Транзисторы igbt как проверить – Как проверить IGBT транзистор, принцип работы IGBT.

Содержание

Как проверить IGBT транзистор, принцип работы IGBT.

Принцип работы IGBT транзисторов основан на применении n-канального МОП-транзистора малой мощности для управления мощным биполярным транзистором. Таким образом, удалось совместить достоинства биполярного и полевого транзистора. Малая управляющая мощность, высокое входное сопротивление, большой уровень пробивных напряжений, малое сопротивление в открытом состоянии — позволяют применять IGBT в цепях с высокими напряжениями и большими токами.

Биполярные транзисторы с изолированным затвором (IGBT или БТИЗ) целесообразно использовать в сильноточных, высоковольтных ключевых схемах. Сварочные аппараты, источники бесперебойного питания, приводы электрических двигателей, мощные преобразователи напряжения – вот сфера применения таких элементов.

Названия выводов IGBT: затвор, эмиттер, коллектор.

Биполярные транзисторы с изолированным затвором способны коммутировать токи в тысячи ампер, напряжение эмиттер-коллектор может достигать несколько киловольт. Но частота работы этих транзисторов значительно ниже, чем частота полевых транзисторов.

Как проверить IGBT транзистор мультиметром

Проверяется IGBT FGh50N60SFD. IGBT часто пробиваются накоротко, такие неисправные транзисторы легко выявить с помощью мультиметра. Перед проверкой IGBT транзистора мультиметром, необходимо обратиться к справочным данным и выяснить назначение его выводов.

Затем произвести следующие действия:

1. Переключить мультиметр в режим «прозвонка». Произвести измерение между затвором и эмиттером для выявления возможного замыкания.

2. Произвести измерение между затвором и коллектором для выявления возможного замыкания.

3. На секунду замкнуть пинцетом или перемычкой эмиттер и затвор. После этого транзистор будет гарантированно закрыт.

4. Соединить щуп мультиметра «V/Ω» с эмиттером, щуп «СОМ» с коллектором. Мультиметр должен показать падение напряжения на внутреннем диоде.

5. Соединить щуп мультиметра «V/Ω» с коллектором, щуп «СОМ» с эмиттером. Мультиметр должен показать отсутствие замыкания и утечки.

Для более надежной проверки IGBT транзистора можно собрать следующую схему:

При замыкании контактов кнопки лампочка должна загораться, при размыкании – тухнуть.

В этом видео показано как проверить IGBT мультиметром:

Опубликовано 05.11.2016

www.sdelai-sam.su

Прибор для проверки мощных IGBT и MOSFET транзисторов (n-канал)

Необходимость в таком приборе возникает каждый раз при ремонте сварочного инвертора – необходимо проверить мощный IGBT или MOSFET транзистор на предмет исправности, либо подобрать к исправному транзистору пару, либо при покупке новых транзисторов, убедиться, что это не «перемаркер». Эта тема неоднократно поднималась на множестве форумов, но так и не найдя готового (испытанного) или кем то сконструированного прибора, решил изготовить его самостоятельно.
Идея состоит в том, что необходимо иметь какую-то базу данных различных типов транзисторов, с которой сравнивать характеристики испытываемого транзистора, и если характеристики укладываются в определенные рамки, то его можно считать исправным. Все это делать по какой-то упрощенной методике и простым оборудованием. Необходимую базу данных придется собирать конечно же самому, но это все решаемо.

Прибор позволяет:
 — определить исправность (неисправность) транзистора
 — определить напряжение на затворе, необходимое для полного открытия транзистора
 — определить относительное падение напряжения на К-Э выводах открытого транзистора
 — определить относительную емкость затвора транзистора, даже в одной партии транзисторов есть разброс и его косвенно можно увидеть
 — подобрать несколько транзисторов с одинаковыми параметрами

Содержание / Contents

Принципиальная схема прибора представлена на рисунке.

Он состоит из источника питания 16В постоянного тока, цифрового милливольтметра 0-1В, стабилизатора напряжения +5В на LM7805 для питания этого милливольтметра и питания «световых часов» — мигающего светодиода LD1, cтабилизатора тока на лампе – для питания испытуемого транзистора, стабилизатора тока на LM317 — для создания регулируемого напряжения (при стабильном токе) на затворе испытуемого транзистора при помощи переменного резистора, и двух кнопок для открытия и закрытия транзистора.

