Схемы заземлений: Системы заземления TN-S, TN-C, TNC-S, TT, IT
Системы заземления TN-S, TN-C, TNC-S, TT, IT
При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.
Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.
В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.
Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.
Виды систем искусственного заземления
Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).
Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.
- T — заземление.
- N — подключение к нейтрали.
- I — изолирование.
- C — объединение функций, соединение функционального и защитного нулевых проводов.
- S — раздельное использование во всей сети функционального и защитного нулевых проводов.
В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.
1. Системы с глухозаземлённой нейтралью (системы заземления TN)
Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:
- N — функциональный «ноль»;
- PE — защитный «ноль»;
- PEN — совмещение функционального и защитного нулевых проводников.
Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.
На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».
Система заземления TN-C
Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..
Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.
Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.
В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.
Система TN-S
Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.
В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.
Система TN-C-S
С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.
Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».
Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.
Система заземления TT
При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.
Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.
Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.
2. Системы с изолированной нейтралью
Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.
Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.
Система IT
Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.
Надежное заземление — гарантия безопасности
Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.
Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.
Смотрите также:
TN-C, TN-S, TNC-S, TT, IT
Для работы электроприборов достаточно присоединить к ним ноль и фазу. Однако такое подключение может привести к аварии и опасно для людей, проживающих в доме. Для предотвращения подобных ситуаций необходимо выбрать, устанавливать и подключить системы заземления и зануления.
Питание бытовых потребителей осуществляется от понижающего трёхфазного трансформатора, имеющего напряжение на выводах вторичной обмотки 0,4кВ или 380В. Катушки этого аппарата соединены звездой, средняя точка которой подключается к контуру заземления, находящемуся в земле возле трансформаторной будки. Такой аппарат называется «трансформатор с глухозаземлённой нейтралью».
В квартиру или частный дом от трансформатора приходят как минимум два провода — ноль и фаза, соединённых с фазным выводом и средней точкой звезды соответственно. Такое подключение обеспечивает напряжение в розетках 220В.
Кроме нулевого и фазного проводов в квартирах прокладывается заземляющий проводник, защищающий людей от поражения электрическим током при нарушении изоляции между корпусом электроприбора и частями электросхемы, находящимися под напряжением. Этот провод соединяется с системой заземления.
Такая система состоит из двух основных элементов — трансформатор и электроустановка. В простейшем случае это однофазная нагрузка, однополюсный автомат и одна фаза трёхфазного трансформатора.
Справка! Само понятие «система» происходит от др. греч. σύστημα «целое, состоящее из отдельных частей» — несколько элементов, работающих вместе и объединённых в одну конструкцию.
В этой статье рассказывается о классификации систем заземления, различии между чаще всего применяющимися видами — ТТ, TN-C и TN-C-S и про опасность применения зануления вместо заземления, а также о системах заземления TN-S и IT.
Классификация систем заземления по ПУЭ
Электроустановки (в частности трансформаторы) напряжением до 1000В по наличию систем заземления делятся на две категории, каждая из которых имеет свои сферы применения:
- С глухозаземлённой нейтралью.
Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в «звезду», средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали. С изолированной нейтралью. Вторичные обмотки трансформаторов не заземляются. Являются разделительными и используются только в промышленности в специальных установках, таких, как нагревательные печи и некоторые другие, в которых важно отсутствие электрического соединения токоведущих частей и контура заземления.
Глухозаземлённая нейтраль в электротрансформаторах обозначается «TN». Самое распространённое защитное применение такой нейтрали — соединение с ней токопроводящих корпусов электроприборов отдельными проводами, однако они могут соединяться и другими способами.
При проектировании систем электроснабжения проектная организация выбирает тип заземления согласно полученному техническому заданию и описанию систем заземления.
Этот выбор определяется ПУЭ и другими нормативными документами и от него зависит безопасность людей и приёмка здания в эксплуатацию.
Важно! Неправильный выбор вида системы заземления или некачественный монтаж приведут к требованию контролирующей организации исправить допущенные ошибки.
Виды систем заземления
Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:
- TN-C;
- TN-C-S;
- TN-S;
- TT;
- IT.
Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.
Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.
Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.
Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.
