Расчет теплопотерь пола – Теплопотери через пол и стены в грунт

Содержание

Теплопотери через пол и стены в грунт

Опубликовано 05 мая 2015
Рубрика: Теплотехника | 31 комментарий

Несмотря на то, что теплопотери через пол большинства одноэтажных промышленных, административно-бытовых и жилых зданий редко превышают 15% от общих потерь тепла, а при увеличении этажности порой не достигают и 5%, важность правильного решения задачи…

…определения теплопотерь от воздуха первого этажа или подвала в грунт не теряет своей актуальности.

Особенно важно правильно рассчитать эти теплопотери для подвальных комнат (залов), где они могут составить все 100% для данного типа помещений!

В этой статье рассматриваются два варианта решения поставленной в заголовке задачи. Выводы — в конце статьи.

Считая потери тепла, всегда следует различать понятия «здание» и «помещение».

При выполнении расчета для всего здания преследуется цель — найти мощность источника и всей системы теплоснабжения.

При расчете тепловых потерь каждого отдельного помещения здания, решается задача определения мощности и количества тепловых приборов (батарей, конвекторов и т.д.), необходимых для установки в каждое конкретное помещение с целью поддержания заданной температуры внутреннего воздуха.

Воздух в здании нагревается за счет получения тепловой энергии от Солнца, внешних источников теплоснабжения через систему отопления и от разнообразных внутренних источников – от людей, животных, оргтехники, бытовой техники, ламп освещения, системы горячего водоснабжения.

Воздух внутри помещений остывает за счет потерь тепловой энергии через ограждающие конструкции строения, которые характеризуются термическими сопротивлениями, измеряемыми в м2·°С/Вт:

R=Σ(δii)

δi – толщина слоя материала ограждающей конструкции в метрах;

λi – коэффициент теплопроводности материала в Вт/(м·°С).

Ограждают дом от внешней среды потолок (перекрытие) верхнего этажа, наружные стены, окна, двери, ворота и пол нижнего этажа (возможно – подвала).

Внешняя среда – это наружный воздух и грунт.

Расчет потерь тепла строением выполняют при расчетной температуре наружного воздуха для самой холодной пятидневки в году в местности, где построен (или будет построен) объект!

Но, разумеется, никто не запрещает вам сделать расчет и для любого другого времени года.

Расчет в Excel теплопотерь через пол и стены, примыкающие к грунту по общепринятой зональной методике В.Д. Мачинского.

Температура грунта под зданием зависит в первую очередь от теплопроводности и теплоемкости самого грунта и от температуры окружающего воздуха в данной местности в течение года. Так как температура наружного воздуха существенно различается в разных климатических зонах, то и грунт имеет разную температуру в разные периоды года на разных глубинах в различных районах.

Для упрощения решения сложной задачи определения теплопотерь через пол и стены подвала в грунт вот уже более 80 лет успешно применяется методика разбиения площади ограждающих конструкций на 4 зоны.

Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°С/Вт:

R1=2,1  R2=4,3  R3=8,6  R4=14,2 

Зона 1 представляет собой полосу на полу (при отсутствии заглубления грунта под строением)  шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра или (в случае наличия подпола или подвала) полосу той же шириной, отмеренную вниз по внутренним поверхностям наружных стен от кромки грунта.

Зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания.

Зона 4 занимает всю оставшуюся центральную площадь.

На рисунке, представленном чуть ниже зона 1 расположена полностью на стенах подвала, зона 2 – частично на стенах и частично на полу, зоны 3 и 4 полностью находятся на полу подвала.

Если здание узкое, то зон 4 и 3 (а иногда и 2) может просто не быть.

Площадь пола зоны 1 в углах учитывается при расчете дважды!

Если вся зона 1 располагается на вертикальных стенах, то площадь считается по факту без всяких добавок.

Если часть зоны 1 находится на стенах, а часть на полу, то только угловые части пола учитываются дважды.

Если вся зона 1 располагается на полу, то посчитанную площадь следует при расчете увеличить на 2×2х4=16 м2 (для дома прямоугольного в плане, т.е. с четырьмя углами).

Если заглубления строения в грунт нет, то это значит, что H=0.

Ниже представлен скриншот программы расчета в Excel теплопотерь через пол и заглубленные стены для прямоугольных в плане зданий.

Площади зон F1, F2, F3, F4 вычисляются по правилам обычной геометрии. Задача громоздкая, требует часто рисования эскиза. Программа существенно облегчает решение этой задачи.

Общие потери тепла в окружающий грунт определяются по формуле в КВт:

QΣ=((F1+F)/R1+F2/R2+F3/R

3+F4/R4)*(tвр-tнр)/1000

Пользователю необходимо лишь заполнить в таблице Excel значениями первые 5 строчек и считать внизу результат.

Для определения тепловых потерь в грунт помещений площади зон придется считать вручную и затем подставлять в вышеприведенную формулу.

На следующем скриншоте показан в качестве примера расчет в Excel теплопотерь через пол и заглубленные стены для правого нижнего (по рисунку) помещения подвала.

Сумма потерь тепла в грунт каждым помещением равна общим тепловым потерям в грунт всего здания!

На рисунке ниже показаны упрощенные схемы типовых конструкций полов и стен.

Пол и стены считаются неутепленными, если коэффициенты теплопроводности материалов (λi), из которых они состоят, больше 1,2 Вт/(м·°С).

Если пол и/или стены утеплены, то есть содержат в составе слои с λ<1,2 Вт/(м·°С), то сопротивление рассчитывают для каждой зоны отдельно по формуле:

Rутепл i=Rнеутепл i+Σ(δjj)

Здесь δj – толщина слоя утеплителя в метрах.

Для полов на лагах сопротивление теплопередаче вычисляют также для каждой зоны, но по другой формуле:

Rна лагах

i=1,18*(Rнеутепл i+Σ(δjj))

Расчет тепловых потерь в MS Excel через пол и стены, примыкающие к грунту по методике профессора А.Г. Сотникова.

Очень интересная методика для заглубленных в грунт зданий изложена в статье «Теплофизический расчет теплопотерь подземной части зданий». Статья вышла в свет в 2010 году в №8 журнала «АВОК» в рубрике «Дискуссионный клуб».

Тем, кто хочет понять смысл написанного далее, следует прежде обязательно изучить вышеназванную статью.

А.Г. Сотников, опираясь в основном на выводы и опыт других ученых-предшественников, является одним из немногих, кто почти за 100 лет попытался сдвинуть с мертвой точки тему, волнующую многих теплотехников. Очень импонирует его подход с точки зрения фундаментальной теплотехники. Но сложность правильной оценки температуры грунта и его коэффициента теплопроводности при отсутствии соответствующих изыскательских работ несколько сдвигает методику А.Г. Сотникова в теоретическую плоскость, отдаляя от практических расчетов. Хотя при этом, продолжая опираться на зональный метод В.Д. Мачинского, все просто слепо верят результатам и, понимая общий физический смысл их возникновения, не могут определенно быть уверенными в полученных числовых значениях.