Прибор очень прост по устройству и собран из общедоступных деталей. У меня в наличии был какой-то трансформатор с габаритной мощностью около 40Вт и напряжением на вторичной обмотке 12В. При желании, и в случае необходимости прибор можно питать от АКБ 12В / 0,6 Ач (например). Так же был в наличии китайский цифровой вольтметр-показометр с пределом измерения 0-1 В.

Я решил использовать питание от сети 220В, т.к на рынок для покупок с прибором не сильно пойдешь, да и сеть все же стабильнее, чем «севший» АКБ. Но… дело вкуса.

Далее, изучая и адаптируя вольтметр, обнаружил интересную его особенность, если на его клеммы L0 и HI подать напряжение, превышающее его верхний порог измерения (1В), то табло просто тухнет и он ничего не показывает, но стоит снизить напряжение и все возвращается к нормальной индикации (это все при постоянном питании +5В между клеммами 0V и 5V). Я решил использовать эту особенность. Думаю, что очень многие цифровые «показометры» имеют такую же особенность. Взять, к примеру, любой китайский цифровой тестер, если в режиме 20В на него подать 200В, то ничего страшного не произойдет, он лишь только высветит «1» и все. Такие табло, подобные моему сейчас есть в продаже.
Возможные варианты цифровых вольтметров 0-2 Вольта с доставкой.

Дальше расскажу о четырех интересных моментах по схеме и ее работе:
1. Применение лампы накаливания в цепи коллектора испытуемого транзистора обусловлено стремлением (первоначально было такое желание) визуально видеть, что транзистор ОТКРЫЛСЯ. Кроме того, лампа выполняет здесь еще 2 функции, это защита схемы при подключении «пробитого» транзистора и некоторая стабилизация тока (54-58 mA), протекающего через транзистор при изменении сети от 200 до 240В. Но «особенность» моего вольтметра позволила первую функцию игнорировать, при этом даже выиграв в точности измерений, но об этом позже…
2. Применение стабилизатора тока на LM317 позволило НЕ сжечь случайно переменный резистор (когда он в верхнем по схеме положении) и случайно нажатых двух кнопках одновременно, или при испытании «пробитого» транзистора. Величина ограниченного тока в этой цепи даже при коротком замыкании равна 12 mA.
3. Применение 4 шт диодов IN4148 в цепи затвора испытуемого транзистора для медленного разряда емкости затвора транзистора, когда напряжение на его затворе уже снято, а транзистор находится еще в открытом состоянии. Они имеют какой-то ничтожный ток утечки, которым и разряжается емкость.
4. Применение «моргающего» светодиода в качестве измерителя времени (световые часы) при разряде емкости затвора.
Из всего вышесказанного становится абсолютно понятно, как все работает, но об этом чуть позже более подробно… Далее был приобретен корпус и все эти комплектующие расположены внутри.

Внешне получилось даже не плохо, за исключением того, что не умею я пока рисовать шкалы и надписи на компьютере, но… В качестве гнезд для испытуемых транзисторов замечательно подошли остатки каких то разъемов. Одновременно был изготовлен выносной кабель для транзисторов с «корявыми» ногами, которые не влезут в разъем.

Ну и вот так это выглядит в работе:

