Новые солнечные панели – Топ 10 солнечных панелей российского производства

Содержание

Гибридная солнечная панель: особенности батарей нового поколения

60 лет прошло с тех пор, как первые солнечные батареи были установлены на внешнюю обшивку американских и советских спутников. С тех пор технологии шагнули далеко вперед. Энергию солнца используют не только для космических объектов, но и для обеспечения электричеством жилых домов. Появилось множество способов улавливать и перерабатывать солнечный свет. В ряду обычных солнечных батарей выделяется гибридная солнечная панель.

На основе кремния

Кремний (Si) – материал, который использовали еще для создания первых конструкций, перерабатывающих энергию солнечного света.

Долгое время существовало три типа таких батарей:

  • Монокристаллические (производят из цельных кристаллов). Обладают самым высоким КПД, но не способны улавливать рассеянный свет;
  • Поликристаллические (сделанные из кристаллов, направленных в разные стороны), способные улавливать даже рассеянный свет.
  • Аморфные – гибкие панели с невысоким КПД, которые можно установить на поверхность любой конфигурации.

Гибридные солнечные панели на основе кремния сочетают аморфный кремний и монокристаллы. Эти панели эффективны в условиях недостаточной освещенности и способны эффективно работать дольше, чем стандартные аморфные устройства.

На основе перовскита

Один из самых эффективных и недорогих способов преобразовывать в электроэнергию свет, который испускает солнце, – использовать перовскит. Этот материал впервые обнаружили в Уральских горах еще в ХХ веке. На него обратили внимание благодаря особой кристаллической решетке, свойственной полупроводникам. Про устройства на основе перовскита уже говорят, что это солнечные батареи нового поколения.

Для создания такого аккумулятора нужен тонкий слой проводящего материала и полимерная подложка. В итоге получается гибкая полупрозрачная панель, которую можно использовать не только как стационарную батарею, но и как материал для стекол, например. Она будет не только улавливать свет, но и защищать помещение от перегрева.

Единственная причина, по которой  гибридная солнечная панель из перовскита еще не завоевала весь мир – более низкая эффективность относительно кремниевых. Но, как показывают некоторые исследования, КПД можно улучшить при помощи правильно подобранного полимера. Например, швейцарские физики представили вещество FDT, недорогой материал, способный улучшать работу перовскитных батарей.

Еще одна удачная разработка – сочетание перовскита с кремнием. Используя эту методику, можно получить устройства, эффективно улавливающие и перерабатывающие УФ-лучи. Эти устройства могут быть гибкими и/или полупрозрачными. Значит, их можно использовать не только как стационарные источники энергии, но и для портативной техники, например.

Читайте также:
Плюсы и минусы перовскитных солнечных элементов

Из пентацена и сульфида свинца

В 2012 году выдающиеся физики Нил Гренхам и сэр Ричард Френд предложили новый вариант гибридного аккумулятора. От изобретенных ранее он отличается способностью преобразовывать все спектры УФ-излучения и высоким КПД. Эти аккумуляторы обладают внутренней квантовой эффективностью в 50%.

Представленная гибридная солнечная панель состоит из неорганического соединения (PbS, сульфид свинца) и полициклического ароматического углеводорода (пентацен). В этой связке PbS улавливает красную часть спектра, а пентацен – синюю, более насыщенную энергией. Благодаря взаимодействию между слоями на каждый пойманный синий фотон приходится по два электрона. Таким образом, КПД этой новинки в два раза больше, чем у других подобных устройств (обычно на один фотон приходится один электрон).

Два минуса изобретения – его сомнительная безвредность для окружающей среды и возможная недолговечность. Пентацен относится к группе соединений, способных провоцировать различные мутации и являющихся мощными канцерогенами.

Самый простой способ производства этого углеводорода – из бензола, являющегося производным нефти, запасы которой на нашей планете не бесконечны.

Недолговечность объясняется просто: пентацен склонен чрезмерно окисляться под воздействием кислорода в условиях облучения ультрафиолетом. Что, собственно, и будет происходить при эксплуатации такого аккумулятора. Так что практическое использование этой разработки находится под большим вопросом.