В чем смысл методики профессора А.Г. Сотникова? Он предлагает считать, что все теплопотери через пол заглубленного здания «уходят» в глубь планеты, а все потери тепла через стены, контактирующие с грунтом, передаются в итоге на поверхность и «растворяются» в воздухе окружающей среды.

Это похоже отчасти на правду (без математических обоснований) при наличии достаточного заглубления пола нижнего этажа, но при заглублении менее 1,5…2,0 метров возникают сомнения в правильности постулатов…

Несмотря на все критические замечания, сделанные в предыдущих абзацах, именно развитие алгоритма профессора А.Г. Сотникова видится весьма перспективным.

Выполним расчет в Excel теплопотерь через пол и стены в грунт для того же здания, что и в предыдущем примере.

Записываем в блок исходных данных размеры подвальной части здания и расчетные температуры воздуха.

Далее необходимо заполнить характеристики грунта. В качестве примера возьмем песчаный грунт и впишем в исходные данные его коэффициент теплопроводности и температуру на глубине 2,5 метров в январе. Температуру и коэффициент теплопроводности грунта для вашей местности можно найти в Интернете.

Стены и пол выполним из железобетона (λ=1,7 Вт/(м·°С)) толщиной 300мм (δ=0,3 м) с термическим сопротивлением R=δ/λ=0,176 м2·°С/Вт.

И, наконец, дописываем в исходные данные значения коэффициентов теплоотдачи на внутренних поверхностях пола и стен и на наружной поверхности грунта, соприкасающегося с наружным воздухом.

Программа выполняет расчет в Excel по нижеприведенным формулам.

Площадь пола:

Fпл=B*A

Площадь стен:

Fст=2*h*(B+A)

Условная толщина слоя грунта за стенами:

δусл=f(h/H)

Термосопротивление грунта под полом:

R17=(1/(4*λгр)*(π/Fпл)0,5

Теплопотери через пол:

Qпл=Fпл*(tвtгр)/(R17+Rпл+1/αв)

Термосопротивление грунта за стенами:

R27=δуслгр

Теплопотери через стены:

Qст=Fст*(tвtн)/(1/αн+R27+Rст+1/αв)

Общие теплопотери в грунт:

QΣ=Qпл+Qст

Замечания и выводы.

Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!

Дело  в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!

К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.

Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.

Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:

R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.

Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:

 δусл= (½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Но математически правильно должно быть:

δусл= 2*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

или, если множитель 2 у λгр не нужен:

δусл= 1*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…

Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!

Предлагаю читателям блога протестировать оба варианта расчетов в реальных проектах и результаты представить в комментариях для сравнения и анализа.

Все, что сказано в последней части этой статьи, является исключительно мнением автора и не претендует на истину в последней инстанции. Буду рад выслушать в комментариях мнение специалистов по этой теме. Хотелось бы разобраться до конца с алгоритмом А.Г. Сотникова, ведь он реально имеет более строгое теплофизическое обоснование, чем общепринятая методика.

Прошу уважающих труд автора  скачивать файл с программами расчетов после подписки на анонсы статей!

Ссылка на скачивание файла:

teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)

P. S. (25.02.2016)

Почти через год после написания статьи удалось разобраться с вопросами, озвученными чуть выше.

Во-первых, программа расчета теплопотерь в Excel по методике А.Г. Сотникова считает все правильно — точно по формулам А.И. Пеховича!

Во-вторых, внесшая сумятицу в мои рассуждения формула (3) из статьи А.Г. Сотникова не должна выглядеть так:

R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

В статье А.Г. Сотникова — не верная запись! Но далее график построен, и пример рассчитан  по правильным формулам!!!

Так должно быть  согласно А.И. Пеховичу (стр 110, дополнительная задача к п.27):

R27=δуслгр=1/(2*λгр)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))

Отсюда:

δусл=R27гр=(½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2))) 

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

al-vo.ru

Теплопотери в домах, их подробный правильный расчет

Энергосбережение сейчас наиболее популярная тема в интернете. Еще бы, ведь экономить хочет каждый, а тем более в нынешних экономических условиях. Расчет потерь тепла при этом играет наиболее важную роль. Теплопотери в наиболее простом понимании это количество тепла, которое теряется помещением, домом или квартирой. Измеряются они в Вт. Возникают тепловые потери в доме из-за разницы внешних и внутренних температур воздуха.

Содержание статьи:


В переходной и холодный период года температура на улицах падает, и возрастает разница температур внутреннего воздуха и воздуха на улице. И как уже мы упоминали, Второй закон термодинамики никто не отменял, поэтому тепло с ваших домов и квартир стремится его покинуть и обогреть холодную окружающую среду. Для снижения этих утрат тепла, делается утепление домов в различных видах от пенопласта и вентилируемых фасадов до современных теплоизоляционных материалов в виде шпаклевки. Главной же задачей в нашей профессии является поддержание в помещении комфортных параметров микроклимата. И в первую очередь, мы рассчитываем теплопотери для их компенсации.

Зачем делать расчет теплопотерь?

Когда же делают расчет потерь тепла в доме? Расчет теплопотерь обязателен при проектировании систем отопления, систем вентиляции, воздушных отопительных систем. Расчетные температуры берут из нормативных документов. Значение внешней температуры воздуха отвечает температуре наружного воздуха наиболее холодной пятидневки. Внутреннюю температуру берут или ту, которую желаете, или из норм, для жилых помещений это 20+-2°С.

Исходными данными для расчета служат: внешняя и внутренняя температура воздуха, конструкция стен, пола, перекрытий, назначение каждого помещения, географическая зона строительства. Все тепловые потери на прямую зависят от термического сопротивления ограждающих конструкций, чем оно больше, тем меньше теплопотери.

Для обеспечения комфортных условий пребывания людей в помещении нужно чтобы было правдивым уравнение теплового баланса 

           Qп+ Qо+ Qс+ Qк= Qср+ Qос+ Qпр+ Qлюд,       

где Qп–теплопотери через пол, Qо–теплопотери через окна, Qс–теплопотери через стену, Qк- теплопотери через крышу, Qср–теплопоступления от солнечной радиации, Qос–теплопоступления от отопительных систем, Qпр–теплопоступления от приборов, Qлюд–теплопоступления от людей.

На практике же, уравнение упрощается и все утраты компенсирует система отопления, независимо водяная или воздушная. 

Расчет теплопотерь

Получив исходные данные, проектировщики начинают расчет. Рассмотрим основные виды тепловых потерь и формулы их расчета. Теплопотери бывают: через стены, через пол, через окна, через крышу, через вентиляционные шахты и дополнительные потери тепла. Термическое сопротивление для всех конструкций рассчитывается по формуле 

Rст =1/ αв+Σ(δі / λі)+1/ αн,

где αв – коэффициент теплоотдачи внутренней поверхности ограждения, Вт/ м2·оС;
λі и δі – коэффициент теплопроводности для материала каждого слоя стены и толщина этого слоя в м;
αн – коэффициент теплоотдачи внешней поверхности ограждения, Вт/ м2·ос;

Коэффициенты α берутся из норм, и разные для стен и перекрытий.    