1. Включаем прибор в сеть, при этом начинает моргать светодиод, «показометр» не светится
2. Подключаем испытуемый транзистор (как на фото выше)
3. Устанавливаем ручку регулятора напряжения на затворе в крайнее левое положение (против часовой стрелки)
4. Нажимаем на кнопку «Откр» и одновременно потихоньку прибавляем регулятор напряжения по часовой стрелке до момента зажигания «показометра»
5. Останавливаемся, отпускаем кнопку «Откр», снимаем показания с регулятора и записываем. Это есть напряжение открытия.
6. Поворачиваем регулятор до упора по часовой стрелке
7. Нажимаем кнопку «Откр», зажжется «показометр», снимаем с него показания и записываем. Это есть напряжение К-Э на открытом транзисторе
8. Возможно, что за время, потраченное на записи, транзистор уже закрылся, тогда открываем его еще раз кнопкой, и после этого отпускаем кнопку «Откр» и нажимаем кнопку «Закр» — транзистор должен закрыться и «показометр» соответственно потухнуть. Это есть проверка целостности транзистора – открывается и закрывается
9. Опять открываем транзистор кнопкой «Откр» (регулятор напряжения в максимуме) и, дождавшись ранее записанных показаний, отпускаем кнопку «Откр» одновременно начиная подсчитывать количество вспышек (морганий) светодиода
10. Дождавшись потухания «показометра» записываем количество вспышек светодиода. Это и есть относительное время разряда емкости затвора транзистора или время закрытия (до увеличения падения напряжения на закрывающемся транзисторе более чем 1В). Чем это время (количество) больше, тем соответственно емкость затвора больше.

Дальше проверяем все имеющиеся транзисторы, и все данные сводим в таблицу.
Именно из этой таблицы и происходит сравнительный анализ транзисторов – фирменные они или «перемаркеры», соответствуют своим характеристикам или нет.

Ниже приведена таблица, которая получилась у меня. Желтым выделены транзисторы, которых не оказалось в наличии, но я ими точно когда то пользовался, поэтому оставил их на будущее. Безусловно, в ней представлены не все транзисторы, которые проходили через мои руки, кое что просто не записал, хотя пишу вроде всегда. Безусловно у кого то при повторении этого прибора может получиться таблица с несколько иными цифрами, это возможно, т.к цифры зависят от многих вещей: от имеющейся лампочки или трансформатора или АКБ, например.


Из таблицы видно, чем отличаются, транзисторы, например G30N60A4 от GP4068D. Отличаются временем закрытия. Оба транзистора применяются в одном и том же аппарате – Телвин, Техника 164, только первые применялись немного раньше (года 3, 4 назад), а вторые применяются сейчас. Да и остальные характеристики по ДАТАШИТ у них приблизительно одинаковы. А в данной ситуации все наглядно видно – все налицо.

Кроме того, если у Вас получилась табличка всего из 3-4 или 5 типов транзисторов, и остальных просто нет в наличии, то можно, наверное, посчитать коэффициент «согласованности» ваших цифр с моей таблицей и, используя его, продолжить свою таблицу, используя цифры из моей таблицы. Думаю, что зависимость «согласованности“ в этой ситуации будет линейной. Для первого времени, наверное хватит, а потом подкорректируете свою таблицу со временем.
На этот прибор я потратил около 3 дней, один из которых покупал некоторую мелочевку, корпус и еще один на настройку и отладку. Остальное работа.

Безусловно, в приборе возможны варианты исполнения: например применение более дешевого стрелочного милливольтметра (необходимо подумать об ограничении хода стрелки вправо при закрытом транзисторе), использовании вместо лампочки еще одного стабилизатора на LM317, применении АКБ, установить дополнительно переключатель для проверки транзисторов с p-каналом и т.д. Но принцип при этом в приборе не изменится.

Еще раз повторюсь, прибор не измеряет величин (цифр) указанных в ДАТАШИТАХ, он делает почти то же самое, но в относительных единицах, сравнивая один образец с другим. Прибор не измеряет характеристик в динамическом режиме, это только статика, как обычным тестером. Но и тестером не все транзисторы поддаются проверке, да и не все параметры можно увидеть. На таких я обычно ставлю маркером знак вопроса «?»

Можно соорудить и проверку в динамике, поставить маленький ШИМ на К176 серии, или что-то подобное.
Но прибор вообще простой и бюджетный, а главное, он привязывает всех испытуемых к одним рамкам.

Сергей (s237)

Украина, Киев

Меня зовут Сергей, проживаю в Киеве, возраст 46 лет. Имею свой автомобиль, свой паяльник, и даже, свое рабочее место на кухне, где ваяю что либо интересное.

Люблю качественную музыку на качественном оборудовании. У меня есть древненький Техникс, на нем все и звучит. Женат, есть взрослые дети.

Бывший военный. Работаю мастером по ремонту и регулировке сварочного, в том числе инверторного, оборудования, стабилизаторов напряжения и многого другого, где присутствует электроника.