Система TN-C
Самый старый вид системы заземления — это система TN-C. В ней отсутствует отдельный провод для заземления и оно (заземление) осуществляется общим проводом PEN. Начиная от подстанции (трансформатора) PEN провод совмещает в себе нулевой защитный и нулевой рабочий проводники (PEN = PE + N). В старых жилых домах применяется именно такое заземление.
По системе TN-C заземляются только вводные щитки в подъездах и столбы уличного освещения. В квартирах таких домов заземление в розетках отсутствует, а электропроводка выполнена двухпроводной – фаза и ноль.
Такое защитное заземление морально устарело и не обеспечивает надёжной защиты от поражения электрическим током. При необходимости заземлить электроприборы, а также во время реконструкции электропроводки заземление тип TN-C заменяется на TN-C-S.
Система TN-C-S
Защитное заземление этого типа устроено аналогично системе TN-C.
Питающий трансформатор имеет глухозаземлённую нейтраль, а заземляющие провода соединяются с ней нулевым проводом PEN, который на входе в дом разделяется на нулевой проводник — N и заземляющий — PE.
Такое разделение производится только на вводе кабеля в многоквартирный дом, как правило в ВРУ (вводном распределительном устройстве). В вводном щитке эти кабеля присоединяются к общей шине или клемме. Допускается применение такой системы в частных домах, питание которых осуществляется воздушными линиями при подключении к трёхфазной сети.
Согласно ПУЭ пункт 1.7.132 разделение нулевого и заземляющего проводов в однофазной сети 220В не выполняется. При необходимости выполнить такое разделение оно производится там, где это разрешено правилами, а к дому прокладывается дополнительный провод.
То есть, если у Вас в квартире нет заземления, и вы хотите из системы TN-C сделать TN-C-S, такой способ разделения PEN проводника на просто ноли и заземление не прокатит в квартирном щитке.
| Важно! Согласно ПУЭ 1.7.135 после разделения в вводном щитке провода PE и N НЕ ДОЛЖНЫ соединяться между собой. |
Система TN-S
Самые дорогостоящие в реализации, но самые удобные и надёжные системы заземления — это системы TN-S, которые монтируются вместе с трансформаторами с глухозаземлённой нейтралью.
Для системы TN-S заземляющий и нулевой провода соединяются в трансформаторной подстанции. На всем протяжении больше эти проводники не связаны между собой.
К потребителю, будь то квартира или дом, приходит два независимых друг от друга проводника нулевой рабочий N и нулевой защитный PE.
Для бОльшей надёжности заземляющий провод РЕ может соединяться с контуром заземления на вводе в здание.
Это самый простой в эксплуатации тип защиты. При его монтаже отсутствуют высокие требования к контуру заземления здания.
Недостаток этой системы в необходимости вместо четырёх проводов (L1,L2,L3,РЕN) использовать пять, где пятым проводом является заземляющий PE, однако это перекрывается повышенной безопасностью эксплуатации.
Поэтому новые воздушные и кабельные линии электропередач прокладываются пятижильными кабелями и проектируются по системе TN-S.
Система TT
Это такая система защитного заземления, которая выполняется при невозможности смонтировать заземление другого типа. В этом случае нейтраль трансформатора не имеет связи с заземляющими проводами электропроводки, и они подключаются к собственному контуру заземления дома.
То есть в системе TT нулевой провод сети никак не связан с заземляющим контуром потребителя.
Случаи применения системы ТТ указаны в ПУЭ п1.7.59.
Важно! Ток, возникающий при замыкании токоведущих частей с заземлённым корпусом может быть недостаточным для срабатывания автоматического выключателя. Поэтому, согласно ПУЭ п1.7.59, применять систему ТТ без УЗО или дифференциального автомата запрещается.
Система IT
Применяется с трансформаторами с изолированной нейтралью. Обычно она соединяется с заземлением через разрядник, обладающий высоким сопротивлением при низком напряжении и низким при повышении напряжения выше допустимого предела.
Это защищает потребителей от попадания первичного напряжения во вторичную обмотку.
В этой питающей сети отсутствует нулевой провод N, заземляющий РЕ и однофазное напряжение как таковое. Потребители подключаются на линейное напряжение 380 Вольт.