И так, начнем:

 Первым делом рассмотрим теплопотери через стены

На них наибольшее влияние имеет конструкция стен. Рассчитываются  по формуле:     Коэф. n-поправочный коэффициент. Зависит от материала конструкций, и принимается n=1 если конструкции из штучных материалов,и n=0,9 для чердака, n=0,75 для перекрытия подвала.                                                           

Пример: Рассмотрим теплопотери сквозь кирпичную стену 510 мм с утеплителем минеральной ватой 100 мм и декоративным финишным шаром 30 мм. Внутренняя температура воздуха 22ºС, наружная -20ºС. Высотой пусть будет 3 м и длиной 4 м. В комнате одна внешняя стена, размещение на Юг, местность не ветреная, без внешних дверей. Для начала необходимо узнать коэффициенты теплопроводности этих материалов. Из размещенной выше таблицы узнаем: λк =0,58 Вт/мºС,  λут =0,064 Вт/мºС, λшт =0,76  Вт/мºС. После этого рассчитывается термическое сопротивление ограждающей конструкции:

Rст=1/ 23 +0,51/0,58+0,1/0,064+0,03/0,76+ 1/ 8,6 = 2,64 м2 ºС/Вт.

Для нашей местности такого сопротивления недостаточно и дом нужно утеплить лучше. Но сейчас не об этом.  Расчет теплопотерь:

Q=1/R·FΔt·n·β=1/2,64·12·42·1·(10/100+1)=210Вт.

ß- это дополнительные потери тепла. Далее мы распишем их значение и станет ясно, откуда взялось число 10 и зачем делить на 100.

Далее идут тепловые потери сквозь окна

Здесь все проще. Расчет термического сопротивления не нужен, ведь в паспорте современных окон он уже указан. Теплопотери через окна рассчитываются по той же схеме, что и через стены. Для примера рассчитаем потери через энергосберегающие окна с термическим сопротивлением Rо= 0,87 (м2°С/Вт) размером 1,5*1,5 с  ориентацией на Север. Q=1/0,87·2,25·42·1·(15/100+1)=125 Вт.

К теплопотерям через перекрытия относят отвод тепла через крышные и половые перекрытия. В основном это делается для квартир, где и пол и потолок представляет собой железобетонную плиту. На последнем этаже учитываются только потери сквозь потолок, а на первом лишь через подвальное перекрытие. Это обусловлено тем, что во всех квартирах принимается одинаковая температура воздуха, и теплоотдачу от квартиры к квартире не берут во внимание. Недавние исследования показали, что через не утепленные узлы примыкания перекрытий к ограждающим конструкциям идут большие потери тепла.        Определение утечки тепла через перекрытие такое же как и для стены, но не учитываются дополнительные теплопотери. Коэффициент α берется другой: α вн =8,7 Вт/(м 2·К) α вн =6 Вт/(м2·К), разница температур также, ведь в подвале или на крытом чердаке температура принимается в пределах 4-6ºС. Не будем расписывать расчет термического сопротивления для перекрытия, ведь он определяется по той же формуле Rст = 1/ αв + Σ ( δі / λі ) + 1/ α. Возьмем перекрытие с сопротивлением 4,95 и примем воздух на чердаке +4ºС, площадь потолка 3х4м, внутри 22ºС. Подставляем в формулу и получаем:Q=1/R·FΔt·n·β=1/4,95·12·18·0,9= 40 Вт.  

Расчет потерь тепла через пол на грунте

Он немного сложнее нежели через перекрытие. Теплопотери рассчитываются по зонам. Зоной называют полосу пола шириной 2 м, параллельно внешней стене. Первая зона находится непосредственно возле стены, здесь происходит больше всего потерь тепла. За ней последуют вторая и другие зоны, до центра пола. Для каждой зоны рассчитывается свой коэффициент теплопередачи. Для упрощения вводится понятие удельного сопротивления: для первой зоны R1=2,15 (м2°С/Вт), для второй R2=4,3 (м2°С/Вт), для третьей R3=8,6 (м2°С/Вт)

 Пример Есть комната в которой пол на грунте, размер пола 6х8 м Температуры все те же. Сначала разделим пол на зоны. У нас их получилось две. Находим площадь каждой зоны. У нас это 20 м2 для первой зоны и 8 м2 для второй. Затем задаемся условными сопротивлениями R1=2,15 (м2°С/Вт), R2=4,3 (м2°С/Вт), подставляем в формулу:                                                 Q=(F1/R1+F2/R2+F3/R3)(tвт — tвн)·n=(20/2,15+8/4,3)·42·1= 470 Вт.                       

Дополнительные теплопотери

Учитываются  только для стен и окон, то есть конструкций которые напрямую соприкасаются с окружающей средой. Существует четыре вида дополнительных потерь тепла: на ориентацию, на ветреность, на количество стен и наличие внешних дверей. Выражаются они в процентах и в последствии переводятся в коэффициент дополнительных теплопотерь. Если помещение ориентированно на Север, Восток, Северо-Восток, Северо-Запад дополнительные потери тепла составляют 10%, когда на Юг, Запад, Юго-Запад, Юго-Восток, додаются 5%. Если здание находится в ветреной местности, додаются еще 10% тепловых потерь,а когда в защищенной от ветров местности только 5%. Если в помещении есть две внешние стены, то дополнительные потери составляют 5%, когда только одна — дополнительных потерь нет. Если в наружной стене есть дверь, можно рассчитать убыток сквозь нее, но проще добавить 60% если двери тройные, 80% когда двойные двери и 95% если они одинарные. Например: Комната имеет две внешние стены, размещенная в ветреной местности, одна стена выходит на Юг, вторая на Север, дверей нету. Тогда дополнительные потери составляют 10%+5% на ориентацию +10% на ветер +5% так как две стены. И того 30%, чтобы добавить их к основным теплопотерям нужно перевести в коэффициент β =30% + 100% =30/100 +1 =1,3 и подставляем в общую формулу. 

Теплопотери на вентиляцию

Не учитываются, если проектируется воздушное отопление или используется вентустановка с подогревом воздуха, так как воздух в помещение поступает уже теплый, и на его нагрев не тратится тепло. Но если установка без подогрева, необходимо учесть расход тепла на нагрев входящего воздуха. Упрощенная формула выглядит так:

Q=0,337·V·Δt

где V — бьем помещения в м3,  Δt — разница внешней и наружной температур.

Сума всех потерь тепла и составляет общие потери помещения. 

Расчет тепловых потерь в программе Excel

Сам процесс расчета тепловых потерь дома занимает довольно много времени, поэтому для себя мы создали шаблон в Excel, с помощью которого делаем расчеты. Решили с вами поделиться и использовать его можно перейдя по ссылке. Здесь же распишем инструкцию пользования.