Достижений особых не имею, кроме того, что стараюсь быть методичным, последовательным и, по возможности, доводить начатое до конца. Пришел к Вам нетолько взять, но и по возможности — дать, обсудить, поговорить. Вот кратко и все.

 

datagor.ru

Как проверить мультиметром транзистор: испытание различных типов устройств

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

FacebookTwitterOkGoogle+PinterestVk

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Содержание

  • 1 Что такое транзистор
  • 2 Как проверить мультиметром транзистор
    • 2.1 Как прозвонить мультиметром транзистор
    • 2.2 Как проверить мультиметром транзистор IGBT
    • 2.3 Как проверить мультиметром полевой транзистор
  • 3 Как проверить мультиметром транзистор: видео инструкция

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно!Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно!Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно!Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет!Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Статья по теме:

Электрический мультиметр: тестер для различных электротехнических измерений
Тестер для измерения электротехнических показателей. Использование прибора для автомобиля и в быту. Принцип измерения электрических характеристик.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет!Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

yastroyu.ru

Проверка IGBT модулей (транзисторов) | Королев Александр

Проверка IGBT модулей (транзисторов)

Это перевод вырезки, сделанный мной, из официальной документации для IGBT модулей (или как их называют — транзисторов).

Большинство производителей IGBT модулей полностью тестируют их перед отправкой и гарантируют их соответствие утвержденным параметрическим данным. Обычно мы не рекомендуем пользователям проводить повторные тесты, так как это может повредить радиодеталь. Если Вам все же необходимо произвести проверку, то следуйте нижеуказанным тестам:

Основные требования:

  • Всегда используйте безопасный антистатический материал при транспортировке, после тестирования замените токопроводящий пеноматериал на контактах база-эмиттер.¹
  • Никогда не подключайте к эмиттеру напряжение, превышающее значение Vces (указанно в документации для IGBT), а также ни когда не подключайте базу-коллектор к напряжению, превышающему Vges, когда отслеживаете кривую линейных изменений напряжения.
  • Никогда не используйте напряжение больше 20В. для коллектора-эмиттера с открытой базой (с открытым затвором).
  • Избегайте теплового удара. Никогда не кладите холодную деталь на нагревательные приборы. Интенсивность нагрева не должна быть более чем 10Сº/мин.

Процедура тестирования цифровым мультиметром (ЦММ):

  • Требования к оборудованию – ЦММ с режимом проверки диодов и напряжением батареи менее чем 20В. (Обычно используются батареи с напряжением 9V, например «Крона»).
  • Тест перехода коллектор-эмиттер:
  1. Когда деталь находится  вне схемы удалите токопроводящий пеноматериал и замкните базу на эмиттер.
  2. ЦММ в режиме проверки диодов, при подключении положительного полюса относительно эмиттера и отрицательного полюса относительно коллектора, должен дать такие же результаты, как при проверке диодов.
  3. Цифровой мультиметр должен показывать какое-либо значение, если положительный щуп подключен к коллектору, а отрицательный к эмиттеру. Поврежденный IGBT будет замкнут в обоих направлениях (положительном и отрицательном), или открыт в обоих направлениях.
  • Тест оксидного слоя затвора: с помощью цифрового мультиметра, в режиме сопротивления, необходимо замерить сопротивление между затвором и коллектором, а также между затвором и эмиттером, на исправных модулях оно равно бесконечности. На поврежденных IGBT модулях данные выводы могут быть замкнуты или иметь утечку, что покажет наличие сопротивления между затвором и коллектором и/или эмиттером.

Примечание:

1) Все IGBT модули отправляются изготовителем с токопроводящим пеноматериалом, на затворе и эмиттере. Никогда не прикасайтесь к выводам затвора во время монтажа и не удаляйте токопроводящий пеноматериал.

Понравилось это:

Нравится Загрузка…

Похожее

alexking79.wordpress.com

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

IGBT транзисторы. Устройство и работа. Параметры и применение

В настоящее время в электронике имеют большую популярность IGBT транзисторы. Если расшифровать эту аббревиатуру с английского языка, то это биполярный транзистор с изолированным затвором. Он применяется в виде электронного мощного ключа для систем управления приводами механизмов, в источниках питания.