Данная система используется только с двух- и трёхфазными установками. Металлический корпус электрооборудования и другие токопроводящие элементы соединяются с контуром заземления здания.
Токи короткого замыкания на землю в такой системе незначительные, поэтому использование УЗО или дифференциальных автоматов является обязательным.
Система уравнивания потенциалов
В особоопасных сырых помещениях, таких, как бассейны или сауны, кроме непосредственного заземления корпусов электроприборов, используется система уравнивания потенциалов.
Она заключается в соединении между собой всех металлических частей в помещении — стальных дверей, нержавеющих раковин, водопроводных и канализационных труб и других элементов.
Все эти соединённые между собой части подключаются к применяемой системе заземления.
В чём опасность применения зануления вместо заземления
Некоторые электромонтёры предлагают использовать зануление вместо заземления. Это нельзя делать по нескольким причинам:
- Жилые дома подключаются к трёхфазной сети и по нулевому проводу течёт уравнительный ток. Так как этот провод имеет сопротивление, то между занулённым корпусом электроприбора и заземлёнными конструкциями, например водопроводным краном, имеется разность потенциалов. В обычных условиях это неопасно, но при прикосновении к воде или мокрой земле можно получить электрическим током.
- При обрыве нулевого провода и неравномерной нагрузке между нулём и фазой может быть не 220В, а больше, вплоть до 380В. В этом случае между занулённым корпусом электрооборудования и заземлёнными конструкциями появится опасное для жизни напряжение 220В.
- Нулевой и фазный провода подключаются к квартире через двухполюсный автоматический выключатель.
При его срабатывании нулевой провод N, используемый в качестве заземляющего проводника, отключается от контура заземления. Это недопустимо по требованиям ПУЭ п1.7.145
К отдельно стоящему зданию может быть подведено не однофазное напряжение 220В, а трёхфазное с тремя фазными и одним нулевым проводами. В этом случае есть возможность переделки защитного зануления в систему заземления TN-C-S.
Вывод
Системы TT и IT также являются системами с заземлением. В них заземляющий провод РЕ не имеет электрической связи с нейтралью трансформатора.
Системы заземления TN всех видов считаются системами с занулением. В них заземляющий провод РЕ связан каким-либо способом с нейтралью питающего трансформатора и проводником N:
- В системе TN-C-S заземляющие жёлтые или жёлто-зелёные провода подключены к проводнику PEN. Он проложен от нейтрали трансформатора к вводному щитку в здании.
- В системе TN-C заземляющий проводник РЕ совмещён с нейтральным проводом N, поэтому к нему корпуса электроприборов не подключаются.
Для их заземления защитное заземление типа TN-C необходимо переделать в TN-C-S. - Система TN-S является самой надёжной. В ней провода РЕ и N разделены на всём протяжении от электроприбора до нейтрали питающего трансформатора.
Нет системы заземления, идеально подходящей для всех ситуаций. Каждая из них обладает своими достоинствами и недостатками, но у всех одна задача — обеспечение максимальной безопасности людей. Для выбора типа защиты необходимо знать, какие бывают системы заземления и зануления.
Похожие материалы на сайте:
- Чем заземление отличается от зануления
- Принцип работы заземления
- Недостатки системы заземления TN-C
В соответствии со стандартом IEEE
Заземление — это система электрических цепей, соединенных с землей и функционирующая, когда ток утечки может разрядить электричество на землю.
В соответствии со стандартом 142™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE) целью системы заземления является:
- Ограничение напряжения на землю в допустимых пределах
- Обеспечьте путь для протекания тока, который может обеспечить обнаружение нежелательных взаимосвязей между проводником системы и землей.
Это обнаружение приведет к срабатыванию автоматики, которая определяет подачу напряжения от проводника.
В соответствии со стандартами IEEE система заземления подразделяется на:
- TN-S (Terre Neutral — отдельная)
- TN-C-S (Земля Нейтральная – Комбинированная – Раздельная)
- TT (Двойной Терре)
- TN-C (нейтральная земля — комбинированный)
- IT (Изолированная Земля)
Terre происходит от французского языка и означает землю.
