.

Заземление не проводится:

  • для арматуры изоляторов и штырей, крепления их на опорах электропередачи;
  • оборудования установленного на заземленные корпуса электроустановок;
  • электроизмерительные устройства, автоматы защиты, установленные в электрощитках или на одной из стен камеры распределяющего устройства.

При особо оговоренных условиях может не заземляться металлическая защитная оболочка контрольного кабеля.

Наружный контур заземления потребует проведения земляных работ, поэтому, приготовьтесь к тяжелой и небыстрой работе.

Установка контура заземления

Способов установки несколько. Новая, но более затратная методика модульно-штырьевого монтажа всем хороша. Но этот способ мы рассмотрим несколько позже. Мы разберем классический монтаж контура заземления.

Сначала проводятся подготовительные работы.

Подготовка к монтажу

Определяемся с местом установки защиты. Лучшим решением будет расположение контура недалеко от здания и со стороны установки распределительного электрощита.

Исходя из требований пункта 1.7.111 ПУЭ — все вертикально и горизонтально расположенные электроды должны изготавливаться из меди, оцинкованного или обычного стального уголка или другого профиля. Окрашивать поверхность заземлителей нельзя, для лучшего токоотведения и обнаружения дефектов.

Для обустройства, нам потребуется 50 уголков толщиной полок — 5 мм и полоса шириной — 40 мм. Это основные материалы для изготовления самого контура. Также нам потребуются провода достаточного сечения, для обустройства внутреннего контура заземления и разделения проводки на нулевой провод и проводник земли.

Теперь готовим к работе лопату и начинаем выполнение основного этапа работ.

Монтаж защитного устройства

Копаем треугольную траншею — длиной стороны 3 м, на ширину штыка лопаты и глубиной не менее полуметра. Можно выполнить прямую траншею — длиной не менее 6 м (таким способом оснащаются устройства с недавнего времени). Если делаем по старой методе, в углах равностороннего треугольника кувалдой забиваем заземлители до необходимой глубины. Его нельзя засовывать в готовую скважину, он должен плотно и без зазоров погрузится на глубине не более 3 м.

При оснащении прямолинейной системы, через каждый метр, забиваем по 1-му заземлителю, но не более 5-ти штук. Для лучшего захода в землю, заострите края уголка на заточном станке или обрежьте их болгаркой. Погрузиться в грунт колья должны не полностью, над поверхностью земли должен быть отрезок уголка не менее 200 мм.

Надеваем сварочный костюм и маску, готовим аппарат и подвариваем к вертикальным заземлителям горизонтальные электроды, из полосы шириной не менее 40 мм. От нее, к стене здания, по выкопанной траншее проводим полосу или отрезок силового кабеля достаточного сечения. Теперь, заводим в здание и подводим к входящему электрощиту, а от него выполняем заземление внутридомовой системы.

При проведении заземляющего проводника, с помощью силового кабеля, работы выполняют следующим способом: на вертикальный заземлитель, болтом и гайкой с надежным гровером, закрепляем, запакованный в концевой контакт отрезок кабеля. Для выполнения этой работы понадобится:

  • медная шина сечение которой более 10 мм2;
  • алюминиевая, сечением более 16 мм2;
  • металлический проводник более 75 мм2 сечением.

Все места сварки, проверив качество шва, покрываем грунтовкой или растопленной смолой. В месте сварки металл ослаблен из-за высокой температуры при сваривании и сильнее поддается коррозии. Выполнив все завершающие работы, засыпаем траншею. Сначала слоем песка, а потом заполняем вынутым грунтом.

Все основные работы выполнены, теперь нам остается выполнить измерение сопротивления контура заземления.

Замер сопротивления защитного устройства

Выполнять эту работу лучше в летнее или зимнее время. В эти моменты грунт имеет наибольшую величину электрического сопротивления. В разных условиях применения величина может быть различной. Для жилого здания, это значение не должно превышать 30 Ом. Для измерения сопротивления применяют специальные измерители сопротивления «МС- 08» или «М-416». Выполняется с использованием системы пробных электродов.

Выполнение замеров разбито на несколько этапов.