Шаг 1

Перейти по ссылке и открыть программный файл. Вы перед собой увидите таблицу такого вида:

Шаг 2

Нужно заполнить исходные данные: номер помещения (если вам нужно), его название и температура внутри, название ограждающих конструкций и их ориентация, размеры конструкций. Вы увидите, что площадь считается сама. Если хотите отнимать площадь окна от стен, нужно корректировать формулы, так как мы не знаем где у вас будут записаны окна. У нас площади отнимаются. Также нужно заполнить коэффициент теплопередачи 1/R, разницу температур и поправочный коэффициент. К сожалению, их заполняют вручную. В примере у нас кабинет с тремя внешними стенами в одной стене два окна, в другой нет окон и третья имеет одно окно. Конструкции стен будет как в примере, где мы рассчитывали R, поесть к=1/R=1/2,64=0,38. Пол пусть будет на грунте и его поделим на зоны у нас их две и потери считаем для двух зон , тогда к1=1/2,15=0,47, к2=1/4,3=0,23. Окна пусть будут энергосберегающие Rо= 0,87 (м2°С/Вт), тогда к=1/0,87=1,14.

На картинке видно, что количество потерь тепла уже прорисовывается.

Шаг 3

К сожалению, также вручную заполняются и дополнительные потери. Вводить их нужно в процентах, программа сама в формуле переведет их на коэффициент. И так, для нашего примера: Стены 3 значит к каждой стене +5% теплопотерь, местность не веретенная поэтому +5% к каждому окну и стене, Ориентация на Юг +5% для конструкций, на Север и Восток +10%. Дверей внешних нет поэтому 0, но если бы были то суммировались бы проценты только к той стене в которой есть дверь. Напоминаем, что к полу или перекрытию дополнительные потери тепла не относятся.

Как видно, потери помещения возросли. Если у вас заходит в помещение уже теплый воздух, этот шаг последний. Число записанное в столбце Q, и  есть ваши искомые тепловые потери помещения. И эту процедуру нужно провести для всех остальных помещений. 

Шаг 4

В нашем же случае воздух не подогревается ,и чтобы рассчитать полные потери тепла, нужно в столбик Rввести площадь нашего помещения 18 м2, а в столбец S его высоту  3 м.

Эта программа значительно ускоряет и упрощает расчеты, даже невзирая на большое количество введенных вручную элементов. Она не раз помогала нам. Надеемся и вам она станет помощником!

Заключение

 Правильный расчет теплопотерь покажет, что вы профессионал своего дела. Ведь согласитесь, расчет потерь 100 Вт/м2 слегка преувеличен, а в некоторых случаях недостаточен. Поэтому потратьте на 15 минут больше времени и рассчитайте тепловые потери здания. Исходя из этого вы сможете не только спроектировать более чем комфортные условия пребывания людей, но и сэкономить заказчику немалые средства на эксплуатацию систем. А опыт показывает, что к таким проектировщикам обращаются чаще.

Читайте также:

airducts.ru

Расчет теплопотерь через пол | Тепловизов

В одноэтажных административных и жилых зданиях теплопотери через пол составляют до 15,0% от общих утечек тепла. При увеличении количества этажей этот показатель снижается до 5,0%. Тем не менее, вопросы минимизации тепловых потерь через пол и прилегающие участки являются основными в общей программе повышения энергетической эффективности любого здания.

Чтобы добиться наилучшего результата, необходимо иметь точную информацию о том, какие места являются наиболее проблемными. Получить достоверную картину распределения температуры на поверхности, мест утечки тепловой энергии и притока холодного воздуха можно с помощью тепловизионного обследования – передовой технологии неразрушающего теплового контроля.

Теплопотери пола: самые холодные зоны

Как показывает практический опыт, значительная часть тепла уходит на участке соединения стены и пола, через мостики холода в углу. При определенных температурных условиях в таком углу появляется повышенная влажность, а со временем развивается плесень и грибок.

Основными причинами утечки тепла в области пола являются:

  • особенности конструкции строения;
  • использование материалов с разным показателем теплопроводности;
  • неплотные стыки, щели и другие строительные дефекты;
  • отсутствующая или некачественная тепло- и гидроизоляция стяжки на первом этаже.

Если в доме установлена система «теплый пол», то теплопотери могут происходить вследствие выхода из строя ее элементов или неправильного монтажа. Это может быть засорение трубок, образование в них воздушных пробок, а также протечки.

Предположить такие проблемы можно по снижению температуры, неравномерному нагреву поверхности, падению давления, но точно выявить место протечки или засорения можно только с помощью тепловизора.

Обследование проводится без демонтажа напольного покрытия и вскрытия стяжки. Его результаты являются точными, что позволяет выполнить ремонт на конкретном участке и устранить неполадки с минимальными затратами времени и средств.

Расчёт потерь тепла через полы

При определении общих потерь тепла первым участком, для которого проводят такие расчеты, является пол. Его роль в теплопотерях не самая большая, а расчет предполагает использование различных показателей – типа почвы и ее характеристик, глубины, на которую промерзает грунт, параметров фундамента.

Учитывая такие особенности, вычисления проводят по упрощенной схеме. Вдоль периметра дома, начиная от линии соприкосновения с грунтом, описывается 4 участка, которые представляют собой полосы шириной 200,0 сантиметров.

Для каждого участка используется определенный показатель приведенного сопротивления тепловой передаче: 2,1; 4,3; 8,6 и 14,2 кв.м * град./Вт.
Используя формулу и фиксированные значения, вычисляется показатель теплопотерь. Как правило, такие расчеты производятся с использованием компьютерной техники, что исключает ошибки и позволяет оперативно получить результат.

teplovizov.ru

Расчет сопротивления теплопередаче пола первого этажа — Мегаобучалка

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 3

ИСХОДНЫЕ ДАННЫЕ 4

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ НАРУЖНЫХ

ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ 5

ОПРЕДЕЛЕНИЕ ОТОПИТЕЛЬНОЙ НАГРУЗКИ ПОМЕЩЕНИЙ 13

КОНСТРУИРОВАНИЕ СИСТЕМЫ ОТОПЛЕНИЯ 16

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ 18

ТЕПЛОВОЙ РАСЧЕТ ОТОПИТЕЛЬНЫХ ПРИБОРОВ 21

КОНСТРУИРОВАНИЕ И РАСЧЕТ СИСТЕМЫ ВЕНТИЛЯЦИИ 23

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 27

ПРИЛОЖЕНИЯ 28

 

ВВЕДЕНИЕ

Отопление зданий обеспечивает тепловой комфорт для людей или выполнение технологических требований по параметрам внутреннего воздуха в зависимости от назначения помещения и установленного оборудования.

В суровых климатических условиях холодных и продолжительных зим в России проживание людей в помещениях невозможно без работы системы отопления, обеспечивающей компенсацию теплопотерь через наружные ограждения и нагрев санитарной нормы наружного приточного воздуха.