Этот силовой транзистор сочетает в себе свойства биполярного и полевого транзистора. Он управляется путем подачи напряжения на затвор, изолированный от цепи. Характерным свойством этого транзистора является низкая величина мощности управления, которая применяется для переключений мощных силовых цепей.

Наибольшей популярностью пользуются IGBT в силовых цепях преобразователей частоты и электродвигателей переменного тока мощностью до 1 мегаватта. По вольтамперным свойствам эти транзисторы аналогичны биполярным моделям полупроводников, но качество и чистота коммутации у них намного больше.

Современные технологии изготовления дают возможность оптимизировать транзисторы по функциональным характеристикам. Уже разработаны полупроводники, способные работать при большем напряжении и величине тока.

Основные параметры
  • Управляющее напряжение – это разность потенциалов, способная управлять работой затвора.
  • Наибольший допустимый ток.
  • Напряжение пробоя между эмиттером и коллектором.
  • Ток отсечки эмиттер-коллектор.
  • Напряжение насыщения эмиттер-коллектор.
  • Входная емкость.
  • Выходная емкость.
  • Паразитная индуктивность.
  • Период задержки подключения.
  • Период задержки выключения.
  • Внутреннее сопротивление.

В регуляторах скорости применяются IGBT транзисторы с рабочей частотой в несколько десятков кГц.

Достоинства
  • Простая параллельная схема.
  • Отсутствие потерь.
  • Повышенная плотность тока.
  • Устойчивость к замыканиям.
  • Малые потери в открытом виде.
  • Возможность функционирования при повышенной температуре (выше 100 градусов).
  • Эксплуатация с высоким напряжением (выше 1 кВ) и мощностями (более 5 кВт).

При проектировании схем подключения с транзисторами нужно иметь ввиду, что существует ограничение по наибольшему току. Для этого применяют некоторые способы:

  • Правильный подбор тока защиты.
  • Выбор сопротивления затвора.
  • Использование обходных путей коммутации.
Устройство и работа

Внутреннее устройство IGBT транзисторов включает в себя каскад двух электронных ключей, управляющих конечным выходом.

 

Принцип действия транзистора заключается в двух этапах:

  • При подаче напряжения положительного потенциала между истоком и затвором полевой транзистор открывается, появляется n-канал между стоком и истоком.
  • Начинается движение заряженных электронов из n-области в р-область, вследствие чего открывается биполярный транзистор. В результате этого от эмиттера к коллектору протекает электрический ток.

 

IGBT транзисторы служат для приближения токов замыкания к безопасному значению. Они ограничивают напряжение затвора следующими методами:

  • С помощью привязки к определенному значению напряжения. Это достигается тогда, когда драйвер затвора имеет постоянное напряжение. Главным способом является добавление в схему диода, имеющего малое падение напряжения (диод Шоттки). Значительный эффект получается путем уменьшения индуктивности цепи затвора и питания.
  • Ограничение значения напряжения затвора путем использования стабилитрона в схеме затвора и эмиттера. Неплохая эффективность получается за счет установки диодов к дополнительным клеммам модуля. Диоды применяются с малым разбросом и температурной зависимостью.
  • Подключение в цепь отрицательной обратной связи эмиттера. Такой способ доступен, когда подключен эмиттер драйвера затвора к клеммам эмиттера модуля.
Сфера использования

IGBT транзисторы чаще всего работают в сетях высокого напряжения до 6,5 киловольт для надежной и безопасной работы электроустановок в аварийном режиме при коротких замыканиях.

Вышеперечисленные свойства транзисторов дают возможность использовать их в частотно-регулируемых приводах, инверторах, импульсных регуляторах тока, а также в сварочных аппаратах.

Также IGBT применяются в системах мощных приводов управления электровозов, троллейбусов. Это повышает КПД и создает повышенную плавность хода.

Силовые транзисторы широко используются в цепях высокого напряжения. Они входят в состав схем посудомоечных машин, бытовых кондиционеров, автомобильного зажигания, блоков питания телекоммуникационного оборудования.