Между контуром и зданием расположен потенциальный зонд на расстоянии не менее 20–ти метров, а второй выносной электрод располагаем на прямой линии с потенциальным электродом и контуром, на расстоянии не более 40 метров. Подключаем напряжение и выполняем замер уровня сопротивления. Выполняем эту операцию несколько раз, приближая выносной кол на расстояние не менее 5 метров. Выполнив эти замеры, определяем сопротивление контура.

При замерах в обширных подземных коммуникациях, потребуется выполнение дополнительного измерения данной физической величины. Такие замеры проводятся на различных расстояниях между заземлителями и по разным направлениям.

Но во всех измерениях, номинальной величиной сопротивления заземления будет наихудший результат выполненных замеров. В любое время года и в различных погодных условиях, значение сопротивления защиты не должно быть выше наибольшей допустимой величины.

После выполнения замеров и определения сопротивления электрического тока цепи защитного устройства, комиссия составляет акт проведения и контрольного измерения заземления здания. В процессе пользования необходимо проверять надежность обтяжки болта на подключении к заземляющему проводнику, а также при очень высокой температуре, не забывайте смачивать места заглубления электродов.

Проведя все работы по монтажу и контрольному замеру, мы получаем безопасное жилое помещение, защищенное от токов короткого замыкания.

evosnab.ru

Монтаж заземления модульного и электролитического: порядок производства работ

Заземлитель — важнейший элемент системы электроснабжения, от надлежащего функционирования которого зависит безопасность людей.

Сегодня наряду с традиционными применяются новые виды, работающие с гораздо большей эффективностью.

Об этом, а также о том, как производится монтаж заземления, пойдет речь в данной статье.

Принцип действия защиты

Действие заземления основано на способности грунта поглощать электрический заряд.

Для передачи заряда в грунт заглубляется заземлитель — металлическая конструкция, состоящая из соединенных полосой электродов.

В качестве электродов может использоваться любой металлопрокат: трубы, полоса, уголки и даже сетка.

К заземлителю посредством шин и проводов подсоединяются заземляемые части оборудования и сети.

Защитное заземление предназначено для защиты людей и оборудования от напряжений и токов, могущих появиться в результате какой-нибудь поломки. Различают три его разновидности:

  1. Заземление молниезащиты: молния — мощнейший электрический разряд, который стремится пройти путь от тучи к земле по пути наименьшего сопротивления. У зданий, металлических конструкций и деревьев электрическое сопротивление гораздо ниже, чем у воздуха, поэтому вблизи земли молния устремляется именно к таким объектам. Чтобы отвести разряд от здания, рядом с ним устанавливают более высокую металлическую мачту — молниеприемник, подключенный к заземлителю.
  2. Заземление системы защиты от импульсного перенапряжения (ЗИП): электромагнитное поле от мощной электроустановки, ЛЭП или молниевого разряда может вызвать концентрацию заряда на расположенном поблизости участке сети, например, коммуникационной. Преодолев критическое значение, этот заряд может вызвать пробой в подключенном к сети электронном оборудовании с последующим выходом его из строя. Для сброса заряда параллельно с оборудованием устанавливают газоразрядник, пробиваемый меньшим напряжением, чем защищаемое электронное устройство. Газоразрядник подключается к заземлителю.
  3. Заземление в электросети: эта разновидность заземления является самой распространенной. К заземлителю подключаются корпус и другие части электрооборудования, которые могут оказаться под напряжением при нарушении изоляции токоведущих частей и к которым может прикоснуться пользователь. Если в результате поломки произойдет замыкание фазы на такой элемент и пользователь коснется его, то удар током получится ослабленным из-за того, что значительная часть заряда стечет через заземлитель в грунт. А если прибор будет подключен через УЗО, то электротравмы вообще удастся избежать, поскольку это устройство отключит электропитание сразу после замыкания фазы на заземленный элемент.

Принцип действия системы заземления

Рабочее заземление, в отличие от защитного, функционирует постоянно и предназначено для обеспечения работы электроустановки.