Система отопления должна поддерживать заданные параметры температуры воздуха в помещении, теплопотери при движении теплоносителя по трубам должны быть как можно меньше, а так же иметь долгий срок службы и способность демонтажа.

 

Исходные данные

 

Район строительства: г. Псков, Псковская область;

Тип здания: жилое;

Количество этажей – 3, высота этажа – 3 метра;

Температура воздуха наиболее холодной пятидневки обеспеченностью 0,92 (tн) – минус 26оС; [1, таблица 1]

Продолжительность периода со среднесуточной температурой воздуха менее или равной 8оС (zот) – 212 суток; [1, таблица 1]

Средняя температура воздуха за период со среднесуточной температурой менее или равной 8оС (tот) – минус 1,6оС; [1, таблица 1]

Температура внутреннего воздуха помещений:

— жилая комната 20 оС

— жилая угловая комната 22 оС

— санитарная комната 25 оС

— коридор 18 оС

— лестничная клетка 16 оС

— кухня 18 оС

— угловая кухня 22 оС

Для угловых помещений температура наружного воздуха повышается на 2 оС.

Относительная влажность воздуха в помещении – 55%;

Условия эксплуатации конструкции – Б;

Ориентация по сторонам света: дворовой фасад здания ориентирован на запад.



 

 

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ

 

Теплотехнический расчет заключается в определении толщины слоя тепловой изоляции при известном нормированном сопротивлении теплопередачи (Rтр ). При этом температура на внутренней поверхности ограждения должна отвечать санитарно-гигиеническим требованиям, а приведенное сопротивление теплопередаче (Rф ) , должно удовлетворять теплотехническим требованиям:Rтр ≤Rф .

Теплотехническому расчету подлежат наружные стены, бесчердачное перекрытие, перекрытие над подвалом, окна и наружные двери.

 

Расчет сопротивления теплопередаче наружной стены

Таблица 2.1 — Расчетные теплотехнические показатели материала слоев наружной стены [2, прил Т]

№ п/п Наименование слоя δ, м λ, Вт/(м*°С)
Глиняный кирпич 0,51 0,58
Пенополистерол х 0,044
  Силикатный керпич 0,12 0,7

 

Градусо-сутки отопительного периода (ГСОП):

ГСОП=(tв — tот) zот , где:

tв=20°С – температура помещения.

ГСОП=(20+1,6) *212 = 4579,2°С сут

Нормируемое сопротивление теплопередаче:

Rтр = n(a ГСОП + b), где:

n – коэффициент, учитывающий зависимость положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху;

n=1 – стены и окна,

n=0,9 бесчердачное перекрытие;

nтп=( tв— tс)/( tв— tн) – техподполье; tс=5°С;

nтп=(20-5)/(20+26)= 0,326;

коэффициенты a и b для наружной стены: а=0,00035 и b=1,4.

Rтр = 1(0,00035*4579,2+1,4) = 3,003 м2°С/Вт

 

Минимальная толщина теплоизоляционного слоя принимается из теплотехнического требования: Rф ≥Rтр Примем Rф =Rтр , тогда толщина теплоизоляционного слоя (δ2 ) по формуле для однородной многослойной ограждающей конструкции:

δ2 = ( Rтр -1/αв -∑δii -1/αн )*λ2 = (3,003 — 1/ 8,7 – 0,51/0,58 – 0,12/0,7 1/23)*0,044 = 0,0789 м. Принимаем δ2 = 80 мм.

Пересчитаем и найдем Rф, подставив δ2 в формулу:

R = 1/αв1/ λ1 + δ2/ λ2 + δ3/ λ3 +1/ αн

Rф =1/8,7+0,51/0,58+0,12/0,7+0,08/0,44+1/23 = 3,03 м2°С/Вт

Примечание: αв = 8,7 (поверхность ровная без выступов), αн = 23 (для наружной стены).

Проверим санитарно-гигиенические требования.

Найдем температуру на внутренней поверхности наружной стены:

τв = tв – n(tв – tн)/ Rф αв = 20 – [1(20+16)\(3,03*8,7)] = 18,21 °C

∆to = tв – τв = 20 – 18,21 = 1,78°С < 4°С – условие выполняется.

Примечание: ∆to = ∆tнорм = 4°C – для наружной стены

3°C – для потолка

2°C – для пола.

Вывод: Толщина теплоизоляционного слоя из пенополистерола – 80мм. При такой толщине тепловой изоляции выполняются все теплотехнические и санитарно-гигиенические требования по параметрам «а» и «б», в соответствии с [2] Общая толщина наружной стены – 710 мм.

 

Расчет сопротивления теплопередаче пола первого этажа

Rтр = 0,326(0,00045*4579,2+1,9) = 1,29 м2°С/Вт

 

Таблица 2.2 – Расчетные теплотехнические показатели материала слоев перекрытия над подвалом [2, прил Т]

 

№ п/п Наименование слоя δ, м λ,Вт/(м*°С)
Ж/б плита 0,12 1,92
Мин. вата х 0,048
Асфальто-бетонная стяжка 0,03 1,05
Доски 0,02 0,14

δ2 = ( Rтр -1/αв -∑δii -1/αн )*λ2 = 1,291 — 1/ 8,7 – 0,12/1,92 – 0,02/0,14 – 0,03/1,05 — 1/23)*0,045 = 0,04 м. Принимаем δ2 = 40 мм.

Пересчитаем и найдем Rф, подставив δ2 в формулу:

R = 1/αв1/ λ1 + δ2/ λ2 + δ3/ λ3 +1/ αн

Rф =1/8,7+0,12/1,92+0,03/1,05+0,02/0,14+0,04/0,045+1/23 = 1,29 м2°С/Вт

Проверим санитарно-гигиенические требования.

Найдем температуру на внутренней поверхности пола:

τв = tв – n(tв – tн)/ Rф αв = 20 – [0,326(20+26)\(1,29*8,7)] = 18,66 °C

∆to = tв – τв = 20 – 18,66 = 1,34°С < 2°С – условие выполняется.

Вывод: Толщина теплоизоляционного слоя из минеральной ваты – 40мм. При такой толщине тепловой изоляции выполняются все теплотехнические и санитарно-гигиенические требования по параметрам «а» и «б», в соответствии с [2].

Общая толщина перекрытия над подвалом – 210 мм.

 

megaobuchalka.ru

Теплотехнический расчет пола на грунте.

Приведенное термическое сопротивление теплопередаче конструкции пола, расположенного непосредственно на грунте, принимается по упрощенной методике, в соответствии с которой поверхность пола делят на четыре полосы шириной 2 м, параллельные наружным стенам.

1. Для первой зоны = 2,1.

Коэффициент теплопередачи равен:

,

2. Для второй зоны = 4,3.

Коэффициент теплопередачи равен:

,

3. Для третьей зоны = 8,6.

Коэффициент теплопередачи равен:

,

4. Для четвёртой зоны = 14,2.

Коэффициент теплопередачи равен:

.

Теплотехнический расчёт наружных дверей.