Наука не стоит на месте, ежедневно радуя человечество новейшими разработками в той или иной области. Так что можно надеяться, что рано или поздно появится достаточно эффективный солнечный аккумулятор, который будет и долговечным, и безвредным для окружающей среды.

batteryk.com

Солнечные батареи нового поколения | Познавательно

Солнечные батареи нового поколения

Мир уверенно движется к революции в энергосберегающих технологиях. Одно из последних достижений в этой области принадлежит Международной исследовательской группе, которую образовал Университет Техаса в Далласе и Московский институт стали и сплавов (МИСиС). Ученые разработали метод создания солнечной батареи на базе перовскита. В отличие от традиционных аналогов, которые основаны на кремнии, эффективность новинки намного выше. При этом себестоимость солнечной батареи будущего снижается. Исследователи уверены, что пластичные, легкие, доступные по цене устройства из перовскита со временем найдут широкое применение, будут востребованы и полностью вытеснят устаревшие кремневые аналоги.

 

Анализ кремниевых солнечных батарей начали еще в двадцатом столетии.

Существующая технология имеет ряд недостатков. Это токсичность и энергоемкость производства кремния. Поэтому процесс и получается дорогостоящим. А еще кремний отличается ненадежностью, недостаточной пластичностью и большим весом панелей. Поэтому сфера применения этого химического элемента слишком узкая. За прогнозами ученых, решить все эти проблемы сможет металло-органический перовскит.

Новое исследование позволило плодотворно поработать над прототипом тандемного устройства, которое состоит из углеродных нанотрубок и фотоэлектрических составляющих. Эта разработка предусматривает сочетание частей из перовскита и традиционного кремния. Установка эффективно преобразует доступные ультрафиолетовые лучи в электричество и повышает коэффициент полезного действия батареи на 15%.

— Основное достоинство гибридного перовскита – это легкость его добывания из стандартных источников: органических химсоединений промышленного образца и солей металлов. В то время как высокоэффективные полупроводниковые аналоги в виде солнечных батарей, основанные на арсенидегаллия и кремнии, получают из нераспространенных и дорогостоящих элементов, — было отмечено руководителем проекта, ведущим экспертом университета МИСиС и профессором Анваром Захидовым. 

Также немаловажный фактор заключается в том, что основы на перовските при печати фотоэлектроникине ограничиваются печатью на стекле. Это существенно удешевляет батареи нового образца по сравнению с более сложными способами создания составляющих из тонкой пленки. Данные составляющие из перовскита имеют активные ярусы. Они без проблем наносятся даже на самые пластичные и тонкие подложки. А современная рулонная методика делает возможным размещение солнечных батарей на поверхности всевозможной кривизны. Учитывая все эти преимущества, сфера применения инновационных батарей расширяется и выходит далеко за рамки использования традиционных кремниевых аналогов. Разработка может снабжать природной энергией портативную электронную и бытовую технику, реализоваться в проекте «Умный дом» и т.д. Батареи на базе перовскита гарантируют бесперебойную подачу электрической энергии в жилье. Также инновация подходит для автомобильной промышленности.

Сегодня один метр квадратный перовскитных панелей стоит не более ста долл. А вот самые дорогие кремниевые аналоги обойдутся в 300 долларов за 1 кв. м. А если запустить массовое производство батарей, то ценовая разница будет трехкратной. Благодаря высокому качеству, экологической безопасности и приемлемой стоимости разработки многие смогут отказаться от стандартных источников энергии в пользу инновационных.

Поделиться ссылкой:

poznavatelno.net

12 удивительных новостей о солнечных батареях. Это просто вау

Солнечные батареи с каждым годом становятся дешевле и эффективнее. Им находят применение в самых необычных областях. Что интересного произошло в альтеративной энергетики — в нашей подборке

Крымская солнечная электростанция на 100% обеспечивает Симферополь энергией

В Крыму находится одна из самых больших в мире солнечных электростанций. Парк «Перово» состоит из пяти очередей панелей, суммарная мощность которых  достигает 100 МВт. Этого достаточно, чтобы обеспечить электроэнергией весь Симферополь в периоды максимальных его нагрузок.

Парк из 440 тысяч наземных фотоэлектрических модулей на площади в более чем 200 га ежегодно производит 132,5 млн кВт-ч экологически чистой электроэнергии. Это позволяет сократить выбросы углекислого газа на 105 тысяч тонн в год. Солнечные панели, установленные в «Перово», были произведены в Азии.