Первая буква обозначает соединение между землей и источником питания, а вторая буква обозначает соединение между землей и электронным оборудованием, питаемым электричеством. Значение каждой буквы следующее:
- T (Terra) = прямое соединение с землей.
- I (изоляция) = нет соединения с землей (даже при наличии высокого импеданса)
- N (Нейтральный) = подключение непосредственно к нейтральному кабелю питания (где этот кабель также заземлен в источнике питания)
TN-S (Земля Нейтральная — Отдельная)
В системе TN-S нейтральная часть источника электроэнергии соединяется с землей в одной точке, так что нейтральная часть потребительской установки напрямую связана с нейтральным источником электроэнергии.
Этот тип подходит для установок, которые находятся близко к источникам электроэнергии, например, для крупных потребителей, которые имеют один или несколько трансформаторов ВН/НН для собственных нужд и если установка/оборудование находится рядом с источником энергии (трансформаторами).
TN-C-S (Земля Нейтральная – Комбинированная – Раздельная)
Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземленный на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME) . В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе при установке оборудования у потребителя земля подключается только к клемме (каналу), обеспечиваемой источником питания.
TT (Двойной Терре)
В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования). В системах ТТ потребители должны обеспечить собственное подключение к земле, а именно путем установки заземляющего электрода, подходящего для установки.
TN-C (нейтральная земля — комбинированный)
В системе TN-C нулевой канал основного распределительного оборудования (источника питания) подключается непосредственно к нулевому каналу потребителя и корпусу установленного оборудования.
В этой системе нейтральный проводник используется в качестве защитного проводника, а комбинация нейтральных и заземляющих боковых рамок оборудования известна как проводник PEN (защитное заземление и нейтраль).
Эта система не допускается для проводов менее 10 мм 2 или для переносного оборудования.
Это связано с тем, что при возникновении неисправности по PEN-проводнику одновременно переносится ток асимметрии фаз и ток гармоники третьего уровня и ее кратные.
Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, то при применении системы TN-C PEN-проводник должен быть соединен с рядом электродных стержней для заземления на установке.
IT (Изолированная земля)
Из первой буквы (I) видно, что в системе IT этого типа нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.
В своем применении нейтральная точка системы IT на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом. Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.
| ТТ | ИТ | ТН-С | ТН-С | ТН-К-С | |
| Полное сопротивление контура замыкания на землю | Высокий | Самый высокий | Низкий | Низкий | Низкий |
| Желательно УЗО | Да | н/д | Дополнительно | № | Дополнительно |
| Нужен заземляющий электрод на объекте | Да | Да | № | № | Дополнительно |
| PE проводник стоимость | Низкий | Низкий | Самый высокий | Минимум | Высокий |
| Риск обрыва нейтрали | № | № | Высокий | Самый высокий | Высокий |
| Безопасность | Сейф | Менее безопасный | Самый безопасный | Наименее безопасный | Сейф |
| Электромагнитные помехи | Минимум | Минимум | Низкий | Высокий | Низкий |
| Риски безопасности | Высокий импеданс контура (ступенчатое напряжение) | Двойная неисправность, перенапряжение | Обрыв нейтрали | Обрыв нейтрали | Обрыв нейтрали |
| Преимущества | Безопасный и надежный | Непрерывность работы, стоимость | Самый безопасный | Стоимость | Безопасность и стоимость |
Не стесняйтесь обращаться к нам по адресу marketing@phoenixcontact.
com.sg, чтобы узнать больше!
Заземление и соединение электрических систем
Навигация по заземлению и соединению электрических систем может оказаться сложной задачей, если вы не уделили время ознакомлению с требованиями статьи 250 NFPA 70
® , Национального электротехнического кодекса . ® (NEC ® ).С чего начать? Ниже приведены некоторые распространенные вопросы от людей, которые только начинают изучать статью 250. Однако эта информация может быть полезна не только новичкам, но и опытным установщикам, которые хотят узнать больше о почему они делают то, чему их научили, и обучены ли они делать это должным образом.
1. Заземление и соединение — это одно и то же?
Статья 250 NEC касается заземления и соединения электрических систем. По определению, а также по функциям заземление и соединение — не одно и то же. Тем не менее, они тесно взаимодействуют друг с другом в отношениях инь и ян, чтобы обеспечить безопасность в электрических системах.