1. Определяем требуемое сопротивление теплопередаче для стены:

,(2.4),

где: n – поправочный коэффициент на расчётную разность температур

tв – расчётная температура внутреннего воздуха

tнБ – расчётная температура наружного воздуха

Δtн – нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждения

αв – коэффициент тепловосприятия внутренней поверхности ограждения = 8,7 Вт/(м2/ºС)

2. Определяем сопротивление теплопередаче входной двери:

Rодд = 0,6 · Rонстр = 0,6 · 1,4 =0,84,(2.5),

3. К установке принимаются двери с известным Rreq0=2,24,

4. Определяем коэффициент теплопередачи входной двери:

,(2.6),

5. Определяем скорректированный коэффициент теплопередачи входной двери:

,(2.7).

2.2. Определение потерь тепла через ограждающие конструкции.

В зданиях, сооружениях и помещениях с постоянным тепловым режимом в течение отопительного сезона для поддержания температуры на заданном уровне сопоставляют теплопотери и теплопоступления в расчетном установившемся режиме, когда возможен наибольший дефицит теплоты.

Теплопотери в помещениях в общем виде состоят из теплопотерь через ограждающие конструкции Qогp, теплозатрат на нагревание наружного инфильтрующегося воздуха, поступающего через открываемые двери и другие проемы и щели в ограждениях.

Потери тепла через ограждения определяются по формуле:

Вт, (2.8),

где: А — расчетная площадь ограждающей конструкции или ее части, м2;

K — коэффициент теплопередачи ограждающей конструкции, ;

tint — температура внутреннего воздуха, 0С;

text — температура наружного воздуха по параметру Б, 0С;

β – добавочныетеплопотери, определяемые в долях от основных теплопотерь. Добавочныетеплопотери приняты по [3];

n –коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху, принимается по Таблице 6 [5].

Согласно требованиям [3]п 6.3.4 в проекте не учитывались теплопотери через внутренние ограждающие конструкции, при разности температур в них 3°С и более.

При расчете теплопотерь подвальных помещений за высоту надземной части принято расстояние от чистого пола первого этажа до отметки земли. Подземные части наружных стен рассматриваются полы на грунте. Потери тепла через полы на грунте вычисляются путем разбиения площади пола на 4 зоны (I-III зоны шириной 2м, IV зона оставшейся площади). Разбивка на зоны начинается от уровня земли по наружной стене и переносится на пол. Коэффициенты сопротивления теплопередачи каждой зоны приняты по [8].

Расход теплоты Qi , Вт, на нагревание инфильтрующегося воздуха определен по формуле:

Qi = 0,28Gic(tin – text)k , (2.9),

где: Gi— расход инфильтрующегося воздуха, кг/ч, через ограждающие конструкции помещения;

C — удельная теплоемкость воздуха, равная 1 кДж/кг°С;

k — коэффициент учета влияния встречного теплового потока в конструкциях, равный 0,7 для окон с тройными переплетами;

Расход инфильтрующегося воздуха в помещении Gi, кг/ч, через неплотности наружных ограждающих конструкций отсутствует, в связи с тем, что в помещении установлены стеклопластиковые герметичные конструкции, препятствующие проникновению наружного воздуха в помещение, а инфильтрация через стыки панелей учитываются только для жилых зданий [3].

Расчет теплопотерь через ограждающие конструкции здания был произведён в программе «Potok», результаты приведены в приложении 1.

studfiles.net

разное по теме — Расчет теплопотерь пола на грунте.

Расчет теплопотерь через полы, уложенные на грунт в цокольном этаже, я производил согласно методике, изложенной в пособии по расчету теплопотерь. Здесь расскажу, как я это делал применительно к своему дому.

Прежде всего надо уяснить, что такое двухметровые зоны. В пособии они достаточно четко определяются. Для моего дома первая зона состоит из двух частей: вертикальной и горизонтальной. Вертикальная — это 1,5 м стены цоколя (фундамента дома). Этот фундамент у нас утеплен снаружи плитой пенопласта толщиной 5 см и слоем опила 0,5 м.

Горизонтальная часть зоны I — это оставшиеся от двух метров 0,5 метра пола от стены. Эта часть зоны не утеплена ничем, просто лежит бетонная стяжка с гидроизоляцией. Даже арматуры там никакой нет.

Зона II — это 2 метра полосы от зоны I к центру пола. И зона III — оставшаяся часть пола, представляющая из себя квадрат со стороной 3.4 м. Если смотреть на это разделение сверху, то получается примерно такая картина, как на рисунке. Голубой цвет — зона I, зеленый — зона II, желтый — зона III.

Далее определяю показатель теплосопротивления каждой из зон. Надо учитывать при этом, что зона I состоит из двух частей, одна из которых (вертикальная) утеплена. Нормативы говорят, что теплосопротивление любой утепленной зоны является суммой заданного для зоны теплосопротивления с общим теплосопротивлением утеплителя.

Заданное для зоны I нормативное теплосопротивление равно 2.1 м2°С/Вт. У меня вертикальная часть утеплена пенопластом и опилом. Их коэффициент теплопроводности известен, остается определить их теплосопротивления. Это просто:

Коэффициент теплопроводности пенопласта — 0.05 Вт/м°С, опила — 0.075 Вт/м°С. Кроме того, в составе пирога имеются штукатурный слой, бетон и гидроизоляция. Толщину каждого слоя делим на его коэффициент теплопроводности (СНиП II-3-79) и получаем значения теплосопротивления:

  • нормативное для зоны I = 2.1 м2°С/Вт
  • штукатурка: 0.01 м / 0.93 Вт/м°С = 0,01 м2°С/Вт
  • бетон: 0.3 м / 1,86 Вт/м°С = 0,16 м2°С/Вт
  • гидроизоляция: 0.004 м / 0.17 Вт/м°С = 0,02 м2°С/Вт
  • пенопласт: 0.05 м / 0.05 Вт/м°С = 1 м2°С/Вт
  • опил: 0.5 м / 0.075 Вт/м°С = 6.67 м2°С/Вт
  • Итого RIверт = 2.1+0.01+0.16+0.17+1+6.67 = 9.96 м2°С/Вт

Это было для вертикальной части. Все остальное — это пол, состоящий из бетона, гидроизоляции и еще раз бетона. Теплосопротивление этого пирога:

  • бетон: 0.08 м / 1,86 Вт/м°С = 0,04 м2°С/Вт
  • гидроизоляция: 0.004 м / 0.17 Вт/м°С = 0,02 м2°С/Вт
  • бетон: 0.08 м / 1,86 Вт/м°С = 0,04 м2°С/Вт
  • Итого Rпола = 0.04+0.02+0.04 = 0.1 м2°С/Вт

Для зоны I горизонтальной части:

  • нормативное для зоны I = 2.1 м2°С/Вт
  • пол Rпола = 0.1 м2°С/Вт
  • Итого RIгориз = 2.1+0.1 = 2.2 м2°С/Вт

Для зоны II:

  • нормативное для зоны II = 4.3 м2°С/Вт
  • пол Rпола = 0.1 м2°С/Вт
  • Итого RII = 4.3+0.1 = 4.4 м2°С/Вт

Для зоны III:

  • нормативное для зоны II = 8.6 м2°С/Вт
  • пол Rпола = 0.1 м2°С/Вт
  • Итого RIII = 8.6+0.1 = 8.7 м2°С/Вт

С теплосопротивлениями определились. Но этого для расчета теплопотерь мало. Нужны еще площади каждой зоны и значение наружной температуры воздуха. Эту температуру можно взять среднюю за отопительный сезон, если ведем расчет для всего сезона, или максимальную, если ведем расчет для построения системы отопления.