Строительство электростанции было закончено в 2011 году всего за 7 месяцев. Девелопером проекта выступила австрийская компания Activ Solar, которая привлекла инвесторов из европейских фирм.

Первый лифт на солнечной энергии запустят в Германии

В пригороде Гамбурга появятся лифты, которые работают на солнечной энергии. Монтажом занимается швейцарская компания Schindler. Лифты будут получать электроэнергию от модулей, которые разместят на крышах нового жилого комплекса.

Солнечная энергия будет использоваться для жилого помещения, а избыточная энергия пойдет на зарядку батарей в подвале дома. Накопленной энергии хватит на 400 перемещений на лифте, в том числе ночью и при отсутствии электричества.

«Мегафон» запустил сотовую станцию на солнечных батареях

Компания «Мегафон» запустила первую базовую станцию в Северо-Кавказском федеральном округе, получающую энергию от солнечных батарей. Она находится в Буйнакском районе и обеспечивает стабильной связью жителей близлежащих поселков – более 15 000 человек. Кроме того, в районе заработал качественный мобильнй 3G-интернет.

Станция состоит из 42 солнечных панели, каждая из которых включает в себя 72 фотоэлемента. Батареи способны генерировать энергию мощностью до 5 кВт при температуре от -40 до +85 градусов. За беспрерывным энергоснабжением ведется удаленный контроль. Все данные поступают на компьютеры специалистов компании в онлайн-режиме.

Новая станция будет носить имя Анвара Гамидова — поэта и переводчика из близлежащего села. Аналогичные мобильные станции на солнечных батареях появятся и в других районах республики. Они призваны обеспечить связью населенные пункты, которые находятся вдали от линий электропередач.

Tommy Hilfiger представил куртку на солнечных батареях

Бренд модной одежды Tommy Hilfiger представил куртку Tommy Hilfiger Solar Jacket, которая стала частью лимитированной праздничной коллекции.

В куртку вшиты солнечные батареи, соединенные, в свою очередь, с аккумулятором, который расположен в одном из передних накладных карманов. К аккумулятору можно подключать два устройства, например, мобильный телефон и планшет. В случае необходимости солнечные панели легко отстегиваются. В продажу новинка поступит в ближайшее время.

Сиквел «Аватара» снимают за счет солнечной энергии

Режиссер Джеймс Кэмерон арендовал в Южной Калифорнии съемочную площадку MBS Media Campus для съемок продолжения культового фильма «Аватар». Студия известна своими экологичными инициативами – экономным расходом воды и энергии, использованием экологически чистых моющих средств для уборки павильонов и экологичных красок в интерьере студии. Кроме того, на крыше студии были установлены солнечные батареи и специальное оборудование общей стоимостью пять миллионов долларов. Таким образом, Джеймс Кэмерон планирует снимать фильмы за счет солнечной энергии.

Kyocera представила смартфон на солнечной энергии

Японская компания Kyocera представила на выставке в Барселоне смартфон с экраном, работающим от солнечной энергии. В экране телефона расположена светочувствительная пленка Wysips Crystal, которая представляет собой сверхкомпактную солнечную панель. Особенность пленки в том, что она прозрачна и не влияет на  качество изображения, но при этом поглощает солнечную энергию и перерабатывает ее в энергию для зарядки аккумулятора. По словам разработчиков, благодаря пленке может вырабатываться до 5 МВт энергии на квадратный сантиметр поверхности.

ИКЕА запускает массовую продажу солнечных батарей

ИКЕА после двухлетнего эксперимента в Англии решила расширить географию продаж солнечных батарей. В 2015 году они появятся еще в восьми странах Европы. Какие именно это будут страны пока неизвестно. Первой в списке должна стать Голландия, где продажи стартуют уже 28 октября 2014 года. В конце года солнечные батареи появятся и в Швейцарии.

Самолет на солнечных батареях установил новый рекорд

Самолет на солнечных батареях провел в полете без остановки и дозаправки уже более 80 часов. Таким образом, он побил предыдущий рекорд, поставленный пилотом Стивом Фоссетом в 2006 году в самолете Virgin Atlantic Global Flyer.