2. Что такое заземление?
Заземление — это соединение электрической системы с землей. Статья 100 NEC определяет землю как «землю». В разделе 250.4(A)(1) говорится, что заземленные электрические системы «должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения или непреднамеренным контактом с высоковольтными линиями, и стабилизировать напряжение относительно земли. при нормальной работе».
3. Что такое склеивание?
Статья 100 NEC определяет соединение (соединение) как «соединение для обеспечения электрической непрерывности и проводимости». Склеивание металлических деталей, таких как корпуса и дорожки качения, гарантирует, что все они непрерывны на пути эффективного тока замыкания на землю (EGFCP), который относится к земле (земле). EGFCP помогает управлять такими устройствами, как автоматические выключатели и предохранители или датчики замыкания на землю в незаземленных системах.
В заземленных системах важно соединить заземляющие проводники оборудования с заземляющим проводником системы, чтобы завершить EGFCP обратно к источнику электричества.
Проводимость EGFCP имеет решающее значение для правильной работы защитных устройств. Это говорит о том, почему мы соскребаем краску с контактных поверхностей металлических корпусов, чтобы сделать соединения нашей электрической системы. Удаление краски, как требуется в Разделе 250.12, обеспечивает лучшее соединение и путь проводимости.
В редакции NEC 2020 г. в раздел 250.12 была добавлена формулировка «или соединенные», которая теперь гласит: «Непроводящие покрытия… на оборудовании, подлежащем заземлению или соединению, должны быть удалены…». Это еще раз подчеркивает, что заземление и соединение не то же самое, но работают вместе, чтобы обеспечить безопасность электрической системы.
4. Почему так важно обеспечить надлежащее заземление и соединение для вашей электрической системы?
Прежде всего, это безопасность персонала внутри здания. Обеспечение надлежащего заземления и соединения электрической системы вполне может быть причиной того, что сотрудник внутри здания избежит непреднамеренного удара током и сможет вернуться домой той ночью.
Это так важно.
Другими объектами, на которые может отрицательно повлиять неправильное заземление и подключение, являются чувствительное оборудование и низковольтные сигналы. Хотя эти элементы могут быть связаны с безопасностью, их функциональность также имеет решающее значение для производства. Как бы отреагировало руководство, если бы неправильная установка заземления и соединения отрицательно повлияла на их производственные цели?
5. Какова цель требований NEC к заземлению и соединению?
Раздел 250.4 устанавливает общие требования к заземлению и соединению электрических систем как для заземленных, так и для незаземленных систем. Для заземленных систем NEC требует, чтобы вы выполнили все следующие действия: заземление электрической системы, заземление электрического оборудования, соединение электрического оборудования и соединение электропроводящих материалов. В незаземленных системах требуются те же действия, за исключением заземления электрической системы.
Когда эти требования NEC реализованы, создается эффективный путь тока замыкания на землю, что и является желаемой конечной целью.
По определению, эффективный путь тока замыкания на землю (EGFCP) представляет собой специально сконструированный электропроводный путь с низким импедансом, спроектированный и предназначенный для передачи тока в условиях замыкания на землю от точки замыкания на землю до источника электропитания . Хорошо спроектированный EGFCP может помочь устранить опасное напряжение из-за непреднамеренных неисправностей, позволяя устройствам защиты от перегрузки по току, таким как автоматические выключатели и предохранители, правильно обнаруживать неисправность и размыкать цепь.
6. Какие разделы NEC вы должны хорошо знать, чтобы правильно выполнить заземление и соединение электрической системы?
Статья 250 является основополагающим элементом NEC; его следует изучить полностью, чтобы убедиться, что и заземление, и соединение выполнены правильно. Несколько важных ресурсов, которые вы должны использовать регулярно, — это таблицы 250.

Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в «звезду», средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали.
При его срабатывании нулевой провод N, используемый в качестве заземляющего проводника, отключается от контура заземления. Это недопустимо по требованиям ПУЭ п1.7.145
Для их заземления защитное заземление типа TN-C необходимо переделать в TN-C-S.
Это обнаружение приведет к срабатыванию автоматики, которая определяет подачу напряжения от проводника.