Но система отопления у меня уже собрана и действует, мне важно было определить количество тепловой энергии на весь сезон, потому я взял среднюю температуру отопительного сезона, равную -5,9°С, и длительность отопительного сезона 229 суток. СНиП 23-01-99*.

Температура определена, теперь площади. Тут просто арифметика.

  • зона I вертикальная SIверт = 8.4 * 1.5 * 4 = 50.4 м2
  • зона I горизонтальная SIгориз = 8.4 * 0.5 * 4 = 16.8 м2
  • зона II SII = 7.4*7.4 — 3.4*3.4 = 43.2 м2
  • зона III SIII = 3.4*3.4 = 11.56 м2

Все. Осталось определить теплопотери. Они вычисляются по формуле: Q = S*T/R, где:

  • Q — теплопотери, Вт
  • S — площадь ограждения, м2
  • R — теплосопротивление ограждения, м2°С/Вт
  • T — разница температур между внутренним и наружным воздухом. Я беру ее равной 20°С — (-5.9°С) = 25.9°С

Определяем теплопотери:

  • QIверт = 50.4 * 25.9 / 9.96 = 131 Вт
  • QIгориз = 16.8 * 25.9 / 2,2 = 198 Вт
  • QII = 43.2 * 25.9 / 4.4 = 254 Вт
  • QIII = 11.56 * 25.9 / 8.7 = 34 Вт
  • Итого Qобщ = 131+198+254+34 = 617 Вт

Итого за отопительный период для возмещения теплопотерь через фундамент и пол цокольного этажа потребуется 0,617 квт * 24 ч * 229 сут = 3391 квт-ч тепловой энергии.

Вот такой вот расчет. Теплопотери на инфильтрацию воздуха в расчет не принимаю в связи с их незначительностью для рассматриваемых ограждений. Также не применяю коэффициенты по сторонам света, поскольку фундамент в земле и солнце с ветрами на него не воздействуют. Некоторые неточности в определении размеров ограждений (обмер не по правилам) пусть никого не возбуждают:) В принципе, я не лабораторные расчеты вел, а всего лишь для бытового применения, и погрешности в пределах 2-3% меня вполне устраивают.

Если же нужно произвести расчет для утепленного пола, то в этой методике достаточно пересчитать теплосопротивление пола Rпола, все остальное делается точно также. А вообще, если есть небольшой навык, лучше всего подобные расчеты вести в Excel.

teplo-faq.net

Расчет теплопотерь дома с примером

Проектирование системы отопления «на глазок» с большой вероятностью может привести либо к неоправданному завышению расходов на ее эксплуатацию, либо к недогреву жилища.

Чтобы не случилось ни того ни другого, необходимо в первую очередь грамотно выполнить расчет теплопотерь дома.

И только на основании полученных результатов подбирается мощность котла и радиаторов. Наш разговор пойдет о том, каким способом производятся эти вычисления и что при этом нужно учитывать.

Разновидности теплопотерь

Авторы многих статей сводят расчет теплопотерь к одному простому действию: предлагается умножить площадь отапливаемого помещения на 100 Вт. Единственное условие, которое при этом выдвигается, относится к высоте потолка — она должна составлять 2,5 м (при других значениях предлагается вводить поправочный коэффициент).

На самом деле такой расчет является настолько приблизительным, что полученные с его помощью цифры можно смело приравнивать к «взятым с потолка». Ведь на удельную величину теплопотерь влияет целый ряд факторов: материал ограждающих конструкций, наружная температура, площадь и тип остекления, кратность воздухообмена и пр.

Теплопотери дома

Более того, даже для домов с различной отапливаемой площадью при прочих равных условиях ее значение будет разным: в маленьком доме — больше, в большом — меньше. Так проявляется закон квадрата-куба.

Поэтому владельцу дома крайне важно освоить более точную методику определения теплопотерь. Такой навык позволит не только подобрать отопительное оборудование с оптимальной мощностью, но и оценить, к примеру, экономический эффект от утепления. В частности, можно будет понять, превзойдет ли срок службы теплоизолятора период его окупаемости.

Первое, что необходимо сделать исполнителю — разложить общие теплопотери на три составляющие:

  • потери через ограждающие конструкции;
  • обусловленные работой вентиляционной системы;
  • связанные со сбросом нагретой воды в канализацию.

Рассмотрим каждую из разновидностей подробно.

Базальтовый утеплитель – популярный теплоизолятор, но ходят слухи о его вреде для здоровья человека. Базальтовый утеплитель – вредность и экологическая безопасность.

Как правильно утеплить стены квартиры изнутри без вреда для конструкции здания, читайте тут.

Холодная кровля мешает создать уютную мансарду. В статье вы узнаете, как утеплить потолок под холодной крышей и какие материалы самые эффективные.

Расчет теплопотерь

Вот как следует производить вычисления:

Теплопотери через ограждающие конструкции

Для каждого материала, входящего в состав ограждающих конструкций, в справочнике или предоставленном производителем паспорте находим значение коэффициента теплопроводности Кт (единица измерения — Вт/м*градус).

Для каждого слоя ограждающих конструкций определяем термическое сопротивление по формуле: R = S/Кт, где S – толщина данного слоя, м.

Для многослойных конструкций сопротивления всех слоев нужно сложить.

Определяем теплопотери для каждой конструкции по формуле Q = (A / R) *dT,

Где:

  • А — площадь ограждающей конструкции, кв. м;
  • dT — разность наружной и внутренней температур.
  • dT следует определять для самой холодной пятидневки.

Теплопотери через вентиляцию

Для этой части расчета необходимо знать кратность воздухообмена.

В жилых зданиях, возведенных по отечественным стандартам (стены являются паропроницаемыми), она равна единице, то есть за час должен обновиться весь объем воздуха в помещении.

В домах, построенных по европейской технологии (стандарт DIN), при которой стены изнутри застилаются пароизоляцией, кратность воздухообмена приходится увеличивать до 2-х. То есть за час воздух в помещении должен обновиться дважды.

Теплопотери через вентиляцию определим по формуле:

Qв = (V*Кв / 3600) * р * с * dT,

Где

  • V — объем помещения, куб. м;
  • Кв — кратность воздухообмена;
  • Р — плотность воздуха, принимается равной 1,2047 кг/куб. м;
  • С — удельная теплоемкость воздуха, принимается равной 1005 Дж/кг*С.