Особенности монтажа

При монтаже электроды целесообразно погружать как можно глубже в грунт. Это объясняется двумя причинами:

  • на глубине грунт является более влажным, поэтому проводит ток лучше;
  • глубокий грунт не промерзает зимой, поэтому его сопротивление остается низким, тогда как у промерзающего поверхностного грунта сопротивление резко увеличивается.

Если площадь поверхности одного электрода является недостаточной (необходимую площадь определяют специальным расчетом), их вбивают несколько и затем соединяют шиной. Такие заземлители называют распределенными. При их монтаже нужно учитывать эффект затенения, который состоит в том, что электроды мешают друг другу отдавать заряд.

Схема заземлителя

К примеру, для нескольких вертикальных электродов с длиной порядка 3 м существует зависимость:

  • если их расположить друг от друга на расстоянии, равном длине, то есть в пределах 3 м, то эффективность их составит 60% от максимально возможной;
  • при размещении на расстоянии вдвое большем длины (порядка 6 м) эффективность увеличивается до 75%;
  • при размещении на расстоянии, в 10 раз превышающем длину (около 30 м), эффективность становится максимальной — 100%.
Понятно, что заземлитель со 100%-й эффективностью электродов получился бы слишком дорогим и для него потребовалось бы слишком много места.

Поэтому на практике электроды размещают поблизости, а эффект затенения компенсируют увеличением суммарной площади поверхности (достигается увеличением размеров электродов или их количества).

Сегодня применяют заземляющие электроды трех видов:

  • традиционные;
  • модульные;
  • электролитические.

Посмотрим, как устанавливается каждая разновидность.

Порядок проведения монтажа

Вот что делают при установке электродов:

Традиционных

Самый дешевый вариант заземлителя. В грунт кувалдой вбивают уголок, трубу или стержень. Длина электрода ограничивается 3-мя метрами, так как более длинный сложно забить.

Какого-то особого порядка нет: достаточно крепкий человек взбирается на стремянку и принимается заколачивать электрод, удерживаемый в вертикальном положении помощником.

Проект расположения контура заземления

Выбирая материал для электрода, следует придерживаться требований:

  • уголок, полоса или швеллер должны иметь площадь поперечного сечения не менее 150 кв. мм и толщину стенки не менее 5 мм;
  • труба должна иметь диаметр не менее 32 мм и толщину стенки не менее 3,5 мм;
  • сплошной стержень должен иметь диаметр не менее 18 мм.

Обычно такие электроды забивают по периметру объекта.

К концу срока эксплуатации прибора учета проводится замена счетчика электроэнергии. Процедура и срок замены, а также стоимость мероприятия описаны в статье.

Пример расчета блока питания для светодиодной ленты вы найдете тут.

Все чаще в многоквартирных и частных домах подключают счетчики день ночь. Выгодны ли двойные тарифы, рассмотрим в следующем материале.

Модульного заземления

Модульным называется сборный электрод сплошного круглого сечения, который по мере заглубления наращивается фрагментами длиной по 1,5 м. Для соединения фрагментов сварка не нужна — используются резьбовые муфты или штифты, которые запрессовываются в торцевые отверстия.

Для забивки такого электрода стремянка уже не нужна и операцию эту можно проводить бытовым отбойным молотком.

Монтаж модульного заземления

При этом глубина погружения достигает 30 м, так что в большинстве случаев бывает достаточно одного электрода. Его можно забить даже в подвале здания.

Модульные электроды выпускаются на заводах. Они имеют цинковое или медное покрытие, увеличивающее срок службы. Недостатком такого решения является высокая стоимость.

Забивают модульный электрод так:

  1. На 1-й штырь одевают специальный наконечник, предварительно смазав его изнутри токопроводящим составом.
  2. С другой стороны на стержень накручивают муфту либо впрессовывают штифт. И то и другое смазывается токопроводящим составом.
  3. В муфту ввинчивают направляющую головку для отбойного молотка, так чтобы она уперлась в стержень.
  4. Далее 1-й стержень вбивают отбойным молотком, пока его свободный конец (с муфтой) не окажется на удобной для последующих работ высоте. Инструмент нужно настроить на удар энергией в 20 – 25 Дж.
  5. Отвинтив направляющую головку отбойника, муфту (она остается на вбитом штыре) снова промазывают изнутри токопроводящим составом и ввинчивают в нее следующий стержень.
  6. На хвостовик стержня навинчивают следующую муфту (не забывайте про токопроводящий состав), затем — направляющую головку отбойника. После этого продолжают забивку.