Проверка исправности

IGBT транзисторы проверяются в случаях ревизии при неисправностях электрического устройства. Проверку проводят с помощью мультитестера путем прозвонки электродов эмиттера и коллектора в двух направлениях, чтобы проверить отсутствие замыкания. Емкость входа эмиттер-затвор необходимо зарядить отрицательным напряжением. Это делается кратковременным касанием щупа мультиметра «СОМ» затвора и щупа «V/Ω/f» эмиттера.

Чтобы произвести проверку, нужно убедиться, работает ли в нормальном режиме транзистор. Для этого зарядим емкость на входе эмиттер-затвор положительным полюсом.  Это делается коротким касанием щупа «V/Ω/f» затвора, а щупа «СОМ» эмиттера. Контролируется разность потенциалов эмиттера и коллектора, которая не должна превышать 1,5 вольта. Если напряжения тестера не хватит для открывания транзистора, то входную емкость можно зарядить от питания напряжением до 15 вольт.

Условное обозначение

Транзисторы имеют комбинированную структуру, то и обозначения у них соответствующие:

IGBT модули

Силовые транзисторы производятся не только в виде отдельных полупроводников, но и в виде модулей. Такие модули входят в состав частотных преобразователей для управления электромоторами.

Схема преобразователя частоты имеет технологичность изготовления выше, если в состав входят модули IGBT транзисторов. На изображенном модуле выполнен мост из двух силовых транзисторов.

IGBT транзисторы нормально функционируют при рабочей частоте до 50 кГц. Если частоту повышать, то повышаются и потери. Свои возможности силовые транзисторы проявляют максимально при напряжении выше 400 В. Поэтому такие транзисторы часто встречаются в мощных электрических приборах высокого напряжения, а также в промышленном оборудовании.

Из истории возникновения

Полевые транзисторы стали появляться в 1973 году. Затем разработали составной транзистор, который оснастили управляемым транзистором с помощью полевого полупроводника с затвором.

Первые силовые транзисторы имели недостатки, выражавшиеся в медленном переключении, низкой надежностью. После 90 годов и по настоящее время эти недостатки устранены. Силовые полупроводники имеют повышенное входное сопротивление, малый уровень управляющей мощности, малый показатель остаточного напряжения.

Сейчас существуют модели транзисторов, способных коммутировать ток до нескольких сотен ампер, с рабочим напряжением в тысячи вольт.

Похожие темы:

electrosam.ru

Империя — Поисковый онлайн видео сервис

Надоело пропускать премьеры в кинотеатре из-за бешеного ритма жизни? Устали от того, что по телеканалам стоящие фильмы транслируются в неудобное для Вас время? В Вашей семье часто родные делят пульт от телевизора? Ребенок просит посмотреть мультфильмы для детей, когда Вы заняты, а на каналах нет хороших мультфильмов? И, в конце концов, Вы просто хотите расслабиться после трудового дня на диване в домашней одежде за просмотром интересного фильма или сериала?

Для этого лучше всего иметь всегда в закладках любимый сайт, который станет для Вас лучшим другом и помощником. «А как же выбрать такой сайт, когда их так много?» — спросите Вы. Лучшим выбором для Вас будет именно imperiya.by

Почему именно наш ресурс? Потому что он объединяет в себе множество положительных особенностей, которые делают его универсальным, удобным и простым. Вот список основных преимуществ ресурса.

  1. Бесплатный доступ. Многие сайты просят клиентов покупать подписку, чем наш портал не занимается, так как считает, что у людей должен быть свободный доступ в сети интернет ко всему. Мы не берем с наших зрителей плату за просмотр!

  2. Не нужно никакой регистрации и СМС на сомнительные номера телефонов. Мы не собираем конфиденциальную информацию о наших пользователях. Каждый имеет право на анонимность в интернете, что мы и поддерживаем.

  3. Отличное качество видео. Мы загружаем материалы исключительно в HD формате, что, безусловно, способно порадовать любимых пользователей. Ведь гораздо приятнее смотреть хороший фильм с качественной картинкой, чем с изображением низкого качества.