Приведенный расчет позволяет определить мощность, которую должен иметь теплогенератор системы отопления. Если она оказалась слишком высокой, можно сделать следующее:

  • понизить требования к уровню комфорта, то есть установить желаемую температуру в наиболее холодный период на минимальной отметке, допустим, в 18 градусов;
  • на период сильных холодов понизить кратность воздухообмена: минимально допустимая производительность приточной вентиляции составляет 7 куб. м/ч на каждого обитателя дома;
  • предусмотреть организацию приточно-вытяжной вентиляции с рекуператором.

Заметим, что рекуператор полезен не только зимой, но и летом: в жару он позволяет сэкономить произведенный кондиционером холод, хотя и работает в это время не столь эффективно, как в мороз.

Правильнее всего при проектировании дома выполнить зонирование, то есть назначить для каждого помещения свою температуру исходя из требуемого комфорта. К примеру, в детской или комнате пожилого человека следует обеспечить температуру порядка 25-ти градусов, тогда как для гостиной будет достаточно и 22-х. На лестничной площадке или в помещении, где жильцы появляются редко либо имеются источники тепловыделения, расчетную температуру можно вообще ограничить 18-ю градусами.

Очевидно, что цифры, полученные в данном расчете, актуальны только для очень короткого периода — самой холодной пятидневки. Чтобы определить общий объем энергозатрат за холодный сезон, параметр dT нужно вычислять с учетом не самой низкой, а средней температуры. Затем нужно выполнить следующее действие:

W = ((Q + Qв) * 24 * N)/1000,

Где:

  • W — количество энергии, требующейся для восполнения теплопотерь через ограждающие конструкции и вентиляцию, кВт*ч;
  • N — количество дней в отопительном сезоне.

Однако, данный расчет окажется неполным, если не будут учтены потери тепла в канализационную систему.

Теплопотери через канализацию

Для приема гигиенических процедур и мытья посуды жильцы дома греют воду и произведенное тепло уходит в канализационную трубу.

Но в данной части расчета следует учитывать не только прямой нагрев воды, но и косвенный — отбор тепла осуществляет вода в бачке и сифоне унитаза, которая также сбрасывается в канализацию.

Исходя из этого, средняя температура нагрева воды принимается равной всего 30-ти градусам. Теплопотери через канализацию рассчитываем по следующей формуле:

Qк = (Vв * T * р * с * dT) / 3 600 000,

Где:

  • Vв — месячный объем потребления воды без разделения на горячую и холодную, куб. м/мес.;
  • Р — плотность воды, принимаем р = 1000 кг/куб. м;
  • С — теплоемкость воды, принимаем с = 4183 Дж/кг*С;
  • dT — разность температур. Учитывая, что вода на входе зимой имеет температуру около +7 градусов, а среднюю температуру нагретой воды мы условились считать равной 30-ти градусам, следует принимать dT = 23 градуса.
  • 3 600 000 — количество джоулей (Дж) в 1-м кВт*ч.

Пример расчета теплопотерь дома

Рассчитаем теплопотери 2-этажного дома высотой 7 м, имеющего размеры в плане 10х10 м.

Стены имеют толщину 500 мм и выстроены из теплой керамики (Кт = 0,16 Вт/м*С), снаружи утеплены минеральной ватой толщиной 50 мм (Кт = 0,04 Вт/м*С).

В доме имеется 16 окон площадью по 2,5 кв. м.

Наружная температура в самую холодную пятидневку составляет -25 градусов.

Средняя наружная температура за отопительный период — (-5) градусов.

Внутри дома требуется обеспечить температуру +23 градуса.

Потребление воды — 15 куб. м/мес.

Продолжительность отопительного периода — 6 мес.

Определяем теплопотери через ограждающие конструкции (для примера рассмотрим только стены)

Термическое сопротивление:

  • основного материала: R1 = 0,5 / 0,16 = 3,125 кв. м*С/Вт;
  • утеплителя: R2 = 0,05/0,04 = 1,25 кв. м*С/Вт.

То же для стены в целом: R = R1 + R2 = 3.125 + 1.25 = 4.375 кв. м*С/Вт.

Определяем площадь стен: А = 10 х 4 х 7 – 16 х 2,5 = 240 кв. м.

Теплопотери через стены составят:

Qс = (240 / 4.375) * (23 – (-25)) = 2633 Вт.

Аналогичным образом рассчитываются теплопотери через крышу, пол, фундамент, окна и входную дверь, после чего все полученные значения суммируются. Термическое сопротивление дверей и окон производители обычно указывают в паспорте на изделие.

Обратите внимание на то, что при расчете теплопотерь через пол и фундамент (при наличии подвала) разность температур dT будет намного меньшей, так как при ее вычислении учитывается температура не воздуха, а грунта, который зимой является гораздо более теплым.

Теплопотери через вентиляцию

Определяем объем воздуха в помещении (для упрощения расчета толщина стен не учитывается):

V = 10х10х7 = 700 куб. м.

Принимая кратность воздухообмена Кв = 1, определяем теплопотери:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-25)) = 11300 Вт.

Вентиляция в доме

Теплопотери через канализацию

С учетом того, что жильцы потребляют 15 куб. м воды в месяц, а расчетный период составляет 6 мес., теплопотери через канализацию составят:

Qк = (15 * 6 * 1000 * 4183 * 23) / 3 600 000 = 2405 кВт*ч

Если вы не живете в дачном домике зимой, в межсезонье или в холодное лето необходимо все равно его обогревать. Электрическое отопление дачного дома в данном случае бывает самым целесообразным.

О причинах падения давления в системе отопления вы можете почитать в этом материале. Устранение неполадок.

Оценка полного объема энергозатрат

Для оценки всего объема энергозатрат за отопительный период необходимо пересчитать теплопотери через вентиляцию и ограждающие конструкции с учетом средней температуры, то есть dT составит не 48, а только 28 градусов.

Тогда средняя мощность потерь через стены составят:

Qс = (240 / 4.375) * (23 – (-5)) = 1536 Вт.

Предположим, что через крышу, пол, окна и двери дополнительно теряется в среднем 800 Вт, тогда совокупная средняя мощность теплопотерь через ограждающие конструкции составит Q = 1536 + 800 = 2336 Вт.

Средняя мощность теплопотерь через вентиляцию составит:

Qв = (700 * 1 / 3600) * 1,2047 * 1005 * (23 – (-5)) =6592 Вт.

Тогда за весь период на отопление придется затратить:

W = ((2336 + 6592)*24*183)/1000 = 39211 кВт*ч.

К этой величине нужно прибавить 2405 кВт*ч потерь через канализацию, так что общий объем энергозатрат за отопительный период составит 41616 кВт*ч.

Если в качестве энергоносителя используется только газ, из 1-го куб. м которого удается получить 9,45 кВт*ч тепла, то его понадобится 41616 / 9,45 = 4404 куб. м.

Видео на тему

microklimat.pro