Так фрагмент за фрагментом собирают весь электрод, одновременно заглубляясь.

Хвостовик последнего штыря должен немного выступать из земли, чтобы к нему можно было присоединить зажим для заземляющего провода (подсоединяется при помощи латунного или нержавеющего винта). После этого зажим нужно обмотать гидроизоляционной лентой.

Электролитического заземления

Модульный электрод — отличное решение, но только не для каменистого грунта, в который вбить что-либо невозможно. Не подойдет он и для районов вечной мерзлоты, поскольку там грунт на большой глубине — смерзшийся и от того имеющий большое сопротивление. В подобных условиях заземлители приходится погружать на малую глубину, то есть в относительно сухой и промерзающий зимой грунт.

Чтобы улучшить его проводимость и снизить температуру замерзания, электрод делают в виде трубы с перфорированными стенками и заполняют его солевыми гранулами. Грунтовая влага будет постепенно растворять соли, увеличивая количество ионов в земле. Чтобы солевой запас не был полностью вымыт весной, в него добавляют замедляющую растворение добавку.

Электролитическое заземление

Электрод устанавливают так:

  1. Роется траншея длиной 2,5 м, глубиной 0,7 м и шириной 0,2 м для горизонтальной версии, либо бурится скважина глубиной 2,5 м – для вертикальной.
  2. При укладке в траншею в нее нужно высыпать 1 мешок околоэлектродного заполнителя и разровнять (получится слой толщиной в 1 см).
  3. Сняв с электрода защитную пленку, его нужно поместить в траншею или скважину.
  4. В траншее поверх электрода насыпается еще 2 мешка околоэлектродного заполнителя. При вертикальной установке этот материал нужно засыпать в скважину.
  5. Сверху монтируется колодец для обслуживания.
  6. На хвостовик электрода устанавливается зажим, к которому подключается заземляющий провод. Зажим обматывается гидроизоляционной лентой.
  7. При горизонтальной укладке траншея засыпается грунтом.

В электрод наливают 5 – 7 л воды (чтобы соли быстрее начали растворяться).

Проверка

Для проверки достаточно замерять омметром сопротивление заземления.

Эта величина нормируется и в зависимости от того, для каких задач предназначен заземлитель, может составлять от 0,5 до 60 Ом.

Заземление частного дома с 1-фазной электросетью (220 В) должно иметь сопротивление не более 30 Ом.

Если прибора под рукой нет, следует проверить заземление, хотя бы «на глаз»: подключите лампочку, заземлив один ее контакт, а второй подсоединив к фазе. Чем ярче она будет гореть, тем более эффективным является заземление.

Видео на тему

proprovoda.ru

Монтаж контура заземления: порядок работы

По требованиям Правил устройства электроустановок все вновь сооружаемые электропроводки имеют дополнительный проводник. Называется он защитным проводником (РЕ), маркируется чередованием полос желтого и зеленого цвета.

Защитные проводники подключаются к корпусам электроприборов и соединяют их с контуром заземления. Бытовая техника: компьютеры, стиральные машины, электроплиты, СВЧ-печи — соединяется с защитными проводниками через заземляющие контакты розеток.

Розетка с заземляющими контактами

При пробое изоляции бытовых приборов их корпуса оказываются под напряжением. При соприкосновении с корпусом поврежденного прибора человек будет поражен электротоком. Преднамеренное соединение корпусов с землей при пробое изоляции приводит к возникновению короткого замыкания, которое отключит аппарат защиты, и поврежденное оборудование своевременно обесточится.

Даже если ток будет незначительным и отключения не произойдет, при прикосновении человека к корпусу ток через его тело будет иметь величину, не опасную для его жизни. Тело человека имеет сопротивление от десятков до сотен тысяч Ом, а сопротивление заземляющих проводников не превышает нескольких Ом. Поэтому ток через тело человека будет значительно меньше тока, уходящего в землю через защитные проводники.