Solar Impulse 2 продолжает свое кругосветное путешествие. Он вылетел из города Нагоя в Японии в город Калаэола на Гавайях. Управляет самолетом швейцарский пилот Андре Боршберг, а его коллега Бертран Пикар помогает ему с управлением из Макао. Путешествие закончится в июле в Абу-Даби.

Создан принтер для печати солнечных панелей

Австралийские ученые напечатали солнечные фотоэлементы размером с лист бумаги формата А3. Для этого они создали принтер стоимостью в $200 тысяч, заправили его фотогальваническими чернилами и использовали вместо обычной бумаги специальное покрытие из пластика ПЭТ.

Аналогичный принтер был создан в 2010 году, но, в отличие от австралийского изобретения, мог печатать солнечные панели только маленького размера (до 10 см). Главные недостатки новой технологии – низкая энергоэффективность и короткая продолжительность жизни панелей. Они способны производить только 10% от энергии, которую дает кремний, и живут до 6 месяцев.

Однако разработчики планируют усовершенствовать устройство, продлив срок годности солнечных листов до 10 лет. Пока что напечатанные фотоэлементы будут использоваться для подсветки рекламных щитов и других маломощных объектов.

Apple построит солнечную электростанцию за 1 млрд долларов

Компания Apple построит солнечную электростанцию в городе Монтерее (Калифорния), которая будет обеспечивать энергией ее в Купертино, центр обработки данных в Ньюарке, а также 60 000 домов и 52 магазина компании в штате. Солнечная ферма обойдется компании в 848 млн. долларов и будет завершена до конца 2016 года. Возводить электростанцию площадью 11 кв.км Apple будет совместно с производителем солнечных батарей First Solar. Ее максимальная мощность составит 280 МВт.

«Мы в Apple понимаем, что изменения климата реальны. Время говорить об этом прошло, настало время действовать», — заявил руководитель корпорации Тим Кук. Компания известна своим стремлением к экологичности. Кроме того, Apple принадлежит ряд патентов на солнечные батареи для техники.

В Индии проходят испытания поезда на солнечных батареях

В Индии проходят испытания поезда, оснащенного солнечными панелями. Использование солнечной энергии позволит снизить расход дизельного топлива до 90 000 литров в год и вместе с этим выбросы углекислого газа. По словам представителей местных властей, в Индия есть возможность получать солнечную энергию практически без перерыва в течение года.

Велодорожку в Нидерландах замостили солнечными батареями

В рамках голландского проекта SolaRoad по использованию дорог для производства солнечной энергии создана первая в мире 70-метровая велосипедная дорожка, которая сможет вырабатывать электричество. Она появилась в городке Кромени (Krommenie) в Голландии.

Одна из ее полос выложена плиткой из кремниевых фотоэлементов размером 2,5 x 3,5 метра, защищенных сантиметровым слоем из закаленного стекла. Такое дополнение позволяет солнечным лучам взаимодействовать с фотоэлементами и в то же время является надежной защитой от внешних повреждений. Вторая полоса без солнечных элементов будет использована для тестирования различных покрытий.

В течение трех лет разработчики будут наблюдать, сколько именно энергии вырабатывает такая дорожка и как она реагирует на различные погодные условия и другие факторы. Такая дорога может производить на 30% меньше энергии, чем солнечные батареи, располагаемые на крышах домов. Однако, в дальнейшем, «солнечные дороги» могут быть использованы для освещения дорог, автобанов, поставки электричества для близлежащих домов и административных зданий.

recyclemag.ru

Солнечные батареи нового поколения (фото и видео)

Как же все-таки появились солнечные батареи нового поколения? Разберемся по порядку. Уже почти 150 лет прошло с того момента, когда была установлена физическая возможность непосредственного преобразования солнечного света в электрическую энергию на основе p-n-перехода. А в начале прошлого века ученные установили, что от нашего дневного светила постоянно поступает около 1.5 КВт на 1 м2 земной поверхности. Соответственно, в экваториальной зоне – больше, а на полюсах – меньше.

Позже, во второй половине ХХ века президент Украинской АН В. В. Вернадский, анализируя развитие земного разума, предсказал, что человечество в ближайшие 1.5 столетия безальтернативно перейдет на солнечную энергетику, когда:

  • ощутит на себе настоящую цену экологии;
  • технически решит проблему преобразования «дарованной» световой энергии в дешевую электрическую.