  4. Огромный выбор. Здесь Вы найдете видео на любой вкус. Даже самому заядлому киноману всегда найдется, что посмотреть у нас. Для детей есть мультфильмы в хорошем качестве, познавательные программы о животных и природе. Мужчины найдут для себя интересными каналы о новостях, спорте, автомобилях, а также о науке и технике. А для наших любимых женщин мы подобрали канала о моде и стиле, о знаменитостях, ну и конечно музыкальные клипы. Устроив вечер в кругу семьи, или с друзьями Вы сможете подобрать веселую семейную комедию. Влюбленная пара понежиться за просмотром любовной мелодрамы. После рабочего дня расслабиться помогает захватывающий сериал или детектив. Фильмы в HD формате нового времени и прошлых лет представлены на абсолютно любой вкус и могут удовлетворить потребности любого зрителя.

  5. Возможность скачивать видео. Абсолютно любой материал на сайте можно скачать к себе на компьютер или флешку. Если вдруг Вы соберетесь на дачу с ноутбуком, где нет интернета, или захотите посмотреть фильм на большом экране телевизора, то Вы всегда можете заранее скачать, а после посмотреть в нужный момент. При этом Вам не придется ждать своей очереди, чтобы скачать видео, как это бывает на торрентах или других похожих сайтах.

  6. Безопасность. Мы следим за чистотой контента, каждый файл перед закачкой проверяется. Поэтому на нашем сайте нет никаких вирусов и шпионских программ, и мы тщательно следим за этим.

  7. Новинки. Регулярно мы обновляем и добавляем на портал новые мультфильмы, сериалы, ТВ-шоу, музыкальные клипы, новости, обзоры, мультсериалы и т.д. и всё это Вы можете посмотреть совершенно бесплатно, без регистрации и смс. Мы стараемся для Вас, для наших любимых посетителей.

  8. Онлайн-просмотр. На нашем сайте не обязательно предварительно скачивать фильм, чтобы его посмотреть, достаточно просто включить и наслаждаться просмотром. Благодаря профессиональной настройке не будет никаких торможений, и ничто не сможет Вам помешать посмотреть интересный фильм.

  9. Закладка. На сайте можно нажатием одной кнопки со звездочкой отравить видео в закладки и вернуться к нему позже. У каждого, наверняка бывало, что увидел на сайте интересное видео, которое хочешь посмотреть, но прямо сейчас нет возможности. Данная кнопка поможет Вам в этом и, освободившись, Вы с легкостью сможете посмотреть, то что хотели.

  10. Удобный интерфейс. Поиск нужного видео не займет у Вас много времени, так как сайт лучшим образом адаптирован для пользователей, и всё интуитивно понятно. Даже ребенок сможет разобраться и включить для себя мультфильм или какую-нибудь программу о животных, природе.

Кино как искусство появилось сравнительно недавно, но уже успело тесно переплестись с нашей жизнью. Множество людей из-за спешки нашего времени уже годами не ходили в театр, в галерею или музеи. Однако трудно себе представить человека, который не смотрел сериал или фильм хотя бы месяц. Киноискусство является синтезом театра, музыки, изобразительного искусства и литературы. Таким образом, оно дает даже самому занятому человеку, у которого нет времени ходить по театрам и галереям, быть ближе к искусству и духовно совершенствоваться.

Также кино заняло сферу и общедоступного развлечения. Просмотр комедий, боевиков, вестернов и т.д. отлично вписывается в какой-нибудь вечер в кругу семьи. Ужастики отлично щекочут нервы даже самого бесстрашного человека. Мультфильмы обожают дети, а некоторые можно смотреть и всей семьей. Познавательные видео помогают расширить знания, посмотреть на мир шире и удовлетворить собственное природное любопытство.

Человек в двадцать первом веке уже не может представить свою жизнь без технологий будущего, кажется, в будущем машины, роботы и техника смогуд заменить человека, а точнее выполнение многих автоматических работ, по этому каждый хочет смотреть какие технологии будут в будущем. На imperiya.by Вам и не нужно откладывать просмотр, просто добавьте видео в закладки и в любой момент можете к нему вернутся и отлично провести время за просмотром качественного видео.

Не отказывайте себе в удовольствии, начните смотреть уже прямо сейчас! Знакомьтесь с обновлениями, с новинками, выбирайте то, что хотели бы посмотреть позже. Порадуйте себя и близких интересными фильмами в хорошем качестве!

imperiya.by