Пути токов утечки через заземление и человека

Помимо защиты людей заземление корпусов приборов экранирует электромагнитные поля, излучаемые ими в процессе работы. Это снижает уровень помех, мешающих работе других приборов.

Защитные проводники нельзя подключать к нулевой шине электрощита. Старые электропроводки подвержены обрывам в цепях нулевых проводников, результатом которых неизбежно будет появление на нулевом проводе некоторого потенциала относительно «земли». Величина потенциала может доходить до 220В и, если он окажется на корпусе прибора, вас ждет серьезная травма.

Запрещено использование в качестве защитных проводников газовых труб, труб отопления и канализации. Нельзя использовать для этой цели водопроводные трубы, так как они не везде выполняются металлическими.

Для подключения заземляющих проводников необходим контур заземления.

Что такое контур заземления?

Образец контура заземления

Контур заземления – это группа электродов, забитых в землю и называемых вертикальными заземлителями. Между собой они связаны горизонтальным заземлителем при помощи сварки. Горизонтальный заземлитель выводится на стену здания или идет напрямую во вводное распределительное устройство.

Для изготовления вертикальных заземлителей используются стальные уголки или трубы, а горизонтальных – стальная полоса или круглый профиль. Их нельзя окрашивать, иначе электрический контакт с грунтом будет слабым, и контур потеряет эффективность.

Если здание имеет в составе конструкции, заглубленные в землю, то они тоже могут выполнять функции контура заземления. Они называются естественными заземлителями.

Как сделать заземление?

В изготовлении контура заземления нет ничего сложного, и его можно сделать самостоятельно.

Для этого потребуются:

  • для вертикальных заземлителей: уголок или трубы со стенками толщиной не менее 4 мм или арматура диаметром не менее 14 мм;
  • для горизонтальных заземлителей: стальная полоса сечением не менее 100мм2 и толщиной стенки не менее 4 мм;
  • для ввода в здание: жесткий или гибкий провод сечением не менее 10 мм2;
  • инструменты: лопата, болгарка, кувалда, сварочный аппарат.

Порядок работы при монтаже контура заземления

  • 1. Выкапывается траншея глубиной около 0,5 м и шириной 0,5-0,3 м. Длина траншеи – около 5 м. Располагаться траншея должна так, чтобы начало ее совпадало с местом у стены здания, где контур будет выходить наружу.
  • 2. Через 1-1,5 м в траншею кувалдой забиваются заземлители. Для облегчения процесса концы заземлителей нужно заострить болгаркой.
  • 3. Заземлители соединяются между собой полосой при помощи сварки. Конец полосы выводится на стену здания или, если возможно, вводится в здание поближе к щитку. К полосе приваривается болт для подключения заземляющего проводника.
  • 4. Места соединения в траншее лучше окрасить, так как сварочные швы в земле быстро разрушаются.
Соединение сваркой вертикального и горизонтального заземлителя
  • 5. Полоса снаружи и внутри здания окрашивается чередующимися полосами желтого и зеленого цветов.
  • 6. Перед тем, как засыпать траншею, неплохо бы измерить сопротивления полученного контура. Делается это специальными приборами. Если сопротивление будет недостаточным, забиваются дополнительные электроды и присоединяются то же полосой. И так до получения нужного значения (не более 4 Ом).
  • Если приборы Вам не доступны, при определении количества электродов руководствуйтесь своими возможностями и здравым смыслом. Электродов нужно много, если грунт песчаный и еще больше, если вместо грунта – сплошные камни. На черноземе хватает 5-7 электродов для получения приемлемых результатов. Не посыпайте солью контур заземления. Проводимость его улучшится, но и сгниет он быстрее.
  • 7. Засыпаем траншею грунтом без строительного мусора.
  • 8. В щитке устанавливается дополнительная шина – РЕ. Она соединяется проводником желто-зеленого цвета с выводом контура заземления. Теперь можно соединить с шиной РЕ все корпуса электроприборов.

Оцените качество статьи:

electric-tolk.ru