Исследования по вопросу непосредственного преобразования световой энергии в электрическую никогда не прекращались. Но человечество вплотную занялось этим лишь тогда, когда вышло в космос. Первые солнечные батареи, на высокую цену которых внимания не обращали, на искусственных спутниках Земли имели КПД порядка 10%. Но, следует отметить, в вакууме поток фотонов атмосфера не уменьшает.

ОГЛАВЛЕНИЕ

  • Проблема дороговизны
  • Дорогая «солнечная» электроэнергетика сегодня
  • Перспективы развития в ближайшие годы

Проблема дороговизны

Совсем не так давно (5 лет тому назад) себестоимость 1-го КВтч электроэнергии, которая производилась в Америке при помощи солнечных батарей, составляла от 0.25 до 0.8 $. Львиную долю в ней составляли затраты на производство высокотехнологического основного оборудования, которые устанавливались на таких электростанциях. Причина такого состояния вещей крылась в том, что:

  1. Полупроводники, используемые в батареях, должны быть практически 100-процентной чистоты и однородности. Разумеется, их производство не может быть дешевым.
  2. Светоприемные площади очень чувствительны к уменьшению интенсивности потока фотонов. Мощность полупроводниковых элементов генерирующего устройства мгновенно падал даже от набежавшей на Солнце тучи. Они уменьшали генерацию и нарушали тем самым синхронную работу всей батареи. Поэтому полупроводниковое устройство нельзя было подключать к потребителю электроэнергии без промежуточного звена – аккумуляторов большой емкости, что тоже удорожало основные фонды.
  3. КПД солнечных батарей, созданных с использованием кристаллического кремния, не превышал 15%. А при загрязнении светоприемной поверхности он падал еще ниже.
  4. Конструкции солнечных батарей на основе кремниевых полупроводников довольно жесткие. Поэтому для установки солнечной генерации требовались ровные, свободные площади, а это тоже стоит денег.

Ныне не существует такого человека на Земле, который бы не понимал того, что запасы органического топлива, в конце концов, исчерпаются, и что атомная энергетика является ему далеко не безопасной для экологии альтернативой. Поэтому во всем мире прилагаются колоссальные усилия, чтобы солнечную генерацию электроэнергии сделать дешевой и конкурентно способной.

Дорогая «солнечная» электроэнергетика сегодня

Первым делом ученые, занятые в исследованиях проблем солнечной энергетики, обратили свои силы на создание полупроводников на основе композитных материалов, чтобы:

  • повысить КПД фотоэлементов;
  • сделать их конструкции, собранные в батареи, более пластичными;
  • сделать фотоэлементы чувствительными к свету инфракрасного спектра солнечного излучения, плотность потока которого на много меньше подвержен колебаниям.

Новые фотоэлементы Semprius

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

И новые фотоэлементы, которые представил Semprius в 2014 году, выдают КПД около 44%. Эти изделия имеют многослойную внутреннюю структуру, чтобы более полно преобразовывать плотный световой поток, сконцентрированный линзами Френеля, в электроэнергию. Недостатками таких батарей новейшего поколения является то, что:

  • управление ими очень усложнено, с которым справляется специальная компьютерная система;
  • они эффективно работают в условиях высокой и стабильной освещенности;
  • цена фотоэлементов значительно выше классических однослойных кремниевых фотоэлементов.

По другому пути пошла российская фирма «Хевел». Их новые изделия созданы на основе микроморфного кремния. Они значительно дешевле кристаллических полупроводниковых элементов. Хотя они имеют более низкое КПД, зато они выдают стабильное напряжение даже при низкой освещенности, А сборки солнечных батарей с фотоэлементов с микроморфного кремния настолько легкие, что их можно монтировать даже без рам.

Солнечные батареи с применением нанотехнологий

Невшатльский исследовательский центр электроники (Швейцария) разработал новый фотоэлемент с использованием нано технологии нанесения слоев микроскопической толщины на кремниевую основу. Это позволяет увеличить КПД батарей на 15% за счет улавливания невидимых инфракрасных лучей. То есть, даже обыкновенное нагревание кремния фотоэлементов является источником производства электроэнергии. К тому же сами изделия имеют прекрасный эстетичный вид, цвет кровельной черепицы, и довольно конкурентную цену, чтобы служить дополнительным источником тепла в частном доме.

Нью-Йоркская фирма «Lux Capital» усиленно работает несколько в ином направлении. Ее специалисты создали гибкую солнечно-батарейную пленку на основе полимерных композитов. Практичная выгода нового вида сборок фотоэлементов очевидная:

  • для их монтажа может быть использована любая поверхность;
  • они преобразуют в электричество и видимый свет, и инфракрасный;
  • их можно использовать в бытовых условиях.

Пока что КПД таких новых пластиковых солнечных батарей составляет 4 – 6%, но, как утверждают представители фирмы, следующее поколение изделий от «Lux Capital» будет демонстрировать КПД на уровне 30%.

Перспективы развития в ближайшие годы

Общеизвестно, что изделия, которые выходят на рынок, являются результатом работы ученых в предыдущие, иногда – далекие, годы. Но наука ныне быстро развивается. И в лабораториях находятся многие разработки, которые дадут завтра, может быть, такие плоды, что потребители через 10-15 лет забудут, что существовала такая себе тепловая и атомная электроэнергетика.

  1. Ныне во всех деталях изучаются во многих лабораториях мира перовскиты (титаниты кальция). Это обширный класс минералов с кристаллической структурой. Только в 2009 году была выявлена их способность преобразовывать свет в электроэнергию. Но уже сегодня КПД солнечных батарей с пирокситовыми фотоэлементами составляет порядка 20%. При этом стоимость производства изделий с титанитов кальция значительно ниже, чем производство их с кремния.

Недостатком пирокситов состоит в том, что они содержат свинец, который при малейшей влажности образует токсичные соли. Поэтому, до тех пор, пока не удастся устранить этот недостаток, пирокситовые батареи на рынок не попадут.

  1. Полвека тому назад Жорес Алферов исследовал полупроводниковые структуры. За свою деятельность он получил Нобелевскую премию, но практическое применение его труды начали находить только сегодня.

Оказывается, что можно нанести слой кремния толщиной в 2 микрона на стекло, чтобы изделие превратилось в дешевый фотоэлемент, который способен преобразовывать свет в электричество с более высоким КПД, чем чистый кристаллический кремний.

  1. Проводятся активные исследования примесей, при добавлении которых в структуру кремний улучшает свои физическое свойство образовывать p-n-переход с более высокой электрической разностью потенциалов. Исследуются селен, теллуриды, медь, кадмий, галлий, мышьяк и многие другие элементы и минералы. Со специально подобранными примесями кремний может становиться не таким чувствительным к перепадам светового потока.

electricvdele.ru

Солнечные батареи нового поколения — полный обзор видов.

20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня солнечными батареями уже никого не удивишь.

Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.

Содержание:

Типы СБ

Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли. Каждый вид имеет свои характеристики и эксплуатационные особенности.

Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет. В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.

Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.

Монокристаллические пластины

Отличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.

Это дает возможность получать самый высокий КПД — до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.

Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.

Поликристаллические солнечные панели

Пластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).

Однако главным преимуществом этого вида солнечных панелей — в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

Аморфные панели

Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.

Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.

Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.

Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.

Гибридные солнечные панели

Особенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.

Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.

Полимерные батареи

Многие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.

Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается. КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.

Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.

Новые разработки

С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.

Солнечная черепица

Дабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы. Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.

Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях. При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.

В любом случае общие затраты на электроэнергию снижаются.

Лидером по производству солнечной черепицы является компания из России — «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.

Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.

Преимущества солнечной черепицы:

  1. Полупроводниковый материал, который используется при соединении фотоэлементов, сократили в 4 раза.
  2. Инновационная система фокусировки солнечного света позволяет получать в 5 раз больше энергии.
  3. Средний срок эксплуатации солнечной черепицы составляет 20 лет.
  4. Относительно небольшой вес черепицы не имеет негативного давления на кровлю.
  5. Прочность солнечной черепицы позволяет ее использовать при любых погодных условиях. Черепица спокойно выдерживает град и другие осадки.
  6. Простота креплений позволяет надежно устанавливать черепицу в самые короткие сроки.

Солнечное окно

Буквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows». Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.

Подобные панели по полной используют в высотках европейских городов. Это позволяет существенно экономить электроэнергию.

Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.

Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.

Гибридные фотоэлементы

В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».

Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.

Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.

Системы на основе биологической энергии

Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.

Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.

Варианты таких батарей впечатляют:

  1. Лампа дневного света, работающая от обычного лесного мха.
  2. Электростанции в виде больших листьев.
  3. Панели из растений для домашнего пользования.
  4. Мачты из растений, из которых будут добывать электроэнергию и многое другое.

Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.

Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:

Похожие статьи

abisgroup.ru

Солнечные батареи нового поколения


В последние годы человечество широко использует солнечные батареи в качестве альтернативного источника энергии. Используемые сегодня керамические фотоэлементы в системах преобразования солнечного излучения в электрическую энергию, постоянно совершенствуются с целью увеличения КПД. Кроме того, традиционные панели, которые не всегда вписывались в дизайн экстерьера постепенно уходят в прошлое, а на смену им приходят новые дизайнерские конструкции.



Содержание:

  1. Солнечная черепица
  2. Солнечные окна
  3. Гибридные солнечные элементы
  4. Солнечные батареи на основе квантовых точек
  5. Солнечные батареи на базе биологической энергии

Солнечная черепица

Чтобы не испортить внешний вид дома, необходимо использовать солнечную черепицу с интегрированными фотоэлементами. Такое кровельное покрытие способно совмещать свои основные функции, связанные с защитой жилища с выработкой электроэнергии, которая может использовать для бытовых нужд. При использовании для кровли солнечной черепицы имеется возможность сбрасывать излишки получаемой электроэнергии в общую электросеть, таким образом, уменьшая собственные затраты.

На современном рынке самым известным зарубежным производителем является английская компания«Solar Slate», которая выпускает высококачественные кровельные изделия с встроенными фотоэлементами, которые даже при близком расстоянии невозможно отличить от стандартного покрытия.

Уверенно себя чувствует на рынке и российская компания «Инноватикс», которая производит черепицу с встроенными фотоэлементами мощностью 6, 8 и 10 Вт. Причем отличительными особенностями изделий является следующее:



  • Количество используемого при производстве полупроводникового материала уменьшено в 4 раза;
  • Специальная оптическая система позволила достичь четырехкратной концентрации солнечного излучения.

Такие конструкторские новшества позволили снизить стоимость изделий. И на сегодня цена солнечной черепицы от отечественного производителя приблизительно в 3 раза ниже зарубежных аналогов.

Основные достоинства любой солнечной черепицы:

  • Длительный срок эксплуатации, который может составлять более 20 лет;
  • Малый вес панелей, что не утяжеляет кровельную конструкцию;
  • Высокая прочность и устойчивость к неблагоприятным атмосферным явлениям.

Монтаж солнечной черепицы не сложен. Важно, что панели с фотоэлементами полностью совместимы со стандартными изделиями и могут устанавливаться в нужном месте кровли, полностью сочетаясь с общим покрытием.

Видео “солнечная черепица”:

Солнечные окна

Не так давно на рынке использования солнечной энергии появились инновационные разработки, предполагающие использование оконных стекол в качестве солнечных батарей. Американская компания «Pythagorus Solar Windows» предложила устанавливать фотоэлементы непосредственно в стеклопакетах.

Такие модули оптимально использовать в городских высотках, которые требуют больших затрат электроэнергии. При этом нет возможности покрывать ее расход, используя традиционные солнечные батареи в связи с малой площадью кровли.

Технология предусматривает установку тонких полос кремниевых фотоэлементов непосредственно между стеклами в стеклопакетах. В этом случае они не только будут вырабатывать электроэнергию, но и защищать внутренние помещения зданий от перегрева, блокируя солнечные лучи. По внешнему виду такие окна напоминают открытые жалюзи, поэтому не перекрывают вид из окна.

Другие разработчики предлагают для окон использовать стекла со специальным полупрозрачным покрытием. Такой слой является активным и преобразует световое излучение в электрическую энергию, которая аккумулируется в специальных полупрозрачных проводниках.

Видео на английском:

Гибридные солнечные элементы

Сегодня учеными разработан гибридный солнечный элемент, который позволяет для выработки электроэнергии использовать не только световое излучение, но и тепло. В конструкции такой панели фотоэлемент соединен с полимерными пленками. Сегодня в процессе самых оптимальных характеристик ученые экспериментируют с различными материалами.

Наиболее эффективным показал себя чистый полимер с хорошей проводимостью под названием PEDOT. Такая пленка покрывается тонкопленочным солнечным элементом и устанавливается на специальную пироэлектрическую тонкую пленку и термоэлектрическое устройство. С помощью данных компонентов производится преобразование тепловой энергии в электричество.

Экспериментальным путем было установлено, что нагреваясь под солнечными лучами, такое устройство может собирать в 20 раз больше энергии в сравнении со стандартными солнечными модулями.

Видео “новые гибридные солнечные батареи” (на английском):

Солнечные батареи на основе квантовых точек

Группой ученых университета Торонто был создан принципиально новый материал, который позволяет преобразовывать солнечное излучение в электрическую энергию. Принцип его изготовления основан на использовании полупроводниковых наночастиц, которые имеют название квантовые точки.

Взвесь полупроводниковых наночастиц легко может наноситься на любую поверхность, подобно аэрозоли. Такой инновационный подход существенно снижает стоимость производства солнечных батарей, а, следовательно, предполагает уменьшения стоимости солнечной энергии.

Результаты исследований показали, что новый материал позволит создать высокоэффективные системы преобразования светового излучения в электрическую энергию.

Солнечные батареи на базе биологической энергии

Группа ученых Кембриджского университета уже в течение нескольких лет занимается разработкой солнечных батарей нового поколения, работающих на базе биологической энергии от фотосинтеза растений. К сожалению, пока не удалось достичь значительного прорыва в этой области, и КПД от таких систем зафиксирован на уровне 0,1 %. Но, тем не менее, такие разработки заслуживают внимания в связи с низкой затратностью и простотой внедрения.

Сегодня учеными разрабатываются уникальные концепции биологических солнечных батарей. К примеру, среди вариантов имеются:

  • Лампы, источником питания для которой является мох;
  • Колонии «зеленых мачт» из быстрорастущих растений, которые могут стать украшением любого города;
  • Отдельные панели для домашнего использования;
  • Офшорные электростанции, напоминающие по внешнему виду листья кувшинок.

Солнечные батарее нового поколения позволят в недалеком будущем использовать в максимальном количестве солнечную энергию. Это позволит обеспечить электроэнергией самые отдаленные места на планете и заменить традиционные источники электроэнергии экологически чистыми и возобновляемыми.



Это интересно:

    Метки: Солнечные батареи     

www.energya.by

Разработан новый тип солнечных батарей от Solarphasec

Компания Solarphasec представила новый тип солнечных панелей, которые не только эффективно вырабатывают электричество, но и украшают город.

Панели под названием Sentinel имеют необычную конусовидную конструкцию, что позволяет экономить место и поглощать максимальное количество солнечного света. Конусы высотой 1 и шириной 1,2 метра, в отличие от традиционных плоских панелей, не затеняют друг друга и позволяют создать энергостанцию с большой площадью солнечных ячеек на небольшом участке дорогостоящей городской земли. Кроме того, коническая форма значительно снижает ветровую нагрузку, что позволяет размещать Sentinel на крышах высотных зданий.

Новый тип солнечных панелей:

  • имеет мощность 1-3,5 кВт,
  • позволяет создавать мощные электростанции, состоящие из десятка конических модулей,
  • производят переменный ток, поэтому нет необходимости использовать дорогостоящие инверторы, которые к тому же приводят к потерям энергии,
  • преобразуют в электроэнергию и солнечное тепло, которое снижает эффективность обычных кремниевых солнечных ячеек.

Благодаря оригинальной конструкции, по сравнению с плоскими солнечными панелями Sentinel вырабатывает на 40% больше электроэнергии в течение дня и на 60% — в течение года. В целом, при одинаковой площади земли, занимаемой обычной плоской и конусовидной солнечными панелями, последняя улавливает в 4 раза больше света

При этом цена киловатт-часа, вырабатываемого Sentinel, составляет около 18 центов, что почти в 2 раза дешевле традиционных панелей и только в 2,2 раза дороже энергии газовой электростанции.

По материалам: solareview.blogspot.com

___________________________________________________________

Такую инновационную технологию первыми подхватят интернет компании, поставив на крыши своих серверных центров эти батареи, а хостинг серверов будет приносить свои эко-дивиденды, увеличивая лояльность клиентов

Читайте также:


www.ekopower.ru